
Proceedings of the 1986’ Winter Simulation Colzference
J. Wilson, J. Henriksen, S. Roberts (eds.)

COMBINED CONTINUOUS/DISCRETE SIMULATION
APPLICATIONS, TECHNIWES, AND TOOLS

Francois E. Cellier
Department of Electrical and Computer Engineering

University of Arizona
Tucson, AZ 8572 I, USA.

ABSTRACT

Beside from purelv discrete event and/of continuous
system simulations, tt,ere exists yet another simulation
methodology that combines both classes of simulations
into one. It is often possible to model one and the same
system by use of completely different world views.
Several papers have bean written in which one particular
application was modeled once by use of continuous
system simulation, and once by use of discrete event
s!mulation. Both techniques may eventually lead to the
same answers. Sometlmes however, one technique lends
Itseif more easily to answering some particular
questions about a system while the other is more
convenient for answering some other questions about the
same system. Thus, before the modeler can decide which
methodology best to employ, he must know what
purposes his model is coing to be used for. in this paper,
we want to describe applications that call for a
combined continuous/discrete modeling methodology
together with the techniques (concepts) that
characterize this type of simulation approach. We shall
also describe briefly what simulation systems are
currently on the software market that can be used for
this type of simulation;.

1. INTRODUCTION

Special-purpose languages for both discrete event
simulation and continuous system simulation exist since
the fifties of this certury, and the first commercially
available truly combined simulation software GASP-IV
was made available in 1974 (Pritsker, 1974). Therefore,
although combined simulation is much more recent than
either of its parent technologies, even this technology
has been established for roughly a dozen years
meanwhile, and thus., one might expect that combined
simulation has conquerc?d its market place.

HOWeVer even after all these years, there can still
be found a number of !iard-headed simulation software
developers who claim that the percentage of applications
calling for a combined continuous/discrete modeling
methodology makes up less than 5% of the total number
Of Simulation applications, thus, although combined

simulation seems to be a nice idea from an academic
point of view, it is not really commercially exploitable.
However, these so-called <statistics, base on
observations of numbers of requests of different kinds
received by the company, and are hardly justifiable as a
company who rIas created for itself a name in say
continuous system simulation will obviously receive
predominantly requests for solutions of problems where
this particular technology together with the software
marketed by the company look promising. In contrast, a
company who is dealing primarily in discrete event
simulations will be approached mostly to solve problems
that lend themselves naturally to this type of a solution,
and thus will c<observe> that the majority of simulation
applications really are of this nature. It is one of the
major aims of this paper to show that there do exist
larger groups of real-life applications for which a
combined contiruousf discrete modeling methodology is
the most natural and best suited solution technique
available.

Gradually while introducing the different types of
applications of combined simulation, we shall identify
the techniques (concepts) that make this modeling (and
simulation) technique particularly powerful for the
application in question.

in the very end of this paper, we shall summarize
some of the existing software tools for combined
simulation, and discuss for which kinds of problems they
are most profitably used.

One final remark with respect to our terminology:
Some people call <<combined simulation> also <hybrid
simulation>. We mention this term for further reference.
However, we shall not use this term ourselves as the
term <hybrid simulation, is also used in a completely
different context namely to denote combined analog and
digital simulation,

2. MODELING OF DISCONTINUOUSFUNCTIONS

Every continuous system simulation language tC5SL)
offers a set of discontinuous functions such as a limiter
function, a hysteresis function, a dead-space function,

24

Combined Continuous/Discrete Simulation

etc. Moreover, most of them provide a <NOSORTB option
and/or procedural sections in which ordinary FORTRAN
constructs such as IF statements can be employed to
model discontinuous functions. No serious modeler today
would claim that these mechanisms are not really
needed, and that a world view consisting of continuous
and continuously differentiable functions only would
make much sense.

Discontinuities can be accurately located by
exploiting the fact that numerical integration algorithms
as offered in todays CSSL’s all operate on polynomial
extrapolations. As polynomials newer exhibit any
discontinuities, obviously the extrapolation around a
discontinuity must be in error. However, the accuracy of
the numerical integration is controlled by comparing the
<result, obtained from different integration algorithms
with each other. If they disagree, the step size of the
integration will be reduced, and the step will be repeated
by using the new smaller step size. Obviously, different
polynomial approximations have no reason to agree when
integrated through a discontinuity, and thus, the step
size control mechanism of the integration algorithm can
be used to locate the discontinuity rather accurately.

Unfortunately, this technology is always inefficient,
and it may sometimes even fail entirely as the following
example wi 11 demonstrate.

2.1 Speed Control of a Train Engine

Electrical locomotives normally are driven by AC
motors. The speed of the engine is controlled by the
Power r??! flowing through the engine:

P = Ulcos(+)

where U denotes the voltage, / denotes the current, and
+ denotes the phase angle between voltage and current
in the engine.

One way to influence the speed of the engine would
be to prevent current from flowing through the engine for
a particular time span (or during a particular angle 00 in
each ha!f period of the sine wave. A thyristor (SCRI in
the input loop is fired IX’ after each zero crossing of the
voltage, and is stopped again as soon as the (lagging)
current crosses through zero as shown in Fig. I.

This technique has one considerable disadvantage.
The third harmonic of the Fourier spectrum of the power
signal contains a substantial amount of energy. As this
system was designed for Swltzertand where the trains
run on 1% Hz, the third harmonic is exactly at 50 Hz,
that is: it interfers with the electric net frequency As
an effect of this interference, when the first phase cut

Fig. I: AC-motor driven in phase cutting technique

25

F. E. Cellier

Fig. 2: AC-motor driven in burst technique

driven trains drove up the Gotthard mountain, the
electric counters in some of the houses along the ral\S
were reset to zero.

Another solution might be to let a certain number of
periods pass through .3s a whole, while disabling the
current during some other period of time as illustrated
in Fig. 2.

Also this apt roach has its considerable
disadvantages. If the number of periods forming one
<burst> is taken too small, the train does not accelerate
and decelerate smoothly enough which puts a discomfort
on the travelers. On the other hand, if the burst is
chosen large, the train does not react quickly enough in
case of emergency.

For this reason, one of our former co-workers
designed a new clrcult that shoutd overcome all these
disadvantages (Schlunegger, 1977). The circuit shown In
Fig. 3 Places a hysteresis around a sine wave of desired
amp i i tude.

An SC!? circuit is driven such that the current
follows a desired sine wave plus/minus the hysteresis
band around it. The power is controlled by changing the
amplitude of the desired sine wave. This Circuit was
expected to work muchbetterthaneitherof the previous
alternatives as the power can be altered continuously,
and yet most of the power goes into the 16j Hz frequency
line. The third harmonic carries hardly any power. Only
much higher harmonics contain a noticeable percentage
of the power. The circuit should first be simulated in
order to calculate a Fourier spectrum to quantify the
amount of power going into the various harmonics.

Our colleague tried to simulate this circuit in one of
the standard CSSF’s modeling the hysteresis by use of
the built in HSTRS-function. However, the simulation
did not work at all. Fig. 4 shows the result of the
simulation (current), and Fig. 5 shows the integration
step size as a function of simulated time.

Fig. 3: AC-motor driven in chopper technique

26

Combined Continuous/Discrete Simulation

thus <incorrect>) during a later stage of the simulation.
Therefore, the mode! is on the <wrong side of the fence%
after the step has finally been completed, and the
simulation tries to repeat the cross-over during the
following step obviously with equally little success. The
integration step remains thus small until the number of
model switchings again becomes odd at yet a later time
inStant when the simulation finally resumes ~COrreCb

operation.

Fig. 4: Current as a function of simulated time

Ill/’ II I’ III II I . I”

Fig. 5: Step size as a function of simulated time

As can be seen from Fig. 4, the simulation first
exhlbits a correct pattern, and although the step size is
trying to adjust itself frantically to the frequent
discontinuitles taking place, the simulation works fine.
Suddenly however, the oscillation dies out, and at the
same time, the step size drops to a very small value
msking the -incorrect- simulation extremely expensive
to run. What went wrong? Due to the steep gradient in
the current, the model switches several times back and
forth within one single integratron step, thus
invaltdating the integration, and thus leading to a
reduction in the step size. However, when the step size
is sufficiently small, all higher order terms in the
polynomial approximation become insignificant, and any
explicit integration scheme is finally behaving like a
forward Euler Integration. Therefore, the two
integration algorithms compared to each other shall
finally <shake hands> which may happen either on the
correct or on an incorrect result. In our simulation, the
number of model switchings taking place in the finally
accepted integration step was odd (and thus <correct>)
during the initial simulation phase, but it was even (and

Similar effects were observed during the simulation
of the <rattling> of undercritically damped electrical
discharge machines for dye-sinking work, in the
simulation of short circuits on electric power lines
which simply failed altogether unless the short circuit
was assumed at time zero, and in several other cases of
highly discontinuous system behavior. None of the above
examples is afar fetched>. These are simply the type of
examples that a simulatron specialists meets in
everyday’s practice once he advances beyond the typical
school book examples of Van-der-Pal’s equations and the
pilot ejection study.

What can be done about. Obviously, it was not such a
splendid idea after all to misuse the step size control
mechanism of the numerical integration algorithm for
discontinuity handling. Instead, we must teN the
simulation program explicitly that a discontinuity takes
olace.

2.2 Generator Functions and Scheduled Events

One type of discontmuities that can take place in an
otherwise continuous mode1 is a discontinuous input
function. It may e.g. be desirable to drive a model with a
square wave generator as depicted in Fig. 6:

AU
T 4 ,

1’

I I I 1 >
to t, time

Fig. 6: Square wave generator function

This can be described by assigning an initial value to u,
and by scheduling two initial time events to take place
at times rt, and t,, resp.:

INITIAL
u= 1.0
SCHEDULE down AT t0
SCHEDULE up AT tl

END INITIAL

Each event description schedules a new event of the Let us denote state conditions by a WHEN construct
same type to happen T time units into the future: of the following form:

EVENT down EVENT up
u = 0.0 U’l.0
SCHEDULE dowln IN t SCHEDULE up IN t

END down END up

WHEN x > xn THEN SCHEDULE mod2

By use of a mec:hanism well known from discrete
event simulation, WC! were able to tell the simulation
program explicitly about the forthcoming discontinuity.
The last step before getting to the next discontinuity can
be automatically reduced to hit the discontinuity
accurately. No unne,cessary repetition of integration
steps iS going to take place. Moreover following the
discontinuity, the integration algorithm Can be restarted
from scratch avoicling an integration through the
discontinuity altogether, This is why this approach is
called combined continuous/discrete simulation.

which reads as: <when x becomes larger than xfl

schedule immediately the state event called n7odAt

Using this not.ation, we can recode the limiter function
as:

CASE modtype OF
neg: Y = yn

WHEN x > xn SCHEDULE mod2
cent: y = c*x

WHEN x (xn SCHEDULE mod1
WHEN x) xp SCHEDULE mod3

pos: Y = YP
WHEN x < xp SCHEDULE mod2

END CASE

2.3 State Events and State Conditions together with three event descriptions of the form:

Not all discontinuities can be resolved by scheduling
events ahead of time. More frequently in fact are
discontinuities that do not depend on time directly but
rather on another (time-dependent) variable of the model
such as the limiter function depicted in Fig. 7.

EVENT mod2
modtype = cent

END mod2

This is obviously a much more clumsy way to model the
?imiter function than the more compact IF notation
proposed previously. However, this is exactly the kind of
notation that the preprocessor IS supposed to generate
out of the IF statement contained in the user program.

Fig. 7: Limiter Function

However, it is important that the user has direct
access to the WHEN clause as well. Not all discontinuous
functions can be expressed through IF statements. Let us
consider the dry hysteresis function as shown in Fig. 8.

This function can e.g. Ibe modeled as:
TY

Y’ IF x i XII THEN yn
ELSEIF x < xp THEN c*x
ELSE yp

xrl xP
>
X

Y,-

At a first glance, this looks like a more fancy Version of
what we would have programmed in a procedural section
of one of the current. CSSL’s. However, the simulation
preprocessor is expected to translate this convenient IF
statement into code that automatically checks so-called
stare conditions that decide whether the mode1 is
currently about to switch from one branch of the
discontinuous function to another, and if so, iterate to
hit the discontinuity with a prescribed accuracy, then
execute immediately a so-called s&t,? event that
performs the switch-over, and finally restart the
integration algorithm from scratch thereafter.

Fig. 8: Dry hysteresis Function

Obviously, the IF statement won’t work, as this function
is multivalued. However, the WHEN clause will work fine
as the following program segment shows:

WHEN x (xn THEN y = yn
WHEN x > xp THEN y = yp

which must be accompanied by an appropriate initial
condition:

I’. E. C:ellier

28

INITIAL

Y = YP
END INITIAL

Again, this is a convenient abbreviation for explicitly
scheduling state events, but the preprocessor can
generate appropriate code out of this convenient user
description.

The same mechanism can also be used to more
appropriately terminate simulation runs, e.g. by writing:

WHEN xy < 0.0 THEN TERMINATE

This will ensure that the simulation not simply stops
after Xy has become smaller than ao, but that an
iteration takes place to locate the zero crossing more
accurately. Looking into some descriptions of the
famous pilot ejection study, e.g. (Kern, 19791, one may
notice that the step size of the simulation was
restricted on purpose to avoid wrong decisions to be
taken. Again, this is a terrible waste of COrfpJtatiOnai

time.

This concludes the description of the mechanisms
that are required for combined continuous/discrete
simulation. In fact, a combined simulation program can
be viewed as a discrete event simulation program in
which a continuous simulation takes place between any
two consecutive event times.

3. MODELING OF SAMPLED DATA SYSTEMS

Some simulation languages provide special means
for the simulation of sampled data systems, e.g. by
introducing another operator to denote sampling delay.
Unfortunately, this method is somewhat restrictive as it
usually does not allow to simulate multi-rate sampled
data systems in which the delay time of separate
controllers can be chosen separately.

We believe that a more appropriate way to represent
sample data systems is by way of combined
continuous/discrete simulation. A discrete controller is
simply represented as a self-generating time event:

EVENT sampling
SCHEDULE sampting IN ts
2=2+d2

END sampling

where dz represents the rate by which the discrete
state variable z is to be changed at each sampling point.
Obviously, dz will usually be computed within the event.
5 denotes the sampling interval. Obviously, this event

Combined Continuous/Discrete Simulation

calls for an initial condition:

INITIAL
2’1.0
SCHEDULE sampling AT ts

END INITIAL

Multi-rate sampling does not pose any problem here.
Simply group all variables that use the same Sampling
interval and sampling times together into one State
event, while all others are specified in other state
events. Obviously, this approach also guarantees
appropriate handling by the integration algorithm, as
integration will automatically be restarted after any
sampling has taken place.

4. MODELING VARIABLE STRUCTURE SYSTEMS

Sometimes, one is interested to model a system
that changes its structure entirely at event times, e.g.
the number of differential equations may change.
Traditionally, this is the type of problem that was
considered a <combined continuous/discrete> problem.
We do agree that such problems are more complicated to
handle, and that they probably do not occur so frequently
in practice. Often quoted examples are simulations of
chemical batch processors (Pritsker, l974), harbor
operations (Pritsker, 19791, and heating of steel ingots
(Fahrland, 1970).

We proposed another interesting benchmark problem
to test the capabilities of simulation systems. Domino
stones are placed at a distance d from each other. The
first stone is pushed, and after some time, all domino
stones have fallen flat. Which is the distance d between
two consecutive stones that maximizes the chain
velocity (Gel I ier, 1979)?

Obviously, one does not want to consider the
differential equations of hundreds of domino stones out
of which most have already fallen or are still standing
upright. Instead, the simulation software should provide
a mechanism to describe the differential equations of
one <model, stone. State events are used to acreate> a
new active stone whenever the next stone is pushed, and
<delete% an old stone from the active list of stones
whenever one stone has fallen flat. This calls for a
mechanism equivalent to a SIMULA <<class, to model
individual stones described by their own differential
equations.

One may find that variable structure simulations
often consume a considerable amount of computational
time. Thus, one may be inclined to aggregate the model

29

F. E. Cclliet

further into an ent,irely discrete simulation. This is
perfectly legitimate whenever it is feasible. Even in
most of the examples quoted in (Pritsker, 1974 and
19791, such an aggre’gation is feasible and does make
sense. Unfortunately, this approach does not always
work. The domino (?xample is one which is somewhat
tricky, and at least we have not been able to find a
legitimate aggregation due to the strong interaction
between neighboring stones.

Practical examples include the tactical simulation
of fighter airplanes. Due to time considerations,
problems of this kind were mostly aggregated into
discrete event models in the past, but eventually, some
valuable information about the dynamics of the
particular aircraft to be simulated will be lost in the
aggregation process. Other applications that actually
were modeled in a combined continuous/discrete manner
in the past include various missile simulations. For
obvious reasons, these simulations are not widely
publicized though.

5. RULE-BASED CONTROL SYSTEM DESIGN

How does a human operator control a process, e g.
how does a pilot fly an aircraft? Obviously, he doesn’t
solve any Riccati equation in his head. Instead, he uses a
number of meters (variables) that he observes. Whenever
one of the variables is outside its expected range which
in return is evaluated by means of a <qualitative
simulationw of a <mental modelw, the pilot reacts in one
way or the other. The observed variables together with
the mental model of the aircraft represent the
<knowledge> of the pilot. Control is done by applying
this knowledge to a <rule base, which is a set of rules
of the type: <WHEN t?is and this happens, THEN do that
and that,.

Automatic controllers as they are in use today work
very well for the local control of subsystems. However,
they do a poor job with respect to global assessment of
complex processes, and with respect to learning when
confronted with unforeseen situations.

Unfortunately, the human operator becomes
unreliable if the amount of information to be monitored
grows beyond an amazingly small level. Psychological
studies have shown tiat even a trained human operator
cannot observe reliably more than about IO different
pieces of information at any one time. Several
drammatic aircraft accidents have already happened for
exactly this reason.

Currently, we build ever more complex processes.
For such applications, e.g. the forthcoming space station,

nuclear power plants, a surgical operation room, etc., we
roust overcome this problem by being able to <simulatez>
human behavior in an automatic device. We are convinced
that these types of simulations will play an ever
increasing role in coming years. We further propose that
combined continuous/discrete simulation is exactly the
tool that is needed for this type of simulation.

The (<plant, is represented by a conventional model,
e.g. a continuous model described by differential
equations. From this model, a number of variables are
o:observedw (they are output variables). The ctmentat
model> can be represented in several ways, e.g. by means
of simple difference equations, some discrete events, or
an input/output model as eg described in (Klir, !985).
The <rule base>> really is nothing but a set of state
conditions and state events in the language of combined
simulation:

WHEN condition1 THEN action1
WHEN condition2 THEN action2

Each of the conditions is one state condition to be
tested, and each of the actions is one state event to be
performed if the condition comes true.

6i. COMBINEiD SItlULATION SOFTWARE

In this brief (and incomplete) survey, we want to
mention some of the software systems that are currentiy
on the software market, and tnat found a certain degree
of recognition, In this context, it is more important to
us to classify these -representative- systems
appropriately into different categories, rather than to
give a complete enumeration of available simulation
software systems. A more complete survey of
simulation software can be found in (Cellier, 1983).

6. I Continuous System Simulation Software
with Features for Discontinuity Handling

Some software systems with a limited capabiiity
for <combined>, simulation were developed out of purely
continuous sysiem simulation software. Among those,
we would like to mention just two:

ACSL: (Mitchell & Gauthier, 1981) This is one of the
more frequently used continuous simulation software
systems. For purely continuous simulation, this CSSL
has created for itself a very good reputation. Recently,
time events and state events were added to the software
allowing for appropriate treatment of discontinuities,
and also enabling correct simulation of sampled data

30

systems. However, no other attributes of discrete event
simulation were added. There are no waiting queues
except for the event queue itself. There are no
appropriate random number generators for stochastic
event scheduling, etc. Moreover, the discontinuous
functions within ACSL (such as a hysteresis function)
were not adjusted to the new mechanisms, therefore,
discontinuous systems must be user decomposed into
proper event descriptions. There is currently no concept
in ACSL for ahidden events>, that is: system maintained
events. IF statements can be used within procedural
sections, but they are not decomposed into an event
handling mechanism as discussed earlier in this paper.

SIMNON: (Elmqvist, 1975) This software system was
conceptualized for the simulation of sampled data
systems. Subsystems can be either <continuous> or
<<discrete*, and there exists a <<connecting system, to
connect the different subsystems together. However,
this mechanism is not hierarchical. SIMNON was
designed for the simulation of sampled data control
systems described in a block diagram manner. Although
sampled data systems are treated correctly, the
mechanism employed in SIMNON is even less general than
the one used in ACSL. There does not exist a user
accessible event calendar. However, SIMNON was the
first more widely used KcombinedB simulation software
within this class of systems.

6-2 Discrete Event Simulation Software
with Continuous Attributes

Most of today’s combined simulation systems
originally grew out of discrete event simulation
systems. This is understandable as it is much easier to
embed a continuous simulation software into a discrete
event simulation software, than it is to incorporate
event handling capabilities into an existing continuous
simulation software. Let me mention just a few systems
of this type:

GASP-IV: (Pritsker, 1974) GASP-IV was the first
commercially available (and successful) combined
simU!ation software on the software market. it grew out
of GASP-II, a very simple discrete event simulation
system. Al 1 GASP versions actually are nothing but a set
of FORTRAN subroutines that the user can call to Perform
simulations. However, we would hesitate to call
GASP-IV a truly combined Simulation Software. Its
parent software (GASP-II) is very obvious. GASP-IV has
definitely strong attributes towards discrete event

simulation, but is weak in handling COntitWOUS systems.
In particular, one particular Runge-Kutta integration
algorithm was built directly into the software which
makes the software useless for SimUlatiOnS of systems
where Runge-Kutta integration is not appropriate, such

Combined Continuous/Discrete Simulation

as stiff systems, and highly oscillatory systems Also.
continuous system simulationists like to make use of

system functions such as a hysteresis, a dead-space,
etc. None of these functions is available in GASP-IV.
Finally, the graphics capabilities of GASP-IV are very
poor.

SLAtl-I I: (Pritsker, 1979) SLAM-II grew out of
GASP-IV. In fact, it is a true superset of GASP-IV,
making the previous system obsolete. However, SLAM-I I
enhanced further the discrete side of the Software Iby
adding a network modelling capability), whereas the
continuous side is as rudimentary as in GASP-IV.
Therefore, we suggest to use SLAM-II for the simulation
of predominantly discrete systems with some (few)
continuous attributes. It is definitely not convenient to
use for full-fledged continuous system simulations. We
suspect that the major reason for the impressive
success that both GASP-IV and SLAM-II had stems from
their excellent documentation. Both books (Pritsker,
1974, 1979) are not just software manuals, but can be
(and are) used as textbooks for discrete event
simulation.

SIMAN: (Pegden, 1982) SIMAN is mainly a
reimplementation of SLAM-II. Differences between the
two Software systems are minor, and in particular, the
COntinUOUS POrtiOn is Still Simply a copy Of the old
GASP-IV concepts. As SIMAN was developed later, its
developers were able to avoid some of the <mistakes,
that went into the design of SLAM, and SIMAN is
Sometimes a little ahead of the game with respect to
new features offered. 030th SLAM and SlMAN are
continuously being furtner developed.) Unfortunately, the
SIMAN documentation is much less convincing than the
SLAM documentation.

6.3 Truly Combined Simulation Software

We want to mention only two systems under this
heading:

GASP-V: (Cellier, 1976) GASP-V is a <nephew, of
SLAM-I I. It grew also out of GASP-IV. However
contrary to SLAM-II, GASP-V did not develop the
discrete Portion of the code any further. As a matter of
fact, the discrete modelling capabilities of GASP-V are
identical with those offered in GASP-IV. Instead, the
continuous POrtiOn was developed further, In GASP-V, a
representative library of integration subroutines has
been made available. A set of discontinuous functions
(comparable to the one offered in ACSL) was
implemented, resolving all discontinuities by means of
internal hidden events. In GASP-V, we also added
software for the simulation of distributed parameter
systems by use of the method-of-lines approach, and as

31

F’. E. Celiiel

far as we know, GASP-V is still the only software
available designed to model systems of PDE’s coupled
with ODE’s, and allowing for discontinuities. In GASP--V,
we also added a graphical postprocessor. (This feature
is meanwhile also a-/ailable in SLAM-II when operated
through TESS, and in SIMAN when used together with
Cl NEMA.)

SYSMOD: (Baker, 1986) SYSMOD is the first
commercially, available simulation system that was
designed from scratch with a focus on combined
simulation. SYSMOD can be viewed as a superset of
PASCAL. It is a strongly-typed highly-structured
language. A PASCAL-coded preprocessor translates
SYSMOD models into FORTRAN. SYSMOD is the first
simulation system on the market that truly supports
Separate compilation of even tightly coupled continuous
subsystems. Also the experiment can be compiled
separately from the inodel. SYSMOD is currently a little

biased towards the continuous side, but it does offer a
full set of discrete event handling capabilities (no
process description mechanism though). Due to strong
typing, SYSMOD is less easy to use for the modeling of
simple continuous systems than ACSL. Therefore,
SYSMOD is particularly powerful for the simulation of
large scale systems: such as power plant simulations,
and missile simulations. The complexity of the SY’SMOD
grammar is similar to that of ADA, but SYSMOD was more
systematically de,signed by use of a rigid
general-purpose LL(‘i) recursive-descent parser. The IF,
WHEN, and CASE examples given earlier in this paper are
all (somewhat stripped down) versions of SYSMOD code.
For predominantly discrete simulations with few
continuous attributes, we suggest to use either TESS
(with SLAM-II) or CINEMA (with SIMAN). However, for
predominantly coni:inuous simulations with heavy
discontinuities and/or complex decision making, SYSMOD
may currently well be your best bid.

REFERENCES

Baker, N. J. C. (1986). SYSMOD, User M&?fiu/aL Systems
Designers plc, Ferneberga House, Alexandra Road,
Farnborough, Hants GUI4 6DQ, United Kingdom.

Cellier, F. E. (1979). Combined ContinuouWLJiscfete
System Simu/3tion by Use of i?@it3/ Computers
Zec&?iques and Zoo/s PhD Thesis, Diss ETH No 6483

Swiss Federal Institute of Technology Zurich,
Switzerland, 266p.

Cellier, F. E. (1983). Simulation Software: Today and
Tomorrow. in: Proc Sihwfafion in Fgineering
.%i&7ces (J. Burger and Y. Varny, eds.).
North-Hol’and, pp. 3- 19

Cellier, F. E. and Blitz A. E. f 1976). GASP-V: A Universal
Simulation Package. in: Proc 61n A/CA Congress on
Simu/atio.rl of Systems (L. Dekker, ed.).
North-HOI land, pp. 391-402.

Iflmqvist, H. : 19751 .wwON - An intef3ctive
Simu/atia,o PTagr3m for Non-line3f _sVstems -
Users Manual Report CODEN: LUTFD2/(TFRT-7502),
Dept. of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

Fahrland, D. A. (1970) Combined Discrete Event /
Continuous System Simulation. S/fiu&~lu~, 14(2),
pp. 6 l-72.

Klir, G. J. (1985) Arcbitectufe of Systems SOlVing
Plenum Press, 539p.

Korn, G. A. and Wait, J. V. (1978). Digit&
Continuous-System Simu/at/bn. Prentice Hall, 2 12p.

Mitchell E. E. L. and Gauthier, J. S. (1981) AL-Z.
A&?M?G~ Cont fhfous Simu/at/bn 1 anguage -
User/Guide Reference ManuaL Mitchell & Gauthier,
Assoc., 1337, Old Marlboro Road, Concord, MA 0 1742,
U.S.A.

Pegden, C. D. (1982) /n~~&Xffc~io~ to ShYAN Systems
Modeling Corporation, 258~.

Pritsker, A. A. 8. (1974) The GASP-/ V Simulat /i?n
LanguagE! John Wiley, Interscience, 451~.

Pritsker, A. A. 8. (1979). htroduction to Shndatron aid
SLAM-//, Thinird Edition /9& Halsted Press and
Systems Publishing Corp., 839p.

Schlunegger, H. (1977). Untefsuchung eines
netzr~ckwie~, zw3ngskommutierter
Triebf3hfzeug-Stromf ichters zur Ehspeisung eines
G/eicbspannungszwh-chnkreises Z/S dem
,%nphasennetz PhD Thesis, Diss ETH No 5867,
Swiss Federal Institute of Technology Zurich,
Switzerland.

32

Combined Continuous/Discrete Simulation

BIOGRAPHY

FRANCOIS E. CELLIER is an associate professor in the
Department of Electrical and Computer Engineering of the
University of Arizona. He received his Diploma in 1972,
and his Ph.D. degree in 1979, both from the Swiss Federal
Institute of Technology, ETH-Zurich, Switzerland. His
main scientific interests concern modeling and
simulation methodology and the design of advanced
software systems for simulation, computer-assisted
modeling, and computer-aided control system design. He
has designed and Implemented the GASP-V simulation
software, and designed the COSY simulation language
which served as the ccmodel> langclage for SYSMOD. He
has published more than 30 papers on the subject of
modeimg and simulation, and he has edited several books
on the same topic. He is a member of IMACS and X5.

Franqois E. Cellier
Dept. of Eiectr. & Comp. Engr.
University of Arizona
Tucson, AZ 85721, U.S.A.
(6021621-6192

33

