
Object-Oriented Modeling of Complex Physical Systems
Using the Dymola Bond-Graph Library

François E. Cellier
University of Arizona

P.O. Box 210104
Tucson, AZ, 85721-0104, USA

cellier@ece.arizona.edu

Robert T. McBride
Raytheon Missile Systems

P.O. Box 11337, Bldg. 805, M/S L-5
Tucson, AZ, 85734-1337, USA

rtmcbride@raytheon.com

Keywords : Dymola, object-oriented modeling,
topological modeling, hierarchical modeling, graphical
modeling.

Abstract
 In this paper, a new bond-graph library is introduced,
programmed as part of the Dymola object-oriented
graphical modeling environment. It is shown that the
embedding of bond graphs into the Dymola modeling
framework adds both expression power and flexibility to
the bond-graph modeling methodology.

The Dymola modeling framework is summarized,
and the new bond-graph library is introduced. An
(academic) example of a simple position control system
involving a hydraulic motor demonstrates the power of
the modeling environment.

INTRODUCTION
 Finding just the right balance between generality and
specificity, determining which aspects of the modeling
enterprise ought to be hard-coded into the software
environment, and which other portions ought to be kept
open to modification by the end user is a difficult decision
to make.

In the Dymola object-oriented graphical modeling
framework [1], this lesson had to be learnt the hard way,
and it took many iterations to get it right. Until version 4
of Dymola had been released, the authors of this paper
rejected to make use of the graphical front-end of the
environment, because it hadn’t been flexible enough.
With version 4 of the software, graphical modeling
became easy and intuitive, and the creation of a powerful
hierarchical graphical bond graph library had not only
become feasible, but was even easy to accomplish. The
new bond graph library is being introduced in this paper.

THE BOND-GRAPH CONNECTORS
 In [2], Cellier advocated the use of gyro-bonds as a
means for exploiting Dymola nodes to represent both 0-
and 1-junctions.

Dymola offers two types of variables: across
variables and through variables. In a node, the across
variables are set equal across all connectors, whereas the
through variables add up to zero. This modeling
construct can be exploited in bond graph modeling, since,
in a 0-junction, the across variables correspond to efforts,
whereas the through variables correspond to flows. Yet,
in a 1-junction, the correspondence is reversed.
Consequently, both types of junctions can be represented
by nodes, if each bond itself is a symplectic gyrator, and
if additional rules are specified that ensure that (i)
junctions always toggle, i.e., no two 0-junctions or 1-
junctions are connected by a bond, and (ii) all bond-
graphic elements are connected to 0-junctions only.

These rules are, however, too constraining for a
graphical modeling environment. For example, thermal
systems exhibit often 0-junctions with many bonds
attached to them, representing e.g. a room at a certain
temperature, with many bonds, representing the walls, the
windows, the doors, the ceiling, and the floor interacting
with that room. It must be possible to graphically split
that 0-junction into a series of distinct 0-junctions, each
one with a smaller number of connections.

For this reason, the new bond-graph library treats
bonds as symplectic transformers rather than symplectic
gyrators, and it treats both efforts and flows as across
variables. As a consequence of this decision, the
junctions now need to be explicitly modeled.

The bond-graphic connector is programmed as
follows:

There are three variables referenced in the connector,
the usual effort and flow variables, e and f, as well as a
directional variable, d, which indicates whether the
direction of positive flow is into the connector (d=+1) or
out of the connector (d=−1).

Each Dymola modeling entity contains three
windows: an equation window, shown above; a diagram
window, used for graphical modeling by topologically
interconnecting previously defined models, and an icon
window, used to represent the model graphically at the
next hierarchical level. The iconic representation of the
bond-graphic connector is a grey dot:

There exist two additional definitions, used for causal
bonds. For example, the e-connector is defined as
follows:

In Dymola, all variables are assumed a-causal by
default, but they can be made causal, by declaring them
accordingly.

The icon of an e-connector is a grey dot with the
letter “e” embedded in it:

The f-connector has the causalities of the effort and
flow variables reversed.

Using these connectors, it is now possible to define
the bonds. A-causal bonds are defined using a Dymola
model:

Two bond-graph connectors were dragged into the
diagram window. They were named BondCon1 and
BondCon2, respectively. The equation window defines
the equations governing a bond.

The icon associated with the bond model is shown
below:

The icon shows the two inherited bond-graph
connectors as well as the bond connecting them.

Each Dymola entity has a name. By placing the text
“%name” on the icon, Dymola knows to place the true
name of an invoked bond underneath the bond upon
dragging it into the diagram window.

Causal bonds make use of e- and f-connectors. For
example, the f-bond invokes an f-connector at the side of
the causality stroke, and an e-connector at the other side.

In Dymola, e-bonds and f-bonds are modeled as
blocks rather than as models, which forces pre-defined
causalities upon all variables.

There is no need to ever use causal bonds in Dymola,
since Dymola is perfectly capable of determining the
correct causalities on its own, but their use supports both
readability and debugging of models, and therefore, the

authors of this paper prefer them whenever possible, i.e.,
whenever the causality is fixed.

Let us now look at a 0-junction with three bond
attachments. Junctions exist only in their a-causal form.
No pre-assigned causality is needed here, because the
correct causality will be inherited by the bonds that are
attached to the junction.

Its equation window is programmed as follows:

Rather than dragging three bond-graph connectors
into the diagram window, this model inherits (extends)
another model that contains most of the equations that are
needed to describe a three-bond 0-junction.

Dymola offers a matrix manipulation language
similar to Matlab for the description of matrix and vector
operations.

The ThreePortZero model contains the following
equations:

The model packs the individual bond connector
variables into an effort vector and a flow vector, and in
the case of the flow variables, takes into account the
direction of flow.

THE BOND-GRAPH LIBRARY
 Let us now look at the bond-graphic element models.
The capacitor model may serve as an example.

It inherits the PassiveOnePort model, declares the
parameter C, assigns a default value of 1.0 to it, and
defines the capacitive equation.

The PassiveOnePort model defines the following
equations:

It drags the bond-graph connector into the diagram
window, and assigns the connector variables to the
appropriate effort and flow variables of the bond-graphic
OnePort.

The icon window of the capacitor looks as follows:

Again, the name is added to the model. In addition,
the parameter value is displayed by adding the text:
“C=%C” to the icon.

By now, we are ready to create bond graphs, such as:

This looks no different than a bond graph generated
with any other bond graph drawing tool. However, there
is a big difference: Dymola doesn’t know anything about
bond graphs. The entire bond graph modeling
environment was created within the Dymola modeling
framework under full control by the modeler. This

provides a degree of flexibility to the modeling
environment that, to the best knowledge of the authors of
this paper, cannot be found els ewhere.

A POSITION CONTROL SYSTEM
 In the following section, a position control system
involving a hydraulic motor is described. It shall be
shown, how component models of increasing complexity
can be built hierarchically on the basis of simpler models,
and how these can be connected to describe complex
physical systems.

We start by describing the hydraulic motor:

The schematic of the hydraulic motor is at the same
time also its iconic representation. The hydraulic motor
has two bond-graphic connectors, describing the in- and
outflow of fluid, as well as a signal connector, describing
the angular velocity of its axle.

The diagram window is given next. It is an ordinary
bond graph describing the hydraulics of the motor. The
variable names of efforts and flows were added manually
to the diagram window as text for documentation
purposes.

The only unusual element is the f-element. It
represents a flow sensor. This element sets the
corresponding effort to 0, and senses the incoming flow,
which is then passed on as a signal. Conventional bond
graphs make use of activated bonds for this purpose.

The modeler will have to remember that the model
contains the two 0-junctions at the top, but not the
associated bonds, i.e., the bond-graph connectors connect
to the junctions, not to the bonds. Consequently, the

model that connects to the hydraulic motor will have to
end in bonds, since it is not possible, using the Dymola
bond graph library, to have two bonds next to each other
without a junction in between, or to have two junctions
next to each other without a bond connecting them.
Otherwise, the directional d-variable wouldn’t be defined.

Notice further the propagation of parameter values.
Within the equation window, the parameters of the
hydraulic motor are defined and assigned default values.
These are passed on to the underlying R-, C-, I-, and TF-
elements:

The hydraulic motor is controlled by a servo valve.
The servo valve operates as follows:

It is modeled by the bond graph shown below.

The four turbulent flows, q1, q2, q3, and q4, are
modeled as non-linear resistors (or rather conductors).
These are furthermore modulated by the under-lap caused
by the position of the tongue, x, which is imported into
the model as a signal input.

Notice that the bond-graphic connectors here indeed
connect to bonds rather than junctions.

We shall now model the control of the tongue of the
servo valve.

This model has no bond-graphic connectors. Yet,
internally, the device is modeled using bond graphs, as
shown below:

The voltage is converted to a bond-graphic signal by
use of a modulated effort source. The position of the
tongue is proportional to the effort of the capacitor. It is
sensed by use of an e-element, which sets the flow to
zero, and senses the effort.

The control system can now be built. It is modeled
by use of standard block-diagram methodology.

By handing full control of the modeling environment
over to the modeler, the Dymola framework enables the
user to employ the most adequate modeling methodology
for each task. For control systems, block diagrams are the
appropriate tool of choice. Yet, each one of the
underlying physical systems has been modeled using
bond graphs, which again, was the most appropriate tool
for the task at hand.

CONCLUSIONS

The paper has introduced a new bond graph library
programmed as an application of the Dymola modeling
framework and software. It was demonstrated by means
of an example that this environment offers very powerful
features enhancing greatly the flexibility of the bond
graph approach to modeling.

REFERENCES
[1] Brück, D., H. Elmqvist, S.E. Mattsson, and H. Olsson
(2002), “Dymola for Multi-Engineering Modeling and
Simulation,” Proc. Modelica’2002 Conference, Munich,
Germany, p. 55:1-9,
http://www.modelica.org/Conference2002/papers/p07_Br
ueck.pdf .

[2] Cellier, F.E. (1991), Continuous System Modeling,
Springer-Verlag, New York.

