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Abstract

This thesis introduces a new and freely available Modelica library for the purpose of
simulation, analysis and control of bicycles and motorcycles (single-track vehicles). The
library is called MotorcycleLib and focuses on the modeling of virtual riders based on
automatic controller design. For the vehicles, several models of different complexity
have been developed. To validate these models and their driving performance, virtual
riders are provided. The main task of a virtual rider is to track either a roll angle
profile or a pre-defined trajectory using path preview information. Both methods are
implemented and several test tracks are also included in the library. Regarding the
stability of uncontrolled vehicles, an eigenvalue analysis is performed in order to obtain
the self-stabilizing area. A key task for a virtual rider is to stabilize the motorcy-
cle. To this end, the controller has to generate a suitable steering torque based on
the feedback of appropriate state variables (e.g. lean angle and lean rate). One major
problem in controlling two-wheeled (single-track) vehicles is that the coefficients of the
controller are strongly velocity dependent. This makes the manual configuration of a
controller laborious and error-prone. To overcome this problem, an automatic calcu-
lation of the controller’s coefficients is desired. This calculation requires a preceding
eigenvalue analysis of the corresponding uncontrolled vehicle. This enables a convenient
controller design, and hence several control laws that ensure a stable driving behavior
are provided. The corresponding output represents a state feedback matrix that can
be directly applied to ready-made controllers which are the core of virtual riders. The
functionality of this method is illustrated by several examples in the library.
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Kurzfassung

In dieser Arbeit wird eine neue, frei verfügbare Modelica Bibliothek für die Simula-
tion, Analyse und Regelung von Fahrrädern und Motorrädern (einspurige Fahrzeuge)
vorgestellt. Die Bibliothek nennt sich MotorcycleLib. Das Hauptaugenmerk liegt dabei
auf der Modellierung von virtuellen Fahrern welche auf einer automatischen Regler-
auslegung basieren. Für die einspurigen Fahrzeuge wurden sämtliche Modelle unter-
schiedlicher Komplexität entwickelt. Um die Modelle und damit das Fahrverhalten
validieren zu können, werden virtuelle Fahrer zur Verfügung gestellt. Deren Haup-
taufgabe besteht nun darin, entweder ein Neigungswinkelprofil oder eine vordefinierte
Strecke zu verfolgen. Um letzeres zu realisieren, schaut der Fahrer, wie es auch in der
Realität der Fall ist, eine gewisse Distanz voraus. Beide Methoden wurden implemen-
tiert und können auf verschiedenen Teststrecken getestet werden. Um die Stabilität
der Fahrzeuge überprüfen zu können, wird eine Eigenwertanalyse durchgeführt, mit
Hilfe derer festgestellt werden kann, in welchem Bereich das Fahrzeug eine selbststabil-
isierende Wirkung erzielt. Eine weitere wichtige Aufgabe des virtuellen Fahrers besteht
darin, das Fahrzeug zu stabilisieren, das heißt, es aufrecht zu halten. Dazu muss ein
Regler, welcher den Kern des virtuellen Fahrers darstellt, aufgrund der Rückführung
geeigneter Zustandsvariablen (z.B. Neigungswinkel und Neigungsrate) ein passendes
Drehmoment auf den Lenker des Fahrzeugs ausüben. Eine große Herausforderung,
welche es zu überwinden gilt, stellen dabei die geschwindigkeitsabhängigen Reglerko-
effizienten dar. Diese Problematik ist sehr zeitaufwändig und erschwert die manuelle
Einstellung der Regler. Um solche Probleme zu überwältigen, wird eine automatische
Auslegung der Reglerkoeffizienten vorgestellt, welche auf einer zuvor durchgeführten
Eigenwertanalyse basiert. Dadurch können die Regler auf eine sehr komfortable Art
und Weise erstellt werden. Um verschiedene Reglerauslegung durchführen zu können,
wurden spezielle Verfahren entwickelt. Das Ergebnis dieser Reglerauslegung ist eine
Rückführungsmatrix, welche direkt auf vorgefertigte virtuelle Fahrer angewendet wer-
den kann. Die Funktionalität dieser Methode wird anhand zahlreicher Beispiele aus
der Bibliothek demonstriert.
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learn as much as possible. Thanks to all of you. Special thanks to Markus and Mathias
for the great time!

Special thanks to my supervisor, Franz Geiger, at the “Vorarlberg University of Applied
Sciences” for your lectures on modern control engineering, the most useful robotics lab
sessions and your great support outside of the lectures. Again, many thanks to my
supervisor, François Cellier, at the ETH-Zürich for the interesting lectures and the
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1 Introduction

1.1 Motivation

In recent years, more and more detailed and partly animated models of vehicles are
being used in practice. These models serve on the one hand to support the design of
new vehicle types. Ever shorter development periods of new vehicle types (models)
force the designers to replace tests that used to be performed in the past on prototypes
of the new vehicles by simulation runs to be executed before a prototype is ever build.
On the other hand, it has become customary to employ mathematical simulations of
vehicles also for training purposes. For example, driving a vehicle on an icy road is
being trained in Sweden on a computer by means of a detailed and realistic vehicle
model.

Among the vehicle models, models of bicycles and motorcycles turn out to be particu-
larly delicate. Whereas a four-wheeled vehicle remains stable on its own, the same does
not hold true for a single-track (two-wheeled) vehicle. For this reason, the stabilization
of such a vehicle, a control issue, requires special attention. The simulation has to
account for the inclination of the vehicle in a curve as well as for the shift of the center
of gravity of the driver. Such models are currently not yet being offered in the public
libraries of Dymola/Modelica.
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1 Introduction

1.2 Structure of the Thesis

The purpose of the last section of this chapter is to give a brief outline to the mathe-
matical modeling of physical systems. Chapter 2 is intended to demonstrate the basics
of the physical behavior of single-track vehicles. This chapter focuses on the physical
effects that cause an uncontrolled version of a bicycle or motorcycle to stay upright.
In Chapter 3, the bicycle and motorcycle models used in this library are explained. In
the beginning, three basic models are introduced, i.e. they are made of rigid bodies,
with ideal tires and so on. At the end, two advanced models are explained, i.e. sus-
pensions, front twist frame flexibility and non-ideal tire characteristics like slip, and
aerodynamics are taken into account.

In Chapter 4, the stability of an uncontrolled version of the basic bicycle and motorcycle
models is discussed. So far, the user of this library is able to perform such an analysis
in order to find the self-stabilizing region of the vehicle.

Chapter 5 provides the controller models needed in order to develop a virtual rider. In
this chapter, several approaches to design suitable controllers are introduced, e.g. classic
design, state-space design, linear quadratic regulator (LQR) design. In Chapter 6,
the former developed controllers are incorporated into virtual riders. Basically, two
different kinds of virtual riders are introduced. Namely riders that are capable of either
tracking a roll angle profile (open-loop method) or a pre-defined trajectory (closed-loop
method). In order to validate the performance of a virtual rider several environments
are provided. That is, for the open-loop method, test tracks are introduced (e.g. 90°-
curve, moose test, s-chicane). To cover the closed-loop method, a randomly generated
path is included in the library.

The purpose of Chapter 7 is to get familiar with the MotorcycleLib. Thus, several
different examples are provided in the library. In the documentation itself it is explained
how some of them were established. This information is provided to the user in the
form of a user’s guide.

1.3 Basic Structure of the Library

The top layer of the MotorcycleLib is depicted in Figure 1.1. For each single-track vehi-
cle a separate sub-package is provided. The basic bicycle sub-package is composed of a
rigid rider and a movable rider sub-package. Both include the corresponding wrapped
model and a function in order to perform an eigenvalue analysis. The basic motorcycle
sub-package also includes a wrapped model and an eigenvalue analysis function. The
structure of the advanced motorcycle sub-package is much more detailed since each
part (e.g. front frame) is created in a fully object-oriented fashion. It is composed
of a parts and an aerodynamics sub-package. The parts sub-package includes several
different front frames and swinging arms, a rear frame, the rider’s upper body, a torque
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1.4 Utilized Libraries

Figure 1.1: Library structure - top layer

source (engine), the elasto-gap and a utilities sub-package. Here models of characteris-
tic spring and damper elements are stored. The aerodynamics sub-package includes a
lift force, a drag force and a pitching moment model.

The controller design sub-package contains pole placement functions in order to design
appropriate controllers. The virtual rider sub-package includes, among others, a virtual
rigid rider and a virtual movable rider sub-package. In both the riders are capable
of either tracking a roll angle profile or a pre-defined trajectory. To this end, several
different controllers (e.g. classic, state-space and LQR) are incorporated into the virtual
riders.

The environments sub-package provides tracks for both roll angle tracking and path
tracking. In addition, the models for single-point path tracking are included. The
visualization sub-package provides the graphical information for the environments sub-
package. In the ideal wheels sub-package the visualization of the rolling objects from D.
Zimmer’s MultiBondLib [ZC06] were modified such that the appearance is similar to real
motorcycle wheels. The utilities sub-package provides some additional functions and
models which are partly used in the library. The purpose of the examples sub-package
is to provide several different examples that demonstrate how to use the library.

1.4 Utilized Libraries

The bicycle and motorcycle models of this library are based on the MultiBondLib [ZC06]
and F. Cellier’s BondLib [CN05]. The wheels and tires of the vehicles are either provided
by the MultiBondLib or M. Andres’ WheelsAndTires [And] library. The former ones
are ideal, so-called “knife-edge” wheels whereas non-ideal effects (e.g. slip) are taken
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into account in the latter ones. Thus, depending on the particular model, both libraries
are utilized. The Modelica Standard Library [Ass09] provides the basic elements, e.g.
for the controller models. For the controller design itself, among others, the Modelica
Linear Systems library is used. To be able to perform an eigenvalue analysis, the Linear
Systems library is taken into account.

1.5 Competitors

In 2006, F. Donida et al. introduced the first Motorcycle Dynamics Library in Modelica
[DFS+06] and [DFST08]. In contrast to the MotorcycleLib, it is based on the Modelica
MultiBody library [OEM03]. The library focuses on the tire/road interaction. More-
over, different virtual riders (rigidly attached to the main frame or with an additional
degree of freedom allowing the rider to lean sideways) capable of tracking a roll angle
and a target speed profile are presented. Until now these virtual riders include fixed
structure controllers only [DFST08]. This means that the virtual rider stabilizes the
vehicle only correctly within a small velocity range. Using the MotorcycleLib this ma-
jor deficiency can be overcome. Furthermore, to validate the motorcycle’s performance,
the virtual rider is capable of either tracking a roll angle profile (open-loop method) or
a pre-defined path (closed-loop method).

1.6 Mathematical Modeling of Physical Systems

The content of the following section can also be found in [And] because the same basic
requirements and prerequisites are valid for this work as well. It was created by the
two authors in cooperation.

The purpose of modeling is to describe a physical system by a mathematical model
composed of differential and algebraic equations (DAE’s). To this end, the behavior of
such a system is described as accurately as possible in order to compute and predict
the system’s behavior. As soon as the physical system is described by an appropriate
mathematical model, a simulation can be carried out. In the following sections, the
steps necessary to simulate a physical system are introduced. This is done with reference
to three different modeling techniques.

1.6.1 Differential and Algebraic Equations

In general, a physical system can be described by DAE’s. The most basic approach is
to find the system of DAE’s manually by setting up the equations of the elements that
the system is composed of and combining them in an appropriate manner. As soon as
a proper description of the system is found, the DAE’s have to be transformed into a
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state-space representation to be solved. The state-space representation is a description
of the system by means of ordinary differential equations (ODE’s) i.e. a system of 2nd

order can be described with 2 ordinary differential equations (see Chapter 5.2.1).

1.6.2 Bond Graphs

Another approach to model physical systems are bond graphs. They are based on
energy flow through systems with the basic laws of energy conservation applied. These
laws state that energy can only be affected by three mechanisms: It can be stored,
transported or converted. Energy flow is the derivation of energy by time which is
also referred to as power. In every physical system, power is the product of an effort
and a flow variable, e.g. for electrical systems the effort is the voltage, the flow is the
current.

The energy flow is represented in a graphical manner by directed harpoons as shown in
Figure 1.2 and is mathematically described by the relation P = e ·f . A bond is thus the

e
f

Figure 1.2: A directed harpoon (bond) to model energy flow.

first element representing the mechanism “transport” of the energy conservation laws.
The bonds connect passive (resistive, capacitive and inductive) and active (sources)
components via 0-junctions and 1-junctions which are used to state either the same
effort or the same flow (e.g. in an electrical circuit, a 0-junctions represents Kirchhoff’s
current law whereas a 1-junction represents Kirchhoff’s voltage law). Basically, resistive
components are used to convert energy, e.g. the energy flow through a resistive element
generates heat. However, in electrical and mechanical systems more often then not such
elements are treated as dissipative elements since the thermodynamical aspects are of
less interest. Capacitive and inductive elements store energy. The former is a so-called
flow storing element whereas the latter stores effort. The energy itself is supplied by
flow and effort sources.

As the elements are very basic, they can be used when modeling several different
domains including mechanics (1D translational and rotational), electrics, thermal, hy-
draulics etc. For a more detailed description regarding bond graphs, the reader is
referred to [Cel91] or [McB05].

5



1 Introduction

Multi Bond Graphs

Multi Bond Graphs are a vector extension of regular bond graphs. A freely selectable
number of regular bonds can be combined to form a Multi Bond. This was done in
[Zim06] developing a Modelica/Dymola Multi Bond Library for the modeling of 2D
and 3D mechanics. This eases the modeling of mechanical systems, which can get
cumbersome with regular bond graphs due to difficulties when handling positional
information and holonomic constraints.

1.6.3 Object-Oriented Modeling

The intention behind object oriented modeling is basically the same as in object oriented
programming. The modeler tries to describe parts of a physical system with classes
that behave as the modeled part of the real system. The reusability of these classes
should be as high as possible so e.g. an electric machine should be described by the
same model when acting as a generator and when acting as a motor. This makes
models based on equations (acausal) rather than assignments (causal) a necessity. The
modeling environment has to be able to handle the resulting sets of equations by a
symbolic preprocessing.

Modelica

Modelica is an object-oriented open-source modeling language providing the language
definition [Ass07] as well as a standard library [Ass09] for modeling in different physical
domains. Different commercial simulation environments like SimulationX, MathMod-
elica and Dymola as well as some free tools like OpenModelica use the language as a
base. For more information, visit www.modelica.org. A very detailed introduction to
Modelica can be found in a book, published by Peter Fritzson [Fri04].

Dymola

Dymola from Dynasim is a very advanced Modelica environment capable of performing
all necessary symbolic transformations required for convenient modeling, able to handle
very big systems (> 100,000 equations). It features a graphical editor for model creation
as well as a text based view. Interfaces to MATLAB and Simulink exist in order to
integrate models in existing simulation environments.

For this work Dymola 6.1 that utilizes Modelica 2.2.1 was used.
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2 Bicycle and Motorcycle Dynamics

This chapter is intended to show the basics of the physical behavior of bicycles and
motorcycles (single-track) vehicles. The focus of this chapter lies in the physical effects
that cause an uncontrolled version of a single-track vehicle to stay upright. Unlike
four-wheeled vehicles, single-track vehicles are unstable when stationary. Under certain
conditions, a self-stabilizing area appears when the vehicle moves in a forward direction.
This area mainly depends on the geometry and mass distribution of the vehicle but as
well on gyroscopic effects.

In the following, some important terms and definitions are introduced. Afterwards, the
gyroscopic effects are described. Finally, the importance of trail is discussed.

2.1 Terms and Definitions

Bicycles and motorcycles are described with reference to the terms and definitions
depicted in Figure 2.1.

e

pt

steering axis

center of mass

a

Figure 2.1: Terms and definitions of bicycles and motorcycles
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The wheelbase p is the distance between front wheel and rear wheel contact point.
The trail t is the distance between the front wheel contact point and the point of
intersection of the steering axis with the ground line (horizontal axis). The head angle
α, also called caster angle, is the inclination between the steering axis and ground line.
It is also common to define the head angle ε = π

2 − α as the inclination between the
steering axis and vertical axis. However, this depends on the convention.

2.2 Gyroscopic Effects

From a physical point of view, a wheel is nothing other than a gyroscope. In the
following, the so-called gyroscopic effects are demonstrated with reference to Figure 2.2.

spin axis

LW

disturbance axis

LD

reaction axis

LR

Figure 2.2: Demonstration of gyroscopic effects

Let us say that the wheel performs a counter-clockwise rotation about the spin axis.
This results in an angular momentum LW in direction of the spin-axis. The angular
momentum of a rigid body is defined as

L = I · ω (2.1)

Where I is the moment of inertia and ω is the angular velocity.

Let us now apply a counter-clockwise torque (e.g. caused by side wind) about the
disturbance axis. This generates an additional angular momentum LD. As a conse-
quence of LD, the wheel tries to elude and thus performs a clockwise rotation about
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the reaction axis. This effect is referred to as precession of a gyroscope. The rotation
about the reaction axis stops as soon as the spin axis is coincident with the resulting
angular momentum LR. For a better understanding, Figure 2.3 depicts each step of
this sequence.

LW

LD

LR
LW LW

LD

straight runningleansteer into the lean
(disturbance)(reaction)

Figure 2.3: Stepwise demonstration of gyroscopic effects

This effect is utilized by human cyclists. To enter a left turn, it is not mandatory to
apply a steering torque. As described in Figure 2.2, it is absolutely sufficient to lean
to the left. Due to gyroscopic effects the front wheel of the bicycle steers into the
lean. Thus it is possible to enter a turn without touching the handlebar of the bicycle
(free-hand). Figure 2.4 illustrates that this effect also works vice-versa.

spin axis

LW

disturbance axis

LD

reaction axis

LR

Figure 2.4: Demonstration of gyroscopic effects
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In order to enter a left turn, one has to steer to the right initially. Again, due to
gyroscopic forces, this causes the vehicle to lean to the left. This effect is usually
referred to as countersteering and is utilized by both motorcycle and bicycle riders.

Straight Running

Due to geometry and gyroscopic forces, Klein and Sommerfeld [KS10] found out that
a single-track vehicle is self-stabilizing within a certain velocity range. In this range,
an interaction of the effects mentioned in Figure 2.2 and 2.4 takes place. Hence, the
vehicle performs a tail motion in the longitudinal direction. Below this area, the steer-
ing deflections caused by gyroscopic forces are too small in order to generate enough
centrifugal force. Thus the amplitude of the tail motion increases and the vehicle falls
over. Although, these interactions are damped by the trail (refer to Section 2.3) it
is still impossible to achieve stable behavior. Hence the rider has to apply a steering
torque to ensure the vehicle stays upright. Above this area, for high speeds, the gy-
roscopic forces are almost unnoticeable for the rider. That is, the amplitude of the
tail motion is close to zero. More precisely, although the vehicle feels stable, after a
certain time, it falls over like a capsizing ship. However, by applying a steering torque
it is rather simple to stabilize the vehicle. In most cases, it is sufficient that one solely
touches the handle bars in order to stabilize the vehicle. To this end, in Chapter 4 the
straight running capabilities are considered from a more theoretical point of view.

In reality, due to friction, the velocity of the vehicle decreases and hence, after a certain
time, the vehicle becomes unstable. For a detailed description regarding gyroscopic
effects, refer to [KS10].

Turning

During a turn, a single-track vehicle has a specific lean angle depending on the velocity
and the radius of the turn. In the following, let us derive the relations between velocity,
turn radius and lean angle. The forces acting on a single-track vehicle are shown in
Figure 2.5.

In order to prevent the bicycle from capsizing, the moments caused by gravitational
force Fg and centrifugal force Fc have to cancel each other out.

Fg · x = Fc · y (2.2)

With Fg = m · g and Fc = m·v2

R , where R is the radius of the turn, m is the mass of the
vehicle including the rider and g is the gravity.

The lean angle is given by

tan(φ) =
Fc
Fg

=
Flat
N

(2.3)
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Flat

N

Fg

Fc

f

x

y

Figure 2.5: Forces that act on a single-track vehicle during a turn

where N is the normal force (N = Fc) and Flat is the so-called cornering or lateral
force. This force ensures that the wheel does not slide away. In order to ensure stable
behavior, the following equilibrium condition must hold:

Flat = Fc (2.4)

Thus for a given velocity and turn radius, the corresponding lean angle results in:

φ = atan

(
v2

R · g

)
(2.5)

For an ideal bicycle (infinitesimally thin wheels, no slip, no friction, etc.) the lean angle
is a function of velocity and turn radius. No matter what size or weight the vehicle
is. In reality, the cornering force is limited by friction. The maximum cornering force
therefore results in

Flat,max = m · g · µ (2.6)

By inserting Equation 2.6 into Equation 2.5, it follows

tan(φmax) = µ (2.7)

11



2 Bicycle and Motorcycle Dynamics

Hence, in reality the maximum lean angle only depends on the friction µ.

2.3 The Importance of Trail

As already mentioned, the trail is significantly involved in the process of stabilizing
the vehicle. The stabilizing effect caused by the trail is explained with reference to
Figure 2.6.

v
vlat

vlongFlat

Ma

Figure 2.6: Aligning moment caused by the trail

Let us say that the vehicle drives with a constant velocity v. Furthermore, let us say
that due to a disturbance (e.g. side wind) the vehicle leans to the left. Thus, the front
wheel is turned to the left as well (as depicted in Figure 2.6). Now a cornering force
Flat appears. This force in combination with the trail generates an aligning moment
Ma that turns the wheel back. That is the trail has the function of a lever arm. The
more trail, the longer the lever arm and the more aligning moment is generated. For a
detailed description, refer to [Cos06].

Thus, mountain bikes have less trail in order to be more agile. Consequently, the
stability decreases. Vehicles with more trail are less agile but more stable. For this
reason, while riding a vehicle with more trail one has to apply higher steering torques
in order to turn.

Finally, the center of mass and the wheelbase are taken into account. Basically, a high
center of mass makes it easier to balance the vehicle than a short one. The wheelbase
p is a crucial factor for the time needed in order to reach the desired lean. The higher
p, the larger the lateral distance is that the center of mass has to cover and the more
time it takes to reach the desired lean angle.
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3 Bicycle and Motorcycle Modeling

This chapter is intended to introduce the bicycle- and motorcycle models that are
included in the MotorcycleLib. Firstly, a basic 3 degree of freedom (d.o.f.) bicycle model
is described. The intended bicycle model was developed by Schwab et al. [SMP05].
This model consists of four rigid bodies connected via revolute joints (hinges). The
wheels are considered to be ideal. Secondly, this model is extended by an additional
d.o.f. allowing the rider to lean sideways. This extension is also based on a bicycle
model recently introduced by Schwab et al. [SKM08].

Thirdly, a 4 d.o.f. motorcycle model which was introduced by V. Cossalter [Cos06]
is described. Basically, V. Cossalter’s model is the same as the one introduced by
R. S. Sharp in 1971 [Sha71]. This model allows a lateral displacement of the rear
frame since the wheels are no longer ideal. Due to the fact that the wheels of the
MultiBondLib [ZC06] are ideal, the model is reduced to 3 d.o.f.. Later, with reference
to the WheelsAndTires library [And], it is possible to consider non-ideal effects of wheels
and tires and thus simulate the lateral displacement of the wheels caused by tire slip.

Finally, two more complex models are described. The first model was originally devel-
oped by C. Koenen during his Ph.D. Thesis [Koe83]. R. S. Sharp and D. J. N. Limebeer
introduced the SL2001 model which is based on Koenen’s model [SL01]. They repro-
duced Koenen’s model as accurately as possible and described it by means of multi
bodies. The model developed in this library is based on the SL2001 motorcycle. The
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3 Bicycle and Motorcycle Modeling

second model is based on an improved more state-of-the-art version of the former one
developed by R. Sharp, S. Evangelou and D. J. N. Limebeer [SEL04]. Another de-
tailed description of these models can be found in S. Evangelou’s Ph.D. Thesis [Eva03].
As with the former 4 d.o.f. model, these models only include all degrees of freedom
in combination with the WheelsAndTires library. Again, without this library, several
freedoms are inhibited.

A very detailed historical background regarding motorcycle models can be found in S.
Evangelou’s Ph.D. Thesis [Eva03] or in an article published by D. J. N. Limebeer and
R. Sharp [LS06]. A very detailed history of bicycle steer and dynamic studies can be
found in [MPRS07].

3.1 Basic Bicycle Model - Rigid Rider

3.1.1 Definition of Bicycles

Although bicycles are composed of several different parts, in the simplest case the
mechanical model consists of four rigid bodies. A rear frame including the rigidly
attached rider, a front frame including the front fork and handle bar assembly and two
ideal knife-edge wheels touching the ground at a single contact point. The front and
rear wheels are attached to the front and rear frame revolute joints. Figure 3.1 depicts
the model of a basic bicycle.

The wheels assumed to be infinitesimally thin (knife-edge) without slippage in the
longitudinal and lateral direction. The two frames are connected via an inclined revolute
joint (steering axis). Each wheel is connected to the frame using a revolute joint. Since
a rigid body in space has 6 d.o.f., one would think that the basic bicycle in total has
24 d.o.f. in total. However, on the one side, each revolute joint inhibits 5 d.o.f., namely
all translational d.o.f. and two rotational d.o.f., and on the other side, each contact
point between wheel and ground inhibits 3 d.o.f., namely one translational d.o.f. in the
normal direction (in direction of the z-axis) and two rotational freedoms (about the x-
and z-axis). Hence the total number of d.o.f. is 24− 3 · 5− 2 · 3 = 3.

The remaining 3 d.o.f. are:

� the roll angle φ of the rear frame

� the steering angle δ, which is the rotation between the front frame with respect
to the rear frame about the inclined steering axis

� θr, which is the rotation of the rear wheel with respect to the rear frame

The origin (0) of the global co-ordinate system is at the contact point of the rear wheel.
The orientation of the rear frame with respect to the global co-ordinate system is clearly
defined by means of three angular rotations (see Figure 3.1):
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Figure 3.1: Model of a simple 3 d.o.f. bicycle (Source: [SMP05], p.30).

� a yaw rotation ψ about the global z-axis

� a roll rotation φ about the rotated x-axis

� a pitch rotation θ about the rotated y-axis

3.1.2 Geometry of Bicycles

The geometry of bicycles is described with the following parameters: The wheel base
p, the trail t, the head angle α and the radii of the wheels (refer to Chapter 2.1).

3.1.3 Model of the 3 d.o.f. Bicycle

The model of the basic bicycle used in this documentation was presented by Schwab
et al. in 2005 [SMP05]. This model is based on Whipple’s model [Whi99]. To develop
a model within the Dymola environment, a different co-ordinate system is introduced
(see Figure 3.2). The parameters of Schwab’s benchmark bicycle are listed in Table 3.1.
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3 Bicycle and Motorcycle Modeling

Parameter Symbol Value

wheel base p 1.02m

trail t 0.08m

head angle α atan(3)

forward speed v variable [m/s]

Rear Wheel

radius rrw 0.3m

mass mrw 2kg

inertia tensor (Irw xx, Irw yy, Irw zz) (0.06, 0.06, 0.12) kgm2

Rear Frame

center of mass (xrf , yrf , zrf ) (0.3, 0.9, 0) m

mass mrf 85kg

inertia tensor




Irf xx Irf xy 0

Irf yx Irf yy 0

0 0 Irf zz







9.2 2.4 0

2.4 2.8 0

0 0 11


 kgm2

Front Frame

center of mass (xff , yff , zff ) (0.3, 0.7, 0) m

mass mff 4 kg

inertia tensor




Iff xx Iff xy 0

Iff yx Iff yy 0

0 0 Iff zz







0.0546 −0.0162 0

−0.0162 0.0114 0

0 0 0.06


 kgm2

Front Wheel

radius rfw 0.35m

mass mfw 3kg

inertia tensor (Ifw xx, Ifw yy, Ifw zz) (0.14, 0.14, 0.28) kgm2

Steering Axis

position (xst, yst, zst) (0.8, 0.9, 0) m

Table 3.1: Parameters for the basic bicycle model depicted in Figure 3.1
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3.1 Basic Bicycle Model - Rigid Rider

y

x
z

SAE Dymola

z

y
x

Figure 3.2: Conventions on co-ordinate systems. Left: co-ordinate system defined by
the SAE (Society of Automotive Engineers); Right: Dymola specific co-ordinate system

Remark:

The parameter values in Table 3.1 are different from those described in Schwab’s paper
since Dymola uses a different co-ordinate system.

Unwrapped Model

The model of the bicycle is built by means of the MultiBondLib [ZC06] (see Fig-
ure 3.3).

Each of the four rigid bodies includes a mass and a corresponding inertia tensor. The
position of the front and rear frame masses as well as the position of the steering axis
are defined by means of fixed translation elements (e.g. position of the rear frame’s
center of mass is given by r = {−0.3, 0.6, 0}). Compared to Table 3.1, one could think
that the second element of r, namely r12 = 0.6 is incorrect. However, since the fixed
translation element defines the distance between the rear wheel’s center-point and the
steering axis, the rear wheel’s radius (rRW = 0.3m) has to be subtracted in order to
get a correct result. This is due to the fact that the origin of the global co-ordinate
system is at the contact point of the rear wheel. The minus sign of the first element
indicates that the vehicle drives in the negative x direction.

Wrapped Model

For the sake of usability, models composed of several parts are wrapped. A wrapped
version of the basic bicycle is shown in Figure 3.4.

Compared to Figure 3.3, the wrapped model includes several new components. The
additional components used in this model are inputs, outputs, interfaces, sensors, torque
sources, a constant source, logical switches and actuated revolute joints instead of the
standard ones. On the one side, the actuated revolute joints are used to measure the
steering angle and the angular velocity of the rear wheel and on the other side, to
provide appropriate control inputs, i.e. a steering torque that has to be applied by the
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Figure 3.3: Model of a simple 3 d.o.f. bicycle

rider in order to track either a lean angle profile or a pre-defined path and a torque
source to control the motorcycle’s forward velocity. The front and rear wheel are not
part of the model anymore. Hence, to connect wheels to the motorcycle, interfaces
are provided. The outputs phi, w and steer_angle as well as the inputs T_Steering
and T_engine are needed for control purposes (see Chapter 5). The logical switches
between the two inputs and the torque sources prevent an error message if the inputs
are disconnected (e.g. an uncontrolled version of the motorcycle has neither inputs
nor outputs). With reference to the wrapped model, the user is able to enter the
parameters listed in Table 3.1. A “double-click” on the model opens the following
parameter window (see Figure 3.5).

With reference to the picture of the bicycle in the parameter window describing the
relevant data to be entered and Table 3.1, the bicycle can be modeled in a straightfor-
ward fashion. After entering the relevant parameters, either D. Zimmer’s [ZC06] or M.
Andres’ [And] wheels are connected to the model. In the next step the simulation of
the uncontrolled bicycle can be started. In order to simulate the model of the bicycle,
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3.1 Basic Bicycle Model - Rigid Rider

Name: BicycleModel 3dof
Location: BasicBicycle.RigidRider
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Figure 3.4: Wrapped model of a simple 3 d.o.f. bicycle
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3 Bicycle and Motorcycle Modeling

Figure 3.5: Parameter window of the basic bicycle

the ideal wheels of the MultiBondLib are connected to the model (see Figure 3.6).

Visualization

The parts of the MultiBondLib are animated by default. The animation result of
the basic bicycle is shown in Figure 3.7. To improve the quality of the animation,
Dymola offers a Visualizers package capable of visualizing 3-dimensional objects used
for the animation. In order to get a proper animation of the model, the pre-defined
visualization is turned off. An example of a new defined shape is given below:

Modelica.Mechanics.MultiBody.Visualizers.Advanced.Shape FWSuspLeft(
shapeType="box",
r_shape={0,0,-0.050} "Offset in order to move the object",
color={0,0,100},
width=0.03 "Width of visual object",
height=0.03 "Height of visual object",
lengthDirection=Steering.n "Vector in length direction",
length=-FrontFrame.length "Length of visual object",
r=FrontFrame.frame_b.P.x "Origin of visual object",
R=MB.Frames.Orientation(T=FrontFrame.frame_b.P.R,w=zeros(3)));

The lines of code shown above are used to visualize the left tube of the front forks.

The result of the modified visualization is depicted in Figure 3.8.
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3.1 Basic Bicycle Model - Rigid Rider
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Figure 3.6: Wrapped 3 d.o.f. bicycle with ideal wheels

Figure 3.7: Automatically generated animation result of the basic 3 d.o.f. bicycle

Figure 3.8: Modified animation result of the basic 3 d.o.f. bicycle
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3 Bicycle and Motorcycle Modeling

3.1.4 State Selection

State Variables of Mechanical Bond Graphs

The natural state variables of bond graphs are potential and flow variables. State
variables itself describe the state of a dynamical system. Such variables are always
outputs of integrators. In the following, the state variables of mechanical bond graphs
are derived.

Newton’s second law for a single force acting on a mass is given by:

F = m · a = m · dv
dt

(3.1)

The integral form of the equation above is obtained by solving it for the velocity v.
Hence,

v =
1
m

∫
F · dt (3.2)

The linear equation of a spring element is given by:

F = k · x (3.3)

Differentiating both sides of the equation results in:

dF

dt
= k

dx

dt
= k · v (3.4)

Now, both sides are multiplied by dt

dF = k · v · dt (3.5)

By taking the integral of both sides, F results in:

F = k

∫
v · dt (3.6)

Hence, the natural state variables of mechanical bond graphs are forces (torques) and
(angular) velocities. Unfortunately the state variables of mechanical systems are (an-
gular) positions and (angular) velocities. However, in a bond graphic representation
the (angular) positions are not needed in order to get a complete description of the dy-
namics of the system. But without any positional information we do not know whether
two bodies occupy the same space. Thus the BondLib and the MultiBondLib are using
the positions and velocities of a body as state variables.
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3.1 Basic Bicycle Model - Rigid Rider

Symbolic Pre-Processing

Since Dymola works with a-causal sets of equations, symbolic pre-processing is per-
formed in order to simulate the system. If algebraic loops or structural singularities
appear, Dymola offers algorithms capable of handling such problems. The former ones
are eliminated with tearing algorithms (Tarjan algorithm). The latter ones are elimi-
nated by means of the Pantelides algorithm. Concerning the set of equations in com-
bination with potential algebraic loops and/or structural singularities, the efficiency of
the resulting simulation is affected (e.g. if a structural singularity appears, several new
equations are introduced in order to eliminate it).

Selection of State Variables

Beside the points mentioned above, the selection of state variables is also very important
for the efficiency of the resulting simulation.

Sometimes many possible sets of state variables exist. In this case, Dymola uses dy-
namic state selection. This means that appropriate states are chosen at run-time.
Usually, this leads to additional equations since Dymola uses the Pantelides algorithm
to perform this operation. An undesirable side effect is that the simulation time in-
creases. To avoid dynamic state selection, joints offer the parameter enforceStates to
declare state variables. The following code-segment of the equation layer demonstrates
the state selection via the enforceStates parameter:

parameter Boolean enforceStates = false;
Real phi(stateSelect = if enforceStates then StateSelect.always
else StateSelect.prefer);

If the parameter enforceStates = true, the selected state variables are always the
relative (angular) position and (angular) velocity of a joint.

23



3 Bicycle and Motorcycle Modeling

The state vector of the basic bicycle is given by:

x =




RWheel.xA

RWheel.xB

leanAngle

leanRate

FWRevolute.phi

FWRevolute.w

Steering.phi

Steering.w

RWRevolute.phi

dynamic state




=




xlong

xlat

φ

φ̇

ϕFW

ϕ̇FW

δ

δ̇

ϕRW

dynamic state




The first two states are preferred states of the rear wheel if enforceStates = false.
The states δ, δ̇, φ and φ̇ are responsible for the stability of the motorcycle. In Chapter 4,
these states are needed to perform an eigenvalue analysis. Furthermore, the states are
used to design a controller. For the states ϕFW and ϕ̇FW the parameter enforceStates
of the front wheel revolute joint was set true. The parameter ϕRW is a preferred state
of the rear wheel and the last state is dynamically selected by Dymola.

3.2 Basic Bicycle Model - Movable Rider

This section is intended to extend the former described model by an additional d.o.f.
allowing the rider’s upper body to lean sideways. Schwab et al. introduced the model
of a 4 d.o.f. bicycle in their recently published paper [SKM08]. Figure 3.9 shows the
extended model of the bicycle. The additional d.o.f. is represented by the angle γ.
Apart from the additional d.o.f. the definition of the bicycle is equal to the former one.

The parameters for the benchmark bicycle are listed in Table 3.2.

3.2.1 Model of the 4 d.o.f. Bicycle

Wrapped Model

The wrapped model is depicted in Figure 3.10. Roughly speaking, the model is based
on the former one with a bunch of new parts representing the rider’s upper body.

A “double-click” on the model opens the parameter window shown in Figure 3.11.
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Figure 3.9: Model of a simple 4 d.o.f. bicycle (Source: [SKM08], p.2).

Parameter Symbol Value

Rear Frame (including lower rider body)

center of mass (xrf , yrf , zrf ) (0.345, 0.765, 0) m

mass mrf 34kg

inertia tensor




Irf xx Irf xy 0

Irf yx Irf yy 0

0 0 Irf zz







3.869 1.3 0

1.3 1.272 0

0 0 4.667


 kgm2

Front Frame

center of mass (xub, yub, zub) (0.27, 0.99, 0) m

mass mub 51 kg

inertia tensor




Iub xx Iub xy 0

Iub yx Iub yy 0

0 0 Iub zz







4.299 1.444 0

1.444 1.413 0

0 0 5.186


 kgm2

Table 3.2: Parameters for the extended bicycle model depicted in Figure 3.9
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Figure 3.10: Wrapped model of the extended 4 d.o.f. bicycle
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3.2 Basic Bicycle Model - Movable Rider

Figure 3.11: Parameter window of the 4 d.o.f. bicycle

Visualization

The animation of the bicycle is depicted in Figure 3.12.

Figure 3.12: Modified animation result of the 4 d.o.f. bicycle

3.2.2 State Selection

The state selection is based on the 3 d.o.f. model. Additionally, the states γ and γ̇
which represent the lean angle and lean rate of the rider’s upper body relative to the
rear frame are selected.
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3 Bicycle and Motorcycle Modeling

3.3 Basic Motorcycle Model

3.3.1 Definition of Motorcycles

The motorcycle introduced in this section uses the same definitions as the basic bicycle.
As already mentioned it is based on V. Cossalter’s model [Cos06]. In the beginning, the
motorcycle has 3 d.o.f.. Later on, with reference to the WheelsAndTires [And] library,
the model can be extended by an additional d.o.f. allowing the motorcycle’s rear frame
to move laterally. That means that lateral slip of the wheels is incorporated.

3.3.2 Geometry of Motorcycles

Figure 3.17 depicts the geometrical definition of V. Cossalter’s motorcycle model ([Cos06],
page 262).
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Figure 3.13: Geometric description of a basic 3 d.o.f. motorcycle

In contrast to the bicycle model, the position of the steering axis is not given anymore.
This position is automatically calculated in the background. Furthermore, a second
co-ordinate system is introduced to describe the geometry of the front frame. The
origin of this co-ordinate system is the position of the steering axis revolute joint, and
the direction of the yf -axis is coincident with the steering axis. The reason for the
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orientation of the front frame co-ordinate system is to avoid products of inertia. The
inertia tensor of a body in space is given by:

I =



Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz




If the axes of a co-ordinate system are coincident with the principle axes of a symmet-
rical body, the products of inertia are eliminated and the remaining elements are the
principal moments of inertia:

I =



Ixx 0 0

0 Iyy 0

0 0 Izz




3.3.3 Model of the Basic Motorcycle

The objective is to feed the model with exactly the same parameters as listed in Ta-
ble 3.3. Since Dymola uses world (global) co-ordinates to describe the whole geometry
of a multibody system, some parameters of the motorcycle have to be re-calculated
in order to develop the model. Furthermore, the calculation of the steering axis co-
ordinates should be done automatically in the background. If the front frame center
of mass co-ordinates are entered, the re-calculation of the center of mass position with
reference to the global co-ordinate system has to be done automatically as well.

Remark

Since the wheels are considered to be ideal, the cornering and cambering stiffness of
the front and rear wheel are neglected.

Calculation of the Steering Axis Co-Ordinates

The following calculations are done with reference to Figure 3.14.

The normal trail an is given by:

an = cos(ε) · a = 0.1034m (3.7)
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3 Bicycle and Motorcycle Modeling

Parameter Symbol Value

wheel base p 1.414m

trail a 0.116m

caster angle ε 27° (0.47124 rad)

Rear Wheel

radius rrw 0.305m

axial inertia Irw zz 1.05 kgm2

cornering stiffness Kλr 15.8 kN/rad

cambering stiffness Kϕr 1.32 kN/rad

Rear Frame - (xr, yr) co-ordinate system

center of mass (br, hr, 0) (0.48, 0.616, 0) m

mass mrf 217.5 kg

inertia tensor




Irf xx Irf xy 0

Irf yx Irf yy 0

0 0 Irf zz







31.2 1.74 0

1.74 21.08 0

0 0 0


 kgm2

Front Frame - (xf , yf ) co-ordinate system

center of mass (bf , hf , 0) (0.024, 0.461, 0) m

mass mff 30.7 kg

inertia tensor (Iff xx, Iff yy, Iff zz) (1.23, 0.44, 0)kgm2

steering damper c 6.8 Nm·s
rad

Front Wheel

radius rfw 0.305m

axial inertia Ifw zz 0.72 kgm2

cornering stiffness Kλf 11.2 kN/rad

cambering stiffness Kϕf 0.94 kN/rad

Table 3.3: Parameters for the basic motorcycle model depicted in Figure 3.17
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The normal rear trail bn is

bn = (p+ a) · cos(ε) = 1.3632m (3.8)

By introducing the auxiliary variable

h = sin(ε) · rrw = 0.1385m (3.9)

the length of the rear frame becomes

lrf = bn − h = 1.2248m (3.10)

Hence, the x and y co-ordinates of the steering axis are

xst = cos(ε) · lrf = 1.0913m (3.11)

yst = sin(ε) · lrf + rrw = 0.8610m (3.12)

Calculation of the Front Frame Co-Ordinates

Figure 3.15 depicts the front frame of the motorcycle with the appropriate co-ordinates
to calculate the center of mass.

By means of another auxiliary variable

dx = p+ a− xst = 0.4387m (3.13)

the length of the line between the steering axis and the intersection between the steering
axis and x-axis is given by

lff =
dx

sin(ε)
= 0.9664m (3.14)

with
h2 = tan(ε) · bf = 0.0122m (3.15)

and
h3 = lff − hf + h2 = 0.5176m (3.16)

The y-coordinate of the front frame center of mass becomes

yf = cos(ε) · h3 = 0.4612m (3.17)

Finally, with two additional auxiliary variables

x1 = sin(ε) · hf = 0.2093m (3.18)

x2 = cos(ε) · bf = 0.0214m (3.19)
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3 Bicycle and Motorcycle Modeling

the x co-ordinate is given by

xf = xst + x1 + x2 = 1.3220m (3.20)

Hence, the center of mass p2 = (xf , yf , 0) = (1.3220, 0.4612, 0)m.

Transformation of the Front-Frame-Inertia Tensor

The last step in order to develop a model of the motorcycle is to transform the body
co-ordinates of the front frame inertia tensor into world (global) co-ordinates. As
mentioned before, the principal axes of the front frame are coincident with the co-
ordinate system (xf , yf ). To obtain an inertia tensor valid for Dymola’s world co-
ordinate system, it is rotated about the z-axis. The amount of rotation is equal to the
value of the caster angle.

The inertia tensor of the front frame co-ordinate system is:

I =




1.23 0 0

0 0.44 0

0 0 0


 kgm

2

The rotation matrix about the z-axis is given by:

R =



cos(ε) −sin(ε) 0

sin(ε) cos(ε) 0

0 0 1


 (3.21)

By definition, the inertia tensor valid for Dymola’s world co-ordinate system becomes:

I new = R′ · I ·R =




1.0672 0.3196 0

0.3196 0.6028 0

0 0 0


 kgm

2 (3.22)

Wrapped Model

The wrapped model of the basic motorcycle is shown in Figure 3.16

A “double-click” on the model opens the parameter window depicted in Figure 3.17.
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Figure 3.16: Wrapped model of a 3 d.o.f motorcycle
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Figure 3.17: Parameter window of the 3 d.o.f. motorcycle

Visualization

Unlike former visualizations of the bicycles, the wheels of [And] are now connected
to the motorcycle model. The model in combination with the wheels is depicted in
Figure 3.18.

Again, for esthetical purposes, the motorcycle model is visualized (see Figure 3.19).

3.3.4 State Selection

The states of the motorcycle are the same as for the basic bicycle model.

3.4 Advanced Motorcycle Models

In general, a motorcycle includes two different modes (refer to ([Cos06], page 260 or
[LS06], page 57):

� In-plane modes

� out-of-plane modes
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Figure 3.18: Wrapped 3 d.o.f. motorcycle with ideal wheels of the WheelsAndTires
library

Figure 3.19: Modified animation result of the 3 d.o.f. motorcycle
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3 Bicycle and Motorcycle Modeling

The in-plane modes involve motions in the vertical direction (e.g. suspension and wheel
motion), whereas the out-of-plane modes involve e.g. yaw, lean and steering angle
lateral displacement. Hence, the in-plane modes are related to riding comfort, while
the out-of-plane modes are related to stability and handling of motorcycles.

Until now, several simple 3 and 4 d.o.f. models were developed. Due to the fact that
the parts are rigid (i.e. no twist frame flexibility) and neither rear nor front suspensions
were implemented, no in-plane modes appeared so far. In the following, two high-fidelity
models developed by Sharp et al. are introduced [SL01] and [SEL04].

3.4.1 Definition of the SL2001 Motorcycle

The basic components of the SL2001 model [SL01] are (refer to [Eva03], page 70/181):

� a front and a rear frame connected via an inclined revolute joint

� a front and a rear wheel

� yaw, roll and lateral translation freedoms of the rear frame

� one d.o.f. for the steering axis and another one for the twist axis relative to the
rear frame

� non-ideal tire characteristics1 (e.g. slip)

� aerodynamic forces

� an additional d.o.f for the rider’s upper body to lean sideways

� main frame bounce, pitch and suspension freedoms

3.4.2 Geometry of the SL2001 Motorcycle

Figure 3.20 depicts the model of Sharp and Limebeer, published in 2001.

The geometry of the motorcycle is described with reference to the co-ordinates listed
in Table 3.4.

The model is composed of six parts:

1. a front frame including the front forks and handle bar assembly

2. a rear frame including the lower rigid body of the rider

3. a swinging arm including the rear suspension

4. the rider’s upper body
1The motorcycle model will be evaluated with reference to D. Zimmer’s ideal tires and M. Andres’

non-ideal tires.
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Figure 3.20: Geometric description of the SL2001 motorcycle model (Source:[SL01],
p.126).

Name Coordinates Description

p1 (x1, y1, 0) Aerodynamics center of pressure

p2 (x2, y2, 0) Steer and twist axis joint with rear frame

p3 (x3, y3, 0) Center of mass front frame

p4 (x4, y4, 0) Connection between front frame and front suspension

p5 (x5, y5, 0) Center of mass front suspension

p6 (x6, y6, 0) Front wheel attachment point

p7 (x7, y7, 0) Rear wheel attachment point

p8 (x8, y8, 0) Center of mass of the rear frame

p9 (x9, y9, 0) Attachment point rider’s upper body to rear frame

p10 (x10, y10, 0) Center of mass rider’s upper body

p11 (x11, y11, 0) Attachment point swinging arm to rear frame

p12 (x12, y12, 0) Attachment point rear suspension to swinging arm

p13 (x13, y13, 0) Attachment point rear suspension to rear frame

p14 (x14, y14, 0) Center of mass swinging arm

Table 3.4: Co-ordinates of the SL2001 motorcycle model
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3 Bicycle and Motorcycle Modeling

5. a rear wheel and

6. a front wheel

The parameter values of the SL2001 motorcycle can be found on: http://www3.
imperial.ac.uk/controlandpower/research/motorcycles/programs

3.4.3 Definition of Sharp’s Improved Motorcycle Model

This model has the same number of bodies and freedoms as the SL2001 model ([Eva03],
page 124/181). Among others, some new components such as a telelever front sus-
pension and a chain drive are considered. However, both are not included in the
MotorcycleLib. Additionally, a monoshock rear suspension as can be found in modern
motorcycle designs was taken into account. In order to develop a model of a monoshock
rear suspension, some additional co-ordinates are needed.

3.4.4 Geometry of Sharp’s Improved Motorcycle Model

Sharp’s improved motorcycle model is illustrated in Figure 3.21. The geometry is

p2
p9

0

p7 p6

p22

p14
p11

p3

p5

p4p8

p1

p13

p21 p20

p19

p10

Figure 3.21: Geometry of Sharp’s improved motorcycle model

described with reference to the co-ordinates listed in Table 3.5. The parameter values
of the improved motorcycle can be found in the paper [SEL04].
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3.4 Advanced Motorcycle Models

Name Coordinates Description

p1 (x1, y1, 0) Aerodynamic forces reference point

p2 (x2, y2, 0) Steer and twist axis joint with rear frame

p3 (x3, y3, 0) Center of mass front frame

p4 (x4, y4, 0) Connection between front frame and front suspension

p5 (x5, y5, 0) Center of mass front suspension

p6 (x6, y6, 0) Front wheel attachment point

p7 (x7, y7, 0) Rear wheel attachment point

p8 (x8, y8, 0) Center of mass of the rear frame

p9 (x9, y9, 0) Attachment point rider’s upper body to rear frame

p10 (x10, y10, 0) Center of mass rider’s upper body

p11 (x11, y11, 0) Attachment point swinging arm to rear frame

p13 (x13, y13, 0) Attachment point rear suspension to rear frame

p14 (x14, y14, 0) Center of mass swinging arm

p19 (x19, y19, 0) Swinging link pivot for rear suspension

p20 (x20, y20, 0) Lower connection link for rear suspension

p21 (x21, y21, 0) Rear Suspension/Link Attachment

p22 (x22, y22, 0) Upper connecting link pivot for rear suspension

Table 3.5: Co-ordinates of Sharp’s improved motorcycle model
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3 Bicycle and Motorcycle Modeling

3.4.5 Models of the Advanced Motorcycles

Compared to the basic models explained so far, models containing in-plane dynamics
are much more complicated. Thus, the wrapping of these models is really essential.

Figure 3.22 depicts a simplified version of the SL2001 model (i.e. the twist axis is not
included, there are no limit stops for the suspensions, no actuated revolute joints, no
sensors, etc.). From Figure 3.22 one can see the interfaces defined in order to get useful
objects to wrap the models.

Wrapped Models

Each of the six parts is designed in a fully object-oriented fashion.

Front Frame

The front frame includes the steering and twist axis, the front mass, a steering damper,
a spring/damper element for the twist axis, a telescopic version of the front suspension,
the front wheel revolute joint an two interfaces. The twist axis is needed to consider
torsional compliance. The center of mass of the front frame mass is modeled with a
fixed translation element. The front frame is connected to the front wheel and the rear
frame. To design a controller, the steering angle is measured and a steering torque
input is provided. If the motorcycle is uncontrolled, a logic switch prevents an error
message if the inputs are disconnected.

Front Suspension

Two different kinds of telescopic front suspensions are provided. The classic version
of the telescopic front suspension has the spring/damper-elements at the bottom and
the rigid part at the top. The second one is an upside down version of the former one.
Furthermore, new spring and damper elements are developed in order to implement
real spring/damper-characteristics.

Figure 3.24 shows the classic version of the telescopic front suspension.

The front suspensions include a fixed translation element representing the rigid part,
a mass connected to another fixed translation to model the position of the center
of mass and an actuated prismatic joint which defines the translational direction of
the spring/damper-elements. The parts connected to the prismatic joints are a linear
spring and a linear damper and two elasto-gaps. The latter ones are needed in order to
limit the elongation of the front suspension (see Chapter 3.4.5). The front suspension
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Figure 3.22: Simplified unwrapped model of the SL2001 model
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Figure 3.24: Model of a classic telescopic front suspension

provides two interfaces that are used to connect it to the front wheel and the twist
axis.

The model of the upside down telescopic front suspension is illustrated in Figure 3.25

Contrary to the former two models, the next front suspension model depicted in Fig-
ure 3.26 implements characteristic spring/damper-elements.

The model of the characteristic spring is shown in Figure 3.27.

The model of the characteristic spring is a slightly modified version of the one in F.
Cellier’s BondLib [CN05]. The spring length is measured at the signal output of the
two conversion elements (translational to bond graph and bond graph to translational).
Both signals are fed into a sum block. Additionally, a constant source defines the
unstretched spring length srel0. The total length is then fed into a table. The table
includes the characteristic curve of the spring and thus returns the corresponding force
(F = f(x)) for each length. In other words, the spring constant k is substituted with a
characteristic function and thus F = f(x) instead of F = k · x. This force is finally fed
into a modulated source. The zero-junction ensures that this is the only force acting
on the spring.

The model of the characteristic damper is illustrated in Figure 3.28.

The linear damper model of the BondLib has no modulated source since it simply
satisfies the linear equation F = b · v (where b is the so-called damper constant).
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Again, the length is provided at the outputs of the conversion elements. In order to
determine the velocities, both signals are fed into a derivative block. The output of the
downstream feedback block is the total velocity. This velocity is fed into a table which
includes the characteristic curve of the damper element. Mathematically, this relation
is described by the simple equation F = f(v). Again, to ensure that just one source is
acting on the element, a zero-junction is used.

Swinging Arm

Figure 3.29 depicts the model of a classic swinging arm.
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Figure 3.29: Wrapped model of a classic swinging arm

The swinging arm is hinged to the rear frame and the rear wheel. The center of mass
position is modeled via a fixed translation element and a mass element. The rear
suspension is connected to revolute joints. The model involves a closed kinematic loop.
To overcome problems with kinematic loops, the MultiBondLib provides revolute cut-
joints. By substituting the revolute joint with a revolute cut-joint, the model becomes
solvable.
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Figure 3.30: Wrapped model of a rocker chassis swinging arm (monoshock system)
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In Figure 3.30 the model of a rocker chassis swinging arm is shown.

The rocker-chassis swinging arm (monoshock system) is a modern re-design of the
former one (twin-shock system). One of the greatest advantages is that only one shock
absorber (rear suspension) is used. This part is connected via a mechanical linkage to
the rear frame and the swinging arm of the motorcycle. This model involves two closed
kinematic loops and thus two revolute cut-joints are implemented in the model.

Rear Suspension (Massless)

Again, two different versions of rear suspensions are provided. The standard version
(Figure 3.31) includes linear spring/damper elements and the second version (Fig-
ure 3.32) characteristic spring/damper-elements.

rearSuspens...

Name: RearSuspension classic
Location: AdvancedMotorcycle.Parts.SwingingArms.
RearSuspensions

n=n
actuatedPrisma...

ba

spring

damper

elastoGap

elastoGap1

frame_a

frame_b

Figure 3.31: Model of the standard rear suspension

Rear Frame

The rear frame includes five interfaces to connect the following parts:
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rearSuspens...

Name: RearSuspension classic
Location: AdvancedMotorcycle.Parts.SwingingArms.
RearSuspensions

n=n
actuatedPrisma...

ba

characteristicSpring

F = f(x)

characteristicDamper

F = f(v)

frame_a

frame_b

Figure 3.32: Model of the characteristic rear suspension

1. rear frame to swinging arm

2. rear frame to steering axis

3. rear frame to rider’s upper body

4. center of pressure (CoP) to aerodynamic forces

5. center of mass (CoM) to external disturbances (e.g. side wind)

The wrapped model of the rear frame is depicted in Figure 3.33. In order to design a
controller, the lean angle is measured. In addition, the lean angle and the lean rate can
be selected as states. This is done with the boolean parameter enforceStates. The
lean angle is calculated by the scalar product:

eAxis = transpose(RearFrameCoM.frame_a.P.R)*{0,0,1};
leanAngle = -arcsin({0,1,0}*eAxis);
phi = leanAngle;
leanRate = der(leanAngle);

Rider’s Upper Body

The rider’s upper body is hinged to the motorcycle’s rear frame via an actuated revolute
joint. The spring/damper-elements are used to model realistic rider behavior. To design
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Figure 3.33: Model of the rear frame

a controller, a torque input T_RdierLean is applied. A sensor is needed to measure the
lean angle of the rider’s upper body relative to the rear frame (see Figure 3.34).

Elasto-Gap

The elasto-gap is depicted in Figure 3.35

This model is needed to ensure that the elongation of the suspensions is limited to a
defined length. As long as the relative length of the spring srel (e.g. Figure 3.31) is
smaller than srel0, the elasto-gap is inactive. That is, the output y of the greater -block
is false. Consequently, the output of the switch is equal to u3 and hence a pair of force
sources with the same magnitude but opposite signs is applied in order to compensate
the spring/damper forces. As soon as srel is greater than srel0, the elasto-gap becomes
active. That is, the output of the greater -block is false which in turn sets the output
of the switch equal to u1. Thus, the force sources are inactive.

Visualization

The animation results of the SL2001 and the improved version of it are depicted in
Figure 3.36 and 3.37 respectively. The models are again in combination with wheels
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Figure 3.34: Model of rider’s upper body
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Figure 3.35: Elasto-gap model
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from the WheelsAndTires library.

Figure 3.36: Animation result of the SL2001 motorcycle

Figure 3.37: Animation of Sharp’s improved motorcycle model

3.4.6 Aerodynamics

In order to obtain more realistic results, in-plane aerodynamics are included. These
are the lift and drag force and a pitching moment. The lift force is described with the
following equation:

Flift =
1
2
ρ · v2 ·A · CL (3.23)
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Where ρ is the air density, v is the motorcycle’s velocity, A is the frontal area of the
front frame and CL is the so-called lift coefficient.

The drag force is given by:

Fdrag =
1
2
ρ · v2 ·A · CD (3.24)

Where CD is the drag coefficient. All the other variables are equal to those of Equa-
tion 3.23.

The pitching moment results in:

Mpitch =
1
2
ρ · v2 ·A · CP · p (3.25)

Where CP is the so-called pitching coefficient and p is the wheelbase.

The lift and the drag force act on the center of pressure (CoP), whereas the pitching
moment is acting on the center of mass (CoM) of the rear frame (see Figure 3.33). The
lift force model is shown in Figure 3.38.

liftForce

Name: LiftForce
Location: AdvancedMotorcycle.Aerodynamics

y-direction

LiftForce

const_values

k=0.5*rho*CL*fA

const

k={0,0}

product

frame_a

v

Figure 3.38: Lift force model

The lift force acts in the y direction. The model of the drag force is almost the same,
except that the force points in the z direction. The pitching moment model is illustrated
in Figure 3.39.
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pitchingMoment
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Figure 3.39: Pitching moment model
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4 Eigenvalue Analysis

An eigenvalue analysis is performed in order to determine the self-stabilizing area of an
uncontrolled bicycle or motorcycle. For this purpose, the state variables of the vehicle,
which are responsible for stability, are of interest. In case of 3 d.o.f. models, these are
steer angle δ, lean angle φ and their derivatives.

x =




δ

δ̇

φ

φ̇




(4.1)

In the case of vehicles with an additional d.o.f. allowing the rider’s upper body to lean
sideways, the state variables γ and γ̇ are also taken into account.

All the other state variables (e.g. lateral- and longitudinal position) of the state vector
described in Section 3.1.4 have no influence on the stability of single-track vehicles.
Now, the four eigenvalues (one for each state variable) are calculated as a function of
the vehicle’s forward velocity λ = f(v) (e.g. v = 10ms−1 to v = 50ms−1). Thus, for
each specific velocity the model is linearized. The result of such an analysis are three
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Figure 4.1: Stability analysis of an uncontrolled bicycle. The stable region is determined
by eigenvalues with a negative real part. Here it is from 4.3 ms−1 to 6.0 ms−1. Source:
([SMP05], p.31)

different forward velocities at which the motion of the vehicle changes qualitatively.
Figure 4.1 depicts a typical result of such an analysis.

The first velocity is below the stable region. The second velocity is within and the
third one above the stable region. In the following, the modes of single-track vehicles
are explained.

4.1 Modes of Single-Track Vehicles

Figure 4.1 depicts the eigenvalues λ as a function of the velocity (λ = f(v)). Pos-
itive eigenvalues or more precisely eigenvalues with a positive real part correspond
to unstable behavior while eigenvalues with a negative real part correspond to stable
behavior. Eigenvalues including an imaginary part emphasize that the system is os-
cillating whereas eigenvalues without an imaginary part are non-oscillating. A stable
region exists, if and only if all real parts of the eigenvalues are negative. In Figure 4.1
the stable region lies within the range 4.3ms−1 ≤ v ≤ 6ms−1.
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4.2 Linearization of the Models

4.1.1 Weave Mode

The weave mode begins at zero velocity. This mode is non-oscillating in the beginning
and after a certain value passes over into a oscillating motion. In this mode the bicycle
performs a tail motion, i.e. it sways about the normal direction (z-axis). The non-
oscillating motion at very low speeds states that the bicycle is too slow to perform a
tail motion and thus falls over like an uncontrolled inverted pendulum. As soon as it
passes a certain value of approximately vw = 0.7ms−1, the real parts of the eigenvalues
merge and two conjugate complex eigenvalues appear. Hence, a tail motion emerges.
This motion is still unstable, but becomes stable as soon as the real eigenvalues cross
the real axis. This happens at a weave speed of about vw = 4.3ms−1. For all velocities
greater than vw, this motion is stable.

4.1.2 Capsize Mode

The capsize mode is a non-oscillating motion, which corresponds to a real eigenvalue
dominated by lean. As soon as the bicycle speed passes the upper limit of the stable
region of about vc = 6ms−1, it falls over like a capsizing ship. However, above the stable
region stable region, the bicycle is easy to stabilize although the real eigenvalues are
positive. In the paper [SMP05] of Sharp et al. this motion is called “mildly unstable”
as long as the absolute value of the eigenvalues is smaller than 2s−1.

4.1.3 Castering Mode

The castering mode is a non-oscillating mode, which corresponds to a real negative
eigenvalue dominated by steer. In this mode the front wheel has the tendency to turn
towards the direction of the traveling vehicle.

Apart from the modes explained above, some other modes exists. For instance, the
so-called Wobble mode is an oscillating mode which affects just the front wheel and
front frame. For a detailed description of all possible modes that emerge at single-track
vehicles, refer to [Cos06] or [LS06].

4.2 Linearization of the Models

A model of a single-track vehicle is linearized in order to perform a stability analysis.
The output of the linearization is a linear state-space representation of the model.
The linearization is done automatically using the Modelica linearize function. This
function is part of the linear systems sub-package which is part of the Modelica Standard
Library. With respect to this state-space model appropriate eigenvalues are calculated.
Therefore, the reduced state vector introduced in Equation 4.1 is used.
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4 Eigenvalue Analysis

4.3 An Eigenvalue Analysis for the Basic Bicycle and
Motorcycle Models

4.3.1 A Function for the Eigenvalue Analysis

To be able to perform an eigenvalue analysis, specific functions for the basic bicycle
and motorcycle models are provided. The code of such a function can be found in
Appendix B.1. To execute this function one has to select it in the package browser of
Dymola, click on the right mouse button and select call function. After executing the
function, the following window appears (see Figure 4.2).

Figure 4.2: Parameter window of the eigenvalue analysis function

The first parameter are inputs. Firstly, the user has to enter the model name (e.g. Mo-
torcycleLib.Examples.BenchmarkBicycle.RigidRider.uncontrolled 3dof bicycle). This
can be done by simply drag and drop the model into the input field. The input variable
name which represents the sweep velocity is set to “vs” by default. This parameter
is defined in the model in order to sweep the velocity. In the next two input fields,
the start and end velocities are set. The last input value states how many steps are
performed. The more steps are performed, the more accurate are the results. The next
parameter is the state-vector. It includes the necessary states for the analysis.
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4.3 An Eigenvalue Analysis for the Basic Bicycle and Motorcycle Models

Remark

If the states are not known, the function getStates (MotorcycleLib.Utilities) should be
executed first (see Figure 4.3). After the user has entered the model name, the function

Figure 4.3: Parameter window of the getStates function

returns the states of the model. The state names and the corresponding position in
the state-vector are plotted in the command window. The code of the function can be
found in Appendix B.3.

Finally, by means of the last input field, the signals to plot can be chosen.

4.3.2 Results

Basic Bicycle Models

In the following figures some typical results are shown. Figure 4.4 depicts the eigen-
values analysis of the basic bicycle which is based on Schwab’s benchmark bicycle
[SMP05].

Figure 4.5 illustrates the eigenvalue analysis of a 4 d.o.f. bicycle.

The result of the eigenvalue analysis presented by Schwab et al. [SKM08] is shown in
Figure 4.6

In their recently published paper, they state that with reference to the movable rider,
the weave speed changes from vw ≈ 4.292ms−1 to vw ≈ 4.533ms−1, whereas the capsize
speed changes from vc ≈ 6.024ms−1 to vw ≈ 6.037ms−1. The stable region of the
basic bicycle is almost the same (vw = 4.28ms−1, vc = 5.996ms−1). Contrary to
the basic bicycle, the stable region of the 4 d.o.f bicycle is from vw = 4.497ms−1 to
vc = 6.01ms−1. Although the values are a little bit less compared to Schwab’s model,
the difference is negligible.
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Figure 4.4: Stability analysis of the uncontrolled basic bicycle. The stable region
is determined by eigenvalues with a negative real part. The results are identical to
Schwab’s result (see Figure 4.1)
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Figure 4.5: Stability analysis of the uncontrolled 4 d.o.f. bicycle
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Figure 4.6: Stability analysis of the uncontrolled 4 d.o.f. bicycle introduced by Schwab
et al. (Source: [SKM08], p.6)

Basic Motorcycle Model

The eigenvalue analysis for the basic motorcycle is depicted in Figure 4.7.

4.4 An Eigenvalue Analysis for the Advanced Motorcycle
Models

4.4.1 A MATLAB Function for the Eigenvalue Analysis

In the following, an eigenvalue analysis for the SL2001 model in combination with the
ideal wheels of the MultiBondLib [ZC06] is carried out by means of MATLAB. Due to
a lack of time a Modelica function in order to perform an eigenvalue analysis is not
provided.

After the model of the SL2001 motorcycle is simulated, it is linearized. In order to do
this, one has to click on the simulation tab and choose the linearize command.

After the linearization, Dymola automatically creates a file called dslin.mat. This
file includes all the necessary information of the linear state-space model. With the
command load dslin.mat within the MATLAB environment, the file is loaded into
the workspace. By typing “xuyName” into the command window, the names of the
state variables appear. With the command [A,B,C,D]=tloadlin(’dslin.mat’) the
file dslin.mat is loaded and the state-space model is stored into the matrices A, B, C
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Figure 4.7: Stability analysis of the uncontrolled 3 d.o.f. motorcycle. The stable region
is determined by eigenvalues with a negative real part. Here it is from 6.08 ms−1 to
10.32 ms−1.

and D. Now, the reduced state vector is built. Therefore appropriate states have to be
selected.

Compared to the 3 and 4 d.o.f. basic bicycle, and the basic motorcycle, the SL2001
motorcycle includes much more state variables which are responsible for the stability.
In total, the vehicle includes 18 state variables, whereas 15 have an influence on the
stability. In addition to the state variables mentioned so far, the following have to be
taken into account: The states of the front frame’s revolute joint which is connected to
the front wheel, the states of the twist axis’ revolute joint, the states of the swinging
arm’s revolute joint which is connected to the rear wheel, the states of the swinging
arm’s actuated prismatic joint and the angular rotation about the z-axis of the rear
wheel.

In the following, the eigenvalues are calculated for a velocity range from v = 0ms−1 to
v = 17ms−1. To this end, the SL2001 motorcycle model has to be linearized for the
velocities v = 0, 1, 2, ..., 17ms−1.

4.4.2 Results

The results are depicted in Figure 4.8.
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Figure 4.8: Stability analysis of the SL2001 motorcycle model. The self-stabilizing
region lies within the range 7.5ms−1 ≤ v ≤ 15.75ms−1.

Remark

An eigenvalue analysis for Sharp’s improved motorcycle model [SEL04] is carried out
in the same manner.
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5 Controller Design

In this chapter, the controller design is carried out with reference to several different
approaches. The controllers are either developed for rigid or movable riders. In the
beginning, three controllers valid for models composed of rigid riders are introduced.
The first controller is built with classic elements (i.e. PI- or PID-elements). In order
to design the controller, the lean angle is fed back. The output of the controller is the
appropriate steering torque. The second controller is based on a state-space represen-
tation. Therefore, the lean angle and the lean rate are fed back to generate a suitable
steering torque. The third controller is also based on a state-space representation. Ad-
ditionally, the steer angle and the steer rate are taken into account. Hence, a controller
design with reference to a preceding eigenvalue analysis is possible. The next controller
is an extension of the former one. Again, based on a preceding eigenvalue analysis,
a controller valid for a specific velocity range is developed. Finally, two alternative
approaches to the former one are introduced.

The next controller is based on a state-space representation valid for models including a
movable rider. To develop a controller for such a model, an additional torque is needed.
This torque has to be applied by the upper body of the rider in order to balance the
vehicle.

The state-space controller design itself is done with the pole placement technique. Until
now, Modelica does not offer a pole placement function. Hence, an own developed pole
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placement function based on Ackermann’s formula is presented. Therefore, it is possible
to model single-input, single-output (SISO) systems. Unfortunately, a pole placement
function for multiple-input, multiple-output systems is still missing. The design of
controllers related to models composed of rigid riders is done by means of the basic
motorcycle model, whereas the design for models composed of movable riders is done
with the 4 d.o.f. bicycle model.

Furthermore, two approaches based on a linear quadratic regulator (LQR) are intro-
duced. The first one is carried out with reference to a rigid rider, whereas the second
one is valid for a movable rider. In order to change the velocity during the simulation
(e.g. tracking a velocity profile), a simple velocity controller is introduced at the end of
this chapter.

5.1 Classic Controller

In the simplest case the stability controller of a single-track vehicle is designed by means
of a PID-controller. Therefore the lean angle of the rear frame is measured and fed
back in order to generate an appropriate steering torque. Figure 5.1 depicts the basic
structure of a controller/plant configuration.

Controller Plant

S
-

X(s) Y(s)W(s)
P(s) C(s)

Figure 5.1: Block diagram of a controller/plant configuration

The corresponding model of the basic motorcycle is depicted in Figure 5.2.

The controller coefficients are obtained by trial and error. Sharp used the same con-
troller structure for several of his motorcycles (refer to [SL01] and [SEL04]). An exam-
ple of the controlled basic motorcycle can be found in the examples sub-package of the
library.

5.2 State-Space Controller

In this section, several different state-space controllers are introduced. In order to
design such a controller, either the lean angle and the lean rate or the lean angle,
the lean rate plus the steer angle and the steer rate are fed back. The former one is a
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Figure 5.2: Controlled motorcycle model. The lean angle is fed back into a PID con-
troller which returns a steering torque.

simple approach which will be explained by means of MATLAB. The latter one is based
on a preceding eigenvalue analysis. The result of this analysis for the uncontrolled
motorcycle is modified in such a way that the real parts of the eigenvalues for the
controlled (closed-loop) system are all located in the left-half plane. Therefore, a pole
placement function, which is based on Ackermann’s formula, was developed. This
function calculates the coefficients of the controller (i.e. the coefficients of the state
feedback matrix). Therefore an offset, in order to shift the poles towards the left-half
plane, has to be entered. Until now, all of the introduced controllers are just valid
for one specific velocity. Thus a third controller valid for a specific velocity range is
developed.
Finally, two individual approaches are introduced. Instead of defining an offset for the
whole region, each region is controlled individually. This means that each region is
controlled by appropriate control laws.

5.2.1 Short Introduction to State-Space Design

In general, the state-space representation of a linear system is given by:

ẋ = A · x+B · u, x(0) = x0 (5.1)
y = C · x+D · u (5.2)
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where x is a (n×1) state vector, y is an (m×1) output vector, A is referred to as system
matrix with a dimension of (n×n), B is an (n×r) input matrix, C is an (m×n) output
matrix and D the “feedthrough” matrix with a dimension of (m× r). Usually D is set
to zero, except if the output directly depends on the input. The state vector x at time
t = 0 includes the initial conditions, sometimes referred to as initial disturbances x0.
In a state-space representation, a system of nth order is described with n differential
equations of 1st order. For a detailed introduction, refer to [Föl08].

The block diagram of a system described in state-space is illustrated in Figure 5.3

S
u yx 1

s

A

.

CB
x

S

x0

Figure 5.3: Block diagram of a system described in state-space

One major advantage of state-space control compared to classic control is that each
state of the system can be controlled. In order to control the system, the state vector
x is fed back. The state feedback control law for a linear time-invariant system is given
by:

u(t) = −F · x(t) (5.3)

where F is a constant matrix.

By substituting u of Equation 5.1 with Equation 5.3, the state equation results in

ẋ = A · x−B · F · x (5.4)

or
ẋ = (A−B · F )x (5.5)

The block diagram of the equation above is shown in Figure 5.4.

The elements of the state feedback matrix F have to be chosen in such a way that the
initial disturbances1 x0(t) for t→ +∞ converge towards zero

lim
t→∞

x(t) = 0 (5.6)

1In order to compensate arbitrary disturbances which appear spontaneously, an additional methodol-
ogy is needed (refer to Föllinger [Föl08] chapter 13.8). This is due to the fact that the state-space
representation originates from the theory of differential equations.
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Figure 5.4: State feedback

and that the system becomes stable.

Remark

Concerning the state variables, the state feedback matrix is equivalent to a proportional
controller. A D portion (D controller) is directly or indirectly obtained from the plant.
Directly means that both a variable and its derivative are states of the system.

The main task of the state feedback control is to find appropriate coefficients for the
state feedback matrix F in order to achieve the desired dynamic behavior of the system.
One method which fulfills all the requirements is the so-called pole placement technique
(refer to [Föl08] or [Unb07]). Figure 5.5 illustrates the graphical interpretation.

jw

s

... open-loop

... closed-loop

Figure 5.5: Graphical interpretation of the pole placement technique. Eigenvalues
(poles) of the system located in the left-half plane correspond to a stable behavior.
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5 Controller Design

5.2.2 Lean Angle Control

In the following, a simple state-space controller is developed. As already mentioned in
the beginning, the lean angle φ and the lean rate φ̇ are fed back in order to generate an
appropriate steering torque. Concerning the block diagram of the state feedback con-
troller in Figure 5.4, the block diagram valid for this task looks like (see Figure 5.6):
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B
x
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x0

S-

-

f2

f

f

F

Figure 5.6: Simple state-space controller for the basic motorcycle model, where φ and
φ̇ are two states of the state vector introduced in Chapter 3.1.4.

The corresponding state feedback control law results in:

u = −
(
f1 f2

)
·
(
φ

φ̇

)
(5.7)

In order to design such a controller, the basic motorcycle model is linearized. The
output of the linearization is a linear state-space representation of the model. The
controller design for the linearized model is carried out with MATLAB. The model to
be linearized is depicted in Figure 5.7.

The additional input in Figure 5.7 is used to notify Dymola that an external input
is used. For the following controller design, the motorcycle has an initial velocity of
8ms−1 and an initial lean angle φ of 5°. After the model is simulated, it is linearized.
In order to do this, one has to click on the simulation tab and choose the linearize
command.

After the linearization, the file dslin.mat is generated (refer to Chapter 4.4.1). Again,
in order to reduce the state vector, appropriate states have to be selected. These are
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... essential for controller design

m=1

whFWheelMass eel

r=0.305

wheelJoint

r=0.305

world3D

x

y

con... con...

Co...

ControllerDesignInput

Figure 5.7: Basic motorcycle model used to design a controller

the lean angle φ and the lean rate φ̇. The following lines of code are used in order to
build the reduced state-space model for the controller design:

states = [1, 2]; % 1 ... lean angle, 2 ... lean rate

Arel = A(states, states);
Brel = B(states,:);

Now, the poles of the system are computed. This is done via the p = eig(Arel)
command. The poles of the linearized motorcycle model for a speed of 8ms−1 are p =
(2.9180, -3.7585). In the next step, the desired location of the poles is determined. Let
us say that the desired location of the poles is at p1 = −3 and p2 = −5. In order to
do this, MATLAB provides the place()-function. The output of this function is the
desired state feedback matrix F.

F = place(Arel, Brel, [p1, p2])

For the basic motorcycle model with a forward velocity of v = 8ms−1, the coefficients
of the state feedback matrix are:

F = [624.6933, 172.2334]
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5 Controller Design

The MATLAB m-file which was used in this section can be found in Appendix C.1.
The corresponding Modelica model of the controller is shown in Figure 5.8

A B

C DF
Lean Cont...

Name: StateSpace LeanController
Location: VirtualRider.VirtualRigidRider.
RollAngleTracking.StablilityControl

model StateSpace_LeanController 
  "State Space Controller including lean angle and lean rate as states“
  
  // The controller matrix is calcutated with Matlab
    F[1,2] = [53, 14];parameter Real
  
 
  

 
equation 
  // T = F*X
  // T ... Torque input
  // F ... Feedback matrix
  // X ... State vector
  
  {SteeringTorque} = F*{phi, der_phi};
  
end StateSpace_LeanController;

Figure 5.8: Model of a simple state-space controller. The inputs (blue) are the lean
angle and lean rate, the output (white) is the steering torque

5.2.3 State-Space Controller Based on a Preceding Eigenvalue Analysis

By means of a preceding eigenvalue analysis, the controller is designed in a much more
physical fashion. In the following approach, the controller design is carried out for a
specific velocity. So far, a state-space controller based on two inputs was developed.
Both inputs are states which are responsible for the motorcycle’s stability. But there
are still two more states which affect the motorcycle’s stability as well. These are the
steer angle δ and the steer rate δ̇. All the other states of the motorcycle do not affect
the stability and are thus useless for the controller design.

A major deficiency of the former controller is the fact that the poles have no physical
interpretation. The coefficients of the state feedback matrix F were calculated for a mo-
torcycle velocity of 8ms−1. With respect to the eigenvalue analysis of the uncontrolled
motorcycle (see Figure 4.7), it is clearly within the stable range. Thus, both poles
should be negative but one of them is positive although the vehicle is self-stabilizing.
Hence, the interpretation of the poles can never be a physical one. On the contrary,
if all states which are responsible for the stability are taken into account, the physical
meaning of the poles is definitely given. More precisely, the state variables of the vehi-
cle are exactly the one introduced in Equation 4.1. As stated before, it is now possible
to design a controller based on a preceding eigenvalue analysis. In the following, three
different approaches are introduced.
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5.2 State-Space Controller

The block diagram of the state-space controller based on the eigenvalue analysis is
depicted in Figure 5.9.
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Figure 5.9: State-space controller for the basic motorcycle model

The state feedback control law is given by:

u = −
(
f1 f2 f3 f4

)
·




δ

δ̇

φ

φ̇




(5.8)

The corresponding Modelica model is shown in Figure 5.10.

Approach: Define an Offset in Order to Shift the Poles

In the following, all poles are shifted by the same value into the left-half plane. Therefore
an offset is defined. Let us say that the poles of the motorcycle for an arbitrary velocity
are poles = [p1, p2, p3, p4]. Now, all poles are shifted by means of an offset d. Thus, the
desired pole locations are: pdesired = [p1 − d, p2 − d, p3 − d, p4 − d]. Figure 5.11 depicts
the graphical interpretation.
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A B

C DF
LeanSteer...

Name: StateSpace LeanSteer
Location: VirtualRider.VirtualRigidRider.
RollAngleTracking.StablilityControl

model StateSpace_LeanSteer 
  "State Space Controller including lean angle, steer angle and their derivatives as states"
  
  /* The controller matrix is calcutated with the place function
     ControllerDesign.place */
    F[1,4] = [293.41, 22.83parameter Real , 436.52, 104.85];
  
 

  
 
equation 
  // T = F*X
  // T ... Torque input
  // F ... Feedback matrix
  // X ... State vector
  
  {SteeringTorque} = F*{phi_steer, der_phi_steer, phi_lean, der_phi_lean};
  
end StateSpace_LeanSteer;

Figure 5.10: Wrapped model of a state-space controller. The inputs (blue) are the steer
angle, lean angle and their derivatives, the output (white) is the steering torque

jw

s

... open-loop

... closed-loop

d

Figure 5.11: Graphical interpretation of the offset d. All poles are shifted by the same
value into the left-half plane
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5.2 State-Space Controller

The former introduced lean angle controller was designed with MATLAB. Now, a Mod-
elica pole placement function based on Ackermann’s formula is introduced.

F = tn · S−1
n · φ(A) (5.9)

where
tn =

[
0 0 · · · 1

]

is a vector of length n which is used to store the last row of the inverted controllability
matrix

Sn =
[
B AB A2B · · · An−1B

]

and

φ(A) = An + a1 ·An−1 + a2 ·An−2 + · · ·+ an−1 ·A+ an · 1

is the characteristic polynomial of the system matrix A. The coefficients am are chosen
in such a way that λ1, λ2, . . . , λn are the eigenvalues (poles) of the polynomial

(s− λ1) · (s− λ2) · · · (s− λn) = sn + a1 · sn−1 + · · ·+ an−1 · s+ an

The source code of the place function can be found in Appendix B.3. By executing
this function, the following window appears (see Figure 5.12).

Figure 5.12: Parameter window of the Modelica place function

In order to calculate the coefficients of the state feedback matrix, one has to enter
the velocity of the motorcycle, the offset and the appropriate states. The function
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returns the coefficients of the state feedback matrix which are displayed in the command
window.

5.2.4 State-Space Controller for a Specific Velocity Range

1st Approach: Define an Offset in Order to Shift the Poles

The following state-space controller has exactly the same structure as the former one
but is valid for a specific velocity range. After the placeRange function is executed,
the parameter window in Figure 5.13 appears. The source code of this function can be
found in Appendix B.3.

Figure 5.13: Parameter window of the Modelica placeRange function

Compared to the place function, additional parameters are needed. Instead of the
velocity, the start and end value have to be entered. Now, all eigenvalues are shifted
by the same value into the left-half plane. The output of the placeRange function is
a matrix including as many rows as defined by number_of_values. Where each row
includes the appropriate state feedback matrix. By default this matrix is stored in a
file called place.mat and automatically fed into a table of a ready-made state-space
controller (see Figure 5.14). In order to perform several simulations using the same
vehicle, arbitrary filenames can be entered to store the results.
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5.2 State-Space Controller

F=f(v) X

stabilityControlle...

Name: StabilityController table
Location: VirtualRider.VirtualRigidRider.
RollAngleTracking.StablilityControl

product

product1

product2

product3

add

+1

+1

add

+

+1

+1

add1
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+1

add1
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combiTable1Ds

phi_steer

der_phi_steer

phi_lean

der_phi_lean

v

T_steering

Figure 5.14: Wrapped model of a state-space controller for a specific velocity range.
The inputs (blue) are the steer angle, lean angle and their derivatives and the forward
velocity of the motorcycle, the output (white) is the steering torque. The table includes
the state feedback matrix coefficients which by default are stored in place.mat
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Figure 5.15 shows the stable and unstable regions of the motorcycle which were com-
puted via an eigenvalue analysis. Figure 5.16 depicts the result of the controller de-
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Figure 5.15: Controller design with reference to a preceding eigenvalue analysis. All
eigenvalues are shifted by the same offset d

sign.

2nd Approach: Individual Controller

The former approach is based on an offset in order to shift all poles towards the left-half
plane (i.e. to make the system faster).
But what are the pros of this method apart from the simple implementation? In other
words: Is it really necessary to shift all poles towards the left-half plane?
Concerning the eigenvalue analysis, the answer to this question is rather simple. Within
the stable region, the motorcycle needs no control and thus no offset. Above the stable
region (for velocities higher than vc) the behavior of the motorcycle is dominated by the
capsize mode. Hence, it is absolutely sufficient to shift just this pole towards the left-
half plane and leave all other poles unchanged. Below the stable region (for velocities
lower than vw) the instability of the motorcycle is caused by the weave mode (see
Figure 5.17). To ensure stable behavior the two real parts of the conjugate complex
poles have to be shifted towards the left-half plane. Now, a control law for the regions
below and after the stable region is set up:
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Figure 5.16: Result of the controller design for a velocity range from 4ms−1 to 12ms−1,
where the offset is d = 5

control law





v < vw : d = dw · (vw − v)

vw < v < vc : d = 0

vc < v : d = dc · (v − vc)
(5.10)

Figure 5.18 shows the result of the individual controller design for a velocity range from
4ms−1 to 12ms−1.

3rd Approach: Improved Individual Controller

Although the results of the individual controller are rather good, there is still potential
for improvements. For velocities equal to vw or vc, the eigenvalues which are responsible
for stability are close or equal to zero. To be more precise, for such velocities the stability
of the motorcycle is critical since a real part equal to zero has no damping. Somewhere
in the stable region, the weave and the capsize mode have an intersection point vi.
Instead of the previous control law, the improved control law results in:
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Figure 5.17: Controller design with reference to a preceding eigenvalue analysis. The
stable region is left unchanged - within the region below vw, the weave mode eigenvalues
are modified - within the region above vc, the capsize mode eigenvalue is modified.
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Figure 5.18: Result of the individual controller design for a velocity range from 4ms−1

to 12ms−1, where vw = 6.1ms−1, vc = 10.3ms−1, dw = 1.5 and dc = 0.1

control law

{
v < vi : d = d0 + dw · (vi − v)

vi < v : d = d0 + dc · (v − vi)
(5.11)

A graphical interpretation of the control law is illustrated in Figure 5.19.

Figure 5.20 depicts the result of the improved individual controller design for a velocity
range from 4ms−1 to 12ms−1.

5.3 State-Space Controller Valid for Models Composed of
Movable Riders

So far, the states x = (δ δ̇ φ φ̇)T of the controller introduced in Section 5.2.3 were fed
back in order to generate an appropriate steering torque. Now, two more states are
taken into account, namely the lean angle γ and the lean rate γ̇ of the rider relative to
the rear frame. These states are also fed back to generate a suitable torque which is
applied by the rider in order to balance the vehicle. The corresponding control law is
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Figure 5.19: Controller design with reference to a preceding eigenvalue analysis. Within
the region below vi, the weave mode eigenvalues are modified - within the region above
vi, the capsize mode eigenvalue is modified. In addition the weave and capsize eigen-
values can be shifted by a value equal to d0.
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Figure 5.20: Result of the improved individual controller design for a velocity range
from 4ms−1 to 12ms−1, where vi = 6.9ms−1, dw = 0.75, dc = 0.1 and d0 = 0

given by:

(
u1

u2

)
= −

(
f11 f12 f13 f14 f15 f16

f21 f22 f23 f24 f25 f26

)
·




δ

δ̇

φ

φ̇

γ

γ̇




(5.12)

Basically, the controller design is carried out in the same way as it was described in
Section 5.2.2. The model of the controller is shown in Figure 5.21.

The corresponding MATLAB m-file can be found in Appendix C.2. Unlike in former
controller designs, a second offset offset_rider is introduced in order to move the
poles of the rider independently of the other ones. However, this was just a suggestion
on how to design the controller.
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A B

C DF Name: StateSpaceController
Location: VirtualRider.VirtualMovableRider.
RollAngleTracking.StabilityControl

model StateSpaceController 
  
  // The controller matrix is calcutated with Matlab
    F[2,6] = [ 34.2606,    1.6523,   2parameter Real 2.7179,    3.4349,   10.2637,    3.1373;
                           118.7795,   29.6039,  16 9.5166,   64.2751,  246.6806,   84.0309];
  
 

  
 
equation 
  // T = F*X
  // T ... Torque input
  // F ... Feedback matrix
  // X ... State vector
  
 {SteeringTorque, RiderLeanTorque} = F*{SteerAngle, SteerRate, LeanAngle, LeanRate, RiderLeanAngle, RiderLeanRate};
  
end StateSpaceController;

Figure 5.21: Model of a state-space controller. The inputs (blue) are the steer angle,
lean angle, rider’s lean angle and their derivatives, the outputs (white) are the steering
torque and a torque that has to be applied by the upper body of the rider in order to
lean sideways

5.4 A Linear Quadratic Regulator (LQR) as a Solution of
Optimal Control

Another possibility to design a controller is to use a linear quadratic regulator (LQR).
Until now, each controller was designed in such a way that the closed-loop system be-
comes stable. In order to fulfill this requirement the poles of the closed-loop system
were placed into the left-half plane. This was done using several different approaches.
However, the basic idea is always the same: The more negative the location of the poles,
the faster the system and the more control energy (e.g. steering torque) is needed. So
far, the control energy (cost) of the system was never taken into account, i.e. it was
implicitly assumed that the control energy does not play an important role. Unfortu-
nately, this is everything else but close to reality (e.g. a steering torque of 500Nm can
never be applied by a human).

To take the control energy into account right from the start of the controller design,
the optimal control theory provides several methods in order to minimize it. For linear
time-invariant (LTI) systems the LQR method is the most suitable one.

Basic Idea

Again, the plant is considered to be a linear system which is described in terms of
Equation 5.1. The state feedback matrix F has to be chosen in such a way that:

1. the closed-loop system is not too slow and not too much oscillating
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2. the control energy is minimized

The quality criterion (cost functional) in order to fulfill (1) takes the following form:

J =
1
2

∞∫

0

xT (t) Q x(t) dt (5.13)

where x is the state vector and Q is a symmetric, positive semidefinite matrix

Analog to (1) the quality criterion of (2) is given by:

J =
1
2

∞∫

0

uT (t) R u(t) dt (5.14)

where u is the input vector and R is a symmetric, positive definite matrix

In order to fulfill both quality criteria Equation 5.13 and 5.14 are combined. The
resulting cost functional is given by:

J =
1
2

∞∫

0

[
xT (t) Q x(t) + uT (t) R u(t)

]
dt (5.15)

where Q and R are weighting matrices.

To minimize the cost functional J, the control law u = −F ·x (Equation 5.3) is modified.
F is substituted by

F = −R−1 ·BT · P (5.16)

where P is found by solving the following equation

AT · P + P ·A− P ·B ·R−1 ·BT · P +Q = 0 (5.17)

which is referred to as continuous time algebraic riccati equation.

For a detailed description of the equations above, refer to Föllinger [Föl08] or Lunze
[Lun06]. To this end it is not necessary to understand the theory in detail since the
algorithm, in order to find the optimal state feedback matrix, is provided by many
programs (e.g. MATLAB, Scilab, Octave).

Due to the absence of a Modelica LQR function, this problem is solved with the lqr()-
function provided by MATLAB.

The main task is to find appropriate weighting factors for Q and R to fulfill (1) and
(2). In order to do that, some design goals have to be specified. According to that
goals, Q and R are modified as long as the results are such that the requirements are

89



5 Controller Design

fulfilled. This is a laborious and time consuming task. Nevertheless, in the following it
is carried out for the basic bicycle model.

5.4.1 1st Approach: Minimization of the Lean Angle

In a first approach the lean angle is minimized. Since the bicycle has just one input,
namely the steering torque u = Tsteering applied by the rider, the R matrix is reduced
to a scalar. In the simplest case R = 1. The state vector x = (δ δ̇ φ φ̇)T has a size of
(4 × 1) and hence Q is a (4 × 4) matrix. Now, the weightings of Q have to be chosen
such that φ is minimized. Thus Q results in:

Q =




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


 ← min φ

The value of R which is equal to one, states that the control energy has the same
weighting as the lean angle. More precisely, the lean angle is minimized by the same
value as the steering torque.

In the following, a controller design for a velocity range from v = 1ms−1 to 10ms−1

is carried out. In order to calculate the coefficients, the basic bicycle model has to
be linearized for each velocity. After each linearization, the procedure introduced in
Chapter 5.2.2 is executed. The only difference is that four states are needed and that
the place()-function is replaced by an lqr()-function.

states = [7,8,3,4]; % Steer Angle, Steer Rate, Lean Angle, Lean Rate

Arel = A(states, states);
Brel = B(states,:);

The lines of code in order to calculate the state feedback matrix F are shown below.

R = 1; % single input

q1 = 0; % weighting factor steer angle
q2 = 0; % weighting factor steer rate
q3 = 1; % weighting factor lean angle
q4 = 0; % weighting factor lean rate
Q = [q1 0 0 0; 0 q2 0 0; 0 0 q3 0; 0 0 0 q4];

F = lqr(Arel, Brel, Q, R)

The MATLAB m-file can be found in Appendix C.3.
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The model of the LQR is shown in Figure 5.22.

A B

C D
LQR
LQR_Lean...

Name: LQR LeanSteer
Location: VirtualRider.VirtualRigidRider.
RollAngleTracking.StablilityControl

model LQR_LeanSteer 
   "LQR including lean angle, steer angle and their derivatives as states"
  
  // The calculation of the feedback matrix coefficients is done with MATLAB 
    F[1,4] = [9.5166, 1.9268, 150.4986parameter Real
  
 
  

 
equation 
  // T = F*X
  // T ... Torque input
  // F ... Feedback matrix
  // X ... State vector
  
  {SteeringTorque} = F*{phi_steer, der_phi_steer, phi_lean, der_phi_lean};
  
end LQR_LeanSteer;

, 48.1777];

Figure 5.22: Model of linear quadratic regulator (LQR). The calculation of the coeffi-
cients is carried out with MATLAB.

The results of the simulation are shown in Figure 5.23

This approach was also carried out by Schwab et al. in their recently published paper
[SKM08] on page 4/8. Fortunately the results are the same. Figure 5.24 shows the
steering torque for velocities of v = 1ms−1 and v = 4ms−1. For initial lean angles
greater than 11.6° and a velocity of 1ms−1, the torque gains unrealistic high values.
Furthermore, it can be seen that the real parts of the weave mode eigenvalues have
their maximum at a velocity of v = 4ms−1. Thus, the amplitude of the steering torque
is lower. Since the lean angle is minimized, almost no steering torque is required for
velocities equal to 4ms−1. For velocities equal to 5ms−1 the weave eigenvalues of the
uncontrolled bicycle are the same as for the controlled version. Hence the steering
torque is almost zero. In that case, the coefficients of the state feedback matrix are
F = [0.6038, 0.0424, 0.6934, 0.0420].

5.4.2 2nd Approach: Minimization of Lean and Steer Angle

In order to minimize the lean and the steer angle, the weightings of the Q matrix are
modified as follows:

Q =




1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0




← min δ

← min φ
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Figure 5.23: LQR design - minimization of the lean angle: Left plot - eigenvalue analysis
for the uncontrolled version of the bicycle; Right plot - eigenvalues of the controlled
bicycle
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Figure 5.24: LQR design - steering torque needed in order to stabilize the bicycle; Top
left - Initial lean angle φ = 5°, v = 1ms−1; Top right - Initial lean angle φ = 11.6°,
v = 1ms−1; Bottom left - Initial lean angle φ = 5°, v = 4ms−1; Bottom right - Initial
lean angle φ = 11.6°, v = 4ms−1

92



5.4 A Linear Quadratic Regulator (LQR) as a Solution of Optimal Control

Figure 5.25 shows a comparison between the first and the second approach.
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Figure 5.25: LQR design - minimization of the lean and steer angle: The dashed lines
are the results of the 1st approach.

Regarding Figure 5.25, one can see that the additional minimization of the steer angle
does not make a useful contribution.

5.4.3 3rd Approach: Minimize the State Vector x

For the sake of simplicity, every LQR design starts with minimizing the whole state
vector and the input by the same value. Thus, Q is equal to a 4 × 4 identity matrix,
whereas R = 1 again. The result is shown in Figure 5.26

The result is a little bit different compared to the first two approaches, especially below
the weave speed vw. However, the applied torque for low speeds is almost the same.

5.4.4 4th Approach: Minimization by Uneven Weightings

The last approach is used to vary the matrix R. At first R is set to a value greater than
one R = 10. The Q matrix is the same as the one introduced in the first approach.
The result is shown in Figure 5.27.

Unfortunately, a weighting of R = 1 was almost the best possible case. Hence, the
control energy cannot be decreased any more. On the contrary, weightings of R much
smaller than one would cause a faster system and much more control energy in order
to keep the bicycle upright.
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Figure 5.26: LQR design - minimization of the state vector
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Figure 5.27: LQR design - varying weightings of R. The dashed lines are the results of
the first approach. Although R = 10, the results are almost the same
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5.5 LQR valid for Models composed of Movable Riders

In the following, an LQR valid for the 4 d.o.f. bicycle is designed. The control law and
thus the model of the controller are equal to those introduced in Section 5.3. Contrary
to the LQR design in Section 5.4, the weighting matrix R now has size (2 × 2) and
Q is increased to size (6 × 6). Regarding the control energy as well as the controller
performance, the following approach is carried out.

Q =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0




← min φ

← min γ

and

R =

(
1 0

0 1

)
← min u1

← min u2

where u1 is the steering torque and u2 is the body torque that has to be applied by the
upper body of the rider. The calculation is done with MATLAB. The m-file can be
found in Appendix C.2. In the following, the coefficients of the state feedback matrix
for a bicycle velocity of 3ms−1 are calculated. The state feedback matrix results in:

F = [26.6202 2.2106 26.9760 0.2602 −39.3326 −12.2478;
−11.9325 −0.7383 −8.8855 4.5996 43.8729 13.6827]

The simulation result is depicted in Figure 5.28.

Regarding the results of Figure 5.28 it can be seen that the behavior of the controlled
bicycle is rather good. In order to increase the controller performance, that is, to model
an aggressive rider, the coefficients Q(3,3) and Q(5,5) have to be increased. However,
this could result in additional control energy. The behavior of the bicycle with R(1,1)
= R(2,2) = 0.1 and Q(3,3) = Q(5,5) = 100 is shown in Figure 5.29.

5.6 Velocity Control

The wrapped model of a simple velocity controller is shown in Figure 5.30.

The inputs are the set-value of the velocity and the angular velocity of the motorcycle’s
rear wheel. The output of the gain block with the value 1

r is the corresponding angular
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Figure 5.28: Simulation results of the 4 d.o.f. controlled bicycle model
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Figure 5.29: Optimized simulation results of the 4 d.o.f. controlled bicycle model
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speedCon...

Name: SpeedController
Location: VirtualRider.VelocityControl

k=1/r

v_to_w

-

feedback2
PI

PI

T=T

v

w

T_engine

Figure 5.30: Wrapped model of a simple velocity controller.

velocity set-value. The output of the model is the appropriate torque to drive the rear
wheel.
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6 Development of a Virtual Rider

To validate the motorcycle’s performance, a virtual rider is essential. The main purpose
of a virtual rider is to track either a roll angle profile (open-loop method) or a pre-defined
path (closed-loop method). In the simplest case, the rider is considered to be an inert
mass rigidly attached to the main (rear) frame of the motorcycle (e.g. basic motorcycle
model). More realistic models introduce an additional degree of freedom that enables
the rider’s upper body to lean sideways. Another essential task of a virtual rider is to
stabilize the motorcycle either for a specific velocity or within a specific velocity range.
Therefore, appropriate state variables (e.g. lean (roll) angle and lean rate) are fed back
to generate a suitable steering torque. Several possibilities exist to cope with such a
control task. The simplest case is by classic controller design, i.e. the use of PI-, PD-
or PID-elements. Modern approaches are based on a state-space representation.

In the following chapter, several different virtual riders capable of either tracking a
roll angle profile or a pre-defined path are introduced. For a virtual rider capable of
tracking a roll angle profile, the stability controllers which were introduced in Chapter 5
are used. Instead of the previous set values, which were all set to zero, a roll angle
profile is used. For a virtual rider capable of tracking a pre-defined path, classic-, state-
space- and combinations of classic- and state-space controllers are applied. To develop
a more realistic virtual rider, single-point path preview is performed. This means that
the virtual rider looks a pre-defined distance ahead in order to follow the path. It is
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6 Development of a Virtual Rider

worth noting that a similar deviation pattern is actually observed from human riders.
In the simplest case, a stability controller is extended by a PI-controller. The input of
the PI-Controller is the lateral position of the rear frame’s center of mass. The output
is an additional steering torque which is added to the existing one. Afterwards, the
PI-controller is replaced by a state-space controller. Contrary to the former approach,
the derivative of the lateral position is additionally taken into account. Finally, a linear
quadratic regulator (LQR) is developed.

6.1 Roll Angle Tracking

6.1.1 Classic Design

The simplest implementation of a virtual rider was implicitly introduced in Chapter 5.1.
For the sake of usability, this model is wrapped (see Figure 6.1). The additional limiter

classic_VR

Name: Classic VR
Location: VirtualRider.VirtualRigidRider.
RollAngleTracking

-

feedback
PID

PID

Ti=Ti

limiter

uMax=Tmax

limiter

phi_set

phi

SteeringTor...

Figure 6.1: Wrapped model of a simple virtual rider. The inputs (blue) are the lean
angle set-value and lean angle, the output (white) is the steering torque

block is used to ensure realistic torque inputs. In Chapter 5, all set-values were equal
to zero. Let us now apply a lean angle set-value in order to follow a desired profile. In
the simplest case, a constant value is entered. Figure 6.2 show the controlled model of
the basic motorcycle.
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6.1 Roll Angle Tracking

Figure 6.2: Wrapped model of the controlled basic motorcycle

Figure 6.3 shows the simulation result for a set value xset = 35° and a constant velocity
of v = 6ms−1. The corresponding signals are shown in Figure 6.4. The coefficients of
the PID controller were determined by trial-and-error (k = 20, Ti = 2.5 and Td = 10−3).
The maximum torque that can be applied by the rider was set to Tmax = 5Nm.

6.1.2 State-Space Design

Controller Extensions

In order to track a roll angle profile, the state-space controllers introduced in Chapter 5
are extended by a so-called reference input. So far, no reference input was used, i.e.
the set-value of the state variables was zero (see Figure 5.4) This raises the following
question:

Why do all states converge towards zero without explicitly using a reference input equal
to zero?

Let us apply a reference input to the block diagram in Figure 5.4. The result is shown
in Figure 6.5.
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6 Development of a Virtual Rider

Figure 6.3: Animation result of the basic motorcycle model with a classic virtual rider
tracking a 35° roll angle profile with a forward velocity of 6ms−1
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classic_StabilityController.phi_set                classic_StabilityController.phi

Figure 6.4: Simulation result of the basic motorcycle model with a classic virtual rider
tracking a 35° roll angle profile with a forward velocity of 6ms−1. The upper plot shows
the steering torque, the lower plot shows the set-value and the actual lean angle of the
motorcycle
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Figure 6.5: State feedback with an additional reference input

Mathematically the control law introduced in Equation 5.3 results in:

u = F · (xset − x) (6.1)

If a reference input xset = 0 is applied, then u = −F · x which is nothing else but the
original control law without any reference input. Thus, in a state-space design without
a reference input all states converge towards zero.

A Simple Virtual Rider

Let us apply a reference input to the state-space controller depicted in Figure 5.6. The
modified block diagram is shown in Figure 6.6. The reference input xset is the desired
lean angle profile. The derivative block provides the corresponding reference input for
the lean rate φ̇. In order to develop models with less inputs, the block diagram in
Figure 6.6 is rebuilt (see Figure 6.7).

The wrapped model is shown in Figure 6.8.

A Virtual Rider Based on a Preceding Eigenvalue Analysis

In the following, a virtual rider based on the state-space controller introduced in Chap-
ter 5.2.3 is developed, i.e. to be able to follow a roll angle profile, the steer angle is
additionally taken into account. In other words, for a given lean angle set-value xset,
the corresponding steer angle has to be calculated. The relation between steer and lean
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Figure 6.6: Block diagram of a simple virtual rider
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Figure 6.7: Another possible block diagram of a simple virtual rider
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6.1 Roll Angle Tracking

simple_StateSpa...

Name: Simple StateSpace VR
Location: VirtualRider.VirtualRigidRider.
RollAngleTracking

derivative1

der()

A B

C DF
Lean Cont...

-

feedback

phi_set

T_steer

phi

Figure 6.8: Wrapped model of a simple virtual rider composed of a simple state-space
controller. The inputs (blue) are the lean angle and lean rate, the output (white) is
the steering torque
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angle, under the assumption of small perturbations, i.e. sin(φ) ≈ φ, is given by:

δ = atan

(
p · cos(φ)
R · tan(ε)

)
(6.2)

Where p is the wheel base, ε is the caster angle, φ = xset,

R =
v2

g · tan(φ)
(6.3)

is the radius of the curve (refer to Equation 2.5) and g is the gravity. The corresponding
model is depicted in Figure 6.9. Once again, the block diagram, which was introduced in

Lean2Steer

Name: lean2steer
Location: VirtualRider.Utilities

model lean2steer 
  "Calculation of the steer angle for a given lean  angle" 
  
   SI = ;import Modelica.SIunits
   CO = ;import Modelica.SIunits.Conversions
   MA = ;import Modelica.Math
  
   SI.Distance p = -1.414 ;parameter "wheel base"
  
   eps = -27 parameter CO.NonSIunits.Angle_deg
    ;"Caster angle (Steering head angle)"
     eps_rad = (epfinal parameter SI.Angle CO.from_deg s);
  
   R ;SI.Distance "Curve radius"
  
equation 
  R = (  (lean) < 10e-6  0  v^2 noEvent absif then else / (9.81* (lean)));tan
  steer = (  (R) < 10e-6  0  noEvent abs MAif then else .atan cos cos(p* (lean) / (R* (eps_rad))));
  
 
equation 
  
end lean2steer;

Figure 6.9: Model that calculates the steer angle for a given lean angle (δ = f(φ)). The
inputs (blue) are the lean angle and the velocity of the motorcycle, the output (white)
is the corresponding steer angle.

Chapter 5.9, is modified (see Figure 6.10). The wrapped model is shown in Figure 6.11.

A Virtual Rider Based on a Preceding Eigenvalue Analysis Valid for a Specific
Velocity Range

To design such a virtual rider the incorporated controller of the virtual rider shown in
Figure 6.11 is replaced by the controller introduced in Chapter 5.14 in order to work
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Figure 6.10: Block diagram of a virtual rider composed of a state-space controller and
an additional block in order to calculate the corresponding steer angle for a given lean
angle
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stateSpace_VR

Name: StateSpace VR
Location: VirtualRider.VirtualRigidRider.
RollAngleTracking

derivative

der()

derivative1

der() A B

C DF
LeanSteer...

-

feedback

-

feedback1
Lean2Steer

v

phi_set

T_steer

delta

phi

Figure 6.11: Wrapped model of the virtual rider composed of a state-space controller.
The inputs (blue) are the lean and steer angle, the lean angle set-value and the velocity
of the motorcycle, the output (white) is the steering torque
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correctly within a user-defined velocity range. The wrapped model is illustrated in
Figure 6.12.

stateSpace_VR...

Name: StateSpace VR Range
Location: VirtualRider.VirtualRigidRider.
RollAngleTracking

derivative

der()

derivative1

der()
F=f(v) X

stateSpac...

-

feedback

-

feedback1
Lean2Steer

v

phi_set

T_steer

delta

phi

Figure 6.12: Wrapped model of the virtual rider composed of a state-space controller
for a user defined velocity range. The inputs (blue) are the lean and steer angle, lean
angle set-value and the velocity of the motorcycle, the output (white) is the steering
torque

6.1.3 State-Space Design for Models Composed of Movable Riders

The wrapped model of such a controller is shown in Figure 6.13. Apart from that, it
works in the same way as all the other virtual riders described so far.

A detailed example of a controlled 4 d.o.f bicycle model can be found in Chapter 7.1.2.
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stabilityController

Name: StateSpace VMR
Location: VirtualRider.VirtualMovableRider.
RollAngleTracking

derivative

der()

derivative1

der()

-

feedback_...

-

feedback_...
Lean2Steer

A B

C DF

-

feedback_...

derivative2

der()

v

phi_set

T_steer

delta

phi

T_Rider

phi_rider_set

phi_rider

Figure 6.13: Wrapped model of the virtual movable rider composed of a state-space
controller. The inputs (blue) are the lean and steer angle, lean angle set-value, velocity,
rider’s lean angle and the set-value of rider’s lean angle, the outputs (white) are the
steering torque and the torque applied by the upper body of the rider.
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6.1.4 Optimal Control - LQR Design

In Chapter 5.4, a controller based on an LQR that stabilizes the motorcycle was devel-
oped. The structure of the virtual rider model is basically the same as the one presented
in Figure 6.11 except that the state-space controller is replaced by the LQR introduced
in Figure 5.22. As always, the main task of the controller is to stabilize the motorcycle
and simultaneously track a roll angle profile. Thus, the weightings of R and Q have to
be modified until the results are suitable.

6.1.5 Environments

Several test tracks are provided in order to validate the motorcycle’s performance. In
the following, the model of a 90°-curve is explained. The wrapped model is shown in
Figure 6.14. The actual position of the vehicle is the product of velocity and actual

curve_90degree

Name: curve 90degree
Location: Environments.Tracks.OpenLoopMethod

table includes the lean angle as a function of the current position

lean angle = f(x), where x = v t

product

clock

startTime=0

Visualizati...

combiTable1Ds

const

k=v
leanAngle

Figure 6.14: Wrapped model of a 90°-curve

simulation time. The Visualization model includes the picture of the 90°-curve. The
dimensions of the curve are shown in Figure 6.15.

The lean angle profile data for a specific vehicle are fed into the table. In the first
column of this table, the positional information (traveled distance) is stored. This
can be done in two different ways. The data can be entered directly or by means of a
record1. The second column includes the corresponding lean angles that are calculated

1A Modelica record is used to structure data of primitive data types (e.g. Real, Integer, String, etc.)
It is similar to a struct in C or MATLAB
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R = 25m, 
arc length b = 39.27m

100

1
0
0

50

4
0

Figure 6.15: Dimensions of the 90°-curve

with reference to Equation 2.5. In Table 6.1, the lean angle profile of a 90°-curve for
the basic motorcycle is listed.

Path x = v · t [m] Lean Angle φ [°]

0 0

50 - 5 0

50 + 1 atan
(
v2

R∗g

)

51 + 39.27 - 5 atan
(
v2

R∗g

)

50 + 39.27 + 1 0

100 0

Table 6.1: Lean angle profile of a 90°-curve valid for the basic motorcycle model

The results of a motorcycle tracking a 90°-curve are shown in Chapter 7.2.

6.2 Path Tracking

In order to follow a pre-defined path, once again the controller has to be modified.
Figure 6.16 shows the basic structure of a path preview controller. The controller is
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path-preview

Vehicle

x1 x2

xpath

Figure 6.16: Basic structure of a path preview controller

composed of a non-preview and a path preview part. The former one is responsible for
the motorcycle’s stability. The latter one is an additional controller which constraints
the vehicle to follow a pre-defined path. The corresponding control law results in:

u = −
(
F1 F2

)
·
(
x1

x2

)
(6.4)

Where x1 and x2 are state vectors. The elements of x1 depending on the particular
controller design, e.g. x1 = (φ φ̇)T . In the simplest case, x2 is the lateral position
xlat a pre-defined distance xpreview ahead of the vehicle (see Figure 6.17). The path
(roadway) is defined by a lateral profile i.e. the x-direction is fixed.

xlat xpath

xpreview

x

CoM

path (roadway)

Figure 6.17: Single-point path preview

Such a path preview controller is determined with reference to several different ap-
proaches. To this end, three different approaches are introduced. Firstly, the controller
designed in Chapter 5.9 is extended by a PI-controller. Secondly, a state-space con-
troller is developed. Thirdly, an approach based on optimal control is introduced. At
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6 Development of a Virtual Rider

the end of this chapter, an alternative approach to single-point path preview, namely
multi point path preview is mentioned.

To emulate a real human rider, single-point path preview is performed, i.e. the rider
looks a pre-defined distance ahead. The path preview model is shown in Figure 6.18.
Since the path preview model is connected to the rear frame’s center of mass, its height

pathPreview

fr...

Name: PathPreview
Location: Environments.Tracks.ClosedLoopMethod

ab

r=r

fixedTransla...
absoluteSensor

force

m
=

0

P
re

v
ie

w
P

o
in

t

ab

r=h

fixedTransla...

frame_a

x_lat

Figure 6.18: Wrapped path preview model

has to be subtracted in order to measure the correct lateral distance. The second
fixed translation element is used to define the preview distance. The lateral distance
is measured with a positional sensor. The simple mass element (m = 0) is used to
indicate (visualize) the preview distance the rider is looking ahead.

6.2.1 Path Generation

The path generation is done with MATLAB. It is based on an approach introduced
by R. S. Sharp and V. Valtetsiotis [SV01]. Basically, a random signal is generated.
Afterwards, the offset is eliminated. In the next step, the signal is filtered in such a
way that the result is a smooth path. A typical path is shown in Figure 6.19. The
MATLAB m-file can be found in Appendix C.4.

This path is stored in a mat-file which is fed into the model shown in Figure 6.20.
The traveled path of the motorcycle is calculated via x = v · t. In other words, the
actual position of the vehicle is the product of velocity and actual simulation time. This
position is fed into the Position table. Thus, for each actual position of the vehicle, the
corresponding lateral deviation is provided by the table. Regarding Figure 6.19, the
model is just valid for very small lateral deviations (y-values) since the first column of
the table includes the values of the fixed x-axis. Instead of these values, the traveled
path has to be calculated. Since the values in the m-file are discrete, the length of
each path element is calculated and summed up in order to get the real traveled path
(Figure 6.21).
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Figure 6.19: Path generated with MATLAB

path Name: Path
Location: Environments.Tracks.ClosedLoopMethod

Position.mat table
path generation with butterfil.m

clock

startTime=0

product

setPoint_velocity

k=v
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Position
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Figure 6.20: Wrapped path model
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x

path (roadway)

xi-1 xi

y

yi-1

yi

li

Figure 6.21: Calculation of the traveled path of the vehicle

According to Figure 6.21, the length of a single element is given by

l(i) =
√

(xi−1 − xi)2 + (yi−1 − yi)2 (6.5)

Hence, the traveled path results in

path =
n∑

i=0

l(i) (6.6)

By substituting the fixed x-values with the real path-values, the error is eliminated.
Regarding the path preview performed by the rider, an offset is added to the actual
position of the vehicle. The value of the offset is equal to the preview distance the
rider is looking ahead. The position of the path preview point is fed into a second table
called Position preview. The output of this table serves as input for the virtual rider.

6.2.2 Classic Design

According to Figure 6.16, the model of a simple path preview controller composed of
a PID stability controller and a PI controller to cover the path preview purposes is
depicted in Figure 6.22.

The lean angle set-value is set to zero to ensure that the vehicle stays upright. The
coefficients of the PID and the PI-controller have to be chosen such that the vehicle
follows the pre-defined path without capsizing.

6.2.3 State-Space Design

For the sake of completeness, Figure 6.23 shows the basic structure of a state-space
path preview controller.
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classic_PT_VR

Name: Classic PT VR
Location: VirtualRider.VirtualRigidRider.
PathTracking

-

feedback_...
PI_deltaP

PI

T=T

add

+1

+1

add

+

+1

+1

PID

PID

Ti=0.4

-

feedback_...
const

k=0

T_steer

leanAngle

xlat

xlat_set

Figure 6.22: Wrapped model of a simple path preview controller. The inputs (blue)
are the path, lateral position and lean angle, the output (white) is the steering torque
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Figure 6.23: Basic structure of a state-space path preview controller

117



6 Development of a Virtual Rider

Combination of a State-Space and a Classic Controller

In a first approach a PID-controller was used to ensure that the motorcycle stays
upright. Now, the PID controller is replaced by a state-space controller based on a
preceding eigenvalue analysis. This is conform to the model shown in Figure 6.8. The
wrapped model of the virtual rider is shown in Figure 6.24.

classic_StateSp...

Name: Classic StateSpace VR
Location: VirtualRider.VirtualRigidRider.
PathTracking
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feedback_...

stabilityController
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v
T_steer
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xlat

xlat_set

steerAngle

Figure 6.24: Wrapped model of a state-space path preview controller. The inputs (blue)
are the path, lateral position, velocity, steer angle and lean angle, the output (white)
is the steering torque

Full State-Space Design

So far, two virtual riders capable of tracking a pre-defined path were developed. The
first was composed of classic elements. For the second one, the PID-controller was
replaced by a state-space controller (see Figure 6.8) due to the convenient physical
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6.2 Path Tracking

interpretation of the poles. For the following virtual rider, the “path preview” controller
is based on a state-space controller as well. The two state vectors needed to design the
controller are thus: x1 = (δ δ̇ φ φ̇)T and x2 = (xlat ẋlat)T . The state vector x2 includes
the lateral position and lateral rate. In order to measure the lateral rate, the path
preview model has to be modified. Figure 6.25 depicts the necessary modifications for
such a model. The lateral acceleration is measured with a sensor and is integrated twice.
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Figure 6.25: Wrapped path preview model for state-space design. The model is con-
nected to the rear frame’s center of mass

Thus, the output of the first integrator introduces the lateral rate, and the output of
the second one, the lateral displacement (position). Instead of using two integrators to
get both the lateral position and the lateral rate, they could be measured directly by
means of a position and a velocity sensor. However, in order to develop a controller,
the elements of the state-vector x2 have to be state variables. Fortunately, each output
of the integrators of the path preview model is a state variable by default. To design
a controller, the model of the uncontrolled motorcycle shown in Figure 5.7 is extended
by the path preview model.

The library includes both a virtual rider valid for a specific velocity and another one
valid for a specific velocity range. The calculation of the state feedback matrix coeffi-
cients is done with the place_pathPreview or the placeRange_pathPreview function.
Contrary to the function place_Range_offset, an additional offset offset_lat is in-
cluded. This offset is used to change the location of the poles of the state-vector x2.

To be able to track a pre-defined path, the controller introduced in Figure 5.14 has to
be modified such that the state vector x2 is incorporated. The modified wrapped model
is shown in Figure 6.26. This model is now integrated into the virtual rider shown in
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Figure 6.26: Wrapped model of a state-space path preview controller valid for a specific
velocity range
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stateSpace_PT_...

Name: StateSpace PT VR Range
Location: VirtualRider.VirtualRigidRider.
PathTracking
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Figure 6.27: Wrapped model of a virtual rider composed of a state-space controller
capable of stabilizing the motorcycle and tracking a pre-defined trajectory. The model
is valid for a specific velocity range. The inputs (blue) are the lean angle set-value,
lean angle, steer angle, path, lateral position, and velocity, the output (white) is the
steering torque
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6 Development of a Virtual Rider

Figure 6.27.

A detailed example can be found in Chapter 7.2.

6.2.4 Optimal Preview Control - LQR Design

The design of a virtual rider capable of tracking a pre-defined trajectory can be done
in the same manner as in Chapter 5.4. Again, the main task is to find the coefficients
of the weighting matrices R and Q such that the vehicle follows the pre-defined path
without capsizing. The system has still one input and hence R is again a scalar. The
size of Q is increased by (2×2) due to the state-vector x2. Hence, Q is a (6×6)-matrix.
In a first approach, let us minimize the lateral deviation xlat, the lean angle φ and the
control energy (steering torque) u.

Thus

x =

(
x1

x2

)
=




δ

δ̇

φ

φ̇

xlat

ẋlat




, Q =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0




← min φ

← min xlat

and R = 1 ← min u

The controller design is done with MATLAB. Basically, the m-file is similar to the one
presented in Chapter 5.4 except that Q is a (6× 6)-matrix. The wrapped model of the
virtual rider composed of an LQR is quite similar to the model shown in Figure 6.27.
Instead of a state-space controller valid for a specific velocity range, an LQR valid for a
specific velocity is implemented. The model of this controller has the same structure as
the one shown in Figure 5.22. Additionally, the states xlat and ẋlat have to be taken into
account. The model used for the simulation is shown in Figure 6.28. The simulation
result for a randomly generated path, a preview distance of 6m and a forward velocity
of 6ms−1 is depicted in Figure 6.29.

The simulation result in Figure 6.29 shows that the virtual rider is too slow in order
to follow the path. Furthermore, the lateral deviation of the rider is higher than the
lateral profile of the path. Thus, the weighting coefficient Q(5, 5) has to be increased
in order to minimize the path error. Let us set R = 0.1 and Q(5, 5) = 100. The result
is shown in Figure 6.30.

Figure 6.30 shows the improved result. The lateral deviation of the motorcycle is now
even lower than the lateral profile of the path. Obviously, the rider was not too slow.
It was rather a wrong weighting of R and Q. Thus, let us again set R = 1 in order to
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speedC...
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Figure 6.28: Model of the basic motorcycle with a virtual rider composed of an LQR
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Figure 6.29: Simulation result of the basic motorcycle model with a virtual rider com-
posed of an LQR. Upper plot: The red signal is the path a pre-defined distance ahead,
the blue signal is the preview distance of the rider. Lower plot: The red signal is the
actual path, the blue signal is the traveled path measured at the rear frame’s center of
mass
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Figure 6.30: Improved simulation result of the basic motorcycle model with a virtual
rider composed of an LQR
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6.2 Path Tracking

reduce the applied steering torque. The response of the rider caused by the weighting
coefficient Q(5, 5) = 1 was too low whereas Q(5, 5) = 100 was already too fast. Thus,
let us set Q(5, 5) = 10. The improved results are shown in Figure 6.31. Out of this
simulation results it can be seen that the rider is now perfectly tracking on the path
without any deviation.
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Figure 6.31: Another improved simulation result of the basic motorcycle model with a
virtual rider composed of an LQR

In this approach, the lateral position and its derivative were taken into account. Addi-
tionally, maybe one wishes to minimize the attitude angle (yaw angle) differences. In
order to do this, the angle of the current path has to be calculated. Afterwards, this
angle is compared with the yaw angle of the motorcycle and minimized by appropriate
weighting coefficients. Thus x2 = (xlat ˙xlat ψ ψ̇)T .

Remark

The weightings have to be adjusted until the results are suitable. Without any knowl-
edge regarding linear control theory, this task is laborious and time consuming. Com-
pared to classic minimization problems, optimal control is different. It is not possible
to minimize both the state variables (performance of the controller) and the control
energy. It is rather a trade-off between control energy and performance.

6.2.5 LQR Design for Models Composed of Movable Riders

The design of such a controller is carried out in exactly the same way as shown in
Section 6.2.4. Of course, R is again increased to size (2 × 2), whereas Q becomes a
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6 Development of a Virtual Rider

(8× 8) matrix. The state-space controller and the corresponding virtual rider are both
included in the library.

6.2.6 Optimal Preview Control with Multi-Point Preview

To emulate the behavior of a human rider, single-point preview is performed by the
virtual rider. To improve the quality of a virtual rider, multi-point preview has to be
implemented. This means that the rider gathers knowledge of the whole lateral profile
of the path (see [SV01] on page 102 and 105, respectively).

R. S. Sharp is very experienced in this area. In one of his first papers regarding optimal
preview control, he implemented a virtual car driver capable of tracking a pre-defined
path by means of multi-point preview [SV01]. In the paper [Sha07a], he adapted the
optimal preview control theory to the benchmark bicycle introduced by Schwab et al.
[SMP05]. Furthermore, at about the same time, he applied the theory to a motorcycle
[Sha07b]. The motorcycle itself is nothing other than the improved version of his and
D. J. N. Limebeer’s SL2001 model, presented in [SEL04].

However, due to a “lack of time” this approach is not implemented in the library.
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7 Examples

The purpose of this chapter is to demonstrate the usage of the MotorcycleLib.

7.1 Benchmark Bicycle

7.1.1 Rigid Rider

Let us start with a simple example of an uncontrolled 3 d.o.f. bicycle model (see Fig-
ure 7.1. A “double-click” on the model opens the parameter window in Figure 3.5.

ex Name: uncontrolled 3dof bicycle
Location: Examples.BenchmarkBicycle.RigidRider

FWheelJoint

r=0.35
m=3

FWheelMass RWheel

r=0.3

world3D

x

y

co...
co...

Figure 7.1: Example: uncontrolled 3 d.o.f. benchmark bicycle

Now, the vehicle specific parameters are entered. For this example, the parameters of
Table 3.1 were used. For the velocity of the bicycle, let us create a global variable.
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import SI = Modelica.SIunits;
parameter SI.Velocity vs = 3;

The value of the global variable vs is now set as the initial velocity of the rear wheel.
Again, a “double-click” on the rear wheel model opens the parameter window. In order
to define the initial conditions, one has to click on the initialization tab. Now several
input-fields appear. The global variable vs is entered into the w start field. Since the
input has to be an angular velocity, the following values are entered:

vs*{0,0,1/0.3*180/Modelica.Constants.pi}

The factor 1
0.3 , where 0.3 is the rear wheel’s radius, is used to calculate the corresponding

angular velocity (ω = v
r ). The factor 180

π is needed to convert radians into degrees. In
the next step the model is simulated. Figure 7.2 shows the animation result for a
velocity of 3ms−1.

Figure 7.2: Animation result of the uncontrolled 3 d.o.f. benchmark bicycle. After
about 2s the vehicle falls over like an uncontrolled inverted pendulum.

In the next step we perform an eigenvalue analysis to determine the self-stabilizing area.
Therefore the function stabilitAnylysis (Examples.BenchmarkBicycle.RigidRider)
is executed. This is done with by click on the right mouse button in the package
browser. Now, the window in Figure 4.2 appears. All the other steps needed in order
to get the result were already performed in Chapter 4. The result of the eigenvalue
analysis is depicted in Figure 4.4.

In the next step let us calculate the coefficients of the state feedback matrix for a specific
velocity. For this purpose the ControllerDesign1 function (Examples.BenchmarkBi-
cycle.RigidRider) is executed. According to the results of the eigenvalue analysis, it

1Every function in the example sub-package includes a function call of the appropriate function.
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7.1 Benchmark Bicycle

can be seen that the vehicle is truly unstable for a velocity of 3ms−1. In the following,
the vehicle is stabilized for a velocity of 3ms−1. Out of Figure 4.4, one can see that
an offset greater than 1.7 is sufficient in order to achieve stable behavior. Let us cover
the behavior of a cautious rider and thus set the value of the offset equal to 2. The
higher the offset, the more aggressive the rider. Finally, the state variables are entered.
If they are not similar to the default values, the function getStates (Utilities) should
be executed in order to get the appropriate states. The output of the function call is
displayed in the command window.

[15.9523615979054, 1.81106337719821, 21.5057512252129, 2.1654011773943]

The model of the controlled 3 d.o.f. bicycle is shown in Figure 7.3. To simulate the

ex Name: controlled 3dof bicycle
Location: Examples.BenchmarkBicycle.RigidRider

FWheelJoint

r=0.35
m=3

FWheelMass RWheel

r=0.3

world3D

x

y

const1

k=0*Modelica.Co...

stateSpace_VR

const2

k=vs

co...
co...

Figure 7.3: Example: controlled 3 d.o.f. benchmark bicycle

model, one has to copy the state feedback matrix (displayed in the command window)
and insert it into the controller. Figure 7.4 shows the animation result for a velocity of
3ms−1 and an initial lean angle of 5°.

129



7 Examples

Figure 7.4: Animation result of the controlled 3 d.o.f. benchmark bicycle

Regarding the animation result, it can be seen that an offset d = 2 corresponds to a
slow (cautious) rider. For an offset equal to d = 5, the state feedback matrix coefficients
become:

[37.4451900093418, 4.01922050142088, 93.1718854159252, 23.3342372363612]

A comparison of the controller performance and the appropriate control energy (steering
torque) for two different offsets is depicted in Figure 7.5. The results are as expected.
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Figure 7.5: Comparison of the controller performance and the appropriate control
energy (steering torque) for two different offsets: the blue signals are valid for an offset
d = 2, whereas the red signals are valid for d = 5.

The more offset, the more steering torque is needed and the faster the system.
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7.1.2 Movable Rider

For the second example, the same steps as in Example 7.1 are performed. Due to the
absence of a MIMO pole placement function in the library, the calculation of the state
feedback matrix is done with MATLAB. The corresponding m-file can be found in
Appendix C.2. The model of the uncontrolled 4 d.o.f. bicycle can be found in Exam-
ples.BenchamarkBicycle.MovableRider. The additional input RiderTorque is needed
for the state-space controller design. The results of the eigenvalue analysis are shown
in Figure 4.5. Contrary to Example 7.1, an offset greater than 1.9 is required to ensure
stable behavior. Again, an offset of 2 is used. A second offset offset_rider is needed
to move the additional eigenvalues introduced by the movable upper body of the rider.
According to Figure 4.5 an offset greater than 3.11 is needed to ensure stable behavior.
Let us set the offset equal to 4.

Now, the model of the uncontrolled 4 d.o.f. bicycle is linearized for a velocity of 3ms−1

(see Chapter 5.2.2 for the model linearization). The eigenvalues for a velocity of 3ms−1

are:

p =

−10.5364
3.1144
1.8988 + 2.3000i
1.8988 − 2.3000i
−3.5115
−2.4742

The state feedback matrix is calculated by means of the following lines of code:

offset = 2;
offset rider = 4;
p1 = p(1) − offset;
p2 = p(2) − offset rider;
p3 = p(3) − offset;
p4 = p(4) − offset;
p5 = p(5) − offset;
p6 = p(6) − offset rider;

poles = [p1, p2, p3, p4, p5, p6];

disp('Controller Matrix F:');
F = place2(Arel, Brel, poles)

The coefficients of the state feedback matrix result in:

F =
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16.5667 1.6496 21.8597 1.3027 0.6104 0.1844
−79.5174 −11.4260 −109.7068 4.2119 65.8985 30.5641

In the next step, the state feedback matrix is inserted into the controller of the model
shown in Figure 7.6. The animation results are depicted in Figure 7.7.

ex Name: controlled 4dof bicycle
Location: Examples.BenchmarkBicycle.MovableRider

FWheelJo...

r=0.35
m=3

FWheelM... RWheel

r=0.3

world3D

x

y

stabilityContr...

const

k=vs

speedC...

const1

k=0*Modelica....

c...
c...

Figure 7.6: Example: controlled 4 d.o.f. benchmark bicycle

Remark

The controller design carried out in this example is just one possible approach. For the
sake of simplicity, two different offsets were used. However, in an ideal scenario one
should only move those eigenvalues that lead to unstable behavior.
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Figure 7.7: Animation result of the controlled 4 d.o.f. benchmark bicycle

7.2 Basic Motorcycle

7.2.1 Roll Angle Tracking

The purpose of the third example is to track a roll angle profile of a 90°-curve with
several different velocities. In the first step, an eigenvalue analysis is performed. This is
done with the StabilityAnalysis function that can be found in Examples.BasicMotor-
cycle. The results are shown in Figure 4.7.

In the next step the feedback matrices (one for each velocity) are automatically calcu-
lated by means of the function ControllerDesign_Range. Let us calculate the feedback
matrices within the range 4ms−1 ≤ v ≤ 12ms−1 and for an offset d = 5. If the function
is executed, the window in Figure 7.8 appears. The result of the function is a matrix
stored in the file placeRange5.mat. The matrix itself has 41 rows, where each row
includes the coefficients of the state feedback matrix for the corresponding velocity.
The filename is now inserted into the controller of the model shown in Figure 7.9.

Now, the roll angle profile has to be defined. The dimensions of the curve are shown in
Figure 6.15. Fortunately, the parameters for the basic motorcycle model were already
defined (see Table 6.1). The animation result for a motorcycle with a velocity of
v = 10ms−1 is illustrated in Figure 7.10. The corresponding signals are shown in
Figure 7.11. In the middle plot of Figure 7.11 it can be seen that the rider steers into
the opposite direction (countersteering) in order to enter a turn. The peaks in the
steering torque signal (lower plot) are due to the ideal derivative blocks included in the
virtual rider.
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Figure 7.8: Parameter window of the ControllerDesign Range function

Remark

The peaks can be diminished if the ideal derivative blocks are replaced by real (approx-
imated) derivative blocks. But one has to keep in mind that results of the controller
design (e.g. Figure 5.16) are only plotted correctly with ideal derivative blocks. This is
due to the time constant of the real derivative blocks.

7.2.2 Path Tracking

The path tracking capabilities of the basic motorcycle were already tested in Chap-
ter 6.2.4. In order to design a virtual rider composed of a state-space controller based on
a preceding eigenvalue analysis, the function ControllerDesign_pathPreview (Exam-
ples.BasicMotorcycle) has to be executed. The utilized model is depicted in Figure 7.12.

Again, the coefficients of the state feedback matrix were automatically calculated for an
offset d = 5. Additionally, an offset dlat = 5 is required in order to keep the motorcycle
on the desired path. The results are shown in Figure 7.13.
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ex Name: controlled 3dof motorcycle Curve
Location: Examples.BasicMotorcycle

stabilityController

speedCon...

m=1

FWheelMass wheel

r=0.305

wheelJoint

r=0.305

world3D

x

y

const

k=v

standard_...

curve90d...

co... co...

Co...

Figure 7.9: Example: controlled 3 d.o.f. motorcycle

Figure 7.10: Animation result of the basic motorcycle tracking a roll angle profile with
a velocity of 10ms−1
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0.0 2.5 5.0 7.5 10.0 12.5 15.0

-0.2

0.0

0.2

0.4

0.6
stabilityController.feedback_lean.u1                stabilityController.feedback_lean.u2

0.0 2.5 5.0 7.5 10.0 12.5 15.0

-0.10

-0.05

0.00

0.05
stabilityController.feedback_steer.u1                stabilityController.feedback_steer.u2

0.0 2.5 5.0 7.5 10.0 12.5 15.0

-40

-20

0

20

40
stabilityController.T_steer

Figure 7.11: Signals of the controlled 3 d.o.f motorcycle. Upper plot: lean angle; middle
plot: steer angle; lower plot: steering torque

7.3 Advanced Motorcycle

Finally, an example of an advanced motorcycle is presented. The model of an uncon-
trolled version of Sharp’s improved motorcycle is shown in Figure 7.14. In this model,
in-plane modes and aerodynamics are considered. The animation result for a velocity
of 6ms−1 is shown in Figure 7.15.

As with the basic models, it is now possible to design a controller. This can be done
in two different ways. In the simplest case, the rider solely applies a steering torque
to the handle bars. Another possibility would be to consider both the steering torque
and the upper body lean torque. Again, the controller design is based on a preceding
eigenvalue analysis. Unfortunately, a Modelica function is not available. Therefore,
this task has to be performed using MATLAB (refer to Chapter 4.4.1).

136



7.3 Advanced Motorcycle

ex Name: controlled 3dof motorcycle closedLoop Range
Location: Examples.BasicMotorcycle

Figure 7.12: Example: model of a 3 d.o.f. motorcycle tracking a pre-defined path
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Figure 7.13: Simulation result of a motorcycle tracking a pre-defined path. Upper plot:
The red signal is the path a pre-defined distance ahead, the blue signal is the preview
distance of the rider. Lower plot: The red signal is the actual path, the blue signal is
the traveled path measured at the rear frame’s center of mass
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ex Name: Suzuki GSX R1000
Location: Examples.AdvancedMotorcycle.Sharp2004

Figure 7.14: Example: uncontrolled advanced motorcycle model (Sharp’s improved
model)
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Figure 7.15: Animation result of an uncontrolled improved motorcycle
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8 Conclusions

Chapter 2 of the Master’s Thesis is intended to discuss the basics of bicycle and mo-
torcycle dynamics. The purpose of this chapter is to provide a brief explanation of
the interaction between gyroscopic effects and the geometry (e.g. the trail) of single-
track vehicles. This knowledge is really essential to describe several possible motions of
single-track vehicles and thus understand its stability behavior. It should be mentioned
that not only the gyroscopic effects contribute to the stability; it is rather the trail, or
more precisely the interaction of the whole geometry that is crucial for the stability.

In Chapter 3, several different single-track vehicle models are introduced. Basically,
two different kinds of models are provided. Those that include out-of-plane modes
and those that include both in-plane and out-of-plane modes. Roughly speaking, out-
of-plane modes are related to stability and handling of single-track vehicles, whereas
in-plane modes are dealing with riding comfort. Furthermore, it is important to keep
in mind that models connected to ideal wheels include so-called holonomic constraints.
Such constraints are based on location and, with single-track vehicles, prevent them
from sinking into the ground. The wheels used in this library are either provided by D.
Zimmer’s MultiBondLib or by M. Andres’ WheelsAndTires library. The former ones
are ideal, whereas in the latter ones non-ideal effects such as slip can be considered. For
the bicycle, either a 3 or a 4 degree of freedom (d.o.f.) out-of-plane model is included
in the library. The former ones are composed of four rigid bodies, namely a front and a
rear frame and two wheels, connected via revolute joints. The wheels are infinitesimally
thin (knife-edge). The latter ones introduce an additional degree of freedom that allows
the rider’s upper body to lean sideways. Both models are based on those introduced by
Schwab et al.. The next out-of-plane model is a 3 degree of freedom motorcycle model
based on V. Cossalter. By using M. Andres’ non-ideal wheels, several additional degrees
of freedoms can be added to the system depending on one’s needs. To incorporate in-
plane modes, two advanced motorcycle models both based on Sharp et al. are included
in the library. Such models are composed of a front frame including the front forks and
handle bar assembly, a rear frame including the lower rigid body of the rider, a swinging
arm including the rear suspensions, the rider’s upper body, a front and a rear wheel.
Furthermore, several additional freedoms due to twist frame flexibility, suspensions,
non-ideal tire models and aerodynamics are included. Compared to the former models,
each body is created in a fully object-oriented fashion.
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In Chapter 4, an eigenvalue analysis of an uncontrolled version of either a bicycle or
a motorcycle model is performed. The result of such an analysis are the eigenvalues
of the motorcycle as a function of the velocity. In other words, due to the results the
self-stabilizing region of the vehicle is illustrated. With the knowledge of Chapter 2,
these results can be perfectly interpreted. Furthermore, this task is beneficial for the
optimization of the vehicle’s geometry. By changing the geometry or the center of
mass’ locations of a vehicle, the eigenvalues of the system are changing as well. It is
thus possible to optimize the design of a vehicle regarding self-stability. The simulation
results of an eigenvalue analysis for the 3 and the 4 d.o.f. bicycle model have been
compared to those established by Schwab et al.. Fortunately, the results perfectly
agree with those of Schwab.

However, the main task of the master’s thesis was to develop a virtual rider. In order
to validate a single-track vehicle, a virtual rider is essential. A virtual rider has to fulfill
two tasks in order to validate the performance of the vehicle. Firstly, it has to be ensured
that the motorcycle stays upright. Secondly, it has to be possible to track either a roll
angle profile or a pre-defined trajectory. In terms of stability, Chapter 5 introduces
several different approaches for the controller design. Although classic controllers are
presented and are also included in the library, the focus lies in state-space controller
design. In the simplest case, the lean angle and the lean rate of the vehicle are fed
back in order to generate an appropriate steering torque. However, since a physical
interpretation of such a system is not possible, an alternative approach was developed.
This approach is based on a preceding eigenvalue analysis. This means that exactly
the same state variables, namely the steer angle, the lean angle and their derivatives,
are used to design the controller. Of course, if the upper body of the rider is movable,
the states γ and γ̇ are taken into account as well. Thus, a physical interpretation
of the poles is available. One major problem in controlling single-track vehicles is
that the coefficients of the controller are strongly velocity dependent. This makes the
manual configuration of a controller laborious and error-prone. As already mentioned,
the eigenvalues are a function of the velocity, i.e. the trajectory of each eigenvalue
is thus perfectly known. With this information, a controller design can be done in a
straightforward manner. To this end, three different approaches were developed. In
the first approach, all eigenvalues (poles) of the system are simply shifted towards the
left-half plane by the same value. As this is not mandatory, two improved control
laws have been established. Both are based on solely shifting those poles towards
the left half-plane that are unstable. The results are several pole placement functions
that automatically calculate the controller coefficients, i.e. the elements of the state
feedback matrix. The algorithm of the function is based on Ackermann’s formula. The
corresponding output represents a state feedback matrix that can be directly applied to
ready-made controllers which are the core of virtual riders. Finally, several approaches
based on optimal control, more precisely on linear quadratic regulators (LQR), are
introduced. One major advantage of optimal control contrary to pole placement is that
the control energy is taken into account right from the start. However, it is difficult to
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say, whether an LQR or a pole placement design is preferable. Basically, both designs
have their benefits. If one is more familiar with the physical interpretation of the
system, pole placement is a convenient choice. Concerning the LQR design, it is very
important to keep in mind that compared to classic minimization problems, optimal
control is different. It is not possible to minimize both the state variables (performance
of the controller) and the control energy (e.g. steering torque). It is rather a trade-off
between control energy and performance.

The virtual riders composed of former developed controllers are presented in Chapter 6.
For virtual riders capable of tracking a roll angle profile, several test tracks are provided.
So far, the set-values were always set to zero to ensure stable behavior. Instead of these
set-values, the roll angle profile (e.g. of a standard 90°-curve) is fed into the virtual
rider. Since each vehicle has its own specific profile, some records including such profiles
are provided. In order to track a pre-defined trajectory using path preview information,
a randomly generated path is included in the library. This path is defined by its lateral
profile. To emulate the behavior of a human rider, single-point preview is performed
by the virtual rider, i.e. the rider looks a pre-defined distance ahead in order to follow
the path. It is worth noting that a similar deviation pattern is actually observed from
human riders. In order to track such a path, the controllers of Chapter 5 have been
extended. In the simplest case, the lateral position of the rear frame’s center of mass
is fed back in order to generate an additional steering torque that keeps the vehicle
on the desired path. For the utilized state-space and LQR controllers, the lateral rate
is additionally taken into account. For the state-space path tracking controller, the
pole placement function valid for a specific velocity is extended in order to design an
appropriate controller. Due to a lack of time solely one approach was developed. At the
end of this chapter, multi-point path preview is mentioned. Compared to single-point
path preview, it is more realistic since a real human rider does not solely look at a
single point. The rider rather gathers information of the whole road (path) in order to
track it.

For the sake of usability, the library includes several examples. In the documentation
itself, it is explained how some of them were established. This information is provided
in the form of a user’s guide. For instance, as soon as the vehicle-specific parameters are
entered, one has to decide whether ideal or non-ideal wheels are used. Afterwards, an
eigenvalues analysis is carried out. Regarding the self-stabilizing region of the vehicle,
it is now possible to optimize the geometry (e.g. more trail increases the self-stabilizing
area). If the calculation is based on a preceding eigenvalue analysis, the controller
design is done with one of the implemented pole placement functions. The output of
such a function are the automatically calculated coefficients of the state feedback matrix
which are either displayed on the command window or stored in a mat-file. Now, the
performance of the vehicle is evaluated. The library provides several examples to all
the tasks mentioned above.
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9 Further Work

Eigenvalue Analysis

The library provides functions to perform an eigenvalue analysis for the basic bicycle
and motorcycle models. The main problem of these functions are the velocity dependent
eigenvalues of the system matrix A (see Figure 4.1). As a consequence, the indices of
the eigenvalues, which are stored in a vector, are changing as well. Thus, one has to
sort the eigenvalues in a proper manner, which is cumbersome. Since the system matrix
A of the basic bicycle and motorcycle models includes solely one conjugated complex
pole pair, an algorithm capable of sorting the eigenvalues was feasible. However, the
system matrix of the advanced motorcycle includes at least 5 conjugated complex pole
pairs. Thus, it is much more complicated to provide an appropriate algorithm which
ensures that the indices are not changing.

Additionally it would be of great interest to provide a universally valid function.

Controller Design

So far, a pole placement function for SISO systems has been established. However, a
pole placement function for MIMO systems and a LQR function are still missing.

One possible pole placement algorithm valid for MIMO systems, which is not yet im-
plemented, was developed by F. Cellier [Cel].

In addition, the pole placement functions that are provided in the library were especially
developed for single-track vehicle models. Thus, it would be convenient to establish a
function that can be independently used for each plant.

Steady State Error

Concerning the state variables, the state feedback matrix is equivalent to a proportional
controller. A D portion (D controller) is directly or indirectly obtained from the plant.
However, an integral portion to eliminate the steady-state error is missing. A possible
solution is shown in Figure 9.1.

145



9 Further Work
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Figure 9.1: An additional integral portion in order to eliminate the steady-state error

The influences of the additional integral controller have not been tested yet. Since an
integrator introduces a pole in the origin, it should be tested how this affects the whole
systems. Moreover, it should be tested whether or not it is really sufficient to include
integral controllers in such systems.

Path Preview

The library provides virtual riders that are capable of tracking a pre-defined path using
single-point path preview. But a real human driver does not look solely at a single
point a pre-defined distance ahead of the vehicle. A real rider gathers information of
the whole path. Due to a lack of time, multi-point preview is not implemented in the
library. The theoretical background of multi-point preview is provided in a paper by
Sharp [SV01].

Path Tracking

The library provides a lateral profile that is described by means of global co-ordinates.
The path generation is done with MATLAB. In a first step, one could establish a
Modelica function in order to generate the path within the library. Furthermore, the
path could be transformed into the rider’s view. That is to say that the path is described
by means of body co-ordinates which make it possible to generate complex paths. The
theoretical background of this task can be found in [SV01].
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Additionally it would be of great interest to consider an improved path generation. For
example, the path could be composed of specific ready-made elements that are plugged
together (e.g. straight elements, quadrant elements, etc.).
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Abstract

This paper introduces a new and freely available Mod-
elica library for the purpose of simulation, analysis
and control of bicycles and motorcycles (single-track
vehicles). The library is called MotorcycleLib and fo-
cuses on the modeling of virtual riders based on auto-
matic controller design.

For the single-track vehicles, several models of dif-
ferent complexity have been developed. To validate
these models and their driving performance, virtual
riders are provided. The main task of a virtual rider
is to track either a roll angle profile or a pre-defined
trajectory using path preview information. Both meth-
ods are implemented and several test tracks are also
included in the library.

Keywords: virtual rider; automatic controller de-
sign; state-space controller, bicycle and motorcycle
modeling; pole placement

1 Introduction

Among the vehicle models, models of bicycles and
motorcycles turn out to be particularly delicate.
Whereas a four-wheeled vehicle remains stable on its
own, the same does not hold true for a single-track
(two-wheeled) vehicle. For this reason, the stabiliza-
tion of such a vehicle, a control issue, requires special
attention.

A key task for a virtual rider is to stabilize the vehi-
cle. To this end, a controller has to generate a suitable
steering torque based on the feedback of appropriate
state variables of the vehicle (e.g. lean angle and lean
rate). One major problem in controlling single-track
vehicles is that the coefficients of the controller are
strongly velocity dependent. This makes the manual
configuration of a controller laborious and error-prone.
To overcome this problem, an automatic calculation of
the controller’s coefficients is desired. This calcula-

tion requires an eigenvalue analysis of the correspond-
ing uncontrolled vehicle which is performed in order
to determine the self-stabilizing area. The library in-
cludes the means for such an analysis and its results
can be interpreted by three different modes that qual-
itatively describe the vehicle’s motion [12]. This en-
ables a convenient controller design and hence several
control laws that ensure a stable driving behavior are
provided. The corresponding output represents a state
feedback matrix that can be directly applied to ready-
made controllers which are the core of virtual riders.
The functionality of this method is illustrated by sev-
eral examples in the library.

In 2006, F. Donida et al. introduced the first Motor-
cycle Dynamics Library in Modelica [5] and [4]. The
library focuses on the tire/road interaction. Moreover
different virtual riders (rigidly attached to the main
frame or with an additional degree of freedom (d.o.f.)
allowing the rider to lean sideways) capable of track-
ing a roll angle and a target speed profile are presented.
Until now these virtual riders include fixed structure
controllers only [4]. This means that the virtual rider
stabilizes the vehicle only correctly within a small ve-
locity range.

Using the automatic controller design functions pro-
vided by the MotorcycleLib this major deficiency can
be overcome. Furthermore, to validate the motorcy-
cle’s performance, the virtual rider is capable of either
tracking a roll angle profile (open-loop method) or a
pre-defined path (closed-loop method).

2 Bicycle and Motorcycle Models

The mathematical modeling of single-track vehicles
is a challenging task which covers a wide range of
models of varying complexity. The library provides
several single-track vehicle models of different com-
plexity. The models are composed of multibody el-



ements and are based on bond graphs [2] and multi-
bond graphs [17]. Basically two types of models
are provided. Some include out-of-plane modes only,
while others include both in-plane and out-of-plane
modes. Roughly speaking, out-of-plane modes are re-
lated to stability and handling of single-track vehicles
whereas in-plane modes are dealing with riding com-
fort. The wheels used in this library are either pro-
vided by D. Zimmer’s MultiBondLib [17] or by M.
Andres’ WheelsAndTires library [1]. The former are
ideal, whereas in the latter models non-ideal effects
such as slip can be considered. For the bicycle, both
3 and 4 d.o.f. out-of-plane mode models are included
in the library. The former are composed of four rigid
bodies, namely a front frame, a rear frame including a
rigidly attached rider and two wheels, connected via
revolute joints. The wheels are infinitesimally thin
(knife-edge). The latter introduce an additional d.o.f.
that allows the rider’s upper body to lean sideways.
Both models are based on those introduced by Schwab
et al. [12] and [11].

The out-of-plane mode motorcycle model is a 4
d.o.f. model that is based on a model established by
V. Cossalter [3]. Basically, V. Cossalter’s model is the
same as the one introduced by R. S. Sharp in 1971
[13]. This model allows a lateral displacement of the
rear frame since the wheels are no longer ideal. Due to
the fact that the wheels of D. Zimmer’s MultiBondLib
[17] are ideal, the model is reduced to 3 d.o.f.L̇ater,
with reference to the WheelsAndTires library [1], it is
possible to consider non-ideal effects of wheels and
tires and thus simulate the lateral displacement of the
wheels caused by tire slip. The animation of a 3 d.o.f.
motorcycle is depicted in Figure 1. To incorporate in-

Figure 1: Animation of a 3 d.o.f. motorcycle model

plane modes two more complex models are included
in the library. The first model was originally devel-
oped by C. Koenen during his Ph.D. Thesis [9]. R. S.
Sharp and D. J. N. Limebeer introduced the SL2001
model which is based on Koenen’s model [15]. They
reproduced Koenen’s model as accurately as possible
and described it by means of multibodies. The model

developed in this library is based on the SL2001 mo-
torcycle. The second model is based on an improved
more state-of-the-art version of the former developed
by R. Sharp, S. Evangelou and D. J. N. Limebeer [14].
A very detailed description of these models can be
found in S. Evangelou’s Ph.D. Thesis [6]. Such mod-
els are composed of a front frame including the front
forks and handle bar assembly, a rear frame including
the lower rigid body of the rider, a swinging arm in-
cluding the rear suspensions, the rider’s upper body,
a front and a rear wheel. Furthermore several addi-
tional freedoms due to twist frame flexibility at the
steering head, suspensions, non-ideal tire models and
aerodynamics are taken into account. The animation
of the SL2001 model is depicted in Figure 2. In con-

Figure 2: Animation of the SL2001 motorcycle model

trast to the former models each body is created in a
fully object-oriented fashion. As with the out-of-plane
models these models only include all degrees of free-
dom in combination with the WheelsAndTires library.
Without this library several freedoms are inhibited.

It is important to keep in mind that vehicles in com-
bination with ideal wheels include so called holonomic
constraints. Such constraints are based on location
and in case of single-track vehicles prevent them from
sinking into the ground.

3 Eigenvalue Analysis

Due to geometry and gyroscopic forces Klein and
Sommerfeld [8] found out that a single-track vehicle
is self-stabilizing within a certain velocity range. That
is, the vehicle performs a tail motion in the longitudi-
nal direction. Below this range the steering deflections
caused by gyroscopic forces are too small in order to
generate enough centrifugal force. Thus the amplitude
of the tail motion increases and the vehicle falls over.
Although, these interactions are damped by the trail1

it is still impossible to achieve stable behavior. Hence

1The trail is the distance between the front wheel contact point
and the point of intersection of the steering axis with the ground
line (horizontal axis).



the rider has to apply a steering torque to ensure that
the vehicle stays upright. Above this range, for high
speeds, the gyroscopic forces are almost unnoticeable
for the rider. That is, the amplitude of the tail motion
is close to zero. More precisely, although the vehicle
feels stable, after a certain time, it falls over like a cap-
sizing ship. However, by applying a steering torque it
is rather simple to stabilize the vehicle. In most cases
it is sufficient that one solely touches the handle bars
in order to compensate for the instabilities.

An eigenvalue analysis is performed in order to de-
termine the self-stabilizing range of an uncontrolled
bicycle or motorcycle. For this purpose the state vari-
ables of the vehicle that are responsible for stability
are of interest. These are the steer angle δ , the lean
angle φ , and their derivatives.

x =




δ
δ̇
φ
φ̇




In case of vehicles with an additional d.o.f. allowing
the rider’s upper body to lean sideways, the state vari-
ables γ and γ̇ are also taken into account, where γ is
the lean angle of the rider’s upper body relative to the
rear frame and γ̇ the corresponding lean rate. All the
other state variables (e.g. lateral- and longitudinal po-
sition) of the state vector have no influence on the sta-
bility of single-track vehicles. Now, the eigenvalues
(one for each state variable) are calculated as a func-
tion of the vehicle’s forward velocity λ = f (v) (e.g.
v = 10ms−1 to v = 50ms−1). Thus, for each specific
velocity the model is linearized. The result of such
an analysis are three different velocity ranges at which
the motion of the vehicle changes qualitatively. Fig-
ure 3 depicts a typical result of such an analysis. The
first velocity range is below the stable region, the sec-
ond one is within, and the third one above the stable
region. Positive eigenvalues, or more precisely eigen-
values with a positive real part, correspond to unstable
behavior whereas eigenvalues with a negative real part
correspond to stable behavior. Eigenvalues including
an imaginary part emphasize that the system is oscil-
lating whereas eigenvalues without an imaginary part
are non-oscillating. A stable region exists, if and only
if all real parts of the eigenvalues are negative. In the
following, the modes of single-track vehicles are ex-
plained with reference to Figure 3.
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Figure 3: Result of the eigenvalue analysis for a 3
d.o.f. motorcycle model. The stable region is deter-
mined by eigenvalues with a negative real part. Here it
is from vw = 6.1ms−1 to vc = 10.3ms−1.

3.1 Weave Mode

The weave mode begins at zero velocity. This mode
is non-oscillating in the beginning and after a certain
velocity passes over into an oscillating motion. The
non-oscillating motion at very low speeds states that
the bicycle is too slow to perform a tail motion and
thus falls over like an uncontrolled inverted pendu-
lum. As soon as it passes a certain value of approx-
imately vw = 0.12ms−1 the real parts of the eigenval-
ues merge and two conjugate complex eigenvalues ap-
pear. Hence, a tail motion in the longitudinal direc-
tion emerges. This motion is still unstable but be-
comes stable as soon as the real parts of the eigen-
values cross zero. This happens at a velocity of about
vw = 6.1ms−1. For all velocities greater than vw this
motion is stable.

3.2 Capsize Mode

The capsize mode is a non-oscillating motion that cor-
responds to a real eigenvalue dominated by the lean.
As soon as the bicycle speed passes the upper limit of
the stable region of about vc = 10.3ms−1, it falls over
like a capsizing ship. However, above the stable re-
gion the bicycle is easy to stabilize although the real
eigenvalue is positive. In the paper [12] of Sharp et al.
this motion is called “mildly unstable” as long as the
absolute value of the eigenvalues is smaller than 2s−1.



3.3 Castering Mode

The castering mode is a non-oscillating mode that cor-
responds to a real negative eigenvalue dominated by
the steer. In this mode the front wheel has the tendency
to turn towards the direction of the traveling vehicle.

4 Controller Design

4.1 An Introduction to State-Space Design

In general, the state-space representation of a linear
system is given by:

ẋ = A · x+B ·u, x(0) = x0 (1)

y = C · x+D ·u (2)

where x is a (n× 1) state vector, y is a (m× 1) out-
put vector, A is referred to as system matrix with a
dimension of (n× n), B is a (n× r) input matrix, C
is a (m× n) output matrix and D the “feedthrough”
matrix with a dimension of (m× r). Usually D is set
to zero, except if the output directly depends on the
input. The state vector x at time t = 0 includes the ini-
tial conditions, sometimes referred to as initial distur-
bances x0. The block diagram of a system described in
state-space is illustrated in Figure 4. One major advan-
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Figure 4: Block diagram of a system described in
state-space

tage of state-space control compared to classic control
is that each state of the system can be controlled. In
order to control the system, the state vector x is fed
back. The state feedback control law for a linear time-
invariant system is given by:

u(t) =−F · x(t) (3)

where F is a constant matrix.
By substituting u of Equation 1 with Equation 3 the

state equation results in

ẋ = A · x−B ·F · x = (A−B ·F)x (4)

The block diagram of the equation above is shown
in Figure 5.
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Figure 5: State feedback

The elements of the state feedback matrix F have to
be chosen in such a way that the initial disturbances
x0(t) for t→ ∞ converge towards zero

lim
t→∞

x(t) = 0 (5)

and that the system becomes stable.
The main task of the state feedback control is to find

appropriate coefficients for the state feedback matrix F
in order to achieve the desired dynamical behavior of
the system. One method that fulfills all the require-
ments is the so-called pole placement technique (refer
to [7]). Figure 6 illustrates the graphical interpretation.

jw
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Figure 6: Graphical interpretation of the pole place-
ment technique. Eigenvalues (poles) of the system lo-
cated in the left-half plane correspond to stable behav-
ior.

4.2 State-Space Controller Design Based on a
Preceding Eigenvalue Analysis

The library includes several different stabilizing con-
trollers. Although classic controllers and linear
quadratic regulators (LQR) are included in the library,
the focus lies in state-space controller design via the
pole placement technique. In the simplest case the lean
angle and the lean rate of the vehicle are fed back in



order to generate an appropriate steering torque. How-
ever, since a physical interpretation of these eigenval-
ues is not possible an alternative approach is intro-
duced in this paper. This approach is based on a pre-
ceding eigenvalue analysis. That is, exactly the same
state variables, namely the steer angle δ , the lean an-
gle φ , and their derivatives, are used to design the con-
troller (see Figure 7). Of course if the upper body of

y
C

f1

S
u x 1

s

A

B
x

S

x0

S f2

d

d

F

f1

f2

f3

f4

f

f

-
-

-
-

Figure 7: State-space controller based on a preceding
eigenvalue analysis

the rider is movable, the states γ and γ̇ are taken into
account as well. Thus, a physical interpretation of the
poles is available.

As already mentioned the eigenvalues are a func-
tion of the velocity, i.e. the trajectory of each eigen-
value is thus perfectly known. With this knowledge
the velocity dependent coefficients of the state feed-
back matrix can be conveniently calculated. To this
end, three different approaches were developed. In the
first approach all eigenvalues (poles) of the system are
simply shifted towards the left-half plane (see figure 6)
by the same value (offset). A typical result for the con-
trolled version of the 3 d.o.f. motorcycle is illustrated
in Figure 8.

Two improved control laws have been established.
Both are based on solely shifting those poles towards
the left-half plane that are unstable. Within the stable
region the motorcycle needs no control and thus no
offset. Above the stable region (for velocities greater
than vc) the behavior of the bicycle is dominated by
the capsize mode. Hence, it is absolutely sufficient to
shift just this pole towards the left-half plane and leave
all other poles unchanged. Below the stable region, for
velocities lower than vw, the instability of the motorcy-
cle is caused by the weave mode (see Figure 9). To en-
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Figure 8: Result of the controller design for a velocity
range from 4ms−1 to 12ms−1, where the offset is d = 5.

sure stable behavior the two real parts of the conjugate
complex poles have to be shifted towards the left-half
plane. Now, a control law for the regions below and
above the stable region is set up:

control law





v< vw : d = dw · (vw− v)
vw < v< vc : d = 0
vc < v : d = dc · (v− vc)
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Figure 9: Controller design with reference to a pre-
ceding eigenvalue analysis. The stable region is left
unchanged - below vw, the weave mode eigenvalues
are modified - above vc, the capsize mode eigenvalue
is modified.

Figure 10 shows the result of the individual con-
troller design. Although the results of the individual
controller are rather good, there is still potential for
improvements. For velocities equal to vw or vc the
eigenvalues that are responsible for stability are close
or equal to zero. To be more precise, for such veloc-
ities the stability of the motorcycle is critical since a
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Figure 10: Result of the individual controller design
for a velocity range from 4ms−1 to 12ms−1, where
vw = 6.1ms−1, vc = 10.3ms−1, dw = 1.5 and dc = 0.1.

real part equal to zero has no damping. Somewhere in
the stable region the weave and the capsize mode have
an intersection point vi. Instead of the previous control
law, the improved control law results in:

control law
{

v< vi : d = d0 +dw · (vi− v)
vi < v : d = d0 +dc · (v− vi)

A graphical interpretation of the control law is illus-
trated in Figure 11.
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Figure 11: Controller design with reference to a pre-
ceding eigenvalue analysis. Below vi, the weave mode
eigenvalues are modified - Above vi, the capsize mode
eigenvalue is modified. In addition, the weave and
capsize eigenvalues can be shifted by an offset d0.

Figure 12 depicts the result of the improved individ-
ual controller design.
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Figure 12: Result of the improved individual con-
troller design for a velocity range from 4ms−1 to
12ms−1, where vi = 6.9ms−1, dw = 0.75, dc = 0.1 and
d0 = 0

4.3 Results

The results are several pole placement functions that
automatically calculate the controller coefficients, i.e.
the elements of the state feedback matrix. The cor-
responding output represents a state feedback matrix
that can be directly applied to ready-made controllers.
The algorithm of the functions is based on Acker-
mann’s formula. Unfortunately, it is just valid for
single-input, single-output (SISO) systems. In order
to design a multiple-input, multiple-output (MIMO)
controller, e.g. for vehicles including rider’s capable
of leaning sideways, a MATLAB m-file based on the
place-function is provided.

Finally, the coefficients of the state feedback ma-
trix are automatically fed into a ready-made controller
which is incorporated into a virtual rider. With respect
to the virtual rider the vehicle’s performance can now
be evaluated.

5 Development of a Virtual Rider

5.1 Roll Angle Tracking

For virtual riders capable of tracking a roll angle pro-
file, several test tracks are provided. So far, no refer-
ence input was used, i.e. the set-value of the state vari-
ables was zero. Instead of a set-values equal to zero,
the roll angle profile (e.g. of a standard 90◦-curve) is
fed into the virtual rider. The corresponding block di-
agram is illustrated in Figure 13. Since each vehicle
has its own specific profile, some records including
such profiles are provided. The corresponding Mod-
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Figure 13: Block diagram of a virtual rider composed
of a state-space controller and an additional block in
order to calculate the corresponding steer angle. The
reference input xset is the desired roll angle profile.

elica model is depicted in Figure 14. The incorporated
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Figure 14: Wrapped model of the virtual rider com-
posed of a state-space controller for a user defined ve-
locity range. The inputs (blue) are lean and steer angle,
lean angle set-value and the velocity of the motorcycle,
the output Tsteer (white) is the steering torque

controller is shown in Figure 15.

5.2 Path Tracking

In order to track a pre-defined trajectory using path
preview information, a randomly generated path is in-
cluded in the library. The path generation was done
with MATLAB. This path is defined by its lateral pro-
file [16]. To emulate the behavior of a human rider,
single-point path preview is performed by the virtual
rider. That is, the rider looks a pre-defined distance
ahead in order to follow the path. It is worth noting that
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Figure 15: Wrapped model of a state-space controller
for a specific velocity range. The table includes the
state feedback matrix coefficients which by default are
stored in place.mat

a similar deviation pattern is actually observed from
human riders. In order to track a path, the controllers
have to be extended [16] (see Figure 16). In the sim-
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Figure 16: Basic structure of a state-space path pre-
view controller. The state vector x1 includes the states
that are responsible for the stability (non-preview),
whereas x2 = (xlat ẋlat)T includes the states required
for path tracking.

plest case the lateral position xlat of the rear frame’s
center of mass is fed back in order to generate an addi-
tional steering torque that keeps the vehicle on the de-
sired path. For the utilized state-space controllers the
lateral rate ẋlat is additionally taken into account. The
corresponding Modelica model is basically the same
as the one depicted in Figure 14. To cover the path
tracking capabilities two additional inputs, namely xlat
and ẋlat are included. For the state-space path tracking
controller the pole placement functions were extended
in order to conveniently design such a controller.



6 Examples

The first example demonstrates a 3 d.o.f. motorcycle
stabilized by a virtual rider. The animation of the un-
controlled vehicle with a velocity of 4ms−1 is depicted
in Figure 17. In order to determine the self-stabilizing

Figure 17: Animation result of the uncontrolled 3
d.o.f. motorcycle. After about 2s the motorcycle falls
over like an uncontrolled inverted pendulum

range of the motorcycle an eigenvalue analysis is car-
ried out. The results are shown in Figure 3. According
to these results it can be seen that the vehicle is truly
unstable for a velocity of 4ms−1. Furthermore, it can
be seen that an offset of d = 2 is absolutely sufficient
to achieve stable behavior. With this information the
coefficients of the state feedback matrix are calculated.
For this purpose the pole placement function based on
the first approach is executed. The corresponding out-
put is stored in the controller of the ready-made virtual
rider introduced in Figure 14. The model of the con-
trolled motorcycle is depicted in Figure 18. The ani-

Figure 18: Example: controlled 3 d.o.f. motorcycle.
The wrapped model of the virtual rider corresponds to
Figure 14.

mation of the controlled vehicle is shown in Figure 19.

In the second example the motorcycle tracks a roll

Figure 19: Animation result of the controlled 3 d.o.f.
motorcycle

angle profile. The utilized model is depicted in Fig-
ure 18. Instead of a constant source block, the model
of a 90◦-curve is included. The coefficients of the state
feedback matrix were automatically calculated for an
offset d = 5. The resulting eigenvalues are equal to
those depicted in Figure 8. The animation result is de-
picted in Figure 20.

Figure 20: Animation result of a 3 d.o.f. motorcycle
tracking a 90◦-curve

In the last example the motorcycle tracks a pre-
defined path. The utilized model is depicted in Fig-
ure 21.

Again, the coefficients of the state feedback matrix
are automatically calculated for an offset d = 5. Ad-
ditionally, an offset dlat = 5 is needed in order to keep
the motorcycle on the desired path. The results are
shown in Figure 22.

7 Structure of the Library

The structure of the MotorcycleLib is depicted in Fig-
ure 23. For each single-track vehicle a separate sub-
package is provided. The basic bicycle sub-package
is composed of a rigid rider and a movable rider sub-
package. Both include the corresponding wrapped
model and a function in order to perform an eigen-
value analysis. The basic motorcycle sub-package also



Figure 23: Library structure

Figure 21: Example: model of a 3 d.o.f. motorcycle
tracking a pre-defined path

includes a wrapped model and an eigenvalue analy-
sis function. The structure of the advanced motorcy-
cle sub-package is much more detailed since each part
(e.g. front frame) is created in a fully object-oriented
fashion. It is composed of a parts and an aerodynamics
sub-package. The parts sub-package includes several
different front and swinging arms, a rear frame, the
rider’s upper body, a torque source (engine), an elasto-
gap and a utilities sub-package. In the latter one, mod-
els of characteristic spring and damper elements are
stored. The aerodynamics sub-package includes a lift
force, a drag force and a pitching moment model.

The controller design sub-package contains pole
placement functions in order to design appropriate
controllers. The virtual rider sub-package includes,
among others, a virtual rigid rider and a virtual mov-
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Figure 22: Simulation result of a motorcycle tracking
a pre-defined path. Upper plot: The red signal is the
path a pre-defined distance ahead, the blue signal is
the preview distance of the rider. Lower plot: The red
signal is the actual path, the blue signal is the traveled
path measured at the rear frame’s center of mass

able rider sub-package. In both the riders are capable
of either tracking a roll angle profile or a pre-defined
trajectory. To this end, several different controllers
(e.g. classic, state-space and LQR) are incorporated
into the virtual riders.

The environments sub-package provides tracks for
both roll angle tracking and path tracking. In addition,
the models for single-point path tracking are included.
The visualization sub-package provides the graphi-
cal information for the environments sub-package. In
the ideal wheels sub-package the visualization of the
rolling objects from D. Zimmer’s MultiBondLib were
modified such that the appearance is similar to real
motorcycle wheels. The utilities sub-package provides
some additional functions and models which are partly
used in the library. The purpose of the examples sub-



package is to provide several different examples that
demonstrate how to use the library.

8 Conclusion

The library provides appropriate eigenvalue functions
for the basic bicycle and motorcycle models. Beside
the controller design such an analysis is beneficial for
the optimization of the vehicle’s geometry. By chang-
ing the geometry or the center of mass’ locations of
a vehicle, the eigenvalues of the system are changing
as well. It is thus possible to optimize the design of a
vehicle regarding self-stability.

Furthermore, due to the results of the eigenvalue
analysis it is now possible to conveniently design
a state-space controller valid for a specific velocity
range of the vehicle. Thus, for the calculation of the
state feedback matrix coefficients, a pole placement
function was developed. In order to design an LQR,
MATLAB functions are provided.

To test the performance of the vehicles, the virtual
riders are capable of tracking both, a roll angle profile
and a pre-defined path. Therefore, several test tracks
are included in the library.

A very detailed description of this paper can be
found in the corresponding master’s thesis [10].
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B Appendix: Modelica Functions

B.1 Eigenvalue Analysis

function CalculateEigenvaluesBicycle
"Stability analysis of an uncontrolled bicycle, plots eigenvalues
as a function of bicycle’s forward velocity"

extends Modelica.Icons.Function;
input String modelName;
input String independentVariableName;
input Real startValue "lowest velocity";
input Real endValue "highest velocity";
input Integer number_of_values;

input Real states[4] = {5,6,1,2}
"|State Selection (state vector)| steer angle, der(steer angle),
lean angle, der(lean angle)";

input Integer plotSignals = 0
"|Signals to plot| 0 ... real and imaginary eigenvalues;
1 ... real eigenvalues; 2 ... imaginary eigenvalues";

protected
Boolean hd = LinearSystems.Internal.SetHideDymosim();
Boolean OK=linearizeModel(modelName);
Real[number_of_values] values = linspace(startValue, endValue,
number_of_values);

Real nxMat[1, 1] = readMatrix("dslin.mat", "nx", 1, 1);
Integer ABCDsizes[2] = readMatrixSize("dslin.mat", "ABCD");
Integer nx = integer(nxMat[1, 1]);
Integer nu = ABCDsizes[2] - nx;
Integer ny = ABCDsizes[1] - nx;
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B Appendix: Modelica Functions

LinearSystems.StateSpace ABCD(
nx = nx,
ny = ny,
nu = nu);

/* Matrix which includes the relevant statevariables to compute the
Eingenvalues
Simulation window: type importInitial() then linearize the model
and open the function "dslin.mat"
type xuyName to get the selceted StateVariables */

Real Arelevant[4,4];
Real EigenValuesi[4, 2] = fill(0, 4, 2);
Real EV_history[4,number_of_values] = fill(0,4,number_of_values);
Real EV_history_imag[4,number_of_values] = fill(0,4,number_of_values);
Real EV_real[4];
Real EV_imag[4];
Real EV_sort[4];
Real EV_sort_imag[4];

Integer n;
Integer k;
Integer m;

String stateNames[nx] "Number of system states";
Integer window = 0;
Boolean status = animationOnline(loadInterval= 0.05);

algorithm
// plot settings
window := createPlot(id= 1,

position= {2, 3, 750, 450},
y= fill("", 0),
heading= "Eigenvalue Analysis",
range= {(-2.0), 12.0, 6.0, (-10.0)},
autoscale= false,
autoerase= false,
autoreplot= true,
description= false,
grid= true,
color= true,
online= false,
legendLocation= 5,
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B.1 Eigenvalue Analysis

legendHorizontal= false,
leftTitle= "Real, Imaginary Eigenvalues",
bottomTitle= "Velocity [m/s]");

ABCD := LinearSystems.linearize(modelName);
EV_sort :={0,0,0,0};
for i in 1:number_of_values loop
SetVariable(independentVariableName, values[i]);
OK := linearizeModel(modelName);
if OK then

ABCD := LinearSystems.readStateSpace("dslin.mat");
stateNames := ABCD.xNames;

/* Select the relevant states for the stability analysis
here: Arelevant = {steer angle, steer rate, lean angle,
lean rate} */

Arelevant := (ABCD.A)[states, states];
EigenValuesi := Modelica.Math.Matrices.eigenValues(Arelevant);
// Eigenvalues are stored in two separate vectors
EV_real := EigenValuesi[:, 1];
EV_imag := EigenValuesi[:, 2];

// control variables
k := 0;
m := 1;

n :=size(EV_imag, 1);

/* Remark:
Since the function Modelica.Math.Matrices.eigenValues()
orders the Eigenvalues not always in the same way it is
necessary to re-order the Eigenvalues stored in the
Eigenvalue-Vector EigenValuesi.

Algorithm:
1. check whether the eigenvalues include imaginary parts
-> if an imaginary part appears, store the values in the

last row of the vector EV_sort and EV_sort_imag
-> else store the eigenvalues in ascending order

2. sort the values in ascending order
-> if all elements of EV_imag are zero sort all rows
-> else (if imaginary parts appear) sort the first four

rows and leave the remaining rows unchanged
*/
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// Part 1
for j in 1:n loop
if EV_imag[j] <> 0 then

EV_sort[n-k] := EV_real[j];
// build also a new vector which stores the imaginary
// values <> 0
EV_sort_imag[n-k] := EV_imag[j];
k := k+1;
//p := i;

else
EV_sort[m] := EV_real[j];
EV_sort_imag[m] := EV_imag[j];
m := m+1;

end if;
end for;

// Part 2
if EV_imag[1] == 0 and EV_imag[2] == 0 and EV_imag[3] == 0 and

EV_imag[4] == 0 then
EV_history[:, i] := Modelica_LinearSystems.Math.Vectors.
sort(EV_sort);
EV_history_imag[3:4, i] := EV_sort_imag[3:4];

else
EV_history[1:2, i] := Modelica_LinearSystems.Math.Vectors.
sort(EV_sort[1:2]);
EV_history[3:4, i] := EV_sort[3:4];
EV_history_imag[3:4,i] := Modelica_LinearSystems.Math.Vectors.
sort(EV_sort_imag[3:4]);

end if;

end if;
end for;

if plotSignals == 0 then
// plot the real eigenvalues
plotArrays(x= values[1:number_of_values],

y= transpose(EV_history[:,1:number_of_values]),
title= "Eigenvalue Analysis",
legend= {"castering mode", "capsize mode",

"Re(weave mode)", "Re(weave mode)"},
style= {0});
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B.2 getStates Function

// plot the imaginary eigenvalues
plotArrays(x= values[1:number_of_values],

y= transpose(EV_history_imag[3:4,1:number_of_values]),
title= "Eigenvalue Analysis",
legend= {"Im(weave mode)", "Im(weave mode)"},
style= {1});

elseif plotSignals == 1 then
plotArrays(x= values[1:number_of_values],

y= transpose(EV_history[:,1:number_of_values]),
title= "Eigenvalue Analysis",
legend= {"castering mode", "capsize mode",

"Re(weave mode)", "Re(weave mode)"},
style= {0});

else
plotArrays(x= values[1:number_of_values],

y= transpose(EV_history_imag[3:4,1:number_of_values]),
title= "Eigenvalue Analysis",
legend= {"Im(weave mode)", "Im(weave mode)"},
style= {1});

end if;

writeMatrix("stability.mat","eigenvalues",
[values,transpose(EV_history[:,:])]);
Advanced.HideDymosim := hd;

end CalculateEigenvaluesBicycle;´

B.2 getStates Function

function getStates
"Returns the states of the vehicle (according to these names
appropriate states can be selected)"

extends Modelica.Icons.Function;
import Modelica.Utilities;

input String modelName;

protected
Boolean hd = LinearSystems.Internal.SetHideDymosim();
Boolean OK=linearizeModel(modelName);
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Real nxMat[1, 1] = readMatrix("dslin.mat", "nx", 1, 1);
Integer ABCDsizes[2] = readMatrixSize("dslin.mat", "ABCD");
Integer nx = integer(nxMat[1, 1]);
Integer nu = ABCDsizes[2] - nx;
Integer ny = ABCDsizes[1] - nx;

LinearSystems.StateSpace ABCD(
nx = nx,
ny = ny,
nu = nu);

algorithm
ABCD := LinearSystems.linearize(modelName);
stateNames := ABCD.xNames;

// print the states to command window
for i in 1:nx loop
Modelica.Utilities.Streams.print(" ");
Modelica.Utilities.Streams.print("Nr." + integerString(i));
Modelica.Utilities.Streams.print(stateNames[i]);

end for;

Advanced.HideDymosim := hd;

annotation (Documentation(info="<html>
<p>
This function is used to get the states of a vehicle.
</p>
</html>"));
end getStates;

B.3 place Function

function place
"calculates the state feedback matrix of a state-space system
w.r.t. pole placement"

import Modelica_LinearSystems.Math.Complex;
import Modelica.Utilities.Streams;
import SI = Modelica.SIunits;
extends Modelica.Icons.Function;
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B.3 place Function

input String modelName;
input String independentVariableName = "vs";

input SI.Velocity v = 10 "Forward velocity of the motorcycle";

input Real offset_real = 10
"|Inputs for Controller Design| Real part of the offset";

input Real offset_imag = 0
"|Inputs for Controller Design| Imaginary part of the offset";

input Real states[4] = {3, 4, 11, 13}
"|State Selection (state vector)| steer angle, der(steer angle),
lean angle, der(lean angle)";

output Real F[1, 4] "State Feedback Matrix";

protected
Complex offset = Complex(re=offset_real, im=offset_imag);

Boolean hd = LinearSystems.Internal.SetHideDymosim();
Boolean OK=linearizeModel(modelName);
Real nxMat[1, 1] = readMatrix("dslin.mat", "nx", 1, 1);
Integer ABCDsizes[2] = readMatrixSize("dslin.mat", "ABCD");
Integer nx = integer(nxMat[1, 1]);
Integer nu = ABCDsizes[2] - nx;
Integer ny = ABCDsizes[1] - nx;

LinearSystems.StateSpace ABCD(
nx = nx,
ny = ny,
nu = nu);

Real Arel[4,4];
Real Brel[4,1];
Real con[4,4];
Real eig[4, 2] = fill(0, 4, 2); // each element has the value 0
Real t[1,4];
Complex p[1,4];
Complex h[1,4];
Complex c[1,5];
Real c_real[1,5];
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algorithm
ABCD := LinearSystems.linearize(modelName);
SetVariable(independentVariableName, v);

OK := linearizeModel(modelName);
if OK then
ABCD := LinearSystems.readStateSpace("dslin.mat");

// state selection to calculate the relevant matrices
//states := {4, 9, 7, 8};
//states := {3,4,11,13};
Arel := (ABCD.A)[states, states];
Brel := (ABCD.B)[states,:];

// compute the controlability matrix
con := [Brel, Arel*Brel, Arel^2*Brel, Arel^3*Brel];

// store the last row of con in t
t := [0, 0, 0, 1]*Modelica.Math.Matrices.inv(con);
//t := [0, 0, 0, 1]/con;
// calculate eigenvalues of Arel
eig := Modelica.Math.Matrices.eigenValues(Arel);

eiga := Complex(re= eig[1,1], im= eig[1,2]);
eigb := Complex(re= eig[2,1], im= eig[2,2]);
eigc := Complex(re= eig[3,1], im= eig[3,2]);
eigd := Complex(re= eig[4,1], im= eig[4,2]);
eig2 := [eiga, eigb, eigc, eigd];
eig4 := Complex(re= eig[:,1], im= eig[:,2]);

// pole placement according to a user defined offset
// (store values in a complex eigenvector)
pa := Complex.’-’(eiga,offset);
pb := Complex.’-’(eigb,offset);
pc := Complex.’-’(eigc,offset);
pd := Complex.’-’(eigd,offset);
p := [pa, pb, pc, pd];

// the following complex numbers c1 ... c5 (stored in c) and
// h1 ... h4 (stored in h) are used
// to calculte the coefficients of Arel
c1 := Complex(re=1, im=0);
c2 := Complex(re=0, im=0);
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c3 := Complex(re=0, im=0);
c4 := Complex(re=0, im=0);
c5 := Complex(re=0, im=0);
c := [c1, c2, c3, c4, c5];

h1 := Complex(re=0, im=0);
h2 := Complex(re=0, im=0);
h3 := Complex(re=0, im=0);
h4 := Complex(re=0, im=0);
h := [h1, h2, h3, h4];

// calculate the coefficients of Arel
for i in 1:4 loop

if i == 1 then
h1 := Complex.’*’(pa, c1);
c2 := Complex.’-’(c2, h1);

elseif i == 2 then
h1 := Complex.’*’(pb, c1);
h2 := Complex.’*’(pb, c2);
c2 := Complex.’-’(c2, h1);
c3 := Complex.’-’(c3, h2);

elseif i == 3 then
h1 := Complex.’*’(pc, c1);
h2 := Complex.’*’(pc, c2);
h3 := Complex.’*’(pc, c3);
c2 := Complex.’-’(c2, h1);
c3 := Complex.’-’(c3, h2);
c4 := Complex.’-’(c4, h3);

else
h1 := Complex.’*’(pd, c1);
h2 := Complex.’*’(pd, c2);
h3 := Complex.’*’(pd, c3);
h4 := Complex.’*’(pd, c4);
c2 := Complex.’-’(c2, h1);
c3 := Complex.’-’(c3, h2);
c4 := Complex.’-’(c4, h3);
c5 := Complex.’-’(c5, h4);

end if;
h := [h1, h2, h3, h4];
c := [c1, c2, c3, c4, c5];

end for;
end if;
// remove the imaginary part of the coefficient vector c
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c_real := [c1.re, c2.re, c3.re, c4.re, c5.re];
// calculate the state feedback matrix F
Modelica.Utilities.Streams.print(" ");
Modelica.Utilities.Streams.print("State Feedback Matrix F");
F := t*[c_real[1, 5]*identity(4) + c_real[1, 4]*Arel

+ c_real[1, 3]*Arel^2 + c_real[1, 2]*Arel^3 + Arel^4];

end place;

B.4 placeRange Function

In the following the placeRange function valid for a specific offset is presented. The
basic structure of the other pole placement functions is almost the same.

function placeRange_offset
"calculates a set of feedback matrices for a user selected velocity
range of a state-space system w.r.t. pole placement"

import Modelica_LinearSystems.Math.Complex;
import Modelica.Utilities.Streams;
import SI = Modelica.SIunits;
extends Modelica.Icons.Function;

input String modelName;
input String independentVariableName = "vs";
input Real startValue = 5;
input Real endValue = 30;
input Integer number_of_values = 25;

input Real d = 10
"|Input for Controller Design| Offset in order to shift the poles";

input Real states[4] = {3, 4, 11, 13}
"|State Selection (state vector)| steer angle, der(steer angle),
lean angle, der(lean angle)";

input String filename = "place.mat"
"|Store Settings| Filename to store the state feedback matrix";

output Real F[1, 4] "State Feedback Matrix";
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protected
Boolean hd = LinearSystems.Internal.SetHideDymosim();
Real[number_of_values] values = linspace(startValue, endValue,
number_of_values);

Complex offset = Complex(re=d, im=0);

Real EV_history[4,number_of_values] = fill(0, 4, number_of_values);
Real EV_history_imag[4,number_of_values] = fill(0, 4,
number_of_values);

Real EV_real[4];
Real EV_imag[4];
Real EV_sort[4];
Real EV_sort_imag[4];

Integer n;
Integer k;
Integer m;

Real nxMat[1, 1] = readMatrix("dslin.mat", "nx", 1, 1);
Integer ABCDsizes[2] = readMatrixSize("dslin.mat", "ABCD");
Integer nx = integer(nxMat[1, 1]);
Integer nu = ABCDsizes[2] - nx;
Integer ny = ABCDsizes[1] - nx;

LinearSystems.StateSpace ABCD(
nx = nx,
ny = ny,
nu = nu);

Real Arel[4,4];
Real Brel[4,1];
Real F_table[number_of_values, 4] = fill(0, number_of_values, 4);
Real con[4,4];
Real eig[4, 2] = fill(0, 4, 2);
Real t[1,4];
Complex p[1,4];
Complex h[1,4];
Complex c[1,5];
Real c_real[1,5];

algorithm
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ABCD := LinearSystems.linearize(modelName);

for i in 1:number_of_values loop
SetVariable(independentVariableName, values[i]);
OK := linearizeModel(modelName);
if OK then

ABCD := LinearSystems.readStateSpace("dslin.mat");
// state selection to calculate the relevant matrices
//states := {4, 9, 7, 8};
Arel := (ABCD.A)[states, states];
Brel := (ABCD.B)[states,:];

// compute the controlability matrix
con := [Brel, Arel*Brel, Arel^2*Brel, Arel^3*Brel];

// store the last row of con in t
t := [0, 0, 0, 1]*Modelica.Math.Matrices.inv(con);

// calculate eigenvalues of Arel
eig := Modelica.Math.Matrices.eigenValues(Arel);
eig_test :=eig;
// Eigenvalues are stored in two separate vectors
EV_real := eig[:, 1];
EV_imag := eig[:, 2];

// control variables
k := 0;
m := 1;

n :=size(EV_imag, 1);
/* Remark:

Since the function Modelica.Math.Matrices.eigenValues()
orders the Eigenvalues not always in the same way it is
necessary to re-order the Eigenvalues stored in the
Eigenvalue-Vector eig.

Algorithm:
1. check whether the eigenvalues include imaginary parts
-> if an imaginary part appears, store the values in the

last row of the vector EV_sort and EV_sort_imag
-> else store the eigenvalues in ascending order

2. sort the values in ascending order
-> if all elements of EV_imag are zero sort all rows
-> else (if imaginary parts appear) sort the first four
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rows and leave the remaining rows unchanged
*/

// Part 1
for j in 1:n loop
if EV_imag[j] <> 0 then

EV_sort[n-k] := EV_real[j];
// build also a new vector which stores the imaginary
// values <> 0
EV_sort_imag[n-k] := EV_imag[j];
k := k+1;
//p := i;

else
EV_sort[m] := EV_real[j];
EV_sort_imag[m] := EV_imag[j];
m := m+1;

end if;
end for;

// Part 2
if EV_imag[1] == 0 and EV_imag[2] == 0 and EV_imag[3] == 0

and EV_imag[4] == 0 then
EV_history[:, i] := Modelica_LinearSystems.Math.Vectors.
sort(EV_sort);
EV_history_imag[3:4, i] := EV_sort_imag[3:4];

else
EV_history[1:2, i] := Modelica_LinearSystems.Math.Vectors.
sort(EV_sort[1:2]);
EV_history[3:4, i] := EV_sort[3:4];
EV_history_imag[3:4,i] := Modelica_LinearSystems.Math.Vectors.
sort(EV_sort_imag[3:4]);

end if;

eiga := Complex(re= EV_history[1,i], im= EV_history_imag[1,i]);
eigb := Complex(re= EV_history[2,i], im= EV_history_imag[2,i]);
eigc := Complex(re= EV_history[3,i], im= EV_history_imag[3,i]);
eigd := Complex(re= EV_history[4,i], im= EV_history_imag[4,i]);
eig2 := [eiga, eigb, eigc, eigd];

// store eigenvalues such that F has correct coefficients
eig3 := [eiga, eigd, eigc, eigb];
eiga_s := eiga;
eigb_s := eigd;
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eigc_s := eigc;
eigd_s := eigb;

// pole placement according to a user defined offset
// (store values in a complex eigenvector)
pa := Complex.’-’(eiga_s,offset);
pb := Complex.’-’(eigb_s,offset);
pc := Complex.’-’(eigc_s,offset);
pd := Complex.’-’(eigd_s,offset);
p := [pa, pb, pc, pd];

// the following complex numbers c1 ... c5 (stored in c)
// and h1 ... h4 (stored in h) are used
// to calculte the coefficients of Arel
c1 := Complex(re=1, im=0);
c2 := Complex(re=0, im=0);
c3 := Complex(re=0, im=0);
c4 := Complex(re=0, im=0);
c5 := Complex(re=0, im=0);
c := [c1, c2, c3, c4, c5];

h1 := Complex(re=0, im=0);
h2 := Complex(re=0, im=0);
h3 := Complex(re=0, im=0);
h4 := Complex(re=0, im=0);
h := [h1, h2, h3, h4];

// calculate the coefficients of Arel
for i in 1:4 loop
if i == 1 then

h1 := Complex.’*’(pa, c1);
c2 := Complex.’-’(c2, h1);

elseif i == 2 then
h1 := Complex.’*’(pb, c1);
h2 := Complex.’*’(pb, c2);
c2 := Complex.’-’(c2, h1);
c3 := Complex.’-’(c3, h2);

elseif i == 3 then
h1 := Complex.’*’(pc, c1);
h2 := Complex.’*’(pc, c2);
h3 := Complex.’*’(pc, c3);
c2 := Complex.’-’(c2, h1);
c3 := Complex.’-’(c3, h2);
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c4 := Complex.’-’(c4, h3);
else

h1 := Complex.’*’(pd, c1);
h2 := Complex.’*’(pd, c2);
h3 := Complex.’*’(pd, c3);
h4 := Complex.’*’(pd, c4);
c2 := Complex.’-’(c2, h1);
c3 := Complex.’-’(c3, h2);
c4 := Complex.’-’(c4, h3);
c5 := Complex.’-’(c5, h4);

end if;
h := [h1, h2, h3, h4];
c := [c1, c2, c3, c4, c5];

end for;

// remove the imaginary part of the coefficient vector c
c_real := [c1.re, c2.re, c3.re, c4.re, c5.re];

// calculate the state feedback matrix F
F := t*[c_real[1, 5]*identity(4) + c_real[1, 4]*Arel +
c_real[1, 3]*Arel^2 + c_real[1, 2]*Arel^3 + Arel^4];
F_table[i, :] := F[1,:];

end if;
end for;

// store the state feedback matrices in a table
writeMatrix(filename,"Ftable",[values,F_table[:,:]]);
// DataFiles.readMATmatrix("place.mat", "F_table");

end placeRange_offset;
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C.1 Pole Placement - States: φ and φ̇

%% LeanControl.m
% design of a lean controller for the basic motorcycle model

clc;

%% load dslin.math and show the names of the states, inputs and outputs
load dslin.mat
xuyName

%% States
% 1. leanAngle
% 2. leanRate

%% Input
% u1: Steering torque

[A,B,C,D]=tloadlin('dslin.mat');
%%
% Define the relevant A Matrix depending on the states needed for the
% controller
states = [1, 2];

Arel = A(states, states);
Brel = B(states,:);

%% Is the System controlable?
% Compute the controlability matrix
Co = ctrb(Arel, Brel);

% If the rank of the matrix is equal to the system's states then the system
% is controlable
rang = rank(Co);
[m, n] = size(Arel);
if (rang < n)

disp('r < n −−> System is not controlable!');
else

183



C Appendix: MATLAB Functions

disp('System controlable!');
end

%% Controller design
disp(' ')
disp('Compute the poles (p) of the vehicle:')
p = eig(Arel)

p1 = − 3;
p2 = − 5;

disp('Controller Matrix F:');
F = place(Arel, Brel, [p1, p2])

% check the pole locations
p real = eig(Arel−Brel*F)

C.2 Pole Placement for Models Composed of a Movable
Rider

%% Bicycle StateSpaceController LeanSteer RiderLean.m
% State−Space Controller for a 4 d.o.f bicycle model
% the output of this function is a state feedback matrix calculated in two
% different ways:
% − Pole placement: place()
% − Optimal control: lqr()

clc;

%% load dslin.math and show the names of the states, inputs and outputs
load dslin.mat;
xuyName;

%% Input
% u1: Steering torque
% u2: Rider lean torque

[A,B,C,D]=tloadlin('dslin.mat');
%%
% Define the relevant A Matrix depending on the states needed for the
% controller

% state selection
% states = [steer angle, steer rate
% lean angle, lean rate,
% rider lean angle, rider lean rate];

states = [7, 8, 3, 4, 9, 10];
Arel = A(states, states);
Brel = B(states,:);
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%% Is the System controlable?
% Compute the controlability matrix
Co = ctrb(Arel, Brel);

% If the rank of the matrix is equal to the system's states then the system
% is controlable
rang = rank(Co);
[m, n] = size(Arel);
if (rang < n)

disp('r < n −−> System is not controlable!');
else

disp('System controlable!');
end

%% Controller design
% to design a simple state−space controller we first compute the root locus
% of the system −−> does not work − only for SISO Systems
% compute the pole−zero map of the system

% pz = pzmap(vehicle)
disp(' ')
disp('Compute the poles (p) of the vehicle:')
p = eig(Arel)

% pole pla1ement according to pole−zero map

offset = 5;
offset rider = 3;
p1 = p(1) − offset;
p2 = p(2) − offset rider;
p3 = p(3) − offset;
p4 = p(4) − offset;
p5 = p(5) − offset;
p6 = p(6) − offset rider;

poles = [p1, p2, p3, p4, p5, p6];

disp('Controller Matrix F:');
F = place2(Arel, Brel, poles)

% LQR Design
R = [1 0; 0 1];
% introducing Q matrix
q1 = 0;
q2 = 0;
q3 = 1;
q4 = 0;
q5 = 1;
q6 = 0;

Q = diag([q1, q2, q3, q4, q5, q6]);
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F lqr = lqr(Arel, Brel, Q, R)

% check the pole location
p real = eig(Arel−Brel*F)

C.3 LQR Design

%% LQR Controller.m
% State−Space Controller for the basic bicycle model

%close all;
clc;

%% load dslin.math and show the names of the states, inputs and outputs
load dslin.mat;
xuyName;

%% Input
% u1: Steering torque

[A,B,C,D]=tloadlin('dslin.mat');
%%
% Define the relevant A Matrix depending on the states needed for the
% controller

states = [7,8,3,4]; % Steer Angle, Steer Rate, Lean Angle, Lean Rate

Arel = A(states, states);
Brel = B(states,:);

%% Is the System controlable?
% Compute the controlability matrix
Co = ctrb(Arel, Brel);

% If the rank of the matrix is equal to the system's states then the system
% is controlable
rang = rank(Co);
[m, n] = size(Arel);
if (rang < n)

disp('r < n −−> System is not controlable!');
else

disp('System controlable!');
end

%% Poles of the system
%poles = pole(vehicle)
poles = eig(Arel)

%% LQR Design
% define the penalizing matrices Q and R
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% simplest case −> unity matrices

R = 1; % single input
% introducing q matrix
q1 = 0; % weighting factor steer angle
q2 = 0; % weighting factor steer rate
q3 = 1; % weighting factor lean angle
q4 = 0; % weighting factor lean rate
Q = [q1 0 0 0; 0 q2 0 0; 0 0 q3 0; 0 0 0 q4];

F = lqr(Arel, Brel, Q, R)

%% Poles of the closed loop system
p real = eig(Arel−Brel*F)

C.4 Path Generation

% ButterFil.m
% Butterworth filtered path generation
% A path is generated w.r.t. random numbers
% These random numbers are filtered in such a way that the result is a
% smooth trackable path

clear all;
clc;

%n = 91;
n = 200;
t=linspace(0,50,n);
v = 6;
x = v*t;

y = 80*rand(size(x));
% Offset elimination
y = y − mean(y);
% Butterworth Filter
%[b,a] = butter(5,0.12);
[b,a] = butter(7,0.05);

f = filter(b,a,y);
figure(1)
plot(x, y, x, f)
title('Path (Roadway)');
xlabel('fixed x−direction [m]');
ylabel('lateral distance [m]');
legend('original data', 'filtered data')

%% Curvature calcutlation
% symbolic precalculation
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∆ = x(2)−x(1);
en = diff(f, 2)/∆ˆ2;
den = sqrt(1 + (diff(f)/∆).ˆ2 ).ˆ3;

C = en./den(1:n−2);
figure(2)
plot(x(1:n−2), C, 'o')

%% motorcycle lean angle
g = 9.81;
phi = atan(vˆ2*C/g);
figure(3)
plot(x(1:n−2), phi)

%% Path angle calculation
psi = diff(f)/∆;
figure(4)
plot(x(1:n−1), psi)

%% store path and curvature in table functions
% Positon Table
pos tab = [x(1:n−2)', f(1:n−2)'];
save('Position.mat', 'pos tab', '−v4');

% Curvature Table
cur tab = [x(1:n−2)', C(1:n−2)'];
save('Curvature.mat', 'cur tab', '−v4');

% Lean Angle
lean tab = [x(1:n−2)', phi(1:n−2)'];
save('LeanAngle.mat', 'lean tab', '−v4');

% yaw angle
yaw tab = [x(1:n−2)', psi(1:n−2)'];
save('YawAngle.mat', 'yaw tab', '−v4');
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