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ABSTRACT 

Beside from purelv discrete event and/of continuous 
system simulations, tt,ere exists yet another simulation 
methodology that combines both classes of simulations 
into one. It is often possible to model one and the same 
system by use of completely different world views. 
Several papers have bean written in which one particular 
application was modeled once by use of continuous 
system simulation, and once by use of discrete event 
s!mulation. Both techniques may eventually lead to the 
same answers. Sometlmes however, one technique lends 
Itseif more easily to answering some particular 
questions about a system while the other is more 
convenient for answering some other questions about the 
same system. Thus, before the modeler can decide which 
methodology best to employ, he must know what 
purposes his model is coing to be used for. in this paper, 
we want to describe applications that call for a 
combined continuous/discrete modeling methodology 
together with the techniques (concepts) that 
characterize this type of simulation approach. We shall 
also describe briefly what simulation systems are 
currently on the software market that can be used for 
this type of simulation;. 

1. INTRODUCTION 

Special-purpose languages for both discrete event 
simulation and continuous system simulation exist since 
the fifties of this certury, and the first commercially 
available truly combined simulation software GASP-IV 
was made available in 1974 (Pritsker, 1974). Therefore, 
although combined simulation is much more recent than 
either of its parent technologies, even this technology 
has been established for roughly a dozen years 
meanwhile, and thus., one might expect that combined 
simulation has conquerc?d its market place. 

HOWeVer even after all these years, there can still 
be found a number of !iard-headed simulation software 
developers who claim that the percentage of applications 
calling for a combined continuous/discrete modeling 
methodology makes up less than 5% of the total number 
Of Simulation applications, thus, although combined 

simulation seems to be a nice idea from an academic 
point of view, it is not really commercially exploitable. 
However, these so-called <statistics, base on 
observations of numbers of requests of different kinds 
received by the company, and are hardly justifiable as a 
company who rIas created for itself a name in say 
continuous system simulation will obviously receive 
predominantly requests for solutions of problems where 
this particular technology together with the software 
marketed by the company look promising. In contrast, a 
company who is dealing primarily in discrete event 
simulations will be approached mostly to solve problems 
that lend themselves naturally to this type of a solution, 
and thus will c<observe> that the majority of simulation 
applications really are of this nature. It is one of the 
major aims of this paper to show that there do exist 
larger groups of real-life applications for which a 
combined contiruousf discrete modeling methodology is 
the most natural and best suited solution technique 
available. 

Gradually while introducing the different types of 
applications of combined simulation, we shall identify 
the techniques (concepts) that make this modeling (and 
simulation) technique particularly powerful for the 
application in question. 

in the very end of this paper, we shall summarize 
some of the existing software tools for combined 
simulation, and discuss for which kinds of problems they 
are most profitably used. 

One final remark with respect to our terminology: 
Some people call <<combined simulation> also <hybrid 
simulation>. We mention this term for further reference. 
However, we shall not use this term ourselves as the 
term <hybrid simulation, is also used in a completely 
different context namely to denote combined analog and 
digital simulation, 

2. MODELING OF DISCONTINUOUSFUNCTIONS 

Every continuous system simulation language tC5SL) 
offers a set of discontinuous functions such as a limiter 
function, a hysteresis function, a dead-space function, 
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etc. Moreover, most of them provide a <NOSORTB option 
and/or procedural sections in which ordinary FORTRAN 
constructs such as IF statements can be employed to 
model discontinuous functions. No serious modeler today 
would claim that these mechanisms are not really 
needed, and that a world view consisting of continuous 
and continuously differentiable functions only would 
make much sense. 

Discontinuities can be accurately located by 
exploiting the fact that numerical integration algorithms 
as offered in todays CSSL’s all operate on polynomial 
extrapolations. As polynomials newer exhibit any 
discontinuities, obviously the extrapolation around a 
discontinuity must be in error. However, the accuracy of 
the numerical integration is controlled by comparing the 
<result, obtained from different integration algorithms 
with each other. If they disagree, the step size of the 
integration will be reduced, and the step will be repeated 
by using the new smaller step size. Obviously, different 
polynomial approximations have no reason to agree when 
integrated through a discontinuity, and thus, the step 
size control mechanism of the integration algorithm can 
be used to locate the discontinuity rather accurately. 

Unfortunately, this technology is always inefficient, 
and it may sometimes even fail entirely as the following 
example wi 11 demonstrate. 

2.1 Speed Control of a Train Engine 

Electrical locomotives normally are driven by AC 
motors. The speed of the engine is controlled by the 
Power r??! flowing through the engine: 

P = Ulcos(+) 

where U denotes the voltage, / denotes the current, and 
+ denotes the phase angle between voltage and current 
in the engine. 

One way to influence the speed of the engine would 
be to prevent current from flowing through the engine for 
a particular time span (or during a particular angle 00 in 
each ha!f period of the sine wave. A thyristor (SCRI in 
the input loop is fired IX’ after each zero crossing of the 
voltage, and is stopped again as soon as the (lagging) 
current crosses through zero as shown in Fig. I. 

This technique has one considerable disadvantage. 
The third harmonic of the Fourier spectrum of the power 
signal contains a substantial amount of energy. As this 
system was designed for Swltzertand where the trains 
run on 1% Hz, the third harmonic is exactly at 50 Hz, 
that is: it interfers with the electric net frequency As 
an effect of this interference, when the first phase cut 

Fig. I: AC-motor driven in phase cutting technique 
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Fig. 2: AC-motor driven in burst technique 

driven trains drove up the Gotthard mountain, the 
electric counters in some of the houses along the ral\S 
were reset to zero. 

Another solution might be to let a certain number of 
periods pass through .3s a whole, while disabling the 
current during some other period of time as illustrated 
in Fig. 2. 

Also this apt roach has its considerable 
disadvantages. If the number of periods forming one 
<burst> is taken too small, the train does not accelerate 
and decelerate smoothly enough which puts a discomfort 
on the travelers. On the other hand, if the burst is 
chosen large, the train does not react quickly enough in 
case of emergency. 

For this reason, one of our former co-workers 
designed a new clrcult that shoutd overcome all these 
disadvantages (Schlunegger, 1977). The circuit shown In 
Fig. 3 Places a hysteresis around a sine wave of desired 
amp i i tude. 

An SC!? circuit is driven such that the current 
follows a desired sine wave plus/minus the hysteresis 
band around it. The power is controlled by changing the 
amplitude of the desired sine wave. This Circuit was 
expected to work muchbetterthaneitherof the previous 
alternatives as the power can be altered continuously, 
and yet most of the power goes into the 16j Hz frequency 
line. The third harmonic carries hardly any power. Only 
much higher harmonics contain a noticeable percentage 
of the power. The circuit should first be simulated in 
order to calculate a Fourier spectrum to quantify the 
amount of power going into the various harmonics. 

Our colleague tried to simulate this circuit in one of 
the standard CSSF’s modeling the hysteresis by use of 
the built in HSTRS-function. However, the simulation 
did not work at all. Fig. 4 shows the result of the 
simulation (current), and Fig. 5 shows the integration 
step size as a function of simulated time. 

Fig. 3: AC-motor driven in chopper technique 
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thus <incorrect>) during a later stage of the simulation. 
Therefore, the mode! is on the <wrong side of the fence% 
after the step has finally been completed, and the 
simulation tries to repeat the cross-over during the 
following step obviously with equally little success. The 
integration step remains thus small until the number of 
model switchings again becomes odd at yet a later time 
inStant when the simulation finally resumes ~COrreCb 

operation. 

Fig. 4: Current as a function of simulated time 

Ill/’ II I’ III II I . I” 

Fig. 5: Step size as a function of simulated time 

As can be seen from Fig. 4, the simulation first 
exhlbits a correct pattern, and although the step size is 
trying to adjust itself frantically to the frequent 
discontinuitles taking place, the simulation works fine. 
Suddenly however, the oscillation dies out, and at the 
same time, the step size drops to a very small value 
msking the -incorrect- simulation extremely expensive 
to run. What went wrong? Due to the steep gradient in 
the current, the model switches several times back and 
forth within one single integratron step, thus 
invaltdating the integration, and thus leading to a 
reduction in the step size. However, when the step size 
is sufficiently small, all higher order terms in the 
polynomial approximation become insignificant, and any 
explicit integration scheme is finally behaving like a 
forward Euler Integration. Therefore, the two 
integration algorithms compared to each other shall 
finally <shake hands> which may happen either on the 
correct or on an incorrect result. In our simulation, the 
number of model switchings taking place in the finally 
accepted integration step was odd (and thus <correct>) 
during the initial simulation phase, but it was even (and 

Similar effects were observed during the simulation 
of the <rattling> of undercritically damped electrical 
discharge machines for dye-sinking work, in the 
simulation of short circuits on electric power lines 
which simply failed altogether unless the short circuit 
was assumed at time zero, and in several other cases of 
highly discontinuous system behavior. None of the above 
examples is afar fetched>. These are simply the type of 
examples that a simulatron specialists meets in 
everyday’s practice once he advances beyond the typical 
school book examples of Van-der-Pal’s equations and the 
pilot ejection study. 

What can be done about. Obviously, it was not such a 
splendid idea after all to misuse the step size control 
mechanism of the numerical integration algorithm for 
discontinuity handling. Instead, we must teN the 
simulation program explicitly that a discontinuity takes 
olace. 

2.2 Generator Functions and Scheduled Events 

One type of discontmuities that can take place in an 
otherwise continuous mode1 is a discontinuous input 
function. It may e.g. be desirable to drive a model with a 
square wave generator as depicted in Fig. 6: 

AU 
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1’ 
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Fig. 6: Square wave generator function 

This can be described by assigning an initial value to u, 
and by scheduling two initial time events to take place 
at times rt, and t,, resp.: 

INITIAL 
u= 1.0 
SCHEDULE down AT t0 
SCHEDULE up AT tl 

END INITIAL 



Each event description schedules a new event of the Let us denote state conditions by a WHEN construct 
same type to happen T time units into the future: of the following form: 

EVENT down EVENT up 
u = 0.0 U’l.0 
SCHEDULE dowln IN t SCHEDULE up IN t 

END down END up 

WHEN x > xn THEN SCHEDULE mod2 

By use of a mec:hanism well known from discrete 
event simulation, WC! were able to tell the simulation 
program explicitly about the forthcoming discontinuity. 
The last step before getting to the next discontinuity can 
be automatically reduced to hit the discontinuity 
accurately. No unne,cessary repetition of integration 
steps iS going to take place. Moreover following the 
discontinuity, the integration algorithm Can be restarted 
from scratch avoicling an integration through the 
discontinuity altogether, This is why this approach is 
called combined continuous/discrete simulation. 

which reads as: <when x becomes larger than xfl 

schedule immediately the state event called n7odAt 

Using this not.ation, we can recode the limiter function 
as: 

CASE modtype OF 
neg: Y = yn 

WHEN x > xn SCHEDULE mod2 
cent: y = c*x 

WHEN x ( xn SCHEDULE mod1 
WHEN x ) xp SCHEDULE mod3 

pos: Y = YP 
WHEN x < xp SCHEDULE mod2 

END CASE 

2.3 State Events and State Conditions together with three event descriptions of the form: 

Not all discontinuities can be resolved by scheduling 
events ahead of time. More frequently in fact are 
discontinuities that do not depend on time directly but 
rather on another (time-dependent) variable of the model 
such as the limiter function depicted in Fig. 7. 

EVENT mod2 
modtype = cent 

END mod2 

This is obviously a much more clumsy way to model the 
?imiter function than the more compact IF notation 
proposed previously. However, this is exactly the kind of 
notation that the preprocessor IS supposed to generate 
out of the IF statement contained in the user program. 

Fig. 7: Limiter Function 

However, it is important that the user has direct 
access to the WHEN clause as well. Not all discontinuous 
functions can be expressed through IF statements. Let us 
consider the dry hysteresis function as shown in Fig. 8. 

This function can e.g. Ibe modeled as: 
TY 

Y’ IF x i XII THEN yn 
ELSEIF x < xp THEN c*x 
ELSE yp 

xrl xP 
> 
X 

Y,- 

At a first glance, this looks like a more fancy Version of 
what we would have programmed in a procedural section 
of one of the current. CSSL’s. However, the simulation 
preprocessor is expected to translate this convenient IF 
statement into code that automatically checks so-called 
stare conditions that decide whether the mode1 is 
currently about to switch from one branch of the 
discontinuous function to another, and if so, iterate to 
hit the discontinuity with a prescribed accuracy, then 
execute immediately a so-called s&t,? event that 
performs the switch-over, and finally restart the 
integration algorithm from scratch thereafter. 

Fig. 8: Dry hysteresis Function 

Obviously, the IF statement won’t work, as this function 
is multivalued. However, the WHEN clause will work fine 
as the following program segment shows: 

WHEN x (xn THEN y = yn 
WHEN x > xp THEN y = yp 

which must be accompanied by an appropriate initial 
condition: 

I’. E. C:ellier 
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INITIAL 

Y = YP 
END INITIAL 

Again, this is a convenient abbreviation for explicitly 
scheduling state events, but the preprocessor can 
generate appropriate code out of this convenient user 
description. 

The same mechanism can also be used to more 
appropriately terminate simulation runs, e.g. by writing: 

WHEN xy < 0.0 THEN TERMINATE 

This will ensure that the simulation not simply stops 
after Xy has become smaller than ao, but that an 
iteration takes place to locate the zero crossing more 
accurately. Looking into some descriptions of the 
famous pilot ejection study, e.g. (Kern, 19791, one may 
notice that the step size of the simulation was 
restricted on purpose to avoid wrong decisions to be 
taken. Again, this is a terrible waste of COrfpJtatiOnai 

time. 

This concludes the description of the mechanisms 
that are required for combined continuous/discrete 
simulation. In fact, a combined simulation program can 
be viewed as a discrete event simulation program in 
which a continuous simulation takes place between any 
two consecutive event times. 

3. MODELING OF SAMPLED DATA SYSTEMS 

Some simulation languages provide special means 
for the simulation of sampled data systems, e.g. by 
introducing another operator to denote sampling delay. 
Unfortunately, this method is somewhat restrictive as it 
usually does not allow to simulate multi-rate sampled 
data systems in which the delay time of separate 
controllers can be chosen separately. 

We believe that a more appropriate way to represent 
sample data systems is by way of combined 
continuous/discrete simulation. A discrete controller is 
simply represented as a self-generating time event: 

EVENT sampling 
SCHEDULE sampting IN ts 
2=2+d2 

END sampling 

where dz represents the rate by which the discrete 
state variable z is to be changed at each sampling point. 
Obviously, dz will usually be computed within the event. 
5 denotes the sampling interval. Obviously, this event 
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calls for an initial condition: 

INITIAL 
2’1.0 
SCHEDULE sampling AT ts 

END INITIAL 

Multi-rate sampling does not pose any problem here. 
Simply group all variables that use the same Sampling 
interval and sampling times together into one State 
event, while all others are specified in other state 
events. Obviously, this approach also guarantees 
appropriate handling by the integration algorithm, as 
integration will automatically be restarted after any 
sampling has taken place. 

4. MODELING VARIABLE STRUCTURE SYSTEMS 

Sometimes, one is interested to model a system 
that changes its structure entirely at event times, e.g. 
the number of differential equations may change. 
Traditionally, this is the type of problem that was 
considered a <combined continuous/discrete> problem. 
We do agree that such problems are more complicated to 
handle, and that they probably do not occur so frequently 
in practice. Often quoted examples are simulations of 
chemical batch processors (Pritsker, l974), harbor 
operations (Pritsker, 19791, and heating of steel ingots 
(Fahrland, 1970). 

We proposed another interesting benchmark problem 
to test the capabilities of simulation systems. Domino 
stones are placed at a distance d from each other. The 
first stone is pushed, and after some time, all domino 
stones have fallen flat. Which is the distance d between 
two consecutive stones that maximizes the chain 
velocity (Gel I ier, 1979)? 

Obviously, one does not want to consider the 
differential equations of hundreds of domino stones out 
of which most have already fallen or are still standing 
upright. Instead, the simulation software should provide 
a mechanism to describe the differential equations of 
one <model, stone. State events are used to acreate> a 
new active stone whenever the next stone is pushed, and 
<delete% an old stone from the active list of stones 
whenever one stone has fallen flat. This calls for a 
mechanism equivalent to a SIMULA <<class, to model 
individual stones described by their own differential 
equations. 

One may find that variable structure simulations 
often consume a considerable amount of computational 
time. Thus, one may be inclined to aggregate the model 
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further into an ent,irely discrete simulation. This is 
perfectly legitimate whenever it is feasible. Even in 
most of the examples quoted in (Pritsker, 1974 and 
19791, such an aggre’gation is feasible and does make 
sense. Unfortunately, this approach does not always 
work. The domino (?xample is one which is somewhat 
tricky, and at least we have not been able to find a 
legitimate aggregation due to the strong interaction 
between neighboring stones. 

Practical examples include the tactical simulation 
of fighter airplanes. Due to time considerations, 
problems of this kind were mostly aggregated into 
discrete event models in the past, but eventually, some 
valuable information about the dynamics of the 
particular aircraft to be simulated will be lost in the 
aggregation process. Other applications that actually 
were modeled in a combined continuous/discrete manner 
in the past include various missile simulations. For 
obvious reasons, these simulations are not widely 
publicized though. 

5. RULE-BASED CONTROL SYSTEM DESIGN 

How does a human operator control a process, e g. 
how does a pilot fly an aircraft? Obviously, he doesn’t 
solve any Riccati equation in his head. Instead, he uses a 
number of meters (variables) that he observes. Whenever 
one of the variables is outside its expected range which 
in return is evaluated by means of a <qualitative 
simulationw of a <mental modelw, the pilot reacts in one 
way or the other. The observed variables together with 
the mental model of the aircraft represent the 
<knowledge> of the pilot. Control is done by applying 
this knowledge to a <rule base, which is a set of rules 
of the type: <WHEN t?is and this happens, THEN do that 
and that,. 

Automatic controllers as they are in use today work 
very well for the local control of subsystems. However, 
they do a poor job with respect to global assessment of 
complex processes, and with respect to learning when 
confronted with unforeseen situations. 

Unfortunately, the human operator becomes 
unreliable if the amount of information to be monitored 
grows beyond an amazingly small level. Psychological 
studies have shown tiat even a trained human operator 
cannot observe reliably more than about IO different 
pieces of information at any one time. Several 
drammatic aircraft accidents have already happened for 
exactly this reason. 

Currently, we build ever more complex processes. 
For such applications, e.g. the forthcoming space station, 

nuclear power plants, a surgical operation room, etc., we 
roust overcome this problem by being able to <simulatez> 
human behavior in an automatic device. We are convinced 
that these types of simulations will play an ever 
increasing role in coming years. We further propose that 
combined continuous/discrete simulation is exactly the 
tool that is needed for this type of simulation. 

The (<plant, is represented by a conventional model, 
e.g. a continuous model described by differential 
equations. From this model, a number of variables are 
o:observedw (they are output variables). The ctmentat 
model> can be represented in several ways, e.g. by means 
of simple difference equations, some discrete events, or 
an input/output model as eg described in (Klir, !985). 
The <rule base>> really is nothing but a set of state 
conditions and state events in the language of combined 
simulation: 

WHEN condition1 THEN action1 
WHEN condition2 THEN action2 

Each of the conditions is one state condition to be 
tested, and each of the actions is one state event to be 
performed if the condition comes true. 

6i. COMBINEiD SItlULATION SOFTWARE 

In this brief (and incomplete) survey, we want to 
mention some of the software systems that are currentiy 
on the software market, and tnat found a certain degree 
of recognition, In this context, it is more important to 
us to classify these -representative- systems 
appropriately into different categories, rather than to 
give a complete enumeration of available simulation 
software systems. A more complete survey of 
simulation software can be found in (Cellier, 1983). 

6. I Continuous System Simulation Software 
with Features for Discontinuity Handling 

Some software systems with a limited capabiiity 
for <combined>, simulation were developed out of purely 
continuous sysiem simulation software. Among those, 
we would like to mention just two: 

ACSL: (Mitchell & Gauthier, 1981) This is one of the 
more frequently used continuous simulation software 
systems. For purely continuous simulation, this CSSL 
has created for itself a very good reputation. Recently, 
time events and state events were added to the software 
allowing for appropriate treatment of discontinuities, 
and also enabling correct simulation of sampled data 
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systems. However, no other attributes of discrete event 
simulation were added. There are no waiting queues 
except for the event queue itself. There are no 
appropriate random number generators for stochastic 
event scheduling, etc. Moreover, the discontinuous 
functions within ACSL (such as a hysteresis function) 
were not adjusted to the new mechanisms, therefore, 
discontinuous systems must be user decomposed into 
proper event descriptions. There is currently no concept 
in ACSL for ahidden events>, that is: system maintained 
events. IF statements can be used within procedural 
sections, but they are not decomposed into an event 
handling mechanism as discussed earlier in this paper. 

SIMNON: (Elmqvist, 1975) This software system was 
conceptualized for the simulation of sampled data 
systems. Subsystems can be either <continuous> or 
<<discrete*, and there exists a <<connecting system, to 
connect the different subsystems together. However, 
this mechanism is not hierarchical. SIMNON was 
designed for the simulation of sampled data control 
systems described in a block diagram manner. Although 
sampled data systems are treated correctly, the 
mechanism employed in SIMNON is even less general than 
the one used in ACSL. There does not exist a user 
accessible event calendar. However, SIMNON was the 
first more widely used KcombinedB simulation software 
within this class of systems. 

6-2 Discrete Event Simulation Software 
with Continuous Attributes 

Most of today’s combined simulation systems 
originally grew out of discrete event simulation 
systems. This is understandable as it is much easier to 
embed a continuous simulation software into a discrete 
event simulation software, than it is to incorporate 
event handling capabilities into an existing continuous 
simulation software. Let me mention just a few systems 
of this type: 

GASP-IV: (Pritsker, 1974) GASP-IV was the first 
commercially available (and successful) combined 
simU!ation software on the software market. it grew out 
of GASP-II, a very simple discrete event simulation 
system. Al 1 GASP versions actually are nothing but a set 
of FORTRAN subroutines that the user can call to Perform 
simulations. However, we would hesitate to call 
GASP-IV a truly combined Simulation Software. Its 
parent software (GASP-II) is very obvious. GASP-IV has 
definitely strong attributes towards discrete event 

simulation, but is weak in handling COntitWOUS systems. 
In particular, one particular Runge-Kutta integration 
algorithm was built directly into the software which 
makes the software useless for SimUlatiOnS of systems 
where Runge-Kutta integration is not appropriate, such 
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as stiff systems, and highly oscillatory systems Also. 
continuous system simulationists like to make use of 

system functions such as a hysteresis, a dead-space, 
etc. None of these functions is available in GASP-IV. 
Finally, the graphics capabilities of GASP-IV are very 
poor. 

SLAtl-I I: (Pritsker, 1979) SLAM-II grew out of 
GASP-IV. In fact, it is a true superset of GASP-IV, 
making the previous system obsolete. However, SLAM-I I 
enhanced further the discrete side of the Software Iby 
adding a network modelling capability), whereas the 
continuous side is as rudimentary as in GASP-IV. 
Therefore, we suggest to use SLAM-II for the simulation 
of predominantly discrete systems with some (few) 
continuous attributes. It is definitely not convenient to 
use for full-fledged continuous system simulations. We 
suspect that the major reason for the impressive 
success that both GASP-IV and SLAM-II had stems from 
their excellent documentation. Both books (Pritsker, 
1974, 1979) are not just software manuals, but can be 
(and are) used as textbooks for discrete event 
simulation. 

SIMAN: (Pegden, 1982) SIMAN is mainly a 
reimplementation of SLAM-II. Differences between the 
two Software systems are minor, and in particular, the 
COntinUOUS POrtiOn is Still Simply a copy Of the old 
GASP-IV concepts. As SIMAN was developed later, its 
developers were able to avoid some of the <mistakes, 
that went into the design of SLAM, and SIMAN is 
Sometimes a little ahead of the game with respect to 
new features offered. 030th SLAM and SlMAN are 
continuously being furtner developed.) Unfortunately, the 
SIMAN documentation is much less convincing than the 
SLAM documentation. 

6.3 Truly Combined Simulation Software 

We want to mention only two systems under this 
heading: 

GASP-V: (Cellier, 1976) GASP-V is a <nephew, of 
SLAM-I I. It grew also out of GASP-IV. However 
contrary to SLAM-II, GASP-V did not develop the 
discrete Portion of the code any further. As a matter of 
fact, the discrete modelling capabilities of GASP-V are 
identical with those offered in GASP-IV. Instead, the 
continuous POrtiOn was developed further, In GASP-V, a 
representative library of integration subroutines has 
been made available. A set of discontinuous functions 
(comparable to the one offered in ACSL) was 
implemented, resolving all discontinuities by means of 
internal hidden events. In GASP-V, we also added 
software for the simulation of distributed parameter 
systems by use of the method-of-lines approach, and as 
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far as we know, GASP-V is still the only software 
available designed to model systems of PDE’s coupled 
with ODE’s, and allowing for discontinuities. In GASP--V, 
we also added a graphical postprocessor. (This feature 
is meanwhile also a-/ailable in SLAM-II when operated 
through TESS, and in SIMAN when used together with 
Cl NEMA.) 

SYSMOD: (Baker, 1986) SYSMOD is the first 
commercially, available simulation system that was 
designed from scratch with a focus on combined 
simulation. SYSMOD can be viewed as a superset of 
PASCAL. It is a strongly-typed highly-structured 
language. A PASCAL-coded preprocessor translates 
SYSMOD models into FORTRAN. SYSMOD is the first 
simulation system on the market that truly supports 
Separate compilation of even tightly coupled continuous 
subsystems. Also the experiment can be compiled 
separately from the inodel. SYSMOD is currently a little 

biased towards the continuous side, but it does offer a 
full set of discrete event handling capabilities (no 
process description mechanism though). Due to strong 
typing, SYSMOD is less easy to use for the modeling of 
simple continuous systems than ACSL. Therefore, 
SYSMOD is particularly powerful for the simulation of 
large scale systems: such as power plant simulations, 
and missile simulations. The complexity of the SY’SMOD 
grammar is similar to that of ADA, but SYSMOD was more 
systematically de,signed by use of a rigid 
general-purpose LL(‘i ) recursive-descent parser. The IF, 
WHEN, and CASE examples given earlier in this paper are 
all (somewhat stripped down) versions of SYSMOD code. 
For predominantly discrete simulations with few 
continuous attributes, we suggest to use either TESS 
(with SLAM-II) or CINEMA (with SIMAN). However, for 
predominantly coni:inuous simulations with heavy 
discontinuities and/or complex decision making, SYSMOD 
may currently well be your best bid. 
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