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1 Context, motivation and overview

Modelling and simulating the output or outputs of a system from its inputs has
always been an important task within control engineering. It is of interest to be able to
predict, if possible on-line, the future behaviour of any one or any subset of the system
variables (outputs) given their own current and past behaviour as well as the current and
past behaviour of any set of additional auxiliary variables (inputs).

If the prediction of a variable trajectory is available then the system can be optimally
controlled. Intelligent controllers frequently operate with look-ahead data in order to
compensate for system delays and/or improve their performance. For example, the
controllers that regulate the water distribution system of a city may, on the one hand,
work with predicted values of water flows, because the water incurs a delay from the
time it is released at the reservoir until it arrives at the city where it is to be used; and on
the other hand, they may work with predictions of water needs at the time when the
water that is currently being released will arrive at the city. Hence tools and techniques
for predicting future values of observed trajectory behaviour constitute important
elements of intelligent control architectures.

Fuzzy Inductive Reasoning (FIR) [Cellier, 1991], a modelling and simulation
methodology capable of generating a qualitative input-output model of a system from
real-valued trajectories of its physical variables, often offers excellent features for
dealing with the aforementioned modelling and simulating problems. Whereas
deductive modelling approaches function well in the case of systems, the internal
workings of which are well-understood such as electronic circuits, inductive modelling
approaches should be used whenever the internal equations of the system to be
modelled are either unavailable, or contain parameters that cannot be accurately
estimated. FIR has been successfully employed to modelling such diverse systems as
the central nervous control of the human heart [Nebot et al., 1997], the growth patterns
of shrimp populations in semi-intensive shrimp farming [Carjaval and Nebot, 1997], the
water demand in the City of Barcelona [López, 1999], and the NOx emission level in a
steam boiler [Mirats et al., 2000].

The functioning basis of the Fuzzy Inductive Reasoning methodology is to
qualitatively learn the behaviour of a system from its past real data. That is, thanks to
experience gained in the past with similar unrelated events, a pattern can be recognised,
i.e., the behaviour of the system can be qualitatively learnt. This is an interesting
feature when dealing with ill-defined systems, because it is possible that an accurate
description of the system (i.e., a quantitative differential equation based model) is not
available, and only data trajectories of the process are at the disposal of the modeller.
Most ill-defined systems are unfortunately large-scale systems. It is precisely because,
in these systems, output variables depend on so many different inputs that these systems
are ill defined.

As explained in Chapter 2, the modelling engine of FIR determines a so-called
optimal mask that indicates, which variables best explain any given output, and how
much time delay these variables should have relative to the chosen output.
Unfortunately, any algorithm that can find the optimal mask is necessarily of
exponential complexity, i.e., the number of masks to be visited during the search for the
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optimal mask grows exponentially with the number of available input variables and
with the allowed depth of the mask. This makes the FIR methodology, in its actual
implementation, impractical for those cases in which it would be most useful, i.e., large-
scale systems. Hence the modelling of large-scale systems with FIR could not be done
in practice because of the aforementioned computational complexity problem.  This had
been the primary limitation of the practical use of the FIR methodology.

To this end, the thesis discusses whether sub-optimal search algorithms or methods
of pre-simplifying the large-scale system are most suitable for dealing effectively and
efficiently with large-scale systems in the quest of deriving qualitative FIR models for
them. In other words, the mask search space of the FIR modelling engine must be
reduced if one wants to compute a model of a large-scale system in an affordable
amount of time.

The declared task of this thesis shall be to determine the most adequate subset of
variables (the most promising set of potential inputs of the FIR qualitative model1), as
judged from previous observations of their comportment, to be used for forecasting the
behaviour of any one of the measurement variables. The (large-scale) system from
which these observations are taken may be arbitrarily non-linear, and its internal
structure may be unknown. It is also reasonable to assume that the system is exerted
through unknown inputs, i.e., disturbances that may have significant effects on the
system’s comportment. Hence the observation variables can be considered together as a
single high-dimensional multivariate time-series. Given any variable among the
observed set of variables, the task is to determine the smallest set of other relevant
variables needed to make optimal predictions of the future behaviour of the selected
output variable; that is, to determine the smallest possible set of variables that together
contain all, or at least almost all, the information characterising the comportment of the
chosen output variable as available through the overall set of measurement variables. If
the system is time-variant, it may furthermore happen that the optimal set of input
variables depends on the mode in which the system is currently operating.

Hence, in order to reduce the mask search space of FIR, basically two lines of
thought are given in the present dissertation. The first one is to simplify the mask search
space of FIR, trying to directly simplify the candidate mask that is proposed to FIR.
This can be done either directly, by reducing the number of input variables to the FIR
model, or indirectly, using sub-optimal mask search algorithms. Both approaches lead
to sub-optimal FIR models.

In order to obtain a decent prediction of the output, it may not be necessary to make
use of all potential inputs of a system. Different input variables often contain redundant
information. Moreover, some of the input information may indirectly be captured in the
past history of the output. For example, when predicting the water demand of
Barcelona, it may suffice to propose a model that predicts tomorrow’s water demand on
the basis of today’s water demand and the water demand six days ago. This
autoregressive model does not list a single input variable directly; yet, the dependence
on the day of the week is indirectly captured by including the (meanwhile known) water

                                                     
1 Later on, in Chapter 2, those input variables shall be called mask inputs (m-inputs). An m-input is an
input variable of the FIR qualitative model. It may be a measured variable as well as delayed version of it.
Here, the m-input notation has not been used for the clarity of the reader.
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demand six days ago, whereas including today’s water demand in the model indirectly
captures the dependence on the weather.

For linear systems, variable selection techniques have been previously developed,
and are widely discussed in the open literature. For example, subsets of variables can be
determined using correlation analysis: good candidate input variables need to show a
strong correlation with the selected output, yet a weak correlation among each other.
Also, techniques have been developed, such as principal component analysis, that
furthermore enable the engineer or scientist to find linear combinations of variables that
best characterise the selected output.

The case of arbitrarily non-linear systems is far more complicated. It has been shown
that, even in quite simple systems, correlation analysis may provide answers that are far
from optimal. Other methods, based on information theory or the energy of the signals,
need to be used to determine the relationship between variables. Two such techniques
that have shown promise in this context are Fuzzy Inductive Reasoning (FIR) and
Reconstruction Analysis (RA).

Either with variable pre-selection or using a sub-optimal mask search algorithm, a
sub-optimal FIR model will be obtained, since not all possible models are being
considered, i.e., the mask search space is reduced. Such techniques are often justifiable,
since different sub-optimal masks may serve almost equally well as the truly optimal
mask because of the redundancy contained in the data. Hence, finding the very best of
all possible masks may not be a critical need. It may suffice to find a sub-optimal mask,
as long as it has a quality that is not much lower than that of the optimal mask. Sub-
optimal mask search strategies have the goal of searching for masks of acceptable
quality, while keeping the search space sufficiently small, such that the sub-optimal
search algorithm is of polynomial rather than exponential complexity.

Sub-optimal mask search strategies were studied before in [Nebot and Jerez, 1997;
Jerez and Nebot, 1997; Van Welden, 1999]. These research studies analyse several
variants of hill-climbing algorithms, which are of polynomial complexity, but often
result in a sub-optimal mask of significantly inferior quality. One of these studies also
proposed the use of genetic algorithms, which, in some cases, may work amazingly
well.  Unfortunately, genetic algorithms cannot be guaranteed to converge in
polynomial time, and often also come up with masks of unacceptably inferior quality. A
statistical approach based on cross-correlation functions is discussed in [de Albornoz,
1996].  It converges in polynomial time, but only looks at linear relationships between
variables, and therefore often finds a sub-optimal mask of highly inferior quality.

In this dissertation, two new sub-optimal mask search algorithms are proposed. The
first method is another variant of a hill-climbing technique. It converges more slowly
than those algorithms described in [Nebot and Jerez, 1997]; yet, it is more likely to
result in a high-quality mask while still converging in polynomial time. The second
method is a new variant of a statistical approach that is based on spectral coherence
functions. It also converges in polynomial time; yet, contrary to the technique described
in [de Albornoz, 1996], it avoids the pitfall on relying on linear relationships only.
Thus, it also is more likely to find a high-quality mask.
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No sub-optimal mask search strategy can be guaranteed to work always and for every
example. Therefore, it is important to make available several techniques that can be
used in parallel. If all of these techniques find a mask of similar quality, it is likely that
these sub-optimal masks are indeed good masks with quality values not far different
from that of the optimal mask.

The second line of research in this dissertation is to obtain a decomposition of the
system into subsystems. This would allow obtaining a model of the system from its
subsystems, which in turn reduces the computational time needed for the overall effort.
Given a k-variable system, the cost of computing a unique k-variable model is much
higher than computing a set of p models of jp < k variables. The task of decomposing a
model into subsystems is done sequentially. First, linear static relations between
variables are searched in order to form groups of variables that are linearly related.
Afterwards, with the variables that do not form part of any of the found groups, non-
linear relations are searched. Finally, time will be added to the process in order to cope
with the information contained in the time dependence between variables.

Therefore, with these complementary lines of work, two complete methodologies can
be proposed, each of which enables the construction of qualitative models of complex
systems. The former, based in simplifying the number of potential inputs to the FIR
models2, is an energy-based method, capable of detecting the variables at given delays
that are more closely related to the considered output of the system. The latter proposes
a decomposition of the overall system into subsystems using a methodology that is
based on the methods described in Section 3.4.1 of Chapter 3 and Sections 4.4 and 4.5
of Chapter 4, and completed with the inclusion of time, as explained subsequently in
Chapter 5.

Both methodologies can be used in a fairly automated fashion as tools made
available within the FIR toolbox.  Yet, the thesis treats their component algorithms as
individual tools that can be combined flexibly within a system analysis. No
methodology can be found that is capable of dealing equally well with all systems.
Either of the two methodologies has been found on occasion to outperform the other by
leaps and bounds.  In some test cases, one of the techniques did not work at all, whereas
the other performed splendidly.  Often, small variations in how the individual
algorithms are combined may greatly enhance the efficiency of the overall method.
Therefore, it is well worthwhile to discuss the component algorithms in detail, explain
their rationale, and illustrate their use.  This is therefore the route that was taken in this
dissertation.

The bulk of the research is presented along the chapters of the thesis. A detailed
description of the case studies used in the dissertation as well as a discussion of some of
the research results obtained has been structured into appendices, in order not to
interrupt the flow of thought along the chapters in undue ways.  Because of the diverse
methodologies used throughout the dissertation, the state of the art of previous research
results has not been compiled into a single chapter, but rather dispersed throughout the
thesis, where it is being discussed as the different techniques are introduced. The author
feels that this decision aids the clarity of the presentation. The contents of the
dissertation, hence, may be summarised as follows:
                                                     
2 The potential inputs to the FIR models shall be referred to, later on, as the number of  ‘-1’ elements
existing in the candidate mask proposed to the modelling engine of FIR.
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Chapter 2 contains a complete description of the FIR methodology as well as the
state of the ongoing research on FIR, making the dissertation self-contained. Section
2.4.1 deals with a new sub-optimal mask search algorithm that is based on proposing to
FIR successive mask candidate matrices with increasing depth, enabling the user to find
sub-optimal masks (FIR qualitative models) with a significantly reduced computational
effort in comparison with an exhaustive search.  It has been found that this sub-optimal
search algorithm, a variant of the well-known hill-climbing methods, usually finds
masks of excellent quality that perform in qualitative simulations almost as well as the
truly optimal mask. Section 2.5 tackles the prediction of future output values
(qualitative simulation) with FIR. A modified prediction formula is proposed that
eliminates some of the known problems with the formulae that were used in the past,
and the new concept of variable acceptability, useful for fault detection purposes, is
introduced.

In Chapter 3, the terms ‘static’ and ‘dynamic’ are put into the context of the
performed research. Different procedures are applied to perform variable selection, at
this point only taking into account linear static relations between variables. The method
of the unreconstructed variance for the best reconstruction, described in [Dunia and Qin,
1998] in a different context, is one of the methods presented for the purpose of
selecting, which input variables to use to model a given system output. This is the task
of section 3.3. Other linear statistical methods, based on principal components analysis
(PCA) and/or correlation analysis, are also applied so as to obtain a representative
subset of variables of the system under study, hence allowing a first reduction in the
FIR model search space. In section 3.4.3, the FIR entropy index, Hr, used to compute
the quality of a FIR model, is defined as a measure of similarity (alternative correlation
index) between two variables.

Chapter 4 deals with methodologies that lead to a subset (subsystem) determination,
in which the variables that form these subsets are maximally related among each other.
The Reconstruction Analysis methodology, made popular by Klir, is presented as an
informational approach to the problem of decomposing a large-scale system into
subsystems. Section 4.3 offers a FIR-based algorithm for decomposing systems into
subsystems.  In Section 4.4, an alternate method based on singular value decomposition
is investigated in order to form subsets of linearly related variables. Section 4.5 then
introduces a procedure to study the possible non-linear relation between any of the
previously formed subsets of variables and a selected output variable. The algorithms
offered in this chapter allow the modeller to decompose a large-scale system into
subsystems. This permits to split a complex problem into n simpler problems that are
computationally easier to deal with. Up to this point, non-linear relations are added to
the analysis; yet, the inclusion of time has been left for a subsequent step.

Chapter 5 deals with the analysis of methodologies to model a large-scale system
using the modelling engine of the FIR methodology. First, a summary of the results
obtained with the different statistical methodologies discussed in Chapter 3, as well as
the use of other statistical methods, based on regression coefficients for the purpose of
selecting input variables, is given. To this end, the sets of proposed inputs obtained by
the different variable selection algorithms are offered to the modelling engine inside
FIR, and the predictions obtained by FIR when using the so obtained qualitative models
are compared to each other. Up to this point, only linear static relations have been taken
into account. Then, non-linear relations are added and a method for obtaining a
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decomposition into subsystems is proposed using, in order, Sections 3.4.1 of Chapter 3,
and Sections 4.4 and 4.5 of Chapter 4. Yet, those sections have presented the subsystem
decomposition method studying only static relations between variables.  No dynamic
information was used at all. The subsystem decomposition method should be extended
including dynamic information of the system. The inclusion of time in order to obtain a
dynamic decomposition of the system into subsystems is provided in Section 5.3.1.
Finally, in Section 5.3.2, a method based on the energy of the available trajectories, that
includes both non-linear relations as well as dynamic information, is developed in order
to propose a unique sparse candidate mask to FIR for the purpose of simplifying its
model search space.

Hence two modelling methodologies are proposed in Chapter 5 that enable the user
to obtain a model of a large-scale system in an affordable amount of time. The former
proposes a decomposition of the complex system into subsystems. The latter proposes a
unique sparse candidate matrix to FIR, in which the number of potential inputs has been
reduced studying the cross-energy among the input and output variables of the system.
Both methods are derived for the case of MISO systems, but they are also extendable to
MIMO systems, as the different analysis steps can simply be repeated for each of the
selected output variables separately.

Chapter 6 presents an industrial application of the different methods advocated in the
previous chapters. The analysed system is a gas turbine for electric power generation
comprising hundreds of variables.

Throughout the dissertation, practical examples are used to illustrate the different
algorithms explained. Appendix I contains a detailed description of each one of the
examples used in the thesis. Finally in Appendix II, two interesting applications of the
new mask search algorithm and the concept of variable acceptability advocated in
Chapter 2 are presented.

With the research presented in this thesis, the FIR modelling capabilities have been
extended with capabilities for modelling large-scale systems within a reasonable time.
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2 Fuzzy Inductive Reasoning Methodology for complex systems
modelling

2.0 Abstract

This chapter is devoted to a description of the FIR modelling and forecasting
methodology, and the state of the ongoing research on FIR. Of particular relevance to this
dissertation is Section 2.5 that deals with the qualitative modelling engine of FIR, i.e., the
computation of so-called optimal masks.  Subsection 2.5.1 introduces a new algorithm to
determine a set of sub-optimal masks that are characterised by a small quality reduction
compared to the optimal mask, yet can be found with a much reduced computational effort.
Section 2.6 deals with the qualitative simulation engine of FIR, i.e., the algorithms used by
FIR for prediction of future output values. Although such algorithms had been previously
available as part of the FIR toolbox, Section 2.6 presents an important modification of
these algorithms that leads to a significant improvement in prediction accuracy.  The
improved formulae are based on the new concept of variable acceptability that is presented
in Section 2.6.1.

2.1 Introduction and background

Why are qualitative modelling techniques important?  Why should not all systems be
modelled quantitatively?  There are at least three answers to these questions.  From a short-
term perspective, a quantitative (e.g. differential equation based) model of a complex
(large-scale) system may not currently be available.  To construct such a quantitative
model, though theoretically feasible, may not be economical, may be too slow, or may
require experimentation with the real system that may not be acceptable.  The size of a
quantitative model grows with the complexity of the system to be modelled.  This is not
necessarily true for qualitative, i.e., observation based, models.  A highly complex system,
such as the human heart, may be modelled successfully using qualitative modelling
techniques [Nebot et al., 1998], because facets of interest of the model can be isolated
more easily using qualitative modelling techniques.  A useful qualitative model of a
complex system is not necessarily a large-scale model.  Simplifications in quantitative
models invariably lead to inaccuracies in the predictions made because of the non-
negligible side effects of the un-modelled system dynamics.  Observation based models do
not necessarily share this fate.  Even simple qualitative models, i.e., models comprising
few variables, can be used to make highly accurate predictions of a complex system,
because the complexity may be hidden in the experience-data base rather than in the model
itself.

From a medium-term perspective, the complexity of an accurate quantitative model,
even if it can be made available, may be undesirable. Model simplifications may be needed
in order to be able to discover and isolate particular behavioural patterns, i.e., to recognise
the forest for the trees. Qualitative models lend themselves more easily to reductionism
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than quantitative models. In the line of the examples given in [Cellier, 1991a], a person
knows that if he opens his fingers while holding a cup of coffee in his hands, this cup will
fall to the ground and break into a million pieces (apart from spreading the coffee all
around). It is not necessary or even useful to solve a set of differential equations to come
up with this result. But, how can one arrive at the conclusion that a fragile object will fall
to the ground and break if one lets go of this object? Surely it is thanks to experience
gained in the past with similar unrelated events; a pattern has been recognised, i.e., the
behaviour of the system has been qualitatively learnt. This is the functioning basis of the
Fuzzy Inductive Reasoning (FIR) methodology, to qualitatively learn the behaviour of a
system from past observations.

From a long-term perspective, high autonomy systems of the future, such as robots
roaming around on planet Mars, will require the ability to make sense of their environment,
i.e., to make on the fly models of the environment and their interactions with it, models
that can be used to make accurate predictions of future behaviour, i.e., that are able to
answer all sorts of what-if questions. Qualitative modelling methodologies lend themselves
much more easily than their quantitative counterparts to automated modelling.

Hence the study of qualitative modelling and simulation methodologies is important, as
it is useful to both science and engineering.  Fuzzy Inductive Reasoning (FIR) is one
among several feasible approaches to qualitative modelling and simulation.  It is a
methodology that has been studied extensively within our research group at the Universitat
Politècnica de Catalunya in recent years, and it is also at the focus point of this dissertation.

This thesis in particular deals with the problem of qualitatively modelling observation-
rich large-scale systems, i.e., systems that contain many variables for which observations
are available.  A qualitative model, which by its very nature is highly reductionistic, i.e.,
relies on few input variables only, needs to decide, which, among the many available
observations, to use as input variables to make predictions about any chosen output.

It is ironic that, while qualitative modelling techniques would be most useful when
dealing with such large-scale systems (short-term perspective), FIR up to now has been
least capable of successfully coping with large-scale systems.  The reason for this
discrepancy has to do with a computational complexity issue.  Finding the optimal mask,
i.e., the best qualitative FIR model, is an np-complete problem, i.e., any algorithm that
determines the optimal mask must invariably be of exponential computational complexity.

Several previous attempts were made to tackle this problem.  [Nebot and Jerez, 1997]
proposed a number of different hill-climbing algorithms for determining sub-optimal
masks.  While these algorithms are indeed of polynomial complexity, they have a tendency
of generating masks of inferior quality.  The faster the algorithm converges, the less likely
it is that a mask of acceptable quality will be found.  This dissertation introduces a new
class of hill-climbing algorithms that is much more likely to generate high-quality masks.
[Jerez and Nebot, 1997] proposed the use of genetic algorithms to determine sub-optimal
masks.  Whereas genetic algorithms can be tuned more easily than hill-climbing techniques
to avoid the problem of homing in on side valleys, these algorithms are not of polynomial
complexity.  Their convergence speed depends heavily on the terrain encountered in their
parameter space.  They converge fast on simple problems that can be solved easily by hill-
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climbing approaches as well, but converge very slowly in those situations where classical
hill-climbing algorithms don’t work well.  Finally, [van Welden, 1999] compared tree
classifiers to FIR in their ability to qualitatively model and simulate complex systems.  The
primary advantage of tree classifiers is that the qualitative modelling algorithms employed
by tree classifier techniques are of polynomial complexity, i.e., tree classifiers lend
themselves more easily to coping with large-scale systems.  The primary disadvantage of
tree classifiers is that their models are characterised by poor resolution, i.e., the predictions
obtained by the qualitative simulation algorithms associated with tree classifier techniques
are of low quality.  Whereas it is possible to use tree classifiers as a variable selection
technique for FIR, the resulting sets of variables, although found quickly, may not be the
most suitable set of variables for a FIR simulation.  These and related issues are dealt with
explicitly and in much detail in the present thesis.

Fuzzy Inductive Reasoning is a modelling and simulation methodology capable of
generating a qualitative input-output model of a system from observations of the trajectory
behaviour of its (usually real-valued) variables.  The methodology originates with
Inductive Reasoning (IR), an inductive modelling technique designed by Klir as part of his
General Systems Problem Solver (GSPS) framework [Klir, 1985]. A first implementation
of IR was made available by Uyttenhove as part of his Ph.D. dissertation [Uyttenhove,
1979]. This implementation was called Systems Approach Problem Solver (SAPS). This
first implementation of SAPS was not flexible enough due to limitations of the computer
science tools available in those days. An improved version of the original SAPS program,
re-implemented as a CTRL-C function library, was developed by [Cellier and Yandell,
1987]. This new implementation was called SAPS-II. With the new CTRL-C version of the
tool, all the matrix manipulation capabilities necessary to capture and manipulate the GSPS
data structures effectively and efficiently were provided.

Then, in the late eighties, fuzzy measures were incorporated into the GSPS framework
[Klir and Folger, 1988; Klir 1989]. In parallel, the SAPS-II platform was extended by [Li
and Cellier, 1990] to offer fuzzy reasoning capabilities. Accordingly, the enhanced
methodology is now called Fuzzy Inductive Reasoning (FIR) [Cellier et al., 1992].

Subsequently, a number of different authors have used FIR to qualitatively model and
simulate different kinds of systems while constantly improving the methodology. In
[Cellier and Mugica, 1992], the FIR methodology was used to design fuzzy controllers. In
[Vesanterä and Cellier, 1989; de Albornoz and Cellier, 1993a; Mirats and Huber, 1999], it
was applied to fault monitoring in a simulated aircraft model. FIR has been very successful
in dealing with biomedical systems [Nebot et al., 1993; Cueva et al., 1997]. In [López et
al., 1996; Cellier et al., 1996], FIR is applied to the problem of modelling and predicting
time series. In [Uhrmacher et al., 1997], FIR is used in the context of ecological systems.
In [Moorthy et al., 1998], it is used to predict the U.S food demand in the 20th century.

Of course, the publications only speak to the successful uses of the methodology, not to
the failures.  Mugica tried to qualitatively model a 6 degree-of-freedom robot using FIR.
He worked for six months on that model, before he finally gave up.  He was lacking an
appropriate technology for extracting subsets of variables on the fly for any particular
manoeuvre at hand.  The previously mentioned aircraft model was successful in
qualitatively simulating a Boeing 747 aircraft, but the model only dealt with a single facet
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of the flight, namely high altitude horizontal flight; i.e., the model was able to deal with
small signal behaviour around a trimmed flight only.  The model did not deal at all with the
much more interesting problem of landing the aircraft.  The complexity of the system to be
modelled had been artificially reduced by limiting the behavioural patterns that were to be
captured by the model.  Finally, de Albornoz successfully dealt with monitoring faults in a
nuclear reactor.  The quantitative reactor model contained close to 500 variables.  The
research was able to generate a hierarchical qualitative FIR model of the reactor able to
recognise a number of so-called transients.  Yet, the variables used by these FIR models
weren’t chosen by FIR.  They were essentially hand picked.  Their selection was based on
years of experience with dealing with nuclear reactors.  De Albornoz was lacking a
methodology that would have allowed him to apply FIR to a 500-variable system directly.

Research on the FIR methodology at the University of Arizona (Tucson, U.S.A.), the
Universitat Politècnica de Catalunya (Barcelona, Spain), and later at the Universiteit Gent
(Belgium), has lead to a number of Ph.D. dissertations relating to the FIR methodology.
[Nebot, 1994] offered the first comprehensive description of the FIR methodology.  The
dissertation specifically introduced treatment of missing values into the methodology and
discussed its application to biomedical systems.  [Pan, 1994] provided a neural network
architecture for implementing the FIR methodology in real time.  [Mugica, 1995] discussed
the synthesis of fuzzy controllers on the basis of FIR models of inverse plant dynamics.  In
[de Albornoz, 1996], FIR was applied to fault monitoring in large-scale industrial plants.
FIR was used to model and predict time series in [López, 1999], where new confidence
measures of similarity and proximity were provided. In [Van Welden, 1999], the
methodology is complemented with tree classification procedures. Finally the present
dissertation extends the use of FIR to previously unmanageable large-scale systems.

Recently, the SAPS-II platform has been re-programmed in C as a Matlab toolbox using
dynamic storage allocation. This newest version of the code offers faster algorithms and
removes the previous limits on matrix sizes.  The only limits on system size are the virtual
memory of the computer and the patience of the user.

2.2 The FIR methodology

FIR offers four main modules and many auxiliary routines. Two of the main modules
are computational engines, a Qualitative Modelling Engine, and a Qualitative Simulation
Engine; the other two are data filters, a Fuzzification Module, and a Defuzzification
Module. Figure 2-1 provides a flow diagram of these main modules. FIR operates on
observations of input/output behaviour of multi-input single-output (MISO) systems, and
consequently, a MIMO system has to be modelled by several parallel FIR models, one for
each output. In order to reason qualitatively about these observed behaviours, real-valued
trajectory behaviour needs to be fuzzified, i.e., mapped into a set of fuzzy classes. In FIR,
the process of fuzzification is called recoding. In this process, real-valued data are mapped
into qualitative triples, consisting of a class value (representing a coarse discretization of
the original real-valued variable), a fuzzy membership value (denoting the level of
confidence in the chosen class), and a side value (telling whether the quantitative value lies
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to the left, to the right or at the centre of the membership function peak). Section 2.4 offers
an accurate insight of the recoding process.

The goal of the Qualitative Modelling Engine (QME) is to determine the best behaviour
system from a given data system and a predetermined output variable. The data system is
initially provided to the QME in the form of three matrices of equal dimensions: a
qualitative class value matrix, a real-valued fuzzy membership matrix, and a ternary side
value matrix. Then the QME tries to find relationships among the class values that are as
deterministic as possible, trying to discover behavioural patterns among the observations
using the information stored in the class value matrix. Such a qualitative relationship,
encoded in the form of a matrix, is called a mask in the context of FIR. The optimal mask
is found by a process of exhaustive search in the discrete search space of the class values.
Details about how FIR finds a qualitative model are handed in Section 2.5.

Figure 2-1 FIR methodology four main modules.

The task of the Qualitative Simulation Engine (QSE), given a FIR qualitative model
described by means of a mask and three behaviour matrices (constituting a set of fuzzy
rules) for every output variable to be modelled, is to forecast a value for each of the chosen
output variables. Fuzzy simulation extrapolates the output variable across time using the
interpolated values of previous occurrences of similar behavioural patterns. Section 2.6
accurately explains the process of qualitative simulation.

The Defuzzification Module, also called fuzzy regeneration, performs the reverse
operation of the Fuzzification Module, converting qualitative triples back to real-valued
data. The side value makes it possible to perform the defuzzification of qualitative into
quantitative values unambiguously and without information loss. Section 2.7 briefly
describes this last filter Module of the FIR methodology.
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New contributions to the methodology are also described in this chapter. The first one
deals with the computation of a FIR model for a complex, large-scale, system. The
algorithm exclusively uses internal FIR tools, so no external help is needed. It is based on
reducing the number of models to be visited, thereby obtaining a sub-optimal model.  The
algorithm is a variant of the well-known hill climbing approaches.  Yet it dramatically
reduces the probability that the optimisation gets side-tracked, leading to a mask of vastly
inferior quality. In all cases that were tested, the new algorithm outperformed the
previously available hill climbing methods by leaps and bounds. The algorithm is
explained in detail in subsection 2.5.1, and then, in Appendix II.1, it is applied to
modelling a garbage incinerator system, the details of which are provided in Appendix I.3.
In Section 2.6, where the QSE is explained, the new concept of variable acceptability is
introduced, a concept that is subsequently (Appendix II.2) applied to fault detection in an
aircraft simulated model. Also in this section, a modification of the formula used for
making predictions is proposed.

To better illustrate the FIR methodology, the dissertation makes use of various smaller
applications that are easy to describe and to model. For example, a system composed of a
water tank, a pump, and a flow sensor with second order dynamics will be used to
introduce the modification made in the prediction formula in Section 2.6. This is the kind
of systems that can be found, for example, in a simple irrigation system. Appendix I.1
offers a brief explanation of the water tank system as well as a short discussion of how its
qualitative model has been obtained.

2.3 General Systems Problem Solver

Fuzzy Inductive Reasoning, FIR, is a modelling and simulation methodology capable of
generating a qualitative input-output model of a system from real-valued trajectories of its
observed variables. It originates from an inductive modelling technique designed by Klir as
part of his General Systems Problem Solver (GSPS) framework [Cavallo and Klir, 1978;
Klir, 1985] that, in turn, is a discipline of systems science.

Areas such as cybernetics, information theory, control theory, and artificial intelligence,
the origin and major development of which are strongly related to the advances of
computer technology, can be viewed as parts of a larger field of inquiry, usually referred to
as systems science. These areas deal with system problems in which the informational,
relational or structural aspects predominate rather than the physical characteristics of the
entities that form the system.

The domain of inquiry of systems science concerns systems. The term system stands for
a set of things and a set of relations between them. Systems can be different depending on
the set of considered things (chemical, electrical, social, etc.) or depending on the relations
between the components of the system. The kinds of relations characterise various levels of
knowledge regarding the phenomena under consideration, i.e., different epistemological
levels that will be later explained in more detail.
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Knowledge about systems must be gained in order to deal with them. Different systems
require different experiments so as to acquire data from them. Then, a methodology is
necessary to manage the gathered information. Systems science provides methodological
tools for studying relational properties of various classes of systems problems to users in
various disciplines and problem areas.

Systems Problem Solving is the part of system science that operationally describes
system problems to develop a methodology for solving them. Given a specific system
problem, its characteristics can be extracted and, by means of abstraction, translated into a
general problem. Then, the problem can be solved using the GSPS framework. A solution
of the general system is obtained that can be interpreted to obtain a solution to the specific
problem. Figure 2-2 illustrates this process.

Figure 2-2 The role of GSPS.

The structure of GSPS is a hierarchy of epistemological levels of systems in which
different levels of knowledge are represented. This hierarchy is derived from simple
ancient notions: there exists an environment where an interaction between an observer
(investigator) and the observed object (investigated system) holds. There are basically five
epistemological levels: source, data, generative, structure, and meta systems. In Klir's
notation they are labelled from level zero to level four, respectively. Figure 2-3 offers a
simplified view of the epistemological levels.

At the lowest level of the epistemological ladder, denoted as level 0 or source system,
“a system is what is distinguished as a system by the investigator,” quoting Klir's words.
At this level, the system is a potential source of empirical data. The attributes of the system
that the investigator wants to observe are expressed by means of a set of variables. Those
variables can be partitioned into basic and support variables (for instance, time or space).
Basic variables can be further divided into input, output, and control variables. So the input
variable states can be seen as the conditions that affect output variables. At this point, the
investigator knows if the variables are discrete, continuous, crisp or fuzzy. As the ladder of
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epistemological levels is climbed up, more and more knowledge regarding the variables of
the associated source system is gained. A higher-level system embraces all knowledge
corresponding to the lower levels, plus additional knowledge not available at the lower
levels. Therefore, the source system is included in all the higher levels.

LEVEL 4
META SYSTEMS

Relations between relations below
LEVEL 3

STRUCTURE SYSTEMS
Relation between models below

LEVEL 2
GENERATIVE SYSTEMS

Models that generate data below
LEVEL 1

DATA SYSTEMS
Observations described in language below

LEVEL 0
SOURCE SYSTEMS

Data description language

Figure 2-3 Klir's epistemological levels of systems.

At level one, data systems are encountered. They include the previous level, the source
system, and some additional knowledge, comprising the trajectories of all of its variables.
Thus it is a source system supplied with data. The variable trajectories are obtained by
observations from the system.  Of course, the term system is fairly abstract.  A system can
be a physical entity, but this is not always the case.  A model of a system satisfies all the
characteristics of being itself a system, and therefore qualifies as a system.  If the system is
a model, then observations from the system are simulation results.

The next higher level comprises the generative systems, also named behaviour systems.
Knowledge about the support-invariant (in our case, time-invariant) relationships existing
among the considered variables is added at this level. These relationships can be used as
the laws governing the underlying system, from which new states of the variables may be
generated. The qualitative modelling and simulating engines of the FIR methodology are
located at this level.

Level three contains structure systems.  A structure system is defined as a set of
generative systems that, in turn, can be viewed as subsystems of a global or general
system. At this level, knowledge about the causal relations between those subsystems is
added. Reconstruction analysis, a methodology that will be briefly explained later, lies at
this epistemological level.

Finally at level four, there exist the meta-systems. They are composed of a set of
structure systems, together with a set of meta-rules describing the relationships between
those systems.

The methodology used in this dissertation, Fuzzy Inductive Reasoning, is based on the
mentioned epistemological levels. Each one of its modules has a direct correspondence
with the first three epistemological levels, so FIR is a level three GSPS-based tool.
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2.4 Recoding process

The process of discretising continuous trajectories into discrete episodes is called
recoding in the FIR context. The operation of recoding is performed by means of the first
module of the qualitative modelling methodology, the so-called Fuzzification Module. It is
the task of this module to convert quantitative data gathered from the system to their
qualitative counterpart. In this process, each quantitative data point is mapped into a
qualitative triple, containing class, fuzzy membership, and side values. Data are usually
recoded into an odd number of classes using equal frequency partitioning to determine the
landmarks between neighbouring classes. The fuzzy membership function is by default a
bell-shaped Gaussian curve that assumes a maximum value of 1.0 at the centre between
two landmarks, and a value of 0.5 at each of the landmarks. The side value describes
whether the real data point lies to the left (side = -1), at the centre (side = 0), or to the right
(side = 1) of the maximum of the membership function governing the chosen class.

Suppose a measured physical variable V, such as the temperature of a nuclear reactor,
that varies, under normal operation conditions, between a lower and an upper bound, [Vmin,
Vmax]. The range of possible variation of this variable has to be divided into different
regions, called, in inductive reasoning, levels or classes. The values representing such
regions could be either symbolic (for example, 'too low', 'normal', 'too high', denoting three
different regions) or numeric (for example '1', '2', '3', denoting the same regions as above).
In the current FIR implementation, SAPS-II, an integer numeric representation for the
distinct classes has been adopted to simplify the task of implementing the tool using a
numeric software package such as Matlab [Mathworks, 1997]. At this point, an obvious
question arises: how many classes should be selected for each of the system variables?

From statistical considerations, when performing any type of cluster analysis, it is
known that each legal discrete state should be recorded at least five times [Law and Kelton,
1990]. Here, the term state refers to a combination of legal classes of all the variables
involved in the studied system. Thus, there exists a relation between the possible number
of legal states and the number of data points that are required to base the modelling effort
upon:

�
"

×=×³

i
ilegrec knn 55

where nrec denotes the number of observed states, nleg denotes the total number of different
legal states, i is an index that loops over all variables, and ki represents the number of
classes into which the ith variable is recoded. If each of the system variables is to be
recoded into the same number of classes the previous equation reduces to the expression:

� � var5 n
levrec nn ×³

where nvar is the number of variables and nlev is the number of classes or levels each
variable is recoded into. The number of variables is usually given by the application, and
the number of recordings is frequently predetermined, because the modeller and the
experimenter may be two different people. This is a normal situation when dealing with
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complex systems. In such a case, the optimum number of classes into which the variables
are to be recoded can be computed as:
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If the number of observed states is not predetermined, the best option is to consult with
a human expert in order to determine a meaningful number of levels for a given variable.

Taking into account symmetry considerations, an odd number rather than an even
number of levels may be preferred. Consider for example the three levels 'too low', 'normal'
and 'too high'. By using an odd number of classes, the abnormal classes can be grouped
symmetrically around the normal class.

The number of classes into which the variables are recoded determines the
expressiveness and the predictiveness of the qualitative model. The expressiveness of a
qualitative model is a measure of the information content that the model provides. The
predictiveness of a qualitative model measures its forecasting power, i.e., the period of
time over which the model can be used to predict the future behaviour of the system with
an acceptable fidelity.

A compromise between predictiveness and expressiveness must be reached. If every
variable is recoded into only one class, the qualitative model will exhibit a unique legal
state. Under this condition, the model will be able to predict the future of the system
indefinitely, but the predictions made are useless since they contain no information about
the system whatsoever. This model would have an infinite predictiveness but zero
expressiveness. On the other hand, if every variable is recoded into a thousand classes, the
system will exhibit an enormous number of legal states. In this case, the resolution of the
qualitative model is excellent because each state contains a large amount of useful
information about the real system. Yet, its predictiveness will surely be very poor, unless
an extremely large data-base of observations is available.

As confirmed by several practical applications [de Albornoz and Cellier; 1993a, 1993b;
Cellier, 1991b; Mirats and Huber, 1999], using three or five classes is optimal for most
purposes.

Once the number of classes has been decided, the landmarks that separate neighbouring
regions must be chosen. The best option usually is to consult with a human expert.
Sometimes this may not be possible, so another approach needs to be taken. If the observed
data is limited, as it is usually the case, then it is preferable to maximise the expressiveness
of the model. The expressiveness will be maximised if each level is observed equally often.
Hence a way to find the landmarks between classes is to sort the observed trajectories into
ascending order, cut the resulting vector into nlev segments of equal length, identify each
segment as one class, and choose the landmarks anywhere between the largest value of the
class to the left and the smallest value of the class to the right.

To this point, the number of classes as well as the landmarks that separate those classes
have been decided. Now, in order to convert a quantitative value into a qualitative triple,



17

the membership function of each class has to be chosen. Among the different forms of
membership functions that have been implemented in the SAPS platform, the bell-shaped
or Gaussian membership function is the one most commonly used. This function can be
mathematically expressed by the following equation

� �� �2exp iii VMemb mt -×-=

where V is the continuous variable to be fuzzified, �i is the algebraic mean between two
neighbouring landmarks, and �i is determined such that the membership function degrades
to a value of 0.5 at both of these landmarks.

In Figure 2-4, the process of recoding a value of temperature is shown. In this example,
the temperature has been discretised into five classes, 'cold', 'fresh', 'normal', 'warm', and
'hot'. A quantitative value of 23 degrees Centigrade is recoded into the qualitative class
'normal' with a fuzzy membership function value of 0.85, and a side function value of
'right', because the value is to the right of the maximum of the bell-shaped membership
function associated with the 'normal' class. In the current implementation of the FIR
methodology, classes are represented by integers rather than through linguistic values, and
the side is denoted by the set {-1,0,1}.

Figure 2-4 Example of recoding a quantitative temperature value.

Synthetic data are used to illustrate the fuzzification process from the raw (real-valued)
data matrix to the three qualitative data matrices. The process shown in Figure 2-5 is valid
for a one-input one-output system.
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u y
4.6070 2.5928
3.2156 3.9404
5.1715 4.3408
4.0183 9.9951
9.8650 3.0859
6.7010 6.1035
5.4171 4.5996
8.2924 -0.0439
2.7421 8.2031
5.4614 4.7266

Raw Data Matrix

Class Matrix Membership Matrix Side Matrix
2 1 0.9674 0.5951 -1 1
1 2 0.5454 0.9398 1 -1
2 2 0.9827 1.0000 1 1
2 3 0.7713 1.0000 -1 0
3 2 0.9999 0.5423 -1 -1
3 3 0.5546 0.5700 -1 -1
2 2 0.9302 0.9740 1 1
3 1 0.8605 1.0000 -1 1
1 3 0.6435 0.8876 1 -1
2 2 0.9174 0.9434 1 1

Figure 2-5 Fuzzification process example.

2.5 Qualitative Modelling Engine

At this point, each of the original real-valued variable trajectories has been recoded
individually, i.e., using different landmarks and possibly a different number of classes, into
a qualitative episodical behaviour, stored in the three qualitative data matrices, i.e., the
class, membership, and side matrices. In those matrices (of the same dimensions as the
original raw data matrix), each column represents one of the observed physical variables,
and each row represents one time point, i.e., one recorded state. These three matrices form
the qualitative data system that feeds the Qualitative Modelling Engine.

The goal of the Qualitative Modelling Engine (QME) is to find relationships among the
class values that are as deterministic as possible, trying to discover behavioural patterns
among the observations using the information stored in the class value matrix. Such a
qualitative relationship is encoded in the form of yet another matrix, called a mask in the
context of FIR. The optimal mask is found by a process of exhaustive search in the discrete
search space of the class values that will be explained shortly.

Fuzzification
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How can a model of the given system be identified from the episodical behaviour for
the purpose of predicting the future behaviour of any given variable?

In the previous section, a continuous trajectory behaviour has been recoded and is
available for modelling. The trajectory behaviour comprises a set of measured inputs and
outputs of the system that have been recorded. The trajectory behaviour can thus be formed
by concatenating, from the right, the set of input trajectories ui with the set of output
trajectories yi, as shown in the following example containing three inputs, u1, u2, and u3,
and two outputs y1, and y2.

Time u1 u2 u3 y1 y2
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where nrec is the number of records, and �t is the sampling interval.

In order to avoid possible ambiguity, it is defined that the terms 'input' and 'output',
when used in this dissertation without further qualifier, shall always refer to the input and
output physical variables of the system to be modelled by the qualitative reasoner.

To obtain a model it is desirable to find finite automata relations between the previously
recoded variables that are as deterministic as possible. If this can be achieved for each of
the output variables of the system, its future behaviour can be predicted by iterating
through the state transition matrices. The more deterministic these matrices are, the higher
is the probability that the future behaviour will be predicted correctly.

An example of a possible relation between qualitative variables is:

))(),(),(),(),2(()( 121132 tuttyttyttuttufty dddd ----=

where f denotes a qualitative relationship. It does not stand for any explicit formula relating
the input and output arguments, but only represents a generic causality relationship, that in
the case of the FIR methodology will be encoded in the form of a transition matrix in
which the probable input-output patterns are stored.

The QME returns such a qualitative relationship encoded in the form of a matrix called
a mask in the context of FIR.  The mask is the qualitative model of the given system, and it
represents the dynamic relationship among its qualitative variables. Masks have the same
number of columns as the data system to which they belong, and a certain number of rows,
called the depth of the mask, related to the number of sampling intervals that the mask
covers. Negative elements represent inputs of the qualitative relationship (the so-called m-
inputs in order to avoid ambiguity), whereas the single positive element represents the
mask output (the so-called m-output). Notice that the m-inputs can be either inputs or
outputs of the system, and they can represent different time instants. Zero elements of the
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mask denote irrelevant connections. The number of negative elements (corresponding to
the m-inputs) is the so-called mask complexity. The mask corresponding to the previously
introduced qualitative relationship is shown below.
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In the above example, there are five m-inputs and one m-output. The sequence in which
they are enumerated is unimportant, usually the m-inputs are numbered left to right and top
to bottom. The first m-input, let us call it i1, corresponds to the input variable u3 two
sampling intervals back in time, u3(t-2�t); the second m-input, i2, refers to the input
variable u1 one sampling interval in the past, u1(t-�t); the third m-input, i3, refers to the
output variable y1 delayed one sampling interval, y1(t-�t); the fourth m-input, i4,
corresponds to the output variable y2 one sampling interval in the past, y2(t-�t); the fifth m-
input, i5, corresponds to the input variable u1 at the current sampling interval, u1(t); and,
finally, the only m-output, o1, corresponds to the output variable y2 at the current sampling
interval, y2(t). This is the variable to be modelled. The given mask has a depth of three,
covering a time span of three sampling intervals of the system dynamics, and a complexity
of five.

It still has not been discussed how the depth of the mask is chosen. Experience has
shown that the following general rule is valid: the mask should cover the largest time
constant of the system that is to be captured in the qualitative model. If the physical
process that governs the underlying system is known, it is possible to have knowledge
about the shortest and the largest time constants of this system, denoted ts and tl

respectively. The former determines the sampling interval, �t, which cannot be larger than
one half of the smallest time constant.  The latter provides a minimum for the depth of the
mask, i.e., the minimum required time that the qualitative model should cover of the
physical system dynamics.

�t ����s/2 (depth-1)�t �  tl

If the physical system is available for experimentation, a Bode diagram can be obtained,
and the smallest and largest eigen-frequencies can be determined. From these frequencies,
the largest and the shortest time constants can be computed, which, in turn, specify the
depth of the mask and the sampling frequency. Yet, it is quite common, when dealing with
large-scale systems, that the modeller does not have access to the system for active
experimentation. All that may be available are already recorded variable trajectories. In
this case, the depth of the mask needs to be determined in different ways. Ideally, the
modeller would consult an expert of the studied system about how much time is needed to
cover the dynamics of the system, but this is not always possible. Another solution would
be to heuristically decide the depth of the mask, based on one’s own modelling experience.
A more systematic approach advocated in this thesis is to use the depth that maximises the
quality of the resulting qualitative model. This approach is explained in subsection 2.5.1
where an alternative algorithm to find a FIR model is proposed.
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At this point, the concept of a mask as used in the FIR methodology is clear. The mask
can be employed to flatten dynamic relationships into static ones. To this end, the mask is
shifted over the matrices that represent the recoded data system; in each mask position, the
selected m-inputs and m-output can be extracted from the data system, and can be written
next to each other in a static record. Every row of the obtained matrix represents a fuzzy
rule. Static records can then be sorted alphabetically and stored in the so-called input-
output matrix. Figure 2-6 illustrates this process.

u1 u2 u3 y1 y2

6dt 1 2 1 1 3
5dt 2 2 1 3 3 i1 i2 i3 i4 i5 o1 i1 i2 i3 i4 i5 o1

4dt 1 1 3 3 2 1 2 3 3 1 2 1 1 3 2 1 1
3dt 1 1 2 2 1 1 1 3 2 1 1 1 2 3 3 1 2
2dt 2 2 3 3 1 3 1 2 1 2 1 2 2 3 1 2 1
dt 2 1 2 3 1 2 2 3 1 2 1 3 1 2 1 2 1
0 1 2 1 3 3 3 2 3 1 1 3 3 2 3 1 1 3

Dynamic relations Static relations Sorted static relations
(Data system) (Behaviour System by means of an input-output matrix)

Figure 2-6 Obtaining static relations by use of a mask.

The obvious question now arises, how the qualitative model (i.e., the mask) of a given
system is determined in the FIR methodology? It has been outlined before that the mask
representing the most deterministic qualitative relation is to be found among all the
possible qualitative models. Thus, a search in the space of potential models must be
performed. To this end, two tools are still needed: an adequate search engine ensuring that
the most deterministic qualitative relationship is found, and a way to compare different
models quantitatively with respect to their merits.

In order to search the model space, FIR makes use of the concept of a mask candidate
matrix. A mask candidate matrix is an ensemble of all the possible masks. It contains -1
elements in the positions of the potential m-inputs, 0 elements to denote forbidden
connections, and a unique +1 element in the position of the m-output. FIR works with
multi-input single-output, MISO, systems. If a MIMO system is to be modelled with the
FIR methodology, one mask has to be computed for each of the system outputs. A good
candidate mask to obtain a predictive model for the output variable y2 of the previous five
variables example might be

maskCandidate
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A similar mask candidate matrix can be written for the other output variable. Notice that
a mask candidate matrix contains a unique m-output and that usually all connections are
allowed except for those that include the other outputs of the system at time t. This is done
to prevent possible algebraic loops of the type:
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It has been said that all possible connections are usually permitted. Doing so is only
feasible when dealing with low complexity systems, say, for instance, a ten variables
system, because of the exponential complexity of the optimal mask search algorithm. This
dissertation deals with application of the FIR modelling methodology to complex systems.
One way of reducing the search space is to disallow some of the possible connections in
the candidate mask matrix. For example, if it were a priori known that, in the above
system, the m-output y2(t) may not depend on the m-inputs u1(t-2�t), u2(t-�t) and u3(t),
additional zero elements could be introduced into the mask candidate matrix, thereby
reducing the total number of models to be computed. The mask candidate matrix, in the
supposed case, would have been
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How this knowledge about the system to be modelled can be gained will be tackled in
subsequent sections.

Once an appropriate mask candidate matrix has been formulated, it is provided to the
FIR mexfoptmask function, which performs an exhaustive search among all the possible
qualitative models expressed in the mask candidate matrix.

Each of the possible masks is compared to the others with respect to its potential merit.
The index used to compare the masks is an entropy-based measure called the quality of the
mask in the FIR context. The optimality of the mask is evaluated with respect to the
maximisation of its predictive power.

The Shannon entropy measure is used to determine the uncertainty associated with
predicting a particular output given any legal input state [Shannon and Weaver, 1978].
This entropy measure relative to one input state i, is calculated from the equation:

� � � �iopiopH
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i 2log�� �
"

where p(o|i) is the conditional probability of a certain m-output state o to occur, given an
m-input state i. The overall entropy of the mask is then computed as the sum:
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m HipH ��� �
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where p(i) is the probability of that m-input state to occur. These probabilities are usually
not known and must therefore be statistically estimated. This is where the membership
value of each recoded data point plays its role. The fuzzy membership associated with the
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value of a qualitative variable is a measure of confidence. It tells how much confidence
there is about the correctness of the assigned class value. When computing the input-output
matrix, a confidence value can be assigned to each row. This confidence value is computed
as the joint membership of all the variables that are associated with the given row of the
input-output matrix. Different fuzzy approaches vary in their interpretation of the joint
membership value.  In FIR, the joint membership of i membership functions is defined as
the smallest individual membership [Li and Cellier, 1990]:
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In contrast, some of the other available fuzzy approaches define the joint membership
value as the product of the individual membership values.

Joining different memberships can be interpreted as an intersection operator, which, in
the case of FIR, is a min-operator.  Consequently, FIR defines the confidence of a
particular observation as:
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obs MembminConf
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If the same input-output state is observed more than once, the confidence of the
correctness of this state should grow.  In FIR, the accumulated confidence of the ith input-
output state is defined as the sum of the confidences of its observations:

� � � �i
i

def

i
ii

iaccum ConfsumConfConfConf
"""

=== sup�

Again, different fuzzy techniques interpret the accumulated confidence differently.  In
some approaches, the accumulated confidence is defined as the largest of the individual
confidences.  The attentive reader may notice that the accumulated confidence, as defined
in FIR, can no longer be interpreted as a probability, since values larger than 1.0 may
result.

Accumulating confidences can be interpreted as a union operator, which, in the case of
FIR, is a sum-operator.  Consequently, FIR defines the confidence of an input-output state
as:

� � accum

def

stateoi ConfiConf =
- _

Among the different dialects of fuzzy logic, FIR is quite peculiar, as most of the
classical fuzzy approaches use either the min/max pair of operators, or the prod/sum pair of
operators.  The min/sum pair is rather unusual.  The reader may notice that the min-
operator leads to a larger intersection than the prod-operator.  Similarly, the sum-operator
leads to a larger union than the max-operator.  FIR therefore uses an optimistic approach to
assessing confidence values.  There is no deep theory behind this choice.  All combinations
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were tried out when the methodology was first implemented, and the min/sum pair of
operators gave consistently the best results.

With these confidence values, the conditional probabilities needed for the computation
of the mask entropy can be estimated. The conditional probability of a certain m-output
state o to occur, given an m-input state i, p(o|i), may be estimated dividing the confidence
of the given input-output state, denoted as Confi-o_state, by the sum of the confidence values
of all input-output states that share the same m-input state. Hence,
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where i denotes an m-input state vector, and o denotes the m-output state.

In order to compute the overall mask entropy, Hm, the probability of an m-input state to
occur, p(i),  needs to be estimated. In FIR, this probability is approximated by means of the
relative observation frequency for that m-input state:
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Once these probabilities have been estimated, a normalised overall entropy reduction
index, Hr, may be defined as:

max

m
r H

H
H �� 0.1

where Hmax is the highest possible entropy, obtained when all the observed states have the
same probability to occur. Zero entropy would be found for relationships that are totally
deterministic.

The overall entropy reduction index, Hr, is a real number in the range [0,1], where
higher values usually denote better predictive power. The best mask is defined as the one
with the highest Hr value among the set of possible masks.

The use of Shannon entropy as a confidence measure is a questionable undertaking on
theoretical grounds, since the Shannon entropy was derived only for probabilistic
measures. Other scientists prefer using other performance indices [Klir, 1989; Shafer,
1976] rather that Shannon entropy, which have been derived in the context of the particular
measure chosen. However, from a practical point of view, a large number of simulation
experiments have shown that the Shannon entropy index works satisfactorily also in the
context of fuzzy measures, when the confidences are re-normalised as conditional
probabilities, as shown above.

Yet, while Hr indeed optimises the determinism of the input-output relationships, there
is still a problem with using Hr as the sole measure of mask quality. The entropy index, Hr,
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depends on the complexity of the mask. As the mask complexity increases, the input-
output relations become more and more deterministic. The reason for this observation is
the following. With growing mask complexity, more and more possible m-input states
exist. Since the total number of observations, nrec, remains constant, the observation
frequencies of the observed m-input states will become smaller and smaller, until the
situation arises that each observed m-input state has been observed exactly once, whereas
many legal m-input states have never been observed at all. At this point, the model
becomes totally deterministic, and Hr assumes a value of 1. Yet, the predictiveness of such
a model will be very poor, as already the next predicted state will probably never have
been observed before, which invariably makes further predictions impossible.

One possible way to solve this problem is to introduce a weighting factor into the
quality measure that accounts for the number of times that a state has previously been
observed. It was mentioned earlier that, from a statistical point of view, every state should
be observed at least five times [Law and Kelton, 1990]. Thus, the following observation
ratio, Or, can be introduced as an additional contributor to the overall quality measure:
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where:

nleg = number of legal m-input states
n1x = number of m-input states observed only once
n2x = number of m-input states observed twice
n3x = number of m-input states observed thrice
n4x = number of m-input states observed four times
n5x = number of m-input states observed five or more times

When every m-input state has been observed at least five times, Or is equal to 1.
Conversely, if no m-input states have been observed at all, i.e., no data are available, Or is
equal to 0.

Finally, the overall quality of a mask can be defined as the product of its uncertainty
reduction measure, Hr, and its observation ratio, Or:

rrm OHQ ×=

In order to clarify this process and show how the probabilities and the intermediate
matrices involved in the computation of the quality of a possible mask are obtained, the
five variables example that has been utilised all throughout this section may serve for
illustration.

Assume that the following qualitative data model, expressed by means of a multi-valued
class matrix and a real-valued membership matrix, is obtained after the recoding process.
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5.0567.05033.0964.00.1

5049.06555.05037.05.00.1

5255.0777.05236.06186.00.1

5224.0622.06123.05172.00.1

6711.087.06045.05798.00.1

0.199.00.1552.00.1

999.088.09992.09904.00.1

9986.055.09761.09904.00.1

9709.065.09631.09905.00.1

5.072.05.09904.00.1

Membership

In the above example, it is assumed that the first variable (recoded in the first column)
was originally a binary variable, whereas the other four variables were initially real valued.
Consequently, the first variable was mapped (recoded) into the discrete states ‘1’ and ‘2’
directly, and its associated membership values are 1.0 throughout.

Suppose that the mask to be analysed is
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When flattening this mask through the class and membership matrices, the following
input-output matrix and confidence vector is obtained. The process followed is the one
shown in Figure 2-6.
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The basic behaviour of the input-output model can now be computed. It is defined as
the ordered set of all observed different states, together with a measure of accumulated
confidence of each state.
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Now, from the cumulative confidence vector, that is no longer a probability, the so-
called state transition matrix can be computed:
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It shows, to the left of the matrix, the m-input state vectors observed, and at the top, the
possible classes of the m-output; in the matrix itself, the confidence values of the
corresponding input-output states are recorded. In the example at hand, the state transition
matrix is highly deterministic due to the low number of observations considered.

The total input confidence is obtained by adding the individual confidences of all
occurrences of the same m-input state:
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In order to compute the quality of the considered mask, and hence, using the Shannon
entropy index, the accumulated confidences must be converted back to values that can be
interpreted as probabilities. For this reason the row sums of the state transition matrix are
normalised to 1.0, and so it is the total m-input confidence vector:

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

è

æ

=

0.00.00.1

0.00.00.1

0.00.00.1

0.10.00.0

4024.05976.00.0

'233'

'221'

'212'

'211'

'121'

'3''2''1'

st

outin

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

è

æ

=

2022.0

1091.0

0998.0

1022.0

4866.0

_ iconftot

With the information at hand it is now possible to compute the overall entropy of the
mask, Hm, and, afterwards, the entropy reduction index, Hr. Applying the formulae
presented throughout this section:

� � � �� �
� �� �
� �� �
� �� �
� �� � 4731.00.1log0.12022.0
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Finally, the value of the entropy reduction measure can be computed:

7015.0
585.1

4731.0
0.10.1 =-=-=

max

m
r H

H
H

where the maximum entropy is obtained when all legal states have equal probability, i.e.,
when all of the state transition matrix elements have the same value, which in the current
example would be 0.3333.

2.5.1 New algorithm to obtain  a qualitative model of a complex system

As explained in the previous sections, the modelling engine of FIR determines a so-
called optimal mask that indicates, which variables best explain any given output, and how
much time delay these variables should have relative to the chosen output.  Unfortunately,
any algorithm that can find the optimal mask is necessarily of exponential complexity, i.e.,
the number of masks to be visited during the search for the optimal mask grows
exponentially with the number of available input variables and with the allowed depth of
the mask.  For this reason, sub-optimal search algorithms are necessary for dealing with
large-scale systems.

Sub-optimal mask search strategies were studied before.  [Nebot and Jerez, 1997]
analyse several variants of hill-climbing algorithms.  Hill-climbing algorithms are of
polynomial complexity, but often may end up with a sub-optimal mask of significantly
inferior quality.  [Jerez and Nebot, 1997] analyse the use of genetic algorithms as sub-
optimal mask search strategies.  Unfortunately, genetic algorithms, while sometimes
working surprisingly well, cannot be guaranteed to converge in polynomial time.  [de
Albornoz, 1996] discusses a statistical technique based on cross-correlation functions.  His
algorithm converges in polynomial time, but only looks at linear relationships between
variables, and therefore often finds a sub-optimal mask of vastly inferior quality.

In this sub-section, a new approach for reducing the model search space of FIR is
proposed that can be viewed as a modification of the already existing hill-climbing
methods. The presented approach reduces the model search space by using the recoded
(qualitative) data proposing increasing depth mask candidates to FIR. This new algorithm
can deal with previously unmanageable large-scale MISO systems. The algorithm selects
those qualitative relations that are believed to contain most information about the system
under study. As with classical FIR, the method can be extended for MIMO systems by
applying it to each of the output variables of the system separately.

When using FIR to qualitatively model a system, the maximum depth and complexity of
the mask must be chosen. The maximum mask depth is defined as the number of rows of
the mask candidate matrix1.  It determines the largest time constant of the system to be
captured by the model.  However, since only measurement data are available to base the
model upon, it may not always be easy to estimate the largest relevant time constant of the

                                                          
1 In some earlier publications, the mask depth was defined as the number of time intervals covered by the
mask, which differs from the definition used here by 1.
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system.  The proposed sub-optimal search algorithm will automatically determine an
optimal value for the mask depth d.

The complexity, c, of the mask is the number of mask inputs, usually called m-inputs,
used in the model2. The mask complexity represents a compromise between the specificity
and the predictability of the model [Cellier, 1991a]. A low-complexity mask, i.e., a mask
with a small number of m-inputs, makes it easy to make predictions, yet the predictions
obtained in this way are not very specific. On the other hand, a complex model, if
applicable, can make highly specific predictions; however, there may not be enough
evidence gathered from the training data to justify such a prediction. Based on the previous
experiences gained with use of the FIR methodology [Cellier et al., 1996; de Albornoz,
1996], a maximum complexity between 4 and 5 offers a good specificity compromise.

The optimal mask search algorithm employed by FIR starts with evaluating the masks
of lowest complexity, then proceeds by incrementing the complexity, until the maximum
allowed mask complexity, m, has been reached.  Even in the exhaustive search algorithm,
the maximum complexity is usually specified in order to limit the search space.  This
compromise is justified, because the algorithm that computes the mask quality punishes
high mask complexity sufficiently to make it rather unlikely that a mask of complexity
higher than 5 would ever become the optimal mask.  Because of this limitation, even the
exhaustive search algorithm is strictly speaking of polynomial complexity.  The number of
masks to be visited is of the order of (n·d - 1)m, i.e., it is polynomial in the number of
inputs, n, and the mask depth, d.

The sub-optimal search algorithm proposed in this section reduces this number further
by reducing the number of ‘-1’ elements in the mask candidate matrix.  It starts with a
mask of depth d=1.  Since at this point in time, no information is known about the system
yet, all potential inputs are set to –1 in the mask candidate matrix. The optimal
(exhaustive) mask search algorithm is then employed to evaluate the quality of each mask
of complexity c �� �.  Masks are grouped in sets of equal complexity.  For each
complexity, c, the mask of highest quality is found.  Its value is Qbest.  The relative quality
of any one of these masks is defined as Qrel = Q / Qbest.  All masks with a relative quality
of Qrel > s are considered good masks3.  All good masks of a given complexity are then
investigated.  If a given input is being used by at least t % of all good masks of a given
complexity, it is considered a significant input4.

In the next step of the algorithm, all significant inputs of every complexity are marked
by ‘-1’ elements.  All insignificant inputs are marked by ‘0’ elements.  The depth, d, is
now increased by one.  Since nothing is known about the significance of inputs at the new
top row, all elements of that row are marked as ‘-1’ elements.  The exhaustive search is
now repeated with the new mask candidate matrix.

                                                          
2 In some earlier publications, the complexity of a mask was defined as the number of non-zero elements of
the mask, which differs from the definition used here by 1.
3 In the current implementation of the algorithm, s = 0.975.
4 In the current implementation of the algorithm, t = 10 %.
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For each mask candidate matrix, the optimal mask is determined.  Its quality is Qopt.  It
is the largest quality of all Qbest values of all considered complexities.  The algorithm
continues, until the Qopt value no longer increases when d is incremented.

The algorithm that has been described in this section, like all sub-optimal search
methods, is a heuristic search technique.  There is no guarantee that the truly optimal mask
will be found in this way.  However, the algorithm is based on much experience and a lot
of common sense.  A significant input indicates that this input is useful in explaining the
desired output.  It is very likely that the optimal mask makes use of significant inputs only,
or at least makes use primarily of significant inputs.  Hence it is very likely that the
algorithm will either find the optimal mask itself or at least one of insignificantly lower
quality.

The proposed termination criterion is also meaningful, but it may sometimes fail.  Some
systems exhibit cyclic behaviour.  For example, the water demand of the city of Barcelona
has a strong weekly cycle.  Cyclic behaviour can easily be detected by looking at the
autocorrelation of each observed variable.  If there is a strong cyclic behaviour, the mask
depth should be chosen to cover at least one full cycle, i.e., the termination criterion may
need to be modified accordingly, by specifying that the algorithm may not terminate until
the mask covers at least one full cycle.

The computational complexity of FIR is exponential, so it is faster to compute N simple
models than computing a unique complex model. The approach presented in this section
exploits this characteristic to reduce the model search space. Results of applying this
algorithm to a real system, a garbage incinerator process, can be found into Appendix II.1.
As shown in the mentioned appendix, the computation reduction achieved is significant,
and the presented approach is a good candidate to qualitatively model complex systems.

2.6 Qualitative simulation engine

Given a FIR qualitative model described by means of a mask and three behaviour
matrices (constituting a set of fuzzy rules) for every m-output variable to be modelled, the
task of the Qualitative Simulation Engine (QSE), is to forecast a value for each of the
chosen variables. Fuzzy simulation extrapolates the m-output variable across time using
the interpolated values of previous occurrences of similar behavioural patterns, i.e., class,
membership, and side values of the selected m-output are inferred from the class,
membership, and side values of the considered m-inputs. This inference process can be
performed efficiently, since the search for optimal inference rules is limited to a discrete
search space.

So, once a qualitative model, i.e., a mask, has been determined, it can be applied to the
given qualitative data model, as specified by the class, membership, and side matrices,
resulting in the class, membership, and side input-output matrices. The class input-output
matrix, cf. the process shown in Figure 2-6, contains functional relationships within single
rows that can be sorted in alphanumerical order. The membership and side input-output
matrices are sorted accordingly. This operation results in another three matrices called the
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behaviour matrices of the system. The class behaviour matrix is a finite state machine that
shows, for each m-input state, which m-output is most likely to be observed.

Predicting a new value from the gained knowledge is a straightforward procedure.
Figure 2-7 illustrates the fuzzy prediction algorithm.  The illustration assumes the same
mask that had been used in Figure 2-6.

The procedure is as follows. At each sampling instant, the mask is shifted one step
down along the class matrix of the fuzzified values of the variables. Classes of the m-
inputs are read out from the mask, and a so-called input state vector is obtained. Then the
class behaviour matrix is searched for coincidences on that input state vector and the
associated membership and side functions are compared with the ones of the input state
vector. The five nearest neighbours algorithm is then used to compute the class,
membership, and side values of the m-output. Each m-output is an averaged value from the
m-outputs associated with the five nearest neighbours.

Input state vector
u1 u2 u3 y1 y2 3 1 2 2 1
1 1 3 1 2
1 1 2 2 2 i1 i2 i3 i4 i5 o1

1 1 2 2 ? 1 1 3 2 1 1
2 1 2 3 ? 2 1 2 2 1 2
2 1 1 2 ? : : : : : :
2 3 1 2 ? 2 2 3 2 3 2
: : : : : 3 1 2 2 1 3

Figure 2-7 Fuzzy forecasting process

Hence the fuzzy forecasting process predicts an entire qualitative triple from which a
quantitative value can be regenerated. In the prediction process, the membership and side
functions of the new input state are compared with those of all previous recordings of the
same input state contained in the class behaviour matrix. For this purpose, a cheap
approximation of the regenerated continuous signal is computed, i.e., a normalisation
function, for every element of the new input state.

There exist different ways to compute this normalisation function for every input state.
In this dissertation, the method described in [Mugica, 1995] has been adopted. For a
thorough understanding of the process, let us recall the formula used in Section 2.4 where
the recoding process was explained:

� �� �2exp iii xMemb mt -×-=

where x is the continuous variable to be fuzzified, �i is the algebraic mean between two
neighbouring landmarks, and �i is determined such that the membership function degrades
to a value of 0.5 at both of these landmarks (see Figure 2-4).
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Each Gaussian is re-normalize separately to the range [0,1]. The process is illustrated in
Figure 2-8. The shape factor � needs to be determined such that the membership Membi is
reduced to 0.5 at the landmarks, thus:

0.5 = exp(-ô·(0.5) 2) i.e., ô = -4·ln(0.5)

Figure 2-8 Re-normalisation  of a Gaussian to compute a pseudo-regeneration value

Consequently:
Membi = exp(4·ln(0.5)·(p-ì) 2)

where x has been renamed p, denoting a pseudo-regeneration value instead of the true
value of the original real-valued variable (denoted by x). Solving this equation for p, we
find:

� � 5.0ln +××= iii membBsidep

where 2
1

)5.0ln4(
-

×=B .

The pseudo-regeneration uses different formulae depending on the particular class to be
re-normalized.  The above formula is valid for the interior class only.  The bottom and top
classes use different formulae, since the membership functions associated with these
classes are semi-Gaussians.  For the leftmost (bottom) class, the following formula results:

0.5

1
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� �ii membCp ln×=

and for the rightmost (top) class, the formula:

� �ii membCp ln1 ×-=

is found, where � � 2
1

5.0ln
-

=C . Irrespective of whether the original real-valued signal was
small or large, the corresponding pi value always lies in the interval [0.0, 1.0].

The pi values can be used to represent the relative magnitude of a particular qualitative
triple. The pi values corresponding to each of the variables that form an input state vector
are stored next to each other to form another vector:

� �jppp ,,, 21 L=p

where p is called the norm image of the input state vector. In the given example, j m-inputs
have been assumed to exist.

Norm images are also computed for each of the coincidences of the same input state
vector in the class behaviour matrix, so a set of pk vectors is obtained. Every pk vector is
slightly different, since for each recorded input, the class values are the same, but not their
membership and side function values.

Using the vector p of the input state vector and the pk vectors of the coincidence vectors,
the distances of these coincidence vectors from the current norm image are then computed
as the L2 norms of the difference vectors, i.e., a measure of distance between the actual
input pattern and the previously observed input states that match the current input pattern is
obtained:
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The five previous recordings with the smallest distances, dk, are identified and are used
to predict the new m-output state. These five input/output vectors are called the five
nearest neighbours.  It may happen that the experience database contains less than five
coincidence vectors.  In that case, all coincidence vectors form part of the set of nearest
neighbours, and the subsequently explained interpolation formulae are adjusted
accordingly.

Each of the nearest neighbours is weighted so its contribution to the estimation of the
new m-output state is a function of its proximity. There are two different weighting
functions depending on whether a zero distance neighbour is found or not.  If none of the
five nearest neighbours has a zero dk distance, the formula used in this dissertation is:
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whereas the modified formula:
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is used if one or more of the neighbours has a zero distance with respect to the input state
vector.

From these absolute weights5, relative weights are computed:
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. So the relative weights are real numbers in the range [0.0, 1.0] and

they always add up to 1.0. Now it is possible to compute the new m-output state values.
This is done using the following formula:

� �� +×= koutikoutkrelnewout pclassState w_

@

where classout k and pi out k are the class and the normalised membership values of each of
the five nearest neighbours. The class value of the new m-output is computed as the integer
part of the Stateout_new value:

)( _ newoutnewout StateIntegerClass =

 and the real part of the value is the normalised membership value:

newoutnewoutnewouti ClassStatep -= __

The membership and side values of the new m-output state can be obtained by means of
inverting the normalisation function.

                                                          
5 Different versions of FIR use different formulae for the computation of the absolute weights. In this
dissertation, the formula first introduced in [Pan, 1994] has been used. Two alternate formulae, one based on
a different distance measure, the other based on a similarity measure, have been analysed in [López, 1999].
@ Note that this formulation can lead to an error on the new state class prediction when the five nearest
neighbours are the same and have a membership value equal to 1.0. In this case, even a non-existing class
may be predicted. In this dissertation the error has been fixed, the class of the new predicted m-output state is
computed as 1)( _ -= newoutnewout StateIntegerClass
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2.6.1 Variable acceptability interval

 The new concept of variable acceptability interval or, envelopes, in short, is introduced
in this section in the context of the FIR methodology and will be used in Appendix II.2 to
detect structural changes in a simulated aircraft model. Apart from the predicted signal,
two more signals are computed so as to get for each forecast value an interval of
acceptability of the real trajectory value. So three trajectories are obtained, the predicted
one, and an upper and lower bound forming an acceptability interval into which the
predicted signal should fit as well as the real monitored signal if the obtained model is of
sufficiently high quality. The interval formed in this way has two primary applications:
fault detection and model validation.

To understand how the envelope can be obtained, the functioning of the forecasting
process in FIR needs to be revisited.  The QSE forecasts a value for each of the chosen
output variables. At each sampling instant, the mask is shifted one step forward along the
class matrix. Classes of the m-inputs are read out from the mask, and a so-called input state
vector is constructed. Then the class behaviour matrix is searched for coincidences on that
input state vector, and the associated membership and side functions of each record found
are compared with the ones of the input state vector. The five nearest neighbours are
identified and used to compute the class, membership, and side values of the output. Figure
2-7 gives a clear insight of this process. Each m-output is determined as an averaged value
from the m-outputs associated with the five nearest neighbours, where the weights are
determined based on the relative relevance (proximity or similarity) of each of the five
nearest training data to the testing data record in the m-input space [Cellier, 1991].

The idea behind the envelopes approach [Mirats and Huber, 1999; Escobet et al., 1999]
is to compute, for each predicted value, an interval of acceptability of the real trajectory
value. Up to now, a single (defuzzified) prediction was made at each point in time, which
had been computed as an average of the m-output values of the five nearest neighbours in
the training data base.  Yet, it is perfectly defendable to make predictions in different ways.
For example, it may make sense to consider the range of predictions made by the five
nearest neighbours as an envelope of acceptable predictions. The closer the five nearest
neighbours are to each other, i.e., the smaller the dispersion among them, the more narrow
that envelope will be.  On the other hand, the larger the dispersion among the five nearest
neighbours, the wider the envelope will become.  Let � and � be the minimum and
maximum predictions made by any of the five neighbours, the envelope will then be
defined by the range [�,�], a time-varying interval of forecasting acceptability associated
with the predicted output variable.  This information can be exploited for fault monitoring.
The SAPS forecasting engine now returns three separate values at each time step: the
predicted value of the m-output (a weighted average), the smallest acceptable prediction,
�, and the largest acceptable prediction, �.

Notice that the width of the interval [�,�] provides information about how good the
qualitative model is in terms of the dispersion among the five nearest neighbours (small
values indicate that the five neighbours are close to each other, whereas a large interval
denotes that the neighbours are sparse and that the prediction may possibly be inaccurate).
It also provides an indication about whether the training data set size has been large
enough.
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Yet there is a second source of inaccuracy to be considered, namely the inaccuracy
stemming from the reduced information contained in the selected mask.  This inaccuracy
can be estimated through the prediction error of a qualitative model. When using a FIR
qualitative model to predict a system, a measure of the model error can be obtained
comparing the forecast value with the real (fuzzified) value of the concerned variable. To
improve the model error, optimal and sub-optimal FIR models can be used at the same
time by means of parallel computation [López and Cellier, 1999]. If the mean square error,
mse, is used, the forecasting average error of the FIR qualitative model is obtained. Since
FIR operates on MISO systems, for a system with more than one output to be predicted, a
model for each of those outputs will have been computed and, hence, a different mse value
for each of the models will be found. Two approaches can be considered here in order to
compute the envelopes for each of the outputs to be predicted. Each different mse can be
used to calculate the envelopes, or the largest mse value can be used to calculate all the
envelopes, thereby taking the worst case.

 The mse value denotes the average inaccuracy of the weighted mean of the five nearest
neighbours.  To account for this second source of inaccuracy, the interval of forecasting
acceptability is widened to the range [�(1- 100Pmse * ), �(1+ 100Pmse * )], where P is the
predicted value of the output variable and mse is the forecasting average error of the
qualitative model.  This range is called the interval of variable acceptability.

Figure 2-9 Interval of variable acceptability.

Denoting:

A = �(1- 100Pmse * )

B = �(1+ 100Pmse * )

the interval [A,B] of variable acceptability is the one within which the forecast and real
values of the output trajectory will be considered to match. Successive values of A and B
along the time axis constitute the variable acceptability envelope (in short: envelope).
Whenever the real value leaves the variable acceptability envelope, an instantaneous error
of the concerned output variable can be flagged.

Two experiments have been carried out using this new approach, applied to fault
detection on a simulated aircraft model. Results are reported in Appendix II.1.

Predicted value (P)

Interval of
forecasting
acceptability

a

b

a (1- mse*P/100)

b (1+ mse*P/100)
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2.7 Defuzzification Module

The fourth and final module of the SAPS platform performs the reverse operation of the
fuzzification module, converting qualitative triples back to real-valued data. The predicted
qualitative triples are regenerated into quantitative estimates of the m-output variables. The
collection of these quantitative estimates may be used as real predicted trajectories of the
simulated variables.

In the fuzzy literature, this process is usually called defuzzification while in inductive
reasoning terminology the process is called regeneration. The side value makes it possible
to perform the defuzzification of the qualitative into quantitative values unambiguously
and without information loss. The side value is a particular feature of the FIR
methodology. Other types of fuzzifiers do not use the side information.  Instead they use
multiple recodings, associating with each real data point several qualitative pairs consisting
of a class value and its associated membership value. Then, multiple class values for the
predicted variable are forecast, and defuzzification is computed as an average of the
different obtained class values weighted by their associated membership functions values.
The approach of the side value used in the FIR methodology offers far better smoothing
than other techniques, which makes it possible to get away with a smaller number of
classes (three or five classes have been reported to be optimal for most FIR applications),
which in turn reduces the model search space.

2.8 Conclusions

The contributions made in the FIR methodology have allowed improving the modelling
time and the predictive capability of FIR. The sub-optimal mask computation algorithm is
applied to the garbage incinerator example (see Appendices I.3 and II.1). The concept of
variable acceptability interval has successfully been applied to improve fault detection
following a previous research effort of the same group. This later application is reported in
Appendix II.2.
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3 Variable selection

3.0 Abstract

From now on, the terms static and dynamic model, and static and dynamic relationship will
be used. Static is used in the sense that, for a variable trajectory (quantitative) or episode
(qualitative), no relations between delayed versions of the variables are considered, i.e.,
only the actual value of the variable is taken into account. Dynamic means that relations
between delayed trajectories or episodes shall be considered in the model. In this chapter,
different statistically based techniques are presented that search for static linear
relationships among variables, permitting to make a first reduction in the FIR model search
space. Dynamic relations will be introduced to the model in Chapter 5. Chapter 3 presents
a number of original contributions. Section 3.3 deals with the unreconstructed variance
method. In subsection 3.3.2, this methodology is reworked with the purpose of reaching a
new goal: a representative set of variables with a lower dimension than the original one is
derived. In subsection 3.4.3, the state transition matrix, introduced in the previous chapter
and used the entropy reduction index Hr and then the quality of a FIR model, is used to
define a measure of similarity (correlation) between variables.

3.1 Introduction

A difficult problem when trying to model the output or outputs of a system from its
inputs is knowing which subset of inputs to use in order to make a good prediction of the
output or outputs to model. All potential inputs are not always necessary, because some
may be redundant whereas others may not provide information that is useful for predicting
the behaviour of the output or outputs of the system being studied. The problem becomes
worse when dealing with large-scale systems, such as nuclear power plants, airplanes, or
water distribution systems, since the list of potential inputs may be formidable. The
modeller would like to have at his or her disposal tools with which to choose a
representative subset of variables, representative of the plant in the sense that it accounts
for all, or almost all, of the information that is contained in the system to be modelled and
that is necessary for the task at hand.  This is similar to the needs of a plant operator
responding to an observed anomaly to know, what screen(s) to look at, or what page(s) of
the emergency procedure manual to read.

In the line of the proposed objectives, this and the next two chapters deal with
techniques that lead to three kinds of results:

A. To determine a representative subset of variables with a lower dimension than
the system itself (an example could be sensitivity analysis).
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B. To determine (a) subset(s)/subsystem(s) of variables that (is) are most related
with a predetermined variable (such as one of the outputs of the system).

C. To determine (a) subset(s)/subsystem(s) of variables maximally related among
themselves.

Yet for didactic reasons, the contents of the aforementioned chapters have been
organised in accordance with the statistical approaches used and the conditions under
which the results are obtained.

A first approach for reducing the model search space of the FIR qualitative modelling
methodology is investigated with the aim of providing forecasts of trajectory behaviour of
measured variables for control purposes. In particular, the present chapter deals with the
problem of pre-selecting a set of candidate input variables and hence reducing the model
search space of FIR.  This is important since FIR, as stated in the previous chapter,
employs an algorithm of exponential computational complexity in the identification of the
best qualitative input/output model, and it therefore takes too much time, even on a big
computer, to evaluate all possible qualitative models of a system.

Throughout the chapter, different procedures are applied to perform variable selection.
At this point only static linear relations between variables are investigated. From now on,
as outlined in the abstract section, the terms static and dynamic model, and static and
dynamic relationship will be used. Static is used in the sense that, for a variable trajectory
(quantitative) or episode (qualitative), no relations between delayed versions of the
variables are considered, i.e., only the variable values at the actual time are taken into
account. Dynamic means that relations between delayed trajectories or episodes shall be
considered in the model. A static model is one that models the considered output from a
subset of inputs and possibly other system outputs at time delay zero, i.e., the same time
instant for which the model is trying to predict a new value. A dynamic model takes also
into consideration past values of all variables involved in the modelling process including
past values of the variable to be predicted1.

Many approaches for the selection of variables have been presented in the literature
using classical and Bayesian statistical techniques as well as other mathematical modelling
tools such as neural networks. Principal Components Analysis (PCA) has been studied
with this aim in [Jolliffe 1972; Jollife 1973] applied to artificial as well as real data sets. In
[Allen, 1971], variable selection is performed using the mean square error of prediction of
different possible regression models. In [Allen, 1974], variable selection is presented as a
particular case of data augmentation. In [Mansfield et al. 1977], a regression model based
on principal components is suggested, in which one variable is temporarily eliminated at a
time computing the least square error for each of these regression models.  The model
offering the smallest least square error is then selected, and the corresponding variable is

                                                     
1 Strictly speaking, both static and dynamic models make use of ‘past data.’ If the output to be modelled is,
say, y1(t), to be predicted from variables x1(t), x2(t), x3(t), and y2(t), it is evident that the observations on
which the model is based reflect the dynamic behaviour of the real system, i.e., take their own past into
account.  The difference between the two types of models is that a static model will generate y1(t) = f(x1(t),
x2(t), x3(t), y2(t)), whereas a dynamic model will also use delayed versions of the variables, e.g., y1(t) = f(x1(t),
x1(t-1), x1(t-4), x2(t), x3(t), x3(t-2), y1(t-1), y2(t-3)).



40

permanently discarded. The procedure is repeated until the smallest least square error
becomes too big.  The admissible procedures to perform variable selection when a
regression model is used are analysed and discussed in [Kempthorne, 1984; Kabaila 1997].
[Keller and Bonvin, 1992] present a method to select input and output variables using the
principle of internal dominance proposed by Moore [Moore, 1981]. Different regression
methods are compared in the task of selecting variables in [Riitta et al., 1994; Lindgren et
al., 1995; Hoeting et al., 1996; McShane et al., 1997; Adams and Allen, 1998]. A
geometric method for selecting variables in a geometric model based on simple arcs and
lines is given in [Widmann and Sheppard, 1995]. [Chipman et al. 1997; Hoeting and
Ibrahim 1998] used other approaches such as Bayesian and heuristic techniques with the
purpose of selecting variables of a system. The canonical correlation analysis is explained
and used to select variables in a study of [Al-Kandari and Jolliffe, 1997]. Also, work has
been reported in this area using neural networks [Lisboa and Mehri-Dehnavi, 1996; Seixas
et al., 1996; Muñoz and Czernichow, 1998].

Different PCA based methods are discussed in Section 3.2 together with a brief
introduction of the concepts behind PCA. This description supports the understanding of
the method of unreconstructed variance offered in the subsequent section.

The method of the unreconstructed variance for the best reconstruction, described in
[Dunia and Qin, 1998a] in a different context, is one of the methods presented for the
purpose of selecting, which input variables to use to model a given system output. This
technique is discussed in detail in Section 3.3, where a brief review of its mathematical
foundations is provided.  In Subsection 3.3.2, the operation of the technique is
demonstrated by means of the steam generator example offered in Appendix I.2.

Section 3.4 discusses the use of statistical methods based on correlation coefficients.  In
this section, two correlation indices to select the variables that are most correlated with the
output to be modelled are introduced. A simple linear correlation coefficient is explained in
Subsection 3.4.1, whereas multiple correlation coefficients are treated in Subsection 3.4.2.
In Subsection 3.4.3, a similarity, Sm, index is introduced as a way to measure the amount of
common information, i.e., the correlation, between two variables. Although it is based on
informational measures that are quite different from the correlation indices presented in the
previous subsections, it is included in Section 3.4, because it offers an estimation of the
similarity between variables.

The different methodologies presented throughout this chapter are provided together
with the results of applying them to examples, in some cases the steam generator process
explained in Appendix I.2, in others the garbage incinerator system introduced in
Appendix I.3. Later on in Chapter 5, these results are combined with the FIR methodology
so as to obtain different static qualitative models of the system. Each one of the methods
advocated in this section proposes a set of selected variables from which a static candidate
mask can be proposed and a static FIR model can be obtained. Of course, obtaining static
qualitative models is not meaningful because none of them will be good enough to model a
dynamic system. Yet, there exist good reasons for doing this, as the main objective of this
dissertation is to reduce the model search space of the FIR methodology, and, in order to
achieve this goal, the research must be done following some methods. In this dissertation,
linear static relations between variables are explored first, then non-linear relations are
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tackled, and finally, time is added, i.e., dynamic relations are being investigated. In each
stage, the reduction on the computational cost achieved when computing a FIR model is
reported so as to assess that the employed methods lead to good results in front of the
proposed objectives.

3.2 PCA based methods

A principal component analysis is concerned with explaining the variance-covariance
structure of a set of variables through a few linear combinations of these variables. Its
general objectives are data reduction and interpretation.

In order to reproduce the total system variability in a k variables system, k components
are required. However, often much of this variability can be accounted for by a small
number l (l < k) of the principal components. If so, there is almost as much information in
the l components as there is in the original k variables. Thus, the original data set,
consisting of n measurements on k variables, is reduced to a new data set consisting of n
measurements on l principal components. Note that although data reduction is achieved,
i.e., the same amount of information can be represented in a lower dimensional space, no
variable selection is performed because every principal component is formed as a linear
combination of all the variables. This also makes it difficult to physically interpret and
intuitively understand the meaning of the principal components, a very important issue
when dealing with the kind of systems that this research effort investigates.

As stated before, the principal components are particular linear combinations of the k
variables x1, x2, …, xk. From a geometric point of view, these linear combinations represent
the selection of a new coordinate system obtained by rotating the original coordinate axes
formed by the variables x1, x2, …, xk. The newly formed axes represent the directions with
maximum variability.

The principal components depend only on the covariance matrix � . Consider the
following linear combinations:

kk XaXaXalc 1212111
'
11 ����� �Xa Eq. 3-1

kk XaXaXalc 2222121
'
22 ����� �Xa Eq. 3-2

� �

kkkkkkk XaXaXalc ����� �2211
' Xa Eq. 3-3

Hence:

iaa �� ')( iilcVar Eq. 3-4

The principal components are those uncorrelated linear combinations lc1, lc2, …, lck, whose
variances are as large as possible in Eq. 3-4. The covariance must be estimated from the



42

available data. For variables xi, xj; i, j = 1…k, the sample covariance is computed as the
average product of the deviations from their respective means:

� � � �� �jmj

n

m
imiijji xxxx

n
sxxCov ���� �

=1

1
, Eq. 3-5

The first principal component is the linear combination with maximum variance, i.e., it
maximises iaa �� ')( iilcVar . The constraint 11

'
1 �aa  is imposed in order to eliminate the

indeterminacy encountered when a1 is multiplied by any constant.

The second principal component is the linear combination Xa '
2  that maximises

Var( Xa '
2 ) subject to 12

'
2 �aa  and Cov( Xa '

i , Xa '
2 ) = 0. These formulas are used to obtain

all principal components so that in the ith step, the ith principal component is the linear
combination Xa '

i  that maximises Var( Xa '
i ) subject to 1' �iiaa  and Cov( Xa '

i , Xa '
p ) = 0

for l < i.

If the variables of the system are standardised to zero mean and unit standard variance
using

� �

ii

ii
i

X
Z

�

��
� Eq. 3-6

where �i and �ii are the mean and the standard deviation of the ith variable, the principal
components may also be obtained from the sample correlation matrix of the data. The
standardisation of the variables is not required mathematically but is almost required from
a practical point of view. Consider for example a system from which variables with very
different nature, such as temperature, flow, and pressure have been measured. Their scales
may be orders of magnitude different, so their variance will not account for the same in the
analysis. To correct this problem and allow all the variables to be weighted equally in the
covariance analysis, the variables are standardised. In this case, the principal components
can be obtained by means of a Singular Value Decomposition (SVD) as the eigenvectors of
the correlation matrix of X. In general, the principal components obtained from the
correlation matrix are different than those obtained from the covariance matrix. A full
description of how the principal component analysis is performed can be found in
[Jackson, 1991] or  [Johnson and Wichern, 1992].

A difficult parameter to establish when performing a principal component analysis is
the number of principal components to keep. There exist several methods advocated in the
literature such as the unreconstructed variance method [Dunia, 1997], reviewed for other
purposes in the next section, or the cross-validation method [Wold, 1978; Osten, 1988]. A
comparative study between different methods for this purpose is given in [Valle et al.,
1999].

A wide range of publications has been written about the use and theory of the principal
component analysis. For instance, in [Jeffers, 1967], two examples of application, on the
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physical properties of pitprops and the variation of alate adelges, are presented. A good
survey of the principal components method can be found in [Glen et al., 1989a], while in
[Glen et al., 1989b], a software package to perform this kind of analysis is explained. In
[D’Ambra and Lauro, 1992], a PCA analysis of the dependent variable images on the
subspace generated by the explicative data set is performed; the method is called
constrained principal component analysis (CPCA). Another view of the CPCA method
under the name of redundancy analysis is offered in [Israels, 1992]. Although the principal
component analysis was not designed to perform variable selection, it can be used for this
purpose. Some PCA based variable selection methods are given in [Jollife 1972; Jollife
1973]. In [Krzanowski, 1987], the principal components method is used to select an
appropriate subset of variables that conveys the main features of the whole data set. In
[Tanaka and Yuichi, 1997], the principal components are computed on a subset of
variables but in a way that represents all the system variables.

In the remainder of this section, two PCA based variable selection methods are applied
to the example of the steam generator presented in the Appendix I.2. Later on, in chapter 5,
the obtained results will be compared with other variable selection techniques by means of
the quality loss in the computed FIR models and the computation reduction achieved with
each used variable selection method. The two methods presented are based on [Beale et al.,
1967; Jollife 1972].

If the classification given in the introduction section of this chapter is followed, both of
the methods, as will be seen, lie in option A. The first method eliminates the variables with
highest coefficients of the least important principal components. The second retains the
variables with highest coefficients of the most important principal components. Both
methods try to eliminate those variables that, theoretically, primarily account for noise in
the system, and in this sense, the two methods obtain a representative subset of variables of
the given system. The potential drawbacks of both of these methods is that they are based
entirely on linear analysis, and therefore, they may identify non-linear relations among
variables as system noise, thereby suggesting a non-optimal subset of variables to represent
the underlying system.

The first method will be referred to as the PCA_A method. In this method, l variables, l
< k, are to be retained, whereas the remaining k-l variables of the system are to be rejected.
The value of the parameter l may be chosen in various ways; for example, it could be equal
to the number of eigenvalues of the correlation matrix greater than some predefined value
�0, or it could be equal to the number of principal components necessary to account for
more than some given proportion, �0, of the total variation.

A principal component analysis is performed on all of the original k variables, and the
eigenvalues of the data correlation matrix are inspected. Then, one variable is associated
with each one of the last k-l components (the eigenvectors themselves) and rejected. The
way for doing so is, beginning with the principal component corresponding to the smallest
eigenvalue, to discard the variable with the largest coefficient in this component that has
not been eliminated before. The algorithm proceeds in this way with all the chosen
principal components. According to the references, 0.7 is a good value for �0.
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Two versions of this method have been implemented. The first of them, named
PCA_A1, uses the factors of the principal components as they are, i.e., preserving their
sign. When applying the method to the steam generator system (see Appendix I.2 for a
complete description of this example), it is found that variables 3 and 8 must be retained,
whereas variables 4, 1, 7, 2, 5, and 6 (in this order) are to be discarded.

The second version, referred to as PCA_A2, makes use of the absolute value of the
coefficients. When applying this method to the boiler data, it is found that variables 2 and 3
must be retained, whereas variables 4, 1, 7, 6, 5, 8 (in this order) must be discarded.

Both versions of the method find variable 3 to be important for the analysis of the
system. The PCA_A1 method finds also variable 8; the PCA_A2 method uses also variable
2, whilst variable 8 is the last variable to be discarded in this second version of the method.
For this system, the best subset of variables to model the output, see the Appendix I.2, has
been found to be the subset formed by variables 2, 3, and 8. Notice that the PCA_A2
method would have found the optimal set of variables to be retained if only a slightly
smaller value of �0 would have been chosen.

The second method based on principal component analysis is the one named PCA_B.
The basic idea is the same as in the previous case, but operates in backward mode. Again, a
principal component analysis is performed on all the variables. This time, those principal
components with eigenvalues larger than �0 are taken into account. Then, beginning with
the vector corresponding to the largest eigenvalue, the variable with the largest coefficient
in this principal component that has not been selected already before is preserved. The
method proceeds with all the principal components chosen in this way. As stated in the
references, 0.7 is also a good value for �0 in this case.

Once more, the results of two versions of this algorithm are presented using the steam
generator system. The first of them, named PCA_B1, uses the coefficients of the principal
components as they are, preserving their sign. When applying the method to the boiler
data, it is found that variables 1 and 2 (in order of acceptance) are to be retained, while the
remaining variables are to be discarded.

The second version of this method, named PCA_B2, uses the absolute value of the
coefficients. When applying this method to the boiler data, it is found that variables 1 and 3
must be retained with all other variables being discarded.

In this case, the obtained subsets of variables are different from the subset that has been
found to be the best for this system (see Appendix I.2), consisting of variables 2, 3, and 8.
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3.3 Unreconstructed varianc e methodology

The method described in this section was developed at the University of Texas in
Austin [Dunia and Qin, 1998b; Dunia, 1997] where the author was kindly invited for a
three months period during the fall of 1998. The underlying methodology was previously
used to select the number of principal components to keep in a PCA model, based on the
best reconstruction of the variables. The purpose of the PCA model was to identify faulty
sensors in a system, and to reconstruct sensor data values from measurements of sensors
attached to other signals, exploiting the redundancy inherent in multiple sensor data
streams. The methodology had not been designed as a tool for finding an input/output
model of a system, though the two tasks are evidently related to each other.

3.3.1 Original method

The original method has a twofold objective: to determine the number of principal
components to keep in a PCA analysis [Qin and Dunia, 1998], and to reconstruct faulty
sensors measurements as well as identify the system fault from correct data of the system
[Dunia et al., 1996]. If variable selection is intended with this methodology, two subsets of
variables are obtained. The first one corresponds to a subset of variables with a high linear
correlation among them. The second subset is formed by variables with low linear
correlation with the first set. Following the classification advocated in the introduction of
the chapter, a subset of variables maximally related among each other is obtained, thus the
method belongs to the C option.

When a PCA model is used to reconstruct missing or faulty values, the reconstruction
error is a function of the number of intervening principal components. In order to
determine the number of principal components to be used, the methodology proposes
making use of the variance that the model cannot reconstruct; that is, it uses the variance of
the reconstruction error.

Let us show some of the mathematical foundations underpinning the methodology for
fault identification by variance reconstruction that in turn lead to a method for determining
the number of principal components to keep in a PCA analysis. A full description of the
method can be found in [Dunia, 1997]. The approach discussed in those papers makes use
of a normal process model to decompose the sample vector into two parts:

xxx ~ˆ �� Eq. 3-7

where x � 	m represents a normalised, zero mean and unit variance, sample vector of m
sensors. The vectors x̂ and x~  are the modelled and residual portions of x, respectively.
Consider there are n samples for each sensor and that a data matrix X � 	n´m is formed. By
either the NIPALS algorithm [Wold et al., 1987], or a singular value decomposition
algorithm, the data matrix can be decomposed into score and loading matrices, T and P,
whose columns are the right singular vectors of X. Hence, principal component analysis is
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used to calculate the projection of a particular sample vector onto the principal component
subspace,

x̂  = P t  =  P PT x  =  C x Eq. 3-8

where P � 	m´ l is the loading matrix, and t � 	l is the score vector. The number of
retained principal components is l 
 1. The matrix C = PPT represents the projection on the
l-dimensional principal component subspace, so x̂  represents an l-dimensional vector. The
residual x~  lies in the residual subspace of m-l dimensions

x~  = (I(m) - C) x Eq. 3-9

The matrices C and I-C are idem-potent. The PCA model partitions the measurement
space (	m) into two orthogonal subspaces: the principal component subspace, which
includes data variations in agreement with the measurement correlations, and the residual
subspace, in which variations due to model errors and noise in the data, i.e., variation not
explained by the model, are included. Hence the vector x is orthogonally decomposed into
vectors x̂ and x~  by projecting onto the previously named subspaces.

This decomposition can be used to detect faults in a sensor and then reconstruct the
faulty sensor data by means of data from other sensors in the system. The PCA analysis
captures the measurement correlations of historical data when the process is in a normal
operation. The violation of the variable correlations indicates an unusual situation. In a
normal operation state, the vector x has a certain projection onto the principal component
subspace, x̂ , as well as onto the residual subspace, x~ . When a correlation breakdown in
the current sample x occurs, its projection onto the residual subspace increases, so x~

reaches unusually large values compared to those obtained during normal conditions.

The sample vector for normal operating conditions is denoted by x* (unknown when a
fault has occurred). In the presence of a process fault �i, the sample vector can be
represented as:

x = x* + f xi Eq. 3-10

where �i is a normalised fault direction vector, and the scalar f represents the magnitude of
the fault. Here, only faults described by a single direction are considered. For example �i

T

= [0 1 0 ... 0] represents a failure of the second sensor in the sample vector x. Research has
been done to extend the presented methodology to a more general approach based on
multidimensional fault descriptions [Dunia and Qin, 1997a,b; Dunia and Qin 1998c].

The fault direction vector can be projected onto the two subspaces:

xi = i�̂ + i�
~ Eq. 3-11

where fault �j has been assumed to occur. The normal vector operation x*, can be
reconstructed from x along all possible fault directions. For each assumed fault �j, the
sample x is moved back in the direction �i, such that its distance to the principal component
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subspace is minimised. Hence for each assumed j-fault, a reconstructed vector xj is
obtained moving x in the �j direction,

xj = x -  fj xj Eq. 3-12

where fj is an estimate for f. When the assumed fault coincides with the actual fault (i.e.,
�j=�i) the reconstructed vector is expected to be close to x*. The distance between xj and
the principal component subspace is given by the magnitude of the square prediction error
(SPE) for the reconstructed vector. For the true fault, the greatest reduction in the SPE is
expected. The fault magnitude fj is obtained by minimising SPEj along the direction �j.

SPEj º || x~ ||2 = || 0~~~
jjfx �� ||2 Eq. 3-13
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where jjj ff �
~~ � .

Now, the notion of unreconstructed variance [Dunia et al., 1996] can be presented. The
notion of unreconstructed variance is based on the estimation of sensor i from all other
sensor data. Of course, when computing this reconstructed value, there is always a portion
of the faulty sensor information that cannot be reconstructed from the other sensor data.
This portion is the unreconstructed variance of the sensor. If the assumed fault is the actual
fault in Equation 3.1-8, that is, j = i, the following expression is obtained:
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The addition of equations 3.3.1-4 and 3.3.1-6 illustrates the effect of fi-f when comparing xi

with x*
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The unreconstructed variance, ui, in the direction �i represents the variance of the
projection x*-xi on the fault direction �i
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where R~ denotes the covariance matrix of the normal residual. The condition of
minimising ui with respect to l



48

i
l

umin Eq. 3-18

can be used to determine the number of principal components and the set of sensors to
keep for process monitoring. The unreconstructed variance can be projected onto the two
subspaces

iii uuu ~ˆ �� Eq. 3-19

An illustration of how to minimise ui with respect to l and m is given in [Dunia and Qin,
1998]. The authors have shown that iu~  is monotonically decreasing with respect to l, and

iû tends to infinity as l tends to m. Figure 3-1 illustrates this effect.

Equation 3.1-12 only provides the optimal l for �i. If the set of all possible faults, ��j�, is
considered, the objective function is

)ˆ~( uquqminuqmin TT

l

T

l
�� Eq. 3-20

where u represents the vector of unreconstructed variances for all �i � ��j�, and q is a
weighting vector with positive entries.

Figure 3-1 Unreconstructed variance as the summation of iû  and iu~ .

Summarising, the methodology of unreconstructed variance has been developed to
accomplish two main actions:

- Determine the number of principal components to keep when performing a
principal component analysis.

- Reconstruct faulty sensors (or missing data) by using data from other sensors,
whose signals are linearly correlated with the missing signal.
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3.3.2 Reducing the FIR mask search space using the unreconstructed variance
methodology

The unreconstructed variance methodology has been reworked with the aim of
simplifying the FIR model search space. As mentioned in the previous section, if variable
selection is intended with this methodology, two subsets of variables are obtained. The first
one corresponds to a subset of variables with a high linear correlation among them. The
second subset is formed by variables that exhibit low linear correlation with the first set.
Following the classification advocated in the introduction of the chapter, a subset of
variables maximally related among each other is obtained, thus placing the method in the C
option.

In this section, the functioning of the unreconstructed variance methodology is
demonstrated by means of an industrial steam generator with the aim of selecting a subset
of variables. A full description of the steam generator process as well as the variables that
FIR selects2 to qualitatively model the NOx gas emission using a static model are provided
in Appendix I.2.

The first step of the methodology requires the analysis of the available measurement
data so as to discover what variables are well reconstructed from which others. For the
PCA analysis to be applicable, the data must first be normalised to zero mean and unit
variance.  Given a system with k variables, every variable is reconstructed from the other
k-1 variables, and its unreconstructed variance is computed as a function of the number of
retained principal components. The results for the case of the boiler data are tabulated in
Table 3-I, where, in order to later obtain a fair comparison between different variable
selection techniques, only the training data (85% of the total available data) were used in
the analysis.

Var \  # PC 1 PC 2 PCs 3 PCs 4 PCs 5 PCs 6 PCs 7 PCs 8 PCs
x1 0.0128 0.0128 0.0047 0.0036 0.0033 0.0025 0.0024 0.0062
x2 0.0190 0.0118 0.0078 0.0074 0.0063 0.0047 0.0036 0.0107
x3 0.9957 18.2113 1.4427 1.0621 1.0522 1.0407 0.8821 6.8374
x4 0.0109 0.0079 0.0050 0.0038 0.0036 0.0032 0.0019 0.0019
x5 0.0305 0.0304 0.0286 0.0283 0.0551 0.0538 0.0357 0.0508
x6 0.0338 0.0335 0.0229 0.0189 0.0190 0.2857 0.2253 0.3810
x7 0.0307 0.0306 0.0121 0.0120 0.0105 0.0107 0.0266 0.0278
x8 0.0688 0.0676 0.0630 0.2825 0.2822 1.7516 4.7219 14.4137
Y 0.5763 0.5768 2.2764 2.2718 2.2282 2.2844 12.3508 147.682

Table 3-I Unreconstructed variance table for the boiler example.

The method then proceeds by summing up the unreconstructed variances of each
column. The number of principal components for which the sum of the unreconstructed
variances is a minimum is determined. For the boiler data, the obtained results are shown
in Table 3-II.

                                                     
2 In this case, as described in the Appendix I.2, FIR works with the full set of the system variables and
generates qualitative models of depth 1.
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1.7786 18.9827 3.8633 3.6903 3.6603 5.4373 18.2503 169.412

Table 3-II Total unreconstructed variance for each number of principal components.

It turns out that, in this system, only one principal component needs to be retained. The
method then throws out those variables that exhibit, for the optimal number of retained
principal components, unreconstructed variances that are bigger than the value that would
be obtained if the measurement data for those variables were replaced by their mean
values. Due to normalisation, the theoretical threshold value is 1. In practice, it may be
better to throw out variables with an unreconstructed variance above 0.8 or 0.9.

For the boiler example and looking at the 1 PC column of Table 3-I, it can be seen that
variable 3 needs to be thrown out. This means that any variable of the system, except for
variable 3, can be reconstructed using a PCA model with a single PC that is made up from
the information available through all variables except for variable 3, which should be
ignored.

3.3.2.1 Modelling NOx output using the unreconstructed variance method

It can be seen from Table 3-I that reconstructing the NOx level (listed as variable 9 in
the system description given in the Appendix I.2, and referenced as Y in the previous
section) from the other variables is considerably more difficult than reconstructing any of
the other signals with the exception of variable 3. Yet, the approach suggests that it is
meaningful to construct a PCA model for variable 9, using a single principal component
made up from variables 1, 2, 4, 5, 6, 7, and 8.

The results of the analysis are shown in Figure 3-2. The continuous line shows the
measurement data of the NOx variable during the validation period. The dashed line shows
the predictions made by the PCA model made up from the training data using a single
principal component composed from the variables 1, 2, 4, 5, 6, 7, and 8.  The Medium
Square Error (MSE) value obtained from this model for the training data period is 0.7073,
and for the validation period, it is 0.9979. The reader may notice that the prediction is
indeed better for the training data than for the validation data.

The MSE value is considerably higher than in the case of the FIR model (presented in
Appendix I.2).  The reason is that the PCA model makes no attempt at replicating the high
frequency oscillations exhibited by the real data. The model has clearly low-pass
characteristics. Hence, even if the prediction looks good to the naked eye, the distances
between the prediction and the real data are large most of the time, and consequently, the
MSE value cannot be made small.
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Figure 3-2 Prediction given by a PCA model using input variables 1, 2, 4, 5, 6, 7, and 8.

3.3.2.2 Modelling NOx output using an alternative set of variables

Did the reconstructed variance analysis do a good job at deciding which variables to
retain in the PCA analysis?  To answer this question, a second PCA model was made, also
consisting of a single principal component, but made using the variables 2, 3, and 8, as
proposed by FIR (see Appendix I.2).  The results of this prediction are shown in Figure
3-3. This time, the MSE values are 0.5703 for the training data set, and 0.8306 for the
validation data set.

Comparing Figure 3-2 and Figure 3-3 by naked eye, the predictions look kind of
similar. Yet, the MSE values of the prediction of Figure 3-3 are considerably lower, i.e.,
FIR did a better job than the reconstructed variance analysis at deciding which variables
need to be retained in order to obtain a decent prediction, even if the prediction is to be
made by a PCA model.

In this second experiment the variables taken into account are the one discarded by the
unreconstructed variance method, i.e., variable 3, and two of the variables this method
retains, variables 2 and 8. It makes some sense that the results obtained in this second
experiment were better than in the first one, where only the variables that the
unreconstructed variance method selected were used. The group selected by the
uncorrelated variance method consists of a set of highly linearly correlated variables, so
containing similar, and therefore redundant, information about the studied system. On the
other hand, variables discarded by the method at hand are not strongly correlated with the
previous set of variables, thus containing different and possibly still useful information
about the system. It seems plausible that an acceptable group of variables to model a
system might consist of the discarded variables of the unreconstructed variance method
and a subset of the variables that are kept to construct the PCA model. Unfortunately, the
method does not provide information as to which of these variables ought to be retained.
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A meaningful selection can be achieved, for instance, by means of FIR, as done in the
presented example. A method that selects this kind of subset of variables would lie,
following the classification advocated in the introduction of this chapter, in the A option,
i.e., determining a representative subset of variables.

Figure 3-3 NOx output predicted using a PCA model built from variables 2, 3, and 8.

3.4 Correlation based metho ds

An obvious way to perform variable selection is to use the index of the Pearson
correlation, i.e., to look for the strength of the relation between two or more variables.
Correlation analysis is frequently being applied in a number of different fields such as
biology [Kim et al., 1998], astronomy [Aoki and Yoshida, 1999], economy [Tanaka et al.,
1999] and control [Gloss, 1998]. This list is meant to be representative rather than
inclusive, as the technique is so widely used that an enumeration of all application areas
would be quite meaningless.

This section is structured as follows: first some of the mathematical underpinnings of
correlation analysis are stated; subsequently, variable selection using correlation analysis is
demonstrated by means of the garbage incinerator example (Appendix I.3). This is
explained in subsection 3.4.1. Then, in Subsection 3.4.2, a variable selection for the boiler
system (Appendix I.2) is accomplished using multiple correlation coefficients. Finally in
Subsection 3.4.3, a similarity index is introduced as a way to measure the amount of
common information, i.e., the true (non-linear) correlation between two variables.
Although it is based on informational measures far different from the basis of the
correlation indices presented in previous subsections, it is included in this section because
it gives an estimation of the correlation between variables.
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3.4.1 Simple correlation matr ix

The sample correlation coefficient, or Pearson’s product-moment correlation coefficient
[Bhattacharyya and Johnson, 1977], offers a measure of the linear association between two
variables. This measure does not depend on the units of measurement. It can be interpreted
as a standardised version of the sample covariance (Eq. 3-5), where the product of the
square roots of the sample variances provides the standardisation. The sample correlation
coefficient for the pair <xi, xj> is computed as,
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The signs of the sample correlation and covariance are the same, but the first one is
normally easier to understand because its magnitude is bounded. The most important
properties of the correlation coefficient are:

- The value of the correlation coefficient, rij, is bounded between –1 and 1.

- It measures the strength of the linear relation between the two involved
variables. When rij � 0, the two variables are not strongly linearly related.
Otherwise, the sign of rij indicates the direction of the association; rij > 0
implies a tendency for one value of the pair to increase when the other value
increases; and rij < 0 implies a tendency for one value of the pair to decrease
when the other value decreases.

- The value rij remains unchanged if the measurements of the ith and jth variables
are changed to zim = a·xim + b, and zjm = c·xjm + d, m = 1 … n, respectively,
provided that the multipliers a and c have the same sign.

Both correlation and covariance provide measures of linear association, or, in other
words, association along a line. When using this kind of indices to study the possible
relation between variables, the researcher should remember that non-linear relations may
exist between variables that are not revealed by these descriptive statistics. Also, these
statistics are very sensitive to outlier observations that may indicate a strong relation when
in fact no or only little relation exists. In spite of these shortcomings, the correlation index
is frequently used, as it is very easy to compute and may offer a first insight about which
variables are related to what others when the structure of a system is being investigated.

Although no single variable contains complete information about the system under
study, the variables describing a complex system are often correlated to each other. Here, a
first variable selection stage of a large-scale system is presented by means of a simple
correlation analysis. In this first approach, time it is not considered, i.e., only instantaneous
values of variables are taken into account. The correlation analysis presented in this sub-
section forms part of a complete methodology of decomposing a complex systems into
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subsystems that will be fully described in due course, but that can be used in a stand-alone
mode for eliminating the redundant variables of a system.

The proposed method is based on the simple idea to identify those variables that contain
the same information about the system and drop them out of the subsequent analysis so
simplifying a posterior model computation. A correlation analysis of the input data is
performed, obtaining the data correlation matrix, so variables with a strong linear
relationship can be detected. Afterwards, those variables with an absolute linear correlation
coefficient equal or higher than an absolute upper limit r0 are identified. The variables in
these groups contain almost the same information about the studied process and hence, any
one of them may be chosen to represent such information. In order to select this variable,
different approaches can be used: choose it randomly, take the variable with the highest
correlation with the output to be modelled, or select the one that maximises the measure T
of energy transference [Conant, 1981]. Here, the criterion of choosing those variables
maximising the variation coefficient has been adopted because it is easy to compute from
statistics already computed for the correlation analysis3. This index is a normalisation of
each variance variable using its mean as normalisation factor. For variable xi this index can
be computed as:
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The analysis has been applied to the data of the garbage incinerator system presented in
Appendix I.2. The sample correlation matrix for the 19 input variables of the garbage
incinerator system is given in Table 3-IV. For this example the value chosen for r0 has
been r0 = 0.75 which has been considered high enough to denote whether a linear
correlation exists or not. In the table, values equal or higher than r0 are marked in bold.

When looking for variables with correlation equal or higher than r0, the following sets
are found:

X1 X9

X3 X14

X8 X15 X16 X17

Table 3-III. Groups of linearly correlated variables

                                                     
3 In order to select a unique variable from each cluster, alternative algorithms could be used, such as choosing
the variable that exhibits the strongest correlation with the output. However the selection algorithm is not
very critical and any reasonable algorithm will usually lead to similarly good FIR predictions.
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19

X1 1,00
X2 0,12 1,00
X3 0,01 0,18 1,00
X4 0,05 0,25 0,05 1,00
X5 0,01 0,02 0,06 0,01 1,00
X6 0,41 0,51 0,21 0,39 0,13 1,00
X7 0,08 0,55 0,31 0,34 0,22 0,71 1,00
X8 0,08 0,07 0,17 0,26 0,28 0,46 0,59 1,00
X9 0,88 0,27 0,08 0,06 0,00 0,18 0,29 0,07 1,00
X10 0,15 0,16 0,48 0,09 0,08 0,16 0,32 0,26 0,20 1,00
X11 0,01 0,54 0,02 0,31 0,07 0,46 0,54 0,31 0,17 0,49 1,00
X12 0,38 0,44 0,12 0,53 0,02 0,40 0,66 0,51 0,53 0,28 0,51 1,00
X13 0,13 0,62 0,26 0,37 0,14 0,56 0,72 0,53 0,32 0,37 0,70 0,69 1,00
X14 0,00 0,27 0,83 0,31 0,19 0,47 0,60 0,59 0,11 0,52 0,27 0,43 0,53 1,00
X15 0,04 0,17 0,29 0,43 0,22 0,46 0,55 0,77 0,09 0,02 0,19 0,53 0,54 0,66 1,00
X16 0,09 0,13 0,09 0,53 0,25 0,43 0,57 0,78 0,10 0,14 0,37 0,60 0,51 0,44 0,75 1,00
X17 0,08 0,16 0,08 0,54 0,25 0,46 0,60 0,77 0,11 0,14 0,38 0,62 0,51 0,44 0,75 0,99 1,00
X18 0,13 0,00 0,01 0,10 0,07 0,06 0,03 0,04 0,09 0,02 0,01 0,02 0,02 0,03 0,02 0,03 0,03 1,00
X19 0,04 0,00 0,03 0,03 0,25 0,17 0,20 0,35 0,02 0,09 0,11 0,06 0,23 0,20 0,28 0,27 0,24 0,04 1,00

Table 3-IV Input data correlation matrix for the garbage incinerator system.

Now, one variable can be chosen from each group to represent the system information
each of the groups has about the system. As explained before, the variable with the highest
variation coefficient is selected. Table 3-V lists the mentioned coefficients for each of the
input variables.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

0.068 0.1097 0.0747 0.0026 0.1974 0.1058 0.0149 0.1417 0.1663 0.1790
X11 X12 X13 X14 X15 X16 X17 X18 X19

0.1032 0.0885 0.0703 0.1501 0.1122 0.0831 0.0894 0.1475 0.0093

Table 3-V. Variation coefficient for the garbage incinerator input variables.

So the selected variables are X9, X14 and X8 respectively, and variables X1, X3, X15, X16,
X17, are discarded in this first step of the analysis. Notice that with a very simple, fast
computation method, 5 variables have been already discarded because they have been
found to be redundant in order to model this system. In the garbage incinerator system, 5
variables out of 19 represent 26% of the total number of variables. Therefore, whichever
modelling methodology is used in a posterior stage, a substantial saving of computation
time is achieved by means of using a cheap straightforward variable selection technique as
the one advocated in this section. Obviously, some limitations exist with this method. The
two main shortcomings of it are that time, i.e., dynamic relations, and non-linear relations
have not been considered. Yet, as this variable selection forms part of a complete
modelling methodology to be explained later on, those problems can be later tackled and
fixed. For now, only simple variable selection while searching for linear static relations
was intended.
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3.4.2 Multiple correlation coe fficients

In order to provide a descriptive measure of the global model fit in a multiple regression
analysis, the quotient between the explained variability by the regression and the total
variability is used. This measure is called the coefficient of determination or coefficient of
multiple correlation, R. The R coefficient is bounded, |R| < 1, and R = 1 indicates that
there exists an exact functional relation between the response variable and the explanatory
variables. It represents the simple correlation coefficient between the original response
variable and the modelled or estimated one.

Given a system with k input variables, there is an obvious way of choosing a subset p,
p<k, of independent4 variables when a multiple regression is performed. This is to search
for those p variables that maximise the multiple correlation of the dependent variable with
the p independent variables, i.e., that minimise the residual mean square. To obtain the
optimal subset of variables with this method, all the possible regressions with all the
possible subsets of input variables must be computed. This is an arduous task,
unmanageable when dealing with a complex system. A method for computing all the
possible regressions in an efficient manner is presented in [Schatzoff, 1968]. In [Allen,
1971], this kind of regression based variable selection is performed. However, this is not
the index used in this subsection to perform variable selection, because, at this point, no
multiple regression has been performed yet.

An extension of the mentioned regression analysis is to retain the subset of variables
that maximises the minimum multiple correlation between the p selected variables and any
of the k-p variables. Here, another meaning of the term multiple correlation is used also
advocated in the literature, which is to consider simultaneously the simple correlation
coefficient that a variable has with more than one variable at a time. This method was
suggested by [Beale et al., 1967], and it is capable to find the best possible subset of p
variables, with the limitation that only linear relations are being searched, but it is very
slow.

In this same line, other method that uses multiple correlation, reported in [Jollife, 1972],
is a stepwise method that is faster than the one used in [Schatzoff, 1968] but that does not
necessarily find the best subset of variables. This method is labelled MC for posterior
reference in this thesis. The method works as follows: Suppose there are k variables. The
first discarded variable is the one that exhibits the maximum multiple correlation with the
remaining k-1 variables. The multiple correlation of a variable is calculated, in this case, as
the sum of the individual sample correlation between that variable and any other variable.
The algorithm is repeated with the remaining variables. At each stage with q variables
remaining, the variable having the largest multiple correlation with the other q-1 variables
is the next to be discarded. The algorithm terminates when the maximum multiple
correlation between variables has decreased to a value below R0.

                                                     
4 In the statistics context, the terms independent, explanatory or regressor variable are used for the input
variables, i.e., those variables from which the output can be explained or modelled. The terms explained,
response, regressed or dependent variable are used for the variable to be modelled, that is, the one considered
as the system output.
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This algorithm was applied to the steam generator system explained in Appendix I.2.
Results are summarised in Table 3-VI. Variables 2 and 3 were retained by the method,
while variables 1, 7, 6, 5, 4, and 8 were discarded (variables are listed in order of
discarding).

Retained variables x2, x3

Discarded Variables
(in discarding order)

x1, x7, x6, x5, x4, x8

Table 3-VI Retained and discarded variables for the boiler process when multiple correlation
coefficients are used as variable selection method.

The value used for R0 was R0 = 0.15, in accordance with the recommendation offered in
[Jollife, 1972].  Notice that the last variable to be discarded was variable 8.  Hence with a
value of R0 only slightly larger, this method would have found the same set of variables to
be retained as FIR (variables 2, 3 and 8, as stated in the Appendix I.2).

With this method, a subset of variables maximally related among each other and
minimally related with the set of discarded variables is obtained. The method would lie in
the C option mentioned in the introduction to this chapter.

3.4.3  Variable similarity mea sure derived from the state transition matrix

In this subsection, a similarity measure is introduced as a way to measure the amount of
common information, i.e., the linear as well as non-linear correlation, between two
variables from a qualitative point of view. Although it is based on informational measures
far different from the basis of the correlation indices presented in previous subsections, it is
included here because it provides an estimate of the similarity between two variables.

A part of the FIR conceptual bases explained in Chapter 2, and specifically in Section
2.4, are recalled here in order to clarify the measure of correlation proposed in this sub-
section. The reader may remember the basic operation of FIR:

- Quantitative data are obtained from the system in the form of real-valued
variable trajectories.

- Each variable is expressed qualitatively by means of a three-component vector
consisting of class, membership and side. This process is called fuzzification.
In Figure 2-5, a schematic view of this process is shown.

- A mask is proposed. The class behaviour matrix and a cumulative confidence
vector are obtained. Figure 2-6 shows the process of obtaining the class
behaviour matrix. The matrices shown below give a generic example with three
classes being used.
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- From the behaviour matrix and the cumulative confidence vector the state
transition matrix is computed. The rows of this matrix represent the observed
input states; its columns stand for the observed output states; and its elements
denote the confidence an output state has for a given observed input state.
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- The total input confidence vector is then computed as a column vector where
each element represents the sum of the corresponding row in the state transition
matrix. Then, the state transition matrix and the total input confidence vector
are normalised.
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- From these normalised matrices, the overall Shannon entropy of the mask, Hm,
can be computed, from which, after having computed the maximum possible
overall entropy Hmax, the entropy reduction index Hr can be obtained.
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- Finally the observation ratio Or is computed and the quality of the studied
mask obtained.

So the quality index of the mask is based on two quantities, Hr, representing an
uncertainty reduction ratio, and Or representing an observation ratio. Now we concentrate
our interest on the Hr index. It is based on the Shannon entropy formula applied to the
elements of the so-called state transition matrix and the total input confidence vector. The
Shannon entropy measure is used to determine the uncertainty associated with predicting a
particular output given any legal input state, [Shannon and Weaver, 1978]. It can be
computed from the equation:
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where p(o|i) is the conditional probability of a certain m-output state o to occur, given an
m-input state i. The overall entropy of the proposed FIR mask is then computed as the
sum:

� � i
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m HipH ��� �
"

where p(i) is the probability of that m-input state to occur. The normalised overall entropy
reduction index, Hr, is then computed as

max

m
r H

H
H �� 0.1

where Hmax is the highest possible entropy, obtained when all observed states have the
same probability to occur.

In the FIR context, the p(o|i) probabilities are estimated by the elements of the state
transition matrix, while the p(i) probabilities are estimated by the elements of the total
input confidence vector. In other words, each element of the state transition matrix
provides a measure of confidence in an output state given an input state vector. If this
matrix is generated for two variables, using a mask of the type (-1, +1), a measure of
causality between the pair of variables can be derived from the corresponding Hr index,
because it measures the degree of determinism associated with the cross-states of those two
variables. In this case, the state transition matrix is of size n 	 m, where n and m are the
number of classes with which each of the two considered variables have been recoded
(fuzzified). When two variables have a trend to be equal, their state transition matrix has a
trend to be a diagonal matrix (with diagonal elements tending to 1 and all other elements
tending to 0), i.e., less cross-states are found. On the other hand, when variables are
uncorrelated, the state transition matrix has a trend to be a matrix where all elements have
the same value (this value is the inverse of the number of classes used to recode the
variable considered as m-output in the underlying analysis).

As an example, consider two variables that have been recoded using three classes. The
state transition matrix obtained when a mask (-1, +1) is used may have up to nine possible
different values corresponding to the nine possible states {(1,1), (1,2), (1,3), (2,1), (2,2),
(2,3), (3,1), (3,2), (3,3)}:
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The more similar the variables are, the higher is the probability for states {(1,1), (2,2),
(3,3)} to be large, and the higher is the probability for all other states to be small. After
normalisation, the state transition matrix thus tends to an identity matrix.  On the other
hand, if the two variables are totally uncorrelated, the confidences in each output state
given a certain input state are about the same, and consequently, the elements in each row
of the state transition matrix tend to the same value, in the given example, 1/3.
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When the overall entropy, Hm, is computed, the function x·log2(x) has to be evaluated.
The form of this function is depicted in Figure 3-4 where the function variable x assumes
values in the interval [0,1].

Figure 3-4 The x·log2(x) function when x e [0,1].

The Hm value represents the Shannon entropy of the system. The entropy is related to
the magnitude of uncertainty of the system, i.e., it indicates how deterministic or stochastic
the system under investigation is. The bigger the absolute entropy, the larger is the
uncertainty associated with the output state for any given input state.  With decreasing
values of the absolute entropy, the input/output relationship becomes more and more
deterministic. The Hr value is computed from the Hm entropy.  It offers a measure of
causality associated with input/output relations of the system under study. Hr is a quality
measure.  It is bounded between 0.0 and 1.0.  Values close to 1.0 indicate highly
deterministic input/output relations, whereas values close to 0.0 indicate that the
uncertainty associated with the output state given any input state is almost complete, i.e.,
every legal value of the output state is almost equally likely to occur.

Let us now look at the case of a system with exactly one input and one output.  The Hr

index measures the degree of determinism of the input/output relationship.  Yet for the task
at hand, a stronger relationship is required.  Two variables are causally related if the state
transition matrix has one value close to 1.0 and all other values close to 0.0 in each row of
its state transition matrix.  Two variables are similar if and only if the values close to 1.0
are found along the main diagonal of the state transition matrix.  Thus, two similar
variables are always causally related, but two causally related variables are not necessarily
similar.  The Hr index is an indicator of the strength of the causal relationship between two
variables, but not necessarily an indicator of their similarity.

A measure of dissimilarity, Dm, can indirectly be obtained by computing a distance
between the state transition matrix and the identity matrix.  This could be achieved by
computing any norm of the difference between these two matrices:

Dm = norm(I-STM)
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that is, the dissimilarity index Dm is the norm of the difference between the desired identity
matrix and the true state transition matrix. The maximum dissimilarity is found for a totally
deterministic system with one value equal to 1.0 in any non-diagonal element of each row
of its state transition matrix.  For example, if each of the two variables is recoded into three
classes, possible state transition matrices that lead to maximum dissimilarity are:
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The maximum dissimilarity index, Dmax, is computed using the same formula presented
when computing Dm with any of the special STM's presented above. It has not been
investigated in this dissertation, which matrix norm is most suitable for the task at hand.
However, it is important to select a norm that computes the same value of dissimilarity for
each of the state transition matrices above, and any other completely causal state transition
matrix with 0 elements along the diagonal, and that the value obtained for these state
transition matrices is indeed maximized.  The most commonly used matrix norm, the L2

norm, does not satisfy this requirement.  The dissimilarity index for STM1 and STM2

above is different when using this norm.  A good choice may be the Frobenius norm,
which is defined as:

normF = sqrt(sum(diag(X'*X)))

as it indeed satisfies the requirements set above.  For the example at hand,

Dmax = normF  [ I(3) - STMi ] = 2.4495

From the dissimilarity index, a similarity index, Sm, can be computed and used as a
similarity measure between two variables.

max

m
m D

D
S �� 0.1

Sm is a number in the range [0,1], where larger values denote higher similarity, i.e., Sm

satisfies all the requirements to qualify as a quality measure.

Given a k variable system, a matrix of similarity indices between all pairs of variables
can be obtained so as to study the common information that these variables have. This
matrix is not necessarily a symmetric matrix as was the case for the sample correlation
matrix obtained in previous sections. This is because the Sm index is computed using a FIR
mask of the type (-1, +1). The obtained Sm index for the pair of variables (xi, xj) will not
necessarily be the same as the one obtained for the pair (xj, xi), because in one case, xi

assumes the role of an m-input and xj the role of the m-output, and vice-versa. Hence the
criterion to decide if a variable is similar to another or not should be different to the one
applied to the sample correlation matrix in Subsection 3.4.1.



62

This similarity index has been used to search for the possible redundant variables in the
garbage incinerator example given in the Appendix I.3. The obtained matrix using the
weighted state transition matrix is shown in Table 3-VII. As expected, the similarity matrix
obtained is not symmetrical, as was the case with the correlation matrix obtained before
(see Table 3-IV).

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19

X1 1,00 0.32 0.41 0.40 0.30 0.34 0.45 0.43 0.76 0.51 0.42 0.53 0.40 0.39 0.31 0.41 0.41 0.51 0.45

X2 0,32 1,00 0.45 0.43 0.36 0.44 0.52 0.37 0.41 0.56 0.63 0.52 0.62 0.36 0.33 0.33 0.34 0.38 0.43

X3 0,41 0,44 1,00 0.66 0.35 0.41 0.48 0.46 0.32 0.43 0.54 0.50 0.54 0.53 0.48 0.45 0.43 0.41 0.42

X4 0,41 0,32 0,66 1,00 0.35 0.38 0.47 0.49 0.36 0.32 0.54 0.50 0.53 0.53 0.50 0.48 0.47 0.40 0.43

X5 0,30 0,45 0,46 0,45 1,00 0.31 0.38 0.32 0.28 0.43 0.37 0.35 0.29 0.43 0.36 0.35 0.36 0.42 0.36

X6 0,34 0,55 0,55 0,52 0,39 1,00 0.50 0.49 0.33 0.34 0.55 0.49 0.52 0.58 0.46 0.47 0.47 0.42 0.49

X7 0,44 0,37 0,54 0,50 0,37 0,30 1,00 0.46 0.44 0.46 0.63 0.32 0.62 0.47 0.42 0.43 0.49 0.41 0.50

X8 0,43 0,44 0,46 0,49 0,31 0,37 0,29 1,00 0.38 0.35 0.48 0.35 0.61 0.62 0.65 0.63 0.61 0.39 0.51

X9 0,76 0,61 0,37 0,36 0,29 0,36 0,37 0.38 1,00 0.39 0.42 0.49 0.48 0.33 0.31 0.32 0.35 0.41 0.46

X10 0,53 0,32 0,47 0,49 0,28 0,44 0,47 0,51 0,53 1,00 0.61 0.34 0.41 0.46 0.43 0.34 0.43 0.42 0.42

X11 0,42 0,53 0,54 0,52 0,37 0,29 0,39 0,46 0,44 0,47 1,00 0.44 0.75 0.39 0.48 0.47 0.42 0.34 0.32

X12 0,54 0,61 0,53 0,53 0,29 0,39 0,48 0,44 0,49 0,34 0,59 1,00 0.61 0.47 0.44 0.44 0.45 0.46 0.44

X13 0,40 0,37 0,48 0,50 0,33 0,53 0,42 0,62 0,42 0,40 0,75 0,61 1,00 0.35 0.42 0.40 0.42 0.42 0.32

X14 0,39 0,33 0,45 0,48 0,47 0,29 0,42 0,68 0,33 0,35 0,46 0,44 0,46 1,00 0.73 0.68 0.67 0.48 0.44

X15 0.37 0.33 0.42 0.47 0.46 0.38 0.43 0.65 0.31 0.33 0.45 0.44 0.48 0.73 1.00 0.74 0.70 0.38 0.53

X16 0.40 0.36 0.42 0.40 0.39 0.47 0.46 0.65 0.33 0.44 0.43 0.43 0.44 0.68 0.74 1.00 0.72 0.47 0.44

X17 0.41 0.39 0.41 0.42 0.36 0.37 0.44 0.44 0.35 0.33 0.42 0.45 0.41 0.67 0.70 0.72 1.00 0.31 0.32

X18 0.51 0.43 0.42 0.39 0.32 0.42 0.41 0.51 0.47 0.41 0.45 0.43 0.43 0.41 0.31 0.44 0.44 1.00 0.42

X19 0.45 0.42 0.39 0.37 0.34 0.42 0.39 0.43 0.43 0.42 0.41 0.43 0.46 0.53 0.43 0.49 0.47 0.45 1.00

Table 3-VII Input data similarity matrix for the garbage incinerator system.

The procedure to obtain this matrix is as follows: a mask of the type (-1, +1) is proposed
to FIR for each pair of variables and its Sm index obtained. In the case at hand, there exist
19 input variables, so each time the proposed mask is a 19 element, vector in which there is
a single –1 element in position i, i = 1 ... 19, and a +1 element in the j position, j = 1 … 19,
i 
 j.

Once the similarity matrix is obtained, a criterion has to be defined that identifies sets of
similar variables in an unambiguous fashion. In this dissertation, those pairs with a
similarity index higher than:

Sm_lim = 0.75·(Sm_max - Sm_min) +  Sm_min

are identified as being significantly similar. The auto-similarity indices of the variables
with themselves, i.e., the diagonal elements of the similarity matrix are excluded from this
computation. For the incinerator system Sm_lim = 0.6476. The pairs with Sm 
 Sm_lim are
marked in bold in Table 3-VII. The subgroups of similar variables formed in this way are
listed in Table 3-VIII.
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X1 X9

X3 X4

X11 X13

X8 X14 X15 X16 X17

Table 3-VIII Subgroups of similar variables.

These results can be compared with those showed in Table 3-III. The obtained
subgroups are very similar, although small differences exist between the two sets of
subgroups.

3.5 Conclusions

A first FIR model search space reduction has been achieved by selecting a subset of
input variables for time delay 0, i.e., only static relations have been taken into account.
The purpose was to select a subset of input variables that best explain a given output
variable, i.e., from which the output variable can best be reconstructed.

Different known statistical techniques have been compared for their aptitude to identify
sets of related variables.  Most of these techniques are based on either principal component
analysis or correlation-based metrics.  It was found that successful methods select input
variables that are strongly correlated with the selected output variable yet are weakly
correlated among each other.  Most of the competitive approaches first identify sets of
potential input variables that are strongly correlated among each other, then select one or
more variables from each of these sets to reconstruct the output, by throwing out those
variables from each set that are least correlated with the selected output variable.

In Subsection 3.4.3, a variable similarity measure is derived from the state transition
matrix. The Sm index determines the similarity between pairs of variables, so subsets of
variables of a system that are similar can be constructed. The primary advantage of this
method over its traditional statistical counterparts lies in the fact that the state transition
matrix recognizes similarity between variables irrespective of the precise nature of
similarity, i.e., it does not rely on linearity.  In this way, a better variable reduction can be
achieved, because potential input variables that are strongly related to each other in a non-
linear way can be recognized as belonging to the same cluster, although their linear
correlation may be quite small, such that approaches that are based on linear analysis
would place them in different clusters.
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4 Subsystem determination

4.0 Abstract

Chapter 3 was devoted to the selection of a set of variables that can best be used to model
(reconstruct) a given output variable, whereby only static relations were analysed.  Yet
even after reducing the set of variables in this fashion, the number of remaining variables
may still be formidable for large-scale systems.  The present chapter aims at tackling this
problem by discovering substructures within the whole set of the system variables.  Hence
whereas the previous chapter dealt with the problem of model reduction by means of
reducing the set of variables to be considered for modelling, the present chapter focuses on
model structuring as a means to subdividing the overall modelling task into subtasks that
are hopefully easier to handle.  Section 4.2 analyses this problem from a system-theoretic
perspective, presenting the Reconstruction Analysis methodology, an informational
approach to the problem of decomposing a large-scale system into subsystems. Section 4.3
uses FIR to find a possible structure of a system. Section 4.4 deals with a singular-value
decomposition method to form subsets/subsystems of linearly related variables. Section 4.5
proposes a procedure to study the possible non-linear relations between a given subset of
variables and any additional variable. Again the study performed in this chapter only
considers static relations.

4.1 Introduction

Up to this point, the dissertation looked at variable selection techniques with the aim of
identifying a subset of variables that are best suited for reconstructing (modelling) a given
output variable.  These methods can be classified as model reduction techniques as their
primary purpose is to aid the modeller in simplifying the resulting model of the output
variable.  These techniques serve as a precursor to the FIR modelling engine.  Their aim is
to reduce the FIR search space to make the FIR methodology better suited for dealing with
large-scale systems.  Yet even if the number of variables can be reduced dramatically by
variable selection techniques, the set of remaining variables to be considered by the FIR
modelling engine may still be far too large to allow the engine to converge within
reasonable computation time.

Therefore a second precursor to FIR modelling should be performed: using those
variables that are retained in the previously performed variable selection step for modelling
the system, subsets of variables need to be found that are maximally related among each
other.  These subsets can then be used to determine sub-models of the overall model.  The
techniques pertaining to this second step, to be discussed in the present chapter, can be
classified as model structuring techniques.  The corresponding algorithms are often
referred to in the literature as structure identification algorithms [Klir, 1985].
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When analysing the variable selection approaches of Chapter 3, it turned out that
several of the most successful approaches decomposed this problem into two stages.  In a
first stage, they determined groups of variables that are strongly correlated among each
other, and in a second stage, they chose representative subsets of variables from each of
these groups to model the selected output variable.  The techniques discussed in Chapter 4
are related to the first of the two subtasks of Chapter 3, i.e., there is inevitably a certain
methodological overlap between these two chapters.  Most of the clustering techniques
discussed in Chapter 3 could also serve for the task at hand in Chapter 4, and vice-versa.
Yet the focus of the two chapters is distinct: whereas Chapter 3 concentrated on model
reduction, Chapter 4 aims at model structuring.

A question arises here: why is it desirable to represent a complex system by means of a
collection of subsystems?

Several arguments may be stated that support the concept of subdividing systems into
sets of interconnected subsystems. First, it may be either impractical or impossible to
measure all the variables relevant to the modelling task at equal frequencies.  Some
variables may change over time much more slowly than others, and consequently, should
be sampled (measured) less frequently.   If the data are collected in groups of related
variables forming part of the same subsystem1, it is only necessary to measure each of
those groups consistently and coherently.  Second, even if all of the data were sampled at
equal frequencies, storing all of them in a single table is impractical, because all
combinations of states would then need to be recorded, even for variables that are almost
uncorrelated with one another.  The superset of all legal states of the overall system is
much larger than the concatenation of sets of all legal states of all subsystems. Another
important reason is related to the easiness of the process design when a subsystem
decomposition of the complex system is available. This is a very common feature used in
engineering design.  The subdivision of the overall system into parts enables the designer
to find solutions for each of these parts separately then connect the individual designs to
obtain a (usually sub-optimal) design for the overall system.

In the context of FIR, the primary motivation for subdividing a system into parts is
similar to the last argument mentioned above.  Let us assume that data are available to
capture the dynamics of the entire system to be modelled.  A subdivision of the system into
parts (a subdivision of the set of variables into subsets) simplifies the FIR modelling task,
and often makes an otherwise intractable problem tractable.  Once the FIR models of the
subsystems have been found, the behaviour of the overall system can be reconstructed
from the individual behaviours of its parts.

This idea has its roots in the fact that, given a k-variables system, the cost of computing
a unique k-variable model is much higher than computing a set of p models of jp < k
variables. Different authors have tackled this problem in the past from an information
systems point of view.  In [Ashby, 1964], given a system with a large number of variables,
a first analysis is performed that helps to reduce the number of relations between variables
by means of imposing restrictions. Then in [Ashby, 1965], it is stated that complex systems
are unmanageable and should be decomposed into subsystems. Also in this work, some of
                                                          
1 The reader may notice that, in general, the subsystems obtained by means of a decomposition method do
not necessarily coincide with the physical subsystems of the complex system being investigated.
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the formulae measuring the information exchange between variables are presented. In
[Conant, 1972; 1976], the measure T of energy transference between variables is used to
determine a probable subsystem decomposition. In [Broekstra, 1976-77], the information
theory introduced previously by Ashby is used to decompose systems using modified
procedures coined ‘constraint analysis’ by the author. In [Madden and Ashby, 1972],
relations between variables are offered that define the representation of an N-variable
system in terms of a set of P-variables subsystems, where P<N.  In fact, it is that study
which lays the foundations of what later would be introduced by Cavallo and Klir as the
Reconstructability Analysis [Cavallo and Klir, 1979a].  [Gaines, 1977] offers a different
yet parallel point of view to that of Klir’s General System Problem Solving (GSPS)
approach. The problem of structure identification, i.e., identification of subsystems, is
tackled in [Broekstra, 1978].  In [Kengerlinskiy, 1978], an approach for decomposing a
system into subsystems based on the Shannon entropy measure is provided. In
[Krippendorff, 1978; 1981], yet another technique for determining the structure of a system
is given.  He also provides a comparison of his approach to those of Klir, Conant, and
Broekstra.

Every one of these techniques requires that all of the available variables must be present
in the set of obtained subsystems.  Hence all of these techniques focus on the problem of
model structuring rather than that of model reduction.

In this chapter, three different methods for obtaining subsets (subsystems) of variables
are given. First in Section 4.2, the Reconstruction Analysis (RA) methodology, a GSPS2

level-4 tool, is presented. The basic idea of RA is that of identifying, among all possible
decompositions of a system, the one from which the behaviour of the overall system can
best be reconstructed.  The best decomposition is the one that leads to a reconstructed
system, the behaviour of which is most similar to the original system behaviour. One of the
requirements of this methodology is that all system variables are present in the set of
obtained subsystems, classifying RA as a model structuring technique.

In Section 4.3, a FIR-based approach to model structuring is presented.  Starting from
the desired output variable, sequences of sub-models are constructed, until all variables are
accounted for as either input variables or internal variables.

The third presented method is explained in Sections 4.4 and 4.5. In those sections, a
methodology to decompose a complex system into subsystems is explained as a mixed
model reduction and structuring approach.  The proposed methodology is based on a
combination of linear and non-linear statistical techniques.  After performing a variable
selection using the technique explained in Section 3.4.1, a singular value decomposition of
the remaining variables of the correlation matrix is performed. This second step, discussed
in Section 4.4, allows obtaining subsets of linearly related variables by means of the
projection of the eigenvectors of this decomposition onto the principal axes.

While forming subsets of linearly related variables, it may happen that some of the
variables retained after variable selection do not form part of any of the subsets. This is
because the projection of those variables onto the principal axes is weak, i.e., they are not
                                                          
2 A brief description of the epistemological levels in the mark of Klir’s GSPS framework is provided in
Chapter 2 of this dissertation.
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linearly related to the other variables. At this point, a possible non-linear relation between
these excluded variables and the obtained subsets should be investigated. This is the topic
tackled in Section 4.5.  It forms the third stage of the proposed methodology: to search, via
a non-linear transformation, the possible non-linear correlation between the variables in the
subsets and those not present in any of them.

As this was the case in the previous chapter, all three methodologies presented in this
chapter only deal with models of zero time delay, i.e., they only consider static relations
among variables. The inclusion of time in the analysis, and the study of dynamic relations
among the variables are left for Chapter 5 to deal with.  In this upcoming chapter, the
different methodologies presented along Chapters 3 and 4 are put together with the FIR
methodology so as to propose two different FIR-based full modelling methodologies that
tackle jointly the problems of dynamic model reduction and structuring.

Also in Chapter 4, like in all other chapters, the functioning of the different algorithms
presented along the chapter is illustrated by means of applying them to realistic examples.
The example used most widely in this chapter is the garbage incinerator system described
in Appendix I.3.  By using the same example across multiple model structuring
methodologies, the functioning of the set of algorithms becomes more transparent, and the
reader is able to acquire a deeper understanding of the methodological underpinnings of
the proposed algorithms.

4.2 Reconstruction Analysis

Reconstruction analysis is a GSPS level-4 tool developed by Cavallo and Klir in the
early eighties. It tackles two complementary problems associated with the relationship
between a global system and the various sets of its subsystems. The first problem is
referred to in the literature as the reconstruction problem. Given a global system, the aim is
to determine which structure systems, each one based on a set of subsystems of the overall
system, are adequate for reconstructing the global system with an acceptable level of
approximation. This reconstruction problem is the one that most interests us in this
dissertation.

The other problem is what has been called in the literature the identification problem.
That is, given a set of subsystems by means of their behaviours, known to form part of a
global system, to find the possible global systems that embrace those subsystems, so
inferences about the unknown global system can be made.

Reconstruction Analysis, encompassing the two aforementioned problems, originated
with the Reconstructability Analysis proposed in [Cavallo and Klir, 1979a,b; Cavallo and
Klir 1981; Klir 1981].  The methodology was refined in [Klir, 1991; Cellier, 1991; de
Albornoz, 1996].  Reconstruction analysis is closely related to the FIR methodology3,
because it deals with the system behaviour information expressed in qualitative terms that
are either crisp or fuzzy. It allows identifying temporal causal structures of a system, i.e., it
                                                          
3 Reconstruction Analysis is fed with the same qualitative data used in the FIR methodology. Many concepts
used in this chapter have already been explained in detail in chapter 2.
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can be used to determine a subsystem decomposition of a system. Yet in practice, as it will
be shown during the presentation of the Reconstruction Analysis tool, it is not useful for
systems with more than say a dozen variables due to its exponential computational
complexity.

4.2.1 The concepts of Reconst ructability

Usually a model of a system is understood as a set of rules mapping a set of variables
onto each other [Klir, 1985].  If an input-output model of a system is desired, this set of
rules, assuming a MISO system, maps all the related input (and possibly internal) variables
to the considered output so that the behaviour of the system can be obtained from past data
and this set of mapping rules. This is basically what the FIR methodology does, and it lies
on level 3 of the GSPS framework.

This kind of reasoning may be impractical in the presence of large numbers of variables.
In this case, it would be better to obtain a description of the internal structure of the system
in the form of rules that are used inside the model to map variables onto each other. To
find the structure of the system, in the most abstract case, means to search for a subsystem
decomposition of this system, then obtain a model for each one of these subsystems
separately, and finally integrate the information of those subsystems in a way that
describes the global system.  This is what the RA methodology strives to accomplish.

Reconstructability Analysis is conceived as a package of methodological tools within
the GSPS framework [Klir, 1985] that deals with the problem of defining the relationship
between a global system and its various subsystems. This problem involves two kinds of
epistemological levels4: the generative system and the structure system, both usually
represented by means of their behaviour. As briefly stated before, two main problems are
tackled within this set of tools: the identification problem, in which the structure system,
i.e., a set of subsystems, is initially given, whereas the global system is unknown; and the
reconstruction problem, in which the global system is known, and the subsystems are to be
determined.

The tools needed to solve the identification problem are:

� Synthesis of the reconstruction family for a given set of subsystems. A
reconstruction family is defined as the set of global systems that may be
represented by the given set of subsystems in the sense that the behaviour of
these subsystems may be obtained as a projection of the overall behaviour.

� Determination of the reconstruction uncertainty, which is also referred to as
identifiability quotient.  This metric, based on the size of the reconstruction
family, is used to determine the uncertainty associated with the reconstruction
of the global system from the given set of subsystems. Such a metric can be
derived for either probabilistic or possibilistic systems.

                                                          
4 The epistemological levels of Klir have been briefly explained in Section 2.2. A quick reference to these
levels can be found in Figure 2-3.
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� Identification of the unbiased reconstruction. A unique global system is
selected from the previously generated reconstruction family.  The goal is to
select a global system that contains, using Klir’s words, ‘all, but no more
information than is contained in the structure system.’  Unbiased here means
that, from the global behaviour, the known set of subsystem behaviours should
be obtained when projecting the global behaviour onto the set of variables
forming each of the subsystems. If local inconsistencies are detected in this
step (in the sense that the behaviour projections do not totally coincide with the
original subsystem projections), a tool is required to solve those
inconsistencies.

In the case of the reconstruction problem, the tools needed are:

� Generation of reconstruction hypotheses for a given global system. By
reconstruction hypothesis is meant a possible set of subsystems from which the
behaviour of the global system can be reconstructed.

� A computation of the desirable projections of the given behaviour system.

� Computation of the distances between the given behaviour and those
reconstructed from each of the reconstruction hypotheses. This distance
computation will allow establishing a rank order among the different
considered reconstruction hypotheses.

Now a brief description of how these tools have been implemented will be provided by
means of a synthetic example.

4.2.2 Structure systems in Rec onstruction Analysis

As previously explained, the aim of the presented methodology is to find a plausible
subsystem decomposition of a complex system. In the sequel, it will be shown, how the
methodology works. Consider, for example, a model, M, of a six variables system that is
formed from two sub-models, M1 and M2. Figure 4-1 shows the topological structure of
this system.

Figure 4-1 A model with two possible subsystems.

M1     M2
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v2

v3

y1

Model M
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In the given example, the model is formed by six variables: two input variables, x1 and
x2, that are the inputs of both the model M and the first submodel M1; three internal
variables, named v1, v2, and v3, that are the outputs of the first submodel M1 as well as the
inputs to the second submodel M2; and finally, one output variable, y1, that is the output of
the second submodel M2 as well as of the model M.

The structure can be abstracted in RA by means of a so-called composite structure. A
composite structure is a row vector, in which each element enumerates a variable of a
subsystem, and different substructures are separated by 0 elements. In the given example
of Figure 4-1, the composite structure would be expressed as:

c_st1 = (1 2 3 4 5 0 3 4 5 6)

where the variables have been labelled from 1 to 6, beginning with x1 and finishing with y1

(x1=1, x2=2, v1=3, v2=4, v3=5, y1=6).

The reader may notice that, at this level of the methodology, no distinction is made any
longer between inputs and outputs. Variables are simply labelled with an integer number
and enumerated one by one as they are encountered in a submodel without distinguishing
between inputs and outputs; thus, no causality is expressed by the composite structure5.
The abstraction of a topological structure into a composite structure is unique and
straightforward.  The opposite is not true.  A single composite structure may be
representative of zero, one, or multiple topological structures.

Another way of expressing these kinds of structures, also used in RA, is by means of the
so-called binary structure. It consists of an ordered enumeration of all the possible binary
relations or connections among variables inside all subsystems. In the given example of
Figure 4-1, the corresponding binary structure is:
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5 The causality of a mathematical model of a physical system is an artefact of the way in which models are
commonly used by simulation code, rather than being a property of the physical system itself.  Hence it is
meaningful to offer a mathematical description of the system structure that reflects physical reality by not
forcing the user to provide causality information.
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The reader may notice that, of all possible connections among the six system variables,
only two relations are missing, namely the connections (1,6) and (2,6), indicating that there
do not exist direct connections between variables 1, 2 (the input variables of the system) on
the one hand, and variable 6 (the output variable of the system) on the other.

There exist two special cases, the totally unconnected model and the totally connected
model. The former is a model that contains a set of unrelated variables.  Since there are no
connections among variables, its binary structure is empty.  The latter is a model without
any internal structure.  Every variable is related to every other variable.  Consequently, its
binary structure is complete.

The two forms of expressing an a-causal structure system presented so far are
essentially equivalent and may be mapped into one another by means of two of the
algorithms existing in the RA software package facility. Both representations co-exist in
the methodology for reasons of convenience.  The composite structure is more compact
and easier interpretable by the human researcher.  The binary structure is more convenient
for algorithmic purposes, i.e., when using the structure information within higher-level
algorithms and when comparing different structures to each other.

Yet, there exists a problem with the mapping of one structure into the other. While the
transition from a composite structure to a binary structure is unambiguous and
straightforward, the inverse operation is more difficult and does not necessarily lead to a
unique composite structure. Consider, for instance, the topological structure represented in
Figure 4-2, corresponding to a system with two inputs and two outputs decomposed into
three subsystems.

Figure 4-2 Seven-variable system with a model consisting of three submodels.

If the variables in Figure 4-2 are labelled from 1 to 7 beginning with x1 and ending with
y2, (x1=1, x2=2, v1=3, v2=4, v3=5, y1=6, y2=7), the composite structure corresponding to this
system is expressed as:

c_st2 = (1 3 4 0 3 5 6 0 2 4 5 7)

and its corresponding binary structure is:
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Now consider the composite structure,

c_st3 = (1 3 4 0 3 4 5 0 2 4 5 7 0 3 5 6)

which may be representative of the topological structure system depicted in Figure 4-3.
The variables have been labelled in the same order as in the previously presented structure.

Figure 4-3 Seven-variable system with a model consisting of four submodels.

The binary structure corresponding to the composite structure c_st3 is exactly the same
as that found for the composite structure c_st2, labelled as b_st2.  Thus the same binary
structure b_st2 can be mapped into either the composite structure c_st2 or the composite
structure c_st3.  Hence the mapping of a binary structure into a composite structure is not
always unique.

Looking at Figure 4-3 more closely, the reader may notice that submodels M1, M2, and
M4 are essential submodels.  For example, the submodel M1 is the only submodel
referencing variable x1.  If submodel M1 were eliminated, variable x1 would no longer be
part of any submodel. For similar reasons, the submodels M2 and M4 must be retained.  In
contrast, submodel M3 references only variables that also form part of other submodels.
Hence submodel M3 is redundant and can be eliminated.  The algorithm employed by RA
for mapping binary structures into composite structures always identifies the minimal
composite structure corresponding to a given binary structure, eliminating all redundant
subsystems.
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4.2.3 Tools available in Reconstruction Analysis

Given an observed behaviour of a system, the first step on the way to solving the
structure identification problem is the generation of reconstruction hypotheses. In RA, the
behaviour is defined in exactly the same fashion as it was done for the FIR methodology6.
A reconstruction hypothesis is simply a proposed composite structure over the set of
variables contained in the behaviour.  The process of generating sets of reconstruction
hypotheses shall be explained in due course.  For now, let us concentrate on the algorithm
used to evaluate the merits of a given reconstruction hypothesis.

Once a reconstruction hypothesis has been formulated, the behaviour of the global
system is projected onto each of the subsystems obtaining the subsystem behaviours.  The
behaviours of the individual subsystems are then recombined, leading to a reconstructed
overall behaviour.  The quality of the reconstruction is evaluated by measuring the distance
between the original system behaviour and the reconstructed one.  Figure 4-4 illustrates
this process.

Figure 4-4 Reconstruction evaluation process.

Reconstruction analysis, just like FIR, can be applied to either crisp or fuzzy
behaviours. In this dissertation, only the case of Fuzzy Reconstruction Analysis (FRA) shall
be considered. The reader is referred to [de Albornoz, 1996; Cellier, 1991] for a discussion
of Crisp Reconstruction Analysis.

Let us consider a global system expressed by means of its behaviour, B, and a
confidence vector, c:

                                                          
6 The behaviour is expressed by means of a matrix that contains the ordered set of all observed states of the
system together with a confidence vector expressing the likelihood of each state to occur.
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The given synthetic example consists of six variables.  Only eight different system
states have been recorded.  The confidence vector is here normalized, such that the sum of
all confidences is 1.0.  In this case, the confidence of a state can be interpreted as an
estimate of the probability of its occurrence.

Let us further consider the following reconstruction hypothesis:

c_st4 = (1 2 3 4 5 0 3 4 5 6)

which was previously depicted in Figure 4-1.

The result of the fuzzy projection of the global behaviour onto the first subsystem space
spanned by variables x1, x2, v1, v2, and v3, is:
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To this end, variable y1 is simply eliminated from the behaviour.  Since the resulting
states are all different, nothing more needs to be done.

The result of projecting the global behaviour onto the second subsystem subspace
spanned by variables v1, v2, v3, and y1, is:
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After eliminating variables x1 and x2 from the behaviour and after reordering the states,
it can be seen that several states are now listed multiple times with different confidence
values.  These states need to be collapsed, such that each state is listed only once in the
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subsystem behaviour.  In FIR, the accumulated confidence of multiple observations of the
same state had been defined as the sum of the individual confidences.  In FRA, a different
definition of accumulated confidence is being used.  Here, the accumulated confidence is
defined as the largest among the individual confidences [Cavallo and Klir, 1982].  This
definition was chosen in order to avoid distortions in the metric used to evaluate the merit
of each reconstruction hypothesis [Cellier and de Albornoz, 1998].  A consequence of this
definition is that the subsystem confidence values can no longer be interpreted as estimates
of the probability of occurrence, since the sum of the confidence values no longer adds up
to 1.0.

The decomposition of the given global system now needs to be used to reconstruct the
global behaviour. To this end, the subsystem behaviours have to be recombined. When the
two behaviours, B1 and B2 are recombined, the following global behaviour is obtained:
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The way to recombine two different behaviours is as follows: if the two behaviours
have no variable in common, i.e., they are unconnected, then the recombined behaviour is
the superset of all combinations of behaviours of the two subsystems.  Common variables,
i.e., connections between the two subsystems, act as constraints that reduce the freedom of
combining the two behaviours.  In the given example, the variables v1, v2, and v3 are
common to both subsystems.  Consequently, the first state of subsystem B1: [ 0 0 0 0 1 ]
can only be recombined with states of B2 that begin with [ 0 0 1 ].  There exists only one
such state: [ 0 0 1 0 ], hence there only results a single recombined state from this
combination: [ 0 0 0 0 1 0 ].  When the structure contains more than two subsystems, the
recombination occurs in pairs, as shown in Figure 4-4.  The reconstructed behaviour
contains all states of the original behaviour, and possibly a few more.

How is the confidence of a recombined state computed?  Here, FIR and FRA use the
same formula: the confidence of a recombined state is computed as the smaller of the two
confidences involved in the recombination [Cavallo and Klir, 1982].  If the structure has
more than two subsystems, the recombined state, at the end of all recombinations, assumes
the smallest value of the individual confidences involved in the recombination.

As mentioned above, there exists the possibility for new states to appear in the
reconstructed global behaviour, states that have never been observed. In the given
example, three new states have appeared, namely [ 0 0 1 0 1 1 ], [ 0 1 1 0 1 1 ], and [ 1 0 1
0 1 1 ].
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Now a comparison of the obtained reconstructed global behaviour with the original
global system behaviour has to be made in order to determine the quality of the obtained
decomposition. For each of the two global behaviours, the so-called ambiguity measure is
computed [Cavallo and Klir, 1982]. The two ambiguity measures are obtained as follows:
Starting with the original behaviour, the smallest confidence value found in its confidence
vector is divided by the number of observed states having a confidence larger or equal to
this value. Added to this result is another term, which is the quotient of the distance
between the smallest and the next larger confidence value divided by the number of states
that exhibit a confidence larger or equal to the second lowest confidence. More terms are
added in the same fashion, whereby the numerator is always the difference between the
next higher confidence value and the previously considered one, and the denominator is
always the number of states exhibiting a confidence larger or equal to the currently
considered confidence.  The resulting value is then subtracted from 1.  For the given
example, the ambiguity of the original behaviour is computed as follows:
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In an analogous manner, the ambiguity measure of the reconstructed global behaviour is
computed as:
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Finally, the measure of distance, or error, between the original behaviour and the
reconstructed one is defined as the difference between the two ambiguity measures:

Rec_error = a_rec – a = 0.0039

The ambiguity formula used expresses the closeness between the original behaviour and
the reconstructed one in terms of the differences between the information that the
reconstructed system contains in comparison with the original one. Therefore, it expresses
the closeness between the behaviours in terms of the loss of information that takes place
when the reconstructed behaviour replaces the original behaviour. The formula presented
here to compute the distance measure (reconstruction measure) is a special case of the
general distance computation formula for possibilistic systems [Klir, 1985]:
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In this formula, the used notation is:

f – behaviour function of the given system (confidence)
fh – behaviour function of the reconstructed function
c(f,l) – the confidence of a given state to occur
C – the set of possible states
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4.2.4 Algorithms to generate r econstruction hypotheses

In the previous section, the question of how reconstruction hypotheses are being
generated was left open. The present section offers a response to this question. In order to
find the optimal subsystem decomposition using FRA, all possible sets of subsystems of a
given global system should be computed. This is a formidable task, feasible only for small-
scale systems comprised of few variables. The number of possible subsystem
decompositions grows exponentially with the number of variables.  In fact, it grows even
faster than the number of possible masks in the case of FIR. Three sub-optimal search
algorithms have been reported in the open literature [Uyttenhove, 1978; Klir and
Uyttenhove, 1979; Cavallo and Klir, 1979b, 1981b] that usually generate satisfactory
system decompositions.

The first of these algorithms has been called structure refinement. This algorithm starts
out with the totally connected binary structure, i.e., all possible binary relations between
the system variables are considered.  For the given example, the totally connected
composite structure is defined as:

c_st_tot_c = (1 2 3 4 5 6)

Evidently, the totally connected structure has no reconstruction error, since no
reconstruction needs to be done.  Then, at each step, one binary connection is severed at a
time, and the reconstruction error for the resulting subsystem decomposition is computed.
When for the present level of decomposition all binary connections have been severed one
at a time, the one that results in the structure with the smallest reconstruction error is
permanently removed. At the first step of the algorithm, the number of reconstructions that
is to be computed in a k-variable system is given by:

2

)1( -kk

Then a second binary relation is severed.  The algorithm follows the same algorithm,
severing one binary relation at a time, until the one with the smallest reconstruction error
has been found.  The corresponding binary relation is then deleted permanently.  The
algorithm continues in the same fashion, until the reconstruction error of all of the
candidate structures at the next level becomes larger than the limit imposed by the
investigator.

In the current implementation of FRA, a quality measure based on the reconstruction
error is introduced.

unctot
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where rec_erri is the reconstruction error associated with the ith reconstruction hypothesis,
and rec_errtot_unc is the reconstruction error of the totally unconnected structure, which
exhibits the largest reconstruction error possible.  For the given example, the totally
unconnected structure is defined as:
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c_st_tot_unc = (1 0 2 0 3 0 4 0 5 0 6)

The quality measure is a metric normalized to the range [0,1], where higher quality
values denote better reconstruction hypotheses.

When the structure refinement algorithm is applied to the example at hand with a
smallest tolerated quality of Qmin = 0.1, the following result is obtained:

STRUCTURE (Q = 1.0000)  (1,2,3,4,5,6)

 BEST STRUCTURE ON THIS LEVEL: (1,2,3,4,5,6)
 THE BEST QUALITY FOUND IS: 1.0000
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.9855)  (1,3,4,5,6) (2,3,4,5,6)
STRUCTURE (Q = 1.0000)  (1,2,4,5,6) (2,3,4,5,6)
STRUCTURE (Q = 1.0000)  (1,2,3,5,6) (2,3,4,5,6)
STRUCTURE (Q = 1.0000)  (1,2,3,4,6) (2,3,4,5,6)
STRUCTURE (Q = 0.9111)  (1,2,3,4,5) (2,3,4,5,6)
STRUCTURE (Q = 0.9808)  (1,2,4,5,6) (1,3,4,5,6)
STRUCTURE (Q = 1.0000)  (1,2,3,5,6) (1,3,4,5,6)
STRUCTURE (Q = 1.0000)  (1,2,3,4,6) (1,3,4,5,6)
STRUCTURE (Q = 1.0000)  (1,2,3,4,5) (1,3,4,5,6)
STRUCTURE (Q = 1.0000)  (1,2,3,5,6) (1,2,4,5,6)
STRUCTURE (Q = 0.8364)  (1,2,3,4,6) (1,2,4,5,6)
STRUCTURE (Q = 1.0000)  (1,2,3,4,5) (1,2,4,5,6)
STRUCTURE (Q = 1.0000)  (1,2,3,4,6) (1,2,3,5,6)
STRUCTURE (Q = 0.8364)  (1,2,3,4,5) (1,2,3,5,6)
STRUCTURE (Q = 1.0000)  (1,2,3,4,5) (1,2,3,4,6)

 BEST STRUCTURE ON THIS LEVEL: (1,2,4,5,6) (2,3,4,5,6)
 THE BEST QUALITY FOUND IS: 1.0000
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.9855)  (1,4,5,6) (2,3,4,5,6)
STRUCTURE (Q = 0.8364)  (1,2,5,6) (2,3,4,5,6)
STRUCTURE (Q = 1.0000)  (1,2,4,6) (2,3,4,5,6)
STRUCTURE (Q = 0.6010)  (1,2,4,5) (2,3,4,5,6)
STRUCTURE (Q = 0.9808)  (3,4,5,6) (1,2,4,5,6)
STRUCTURE (Q = 1.0000)  (1,2,5,6) (1,4,5,6) (2,3,5,6) (3,4,5,6)
STRUCTURE (Q = 1.0000)  (1,2,4,6) (1,4,5,6) (2,3,4,6) (3,4,5,6)
STRUCTURE (Q = 1.0000)  (1,2,4,5) (1,4,5,6) (2,3,4,5) (3,4,5,6)
STRUCTURE (Q = 0.8364)  (2,3,5,6) (1,2,4,5,6)
STRUCTURE (Q = 0.8364)  (2,3,4,6) (1,2,4,5,6)
STRUCTURE (Q = 0.6702)  (2,3,4,5) (1,2,4,5,6)
STRUCTURE (Q = 0.9061)  (1,2,4,6) (1,2,5,6) (2,3,4,6) (2,3,5,6)
STRUCTURE (Q = 0.7395)  (1,2,4,5) (1,2,5,6) (2,3,4,5) (2,3,5,6)
STRUCTURE (Q = 0.9061)  (1,2,4,5) (1,2,4,6) (2,3,4,5) (2,3,4,6)

 BEST STRUCTURE ON THIS LEVEL: (1,2,4,6) (2,3,4,5,6)
 THE BEST QUALITY FOUND IS: 1.0000
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.9739)  (1,4,6) (2,3,4,5,6)
STRUCTURE (Q = 0.7825)  (1,2,6) (2,3,4,5,6)
STRUCTURE (Q = 0.5425)  (1,2,4) (2,3,4,5,6)
STRUCTURE (Q = 0.9808)  (1,2,4,6) (2,4,5,6) (3,4,5,6)
STRUCTURE (Q = 0.9739)  (1,2,6) (1,4,6) (2,3,5,6) (3,4,5,6)
STRUCTURE (Q = 1.0000)  (1,2,4,6) (2,3,4,6) (3,4,5,6)
STRUCTURE (Q = 0.9518)  (1,2,4) (1,4,6) (2,3,4,5) (3,4,5,6)
STRUCTURE (Q = 0.8364)  (1,2,4,6) (2,3,5,6) (2,4,5,6)
STRUCTURE (Q = 0.8364)  (1,2,4,6) (2,3,4,6) (2,4,5,6)
STRUCTURE (Q = 0.6702)  (1,2,4,6) (2,3,4,5) (2,4,5,6)



79

STRUCTURE (Q = 0.8364)  (1,2,4,6) (2,3,4,6) (2,3,5,6)
STRUCTURE (Q = 0.7044)  (1,2,4) (1,2,6) (2,3,4,5) (2,3,5,6)
STRUCTURE (Q = 0.8364)  (1,2,4,6) (2,3,4,5) (2,3,4,6)

 BEST STRUCTURE ON THIS LEVEL: (1,2,4,6) (2,3,4,6) (3,4,5,6)
 THE BEST QUALITY FOUND IS: 1.0000
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.9739)  (1,4,6) (2,3,4,6) (3,4,5,6)
STRUCTURE (Q = 0.7825)  (1,2,6) (2,3,4,6) (3,4,5,6)
STRUCTURE (Q = 0.5425)  (1,2,4) (2,3,4,6) (3,4,5,6)
STRUCTURE (Q = 0.7419)  (1,2,4,6) (3,4,5,6)
STRUCTURE (Q = 0.9644)  (1,2,6) (1,4,6) (2,3,6) (3,4,5,6)
STRUCTURE (Q = 0.8543)  (1,2,4) (1,4,6) (2,3,4) (3,4,5,6)
STRUCTURE (Q = 0.7746)  (2,3,6) (3,5,6) (4,5,6) (1,2,4,6)
STRUCTURE (Q = 0.6351)  (4,5,6) (1,2,4,6) (2,3,4,6)
STRUCTURE (Q = 0.5134)  (2,3,4) (3,4,5) (4,5,6) (1,2,4,6)
STRUCTURE (Q = 0.7746)  (3,5,6) (1,2,4,6) (2,3,4,6)
STRUCTURE (Q = 0.4982)  (1,2,4) (1,2,6) (3,4,5) (3,5,6)
STRUCTURE (Q = 0.6351)  (3,4,5) (1,2,4,6) (2,3,4,6)

 BEST STRUCTURE ON THIS LEVEL: (1,4,6) (2,3,4,6) (3,4,5,6)
 THE BEST QUALITY FOUND IS: 0.9739
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.7474)  (1,6) (2,3,4,6) (3,4,5,6)
STRUCTURE (Q = 0.4776)  (1,4) (2,3,4,6) (3,4,5,6)
STRUCTURE (Q = 0.7273)  (1,4,6) (2,4,6) (3,4,5,6)
STRUCTURE (Q = 0.8850)  (1,4,6) (2,3,6) (3,4,5,6)
STRUCTURE (Q = 0.7273)  (1,4,6) (2,3,4) (3,4,5,6)
STRUCTURE (Q = 0.7571)  (1,4,6) (2,3,6) (2,4,6) (3,5,6) (4,5,6)
STRUCTURE (Q = 0.6134)  (1,4,6) (4,5,6) (2,3,4,6)
STRUCTURE (Q = 0.5002)  (1,4,6) (2,3,4) (2,4,6) (3,4,5) (4,5,6)
STRUCTURE (Q = 0.7571)  (1,4,6) (3,5,6) (2,3,4,6)
STRUCTURE (Q = 0.6337)  (1,4) (1,6) (2,3,4) (2,3,6) (3,4,5) (3,5,6)
STRUCTURE (Q = 0.6177)  (1,4,6) (3,4,5) (2,3,4,6)

 BEST STRUCTURE ON THIS LEVEL: (1,4,6) (2,3,6) (3,4,5,6)
 THE BEST QUALITY FOUND IS: 0.8850
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.6810)  (1,6) (2,3,6) (3,4,5,6)
STRUCTURE (Q = 0.4460)  (1,4) (2,3,6) (3,4,5,6)
STRUCTURE (Q = 0.6642)  (2,6) (1,4,6) (3,4,5,6)
STRUCTURE (Q = 0.6642)  (2,3) (1,4,6) (3,4,5,6)
STRUCTURE (Q = 0.7177)  (1,4,6) (2,3,6) (3,5,6) (4,5,6)
STRUCTURE (Q = 0.5745)  (1,4,6) (2,3,6) (3,4,6) (4,5,6)
STRUCTURE (Q = 0.4585)  (2,3) (2,6) (1,4,6) (3,4,5) (4,5,6)
STRUCTURE (Q = 0.6855)  (1,4,6) (2,3,6) (3,4,6) (3,5,6)
STRUCTURE (Q = 0.6149)  (1,4) (1,6) (2,3,6) (3,4,5) (3,5,6)
STRUCTURE (Q = 0.5783)  (1,4,6) (2,3,6) (3,4,5)

 BEST STRUCTURE ON THIS LEVEL: (1,4,6) (2,3,6) (3,5,6) (4,5,6)
 THE BEST QUALITY FOUND IS: 0.7177
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.5710)  (1,6) (2,3,6) (3,5,6) (4,5,6)
STRUCTURE (Q = 0.3458)  (1,4) (2,3,6) (3,5,6) (4,5,6)
STRUCTURE (Q = 0.5119)  (2,6) (1,4,6) (3,5,6) (4,5,6)
STRUCTURE (Q = 0.5337)  (2,3) (1,4,6) (3,5,6) (4,5,6)
STRUCTURE (Q = 0.5427)  (1,4,6) (2,3,6) (4,5,6)
STRUCTURE (Q = 0.4205)  (2,3) (2,6) (3,5) (1,4,6) (4,5,6)
STRUCTURE (Q = 0.6586)  (1,4,6) (2,3,6) (3,5,6)
STRUCTURE (Q = 0.5855)  (1,4) (1,6) (4,5) (2,3,6) (3,5,6)
STRUCTURE (Q = 0.5461)  (3,5) (4,5) (1,4,6) (2,3,6)
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 BEST STRUCTURE ON THIS LEVEL: (1,4,6) (2,3,6) (3,5,6)
 THE BEST QUALITY FOUND IS: 0.6586
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.5311)  (1,6) (4,6) (2,3,6) (3,5,6)
STRUCTURE (Q = 0.3209)  (1,4) (4,6) (2,3,6) (3,5,6)
STRUCTURE (Q = 0.4710)  (2,6) (1,4,6) (3,5,6)
STRUCTURE (Q = 0.4866)  (2,3) (1,4,6) (3,5,6)
STRUCTURE (Q = 0.4744)  (5,6) (1,4,6) (2,3,6)
STRUCTURE (Q = 0.3698)  (2,3) (2,6) (3,5) (5,6) (1,4,6)
STRUCTURE (Q = 0.5606)  (1,4) (1,6) (2,3,6) (3,5,6)
STRUCTURE (Q = 0.4964)  (3,5) (1,4,6) (2,3,6)

 BEST STRUCTURE ON THIS LEVEL: (1,4) (1,6) (2,3,6) (3,5,6)
 THE BEST QUALITY FOUND IS: 0.5606
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.5168)  (1,6) (2,3,6) (3,5,6) (4)
STRUCTURE (Q = 0.3023)  (1,4) (2,3,6) (3,5,6)
STRUCTURE (Q = 0.3883)  (1,4) (1,6) (2,6) (3,5,6)
STRUCTURE (Q = 0.3945)  (1,4) (1,6) (2,3) (3,5,6)
STRUCTURE (Q = 0.3925)  (1,4) (1,6) (5,6) (2,3,6)
STRUCTURE (Q = 0.2760)  (1,4) (1,6) (2,3) (2,6) (3,5) (5,6)
STRUCTURE (Q = 0.4011)  (1,4) (1,6) (3,5) (2,3,6)

 BEST STRUCTURE ON THIS LEVEL: (1,6) (2,3,6) (3,5,6) (4)
 THE BEST QUALITY FOUND IS: 0.5168
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.2550)  (2,3,6) (3,5,6) (1) (4)
STRUCTURE (Q = 0.3510)  (1,6) (2,6) (3,5,6) (4)
STRUCTURE (Q = 0.3588)  (1,6) (2,3) (3,5,6) (4)
STRUCTURE (Q = 0.3538)  (1,6) (5,6) (2,3,6) (4)
STRUCTURE (Q = 0.2379)  (1,6) (2,3) (2,6) (3,5) (5,6) (4)
STRUCTURE (Q = 0.3646)  (1,6) (3,5) (2,3,6) (4)

 BEST STRUCTURE ON THIS LEVEL: (1,6) (3,5) (2,3,6) (4)
 THE BEST QUALITY FOUND IS: 0.3646
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.1671)  (3,5) (2,3,6) (1) (4)
STRUCTURE (Q = 0.2614)  (1,6) (2,6) (3,5) (3,6) (4)
STRUCTURE (Q = 0.2468)  (1,6) (2,3) (3,5) (3,6) (4)
STRUCTURE (Q = 0.3022)  (1,6) (2,3,6) (4) (5)
STRUCTURE (Q = 0.2063)  (1,6) (2,3) (2,6) (3,5) (4)

 BEST STRUCTURE ON THIS LEVEL: (1,6) (2,3,6) (4) (5)
 THE BEST QUALITY FOUND IS: 0.3022
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.1266)  (2,3,6) (1) (4) (5)
STRUCTURE (Q = 0.2049)  (1,6) (2,6) (3,6) (4) (5)
STRUCTURE (Q = 0.2130)  (1,6) (2,3) (3,6) (4) (5)
STRUCTURE (Q = 0.1522)  (1,6) (2,3) (2,6) (4) (5)

 BEST STRUCTURE ON THIS LEVEL: (1,6) (2,3) (3,6) (4) (5)
 THE BEST QUALITY FOUND IS: 0.2130
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.0713)  (2,3) (3,6) (1) (4) (5)
STRUCTURE (Q = 0.1784)  (1,6) (3,6) (2) (4) (5)
STRUCTURE (Q = 0.1257)  (1,6) (2,3) (4) (5)

 BEST STRUCTURE ON THIS LEVEL: (1,6) (3,6) (2) (4) (5)
 THE BEST QUALITY FOUND IS: 0.1784
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 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.0504)  (3,6) (1) (2) (4) (5)
STRUCTURE (Q = 0.0858)  (1,6) (2) (3) (4) (5)

 BEST STRUCTURE ON THIS LEVEL: (1,6) (2) (3) (4) (5)
 THE BEST QUALITY FOUND IS: 0.0858
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.0000)  (1) (2) (3) (4) (5) (6)

BEST STRUCTURE ON THIS LEVEL HAS QUALITY 0.0000
CONSIDERED TO LOW. SEARCH FINISHED

RESULTANT STRUCTURE: (1,6) (2) (3) (4) (5)

The second algorithm found in the open literature is the so-called structure aggregation
algorithm. The strategy followed here is just the opposite of the one followed in the
previously described algorithm. In this case, the algorithm starts out with the totally
unconnected model, and at each time step, one binary connection is added. From all
possible structure candidates, the one that most reduces the reconstruction error is
considered the best, i.e., the binary relation that, when added, most reduces the
reconstruction error is added permanently. The algorithm ends when the reconstruction
error drops below the largest tolerable error specified by the modeller.  For the given
example, this algorithm, with Qmin = 0.1, leads to the following results:

STRUCTURE (Q = 0.0000)  (1) (2) (3) (4) (5) (6)

 BEST STRUCTURE ON THIS LEVEL: (1) (2) (3) (4) (5) (6)
 THE BEST QUALITY FOUND IS: 0.0000
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.0245)  (1,2) (3) (4) (5) (6)
STRUCTURE (Q = 0.0504)  (1,3) (2) (4) (5) (6)
STRUCTURE (Q = 0.0204)  (1,4) (2) (3) (5) (6)
STRUCTURE (Q = 0.0259)  (1,5) (2) (3) (4) (6)
STRUCTURE (Q = 0.0858)  (1,6) (2) (3) (4) (5)
STRUCTURE (Q = 0.0245)  (2,3) (1) (4) (5) (6)
STRUCTURE (Q = 0.0204)  (2,4) (1) (3) (5) (6)
STRUCTURE (Q = 0.0463)  (2,5) (1) (3) (4) (6)
STRUCTURE (Q = 0.0245)  (2,6) (1) (3) (4) (5)
STRUCTURE (Q = 0.0204)  (3,4) (1) (2) (5) (6)
STRUCTURE (Q = 0.0313)  (3,5) (1) (2) (4) (6)
STRUCTURE (Q = 0.0504)  (3,6) (1) (2) (4) (5)
STRUCTURE (Q = 0.0204)  (4,5) (1) (2) (3) (6)
STRUCTURE (Q = 0.0204)  (4,6) (1) (2) (3) (5)
STRUCTURE (Q = 0.0313)  (5,6) (1) (2) (3) (4)

 BEST STRUCTURE ON THIS LEVEL: (1,6) (2) (3) (4) (5)
 THE BEST QUALITY FOUND IS: 0.0858
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.1348)  (1,2) (1,6) (3) (4) (5)
STRUCTURE (Q = 0.1865)  (1,3) (1,6) (2) (4) (5)
STRUCTURE (Q = 0.1021)  (1,4) (1,6) (2) (3) (5)
STRUCTURE (Q = 0.1375)  (1,5) (1,6) (2) (3) (4)
STRUCTURE (Q = 0.1257)  (1,6) (2,3) (4) (5)
STRUCTURE (Q = 0.1130)  (1,6) (2,4) (3) (5)
STRUCTURE (Q = 0.1693)  (1,6) (2,5) (3) (4)
STRUCTURE (Q = 0.1185)  (1,6) (2,6) (3) (4) (5)
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STRUCTURE (Q = 0.1130)  (1,6) (3,4) (2) (5)
STRUCTURE (Q = 0.1348)  (1,6) (3,5) (2) (4)
STRUCTURE (Q = 0.1784)  (1,6) (3,6) (2) (4) (5)
STRUCTURE (Q = 0.1130)  (1,6) (4,5) (2) (3)
STRUCTURE (Q = 0.1021)  (1,6) (4,6) (2) (3) (5)
STRUCTURE (Q = 0.1239)  (1,6) (5,6) (2) (3) (4)

BEST STRUCTURE OF THIS LEVEL HAS QUALITY: 0.1865
CONSIDERED ENOUGH. SEARCH FINISHED

RESULTANT STRUCTURE: (1,3) (1,6) (2) (4) (5)

The structures resulting from the application of the two algorithms are not identical, but
similar.  In the given example, the structure aggregation algorithm converged much faster,
because the selected minimum quality was very low.  If a higher value of Qmin had been
selected, the structure refinement algorithm would have converged faster, whereas the
structure aggregation algorithm would have required more time to reach the desired goal.

Finally, the third of the known sub-optimal search strategies is the so-called single-step
refinement algorithm. This algorithm, just like the refinement algorithm, starts out with the
totally connected structure. The first step of the single-step refinement algorithm is
identical to that of the refinement algorithm.  However, at the end of the first step, all
relations are permanently severed that exhibit a reconstruction error that is smaller than the
largest tolerated one, or in the current implementation, that exhibit a quality that is better
than the lowest permissible one.  Only a single step of the algorithm is performed.  This
algorithm operates on the reconstruction errors of individual omitted binary relations rather
than on the quality of the resulting structure. Whereas the refinement algorithm and the
aggregation algorithm are still of exponential complexity (though much faster than
exhaustive search), the single-step refinement algorithm is of polynomial complexity.

When this algorithm is applied to the given example, allowing a largest reconstruction
error of emax = 0.005, the following results are obtained:

ERROR BINARY RELATION OMITTED

0.000556 1 , 2
0.000000 1 , 3
0.000000 1 , 4
0.000000 1 , 5
0.003401 1 , 6
0.000734 2 , 3
0.000000 2 , 4
0.000000 2 , 5
0.000000 2 , 6
0.000000 3 , 4
0.006258 3 , 5
0.000000 3 , 6
0.000000 4 , 5
0.006258 4 , 6
0.000000 5 , 6

BINARY RELATIONS WITH AN ERROR LARGER THAN 0.0050 ARE CONSIDERED

RESULTANT STRUCTURE: (3,5) (4,6) (1) (2)
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The FRA tools explained in this chapter were previously implemented by Adelinde
Uhrmacher with improvements and refinements by Alvaro de Albornoz [de Albornoz,
1996]. The first version of the algorithms was programmed in Fortran, and the maximum
number of variables allowed was ten. Hence the available code was not suitable for large-
scale systems, in spite of the fact that at least the single-step refinement algorithm
converges acceptably fast also for more than 10 variables.  When searching for methods to
decompose a complex system into subsystems, and investigating if FRA could be applied
to this task, the algorithms presented here have been reviewed and recoded in the frame of
this dissertation as Matlab functions using dynamic memory allocation. The new
implementation is unlimited in the number of variables, which, at least in theory, enabled
this researcher to apply the algorithms to his problem: the identification of structures in
large-scale systems.

4.2.5 Application of Reconstru ction Analysis to a real system

The FRA methodology has been applied to the steam generator that is described in the
Appendix I.2. This is a case of a MISO system with nine variables.

In order to apply the previously described algorithms, it is necessary to first compute the
behaviour matrix and the confidence vector for this system. This can be done using some
of the internal functions of the FIR methodology that has been described in detail in
Chapter 2.  For this boiler system, all variables of which have been recoded into three
classes, the observed behaviour (computed from the 632 data records gathered by the
system sensors) has been found to have 164 different states. Some of those states, together
with their computed confidence values, have been represented in the following table.
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The reader may notice that the confidence values in the above table are non-normalized.
The individual confidence values of an observation are real-valued numbers in the range
[0.5,1.0].  FIR computes its accumulated confidence by adding up the confidence values of
individual observations.  Thus, a confidence value of 18.7297 in the above table denotes
the fact that this particular state has been observed between 19 and 38 times.  Although the
confidence vector could have been easily normalized, this was not necessary.  FRA works
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just as well with non-normalized confidence values as with normalized ones, since it
operates on min/max norms and relative magnitude (ordering information) only.

The three procedures that were previously presented have been used to obtain
decompositions of the system. Two of the methods, the single-step refinement algorithm
and the structure aggregation algorithm, were run completely, whereas the third method,
the structure refinement algorithm, was used only during some steps because of its
computational complexity.

Let us begin with the first of the previously explained methods, the structure refinement
algorithm.  For this run, a minimum quality of Q = 0.80 was specified. The experiment
was executed using the newly re-implemented FRA tools running in the Matlab
environment in an interpretive fashion.  The code was executed on a Sun UltraSparc-II
workstation.  As mentioned before, only four steps, i.e., four levels of structure refinement,
were computed for this run, so the final result only excludes four binary relations. The
reason for only allowing four steps to be computed is the required computation time. In a
system with 9 variables, there exist 36 different binary relations.  Hence at the first level,
36 possible structures need to be studied; at the second level, 35 possible structures need to
be investigated; and so on.  The algorithm, although sub-optimal, is of exponential
complexity, and even with this small-scale example, it takes a lot of computation time to
calculate all the necessary projections and behaviour recombinations by executing Matlab
code in an interpretive fashion.  A summary of the results obtained from this experiment is
presented below.

STRUCTURE (Q = 1.0000)  (1,2,3,4,5,6,7,8,9)

 BEST STRUCTURE IN THIS LEVEL: (1,2,3,4,5,6,7,8,9)
 BEST QUALITY FOUND IS: 1.0000
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 1.0000)  (1,3,4,5,6,7,8,9) (2,3,4,5,6,7,8,9)
STRUCTURE (Q = 1.0000)  (1,2,4,5,6,7,8,9) (2,3,4,5,6,7,8,9)
STRUCTURE (Q = 1.0000)  (1,2,3,5,6,7,8,9) (2,3,4,5,6,7,8,9)
STRUCTURE (Q = 1.0000)  (1,2,3,4,6,7,8,9) (2,3,4,5,6,7,8,9)
STRUCTURE (Q = 1.0000)  (1,2,3,4,5,7,8,9) (2,3,4,5,6,7,8,9)

...

STRUCTURE (Q = 0.9971)  (1,2,3,4,5,6,7,8) (1,2,3,4,5,6,7,9)

 BEST STRUCTURE IN THIS LEVEL: (1,2,3,4,6,7,8,9) (2,3,4,5,6,7,8,9)
 BEST QUALITY FOUND IS: 1.0000
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 1.0000)  (1,3,4,6,7,8,9) (2,3,4,5,6,7,8,9)
STRUCTURE (Q = 1.0000)  (1,2,4,6,7,8,9) (2,3,4,5,6,7,8,9)
STRUCTURE (Q = 0.9999)  (1,2,3,6,7,8,9) (2,3,4,5,6,7,8,9)

...

STRUCTURE (Q = 0.9971)  (1,2,3,4,6,7,8) (1,2,3,4,6,7,9) (2,3,4,5,6,7,8)
(2,3,4,5,6,7,9)

 BEST STRUCTURE IN THIS LEVEL: (1,3,4,6,7,8,9) (2,3,4,5,6,7,8,9)
 BEST QUALITY FOUND IS: 1.0000
 SEARCH CONTINUES WITH THIS STRUCTURE



85

STRUCTURE (Q = 0.9999)  (1,4,6,7,8,9) (2,3,4,5,6,7,8,9)
STRUCTURE (Q = 0.9999)  (1,3,6,7,8,9) (2,3,4,5,6,7,8,9)
STRUCTURE (Q = 0.9999)  (1,3,4,7,8,9) (2,3,4,5,6,7,8,9)
STRUCTURE (Q = 0.9998)  (1,3,4,6,8,9) (2,3,4,5,6,7,8,9)

...

STRUCTURE (Q = 0.9999)  (1,3,4,6,7,8) (1,3,4,6,8,9) (2,3,4,5,6,7,8)
(2,3,4,5,6,8,9)
STRUCTURE (Q = 0.9971)  (1,3,4,6,7,8) (1,3,4,6,7,9) (2,3,4,5,6,7,8)
(2,3,4,5,6,7,9)

 BEST STRUCTURE IN THIS LEVEL: (1,3,4,7,8,9) (2,3,4,5,6,7,8,9)
 BEST QUALITY FOUND IS: 0.9999
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.9998)  (1,4,7,8,9) (2,3,4,5,6,7,8,9)
STRUCTURE (Q = 0.9999)  (1,3,7,8,9) (2,3,4,5,6,7,8,9)
STRUCTURE (Q = 0.9998)  (1,3,4,8,9) (2,3,4,5,6,7,8,9)

...

STRUCTURE (Q = 0.9999)  (1,3,4,7,8) (1,3,4,8,9) (2,3,4,5,6,7,8)
(2,3,4,5,6,8,9)
STRUCTURE (Q = 0.9971)  (1,3,4,7,8) (1,3,4,7,9) (2,3,4,5,6,7,8)
(2,3,4,5,6,7,9)

 BEST STRUCTURE IN THIS LEVEL: (1,3,4,7,9) (1,3,7,8,9) (2,3,4,5,6,7,9)
(2,3,5,6,7,8,9)
 BEST QUALITY FOUND IS: 0.9999
 SEARCH CONTINUES WITH THIS STRUCTURE

The four binary relations removed by the refinement procedure are (1,2), (1,5), (1,6)
and (4,8), and the quality of the reconstructed system is still very high, Q = 0.9999.

The next procedure to be applied is the structure aggregation method.  In this case, the
run was completely performed. The termination condition for this algorithm was to find a
structure system with a minimum quality of Q = 0.80. A summary of the results obtained
when using this algorithm is presented below:

STRUCTURE (Q = 0.0000)  (1) (2) (3) (4) (5) (6) (7) (8) (9)

 BEST STRUCTURE IN THIS LEVEL: (1) (2) (3) (4) (5) (6) (7) (8) (9)
 BEST QUALITY FOUND IS: 0.0000
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.0039)  (1,2) (3) (4) (5) (6) (7) (8) (9)
STRUCTURE (Q = 0.0024)  (1,3) (2) (4) (5) (6) (7) (8) (9)
STRUCTURE (Q = 0.0039)  (1,4) (2) (3) (5) (6) (7) (8) (9)

...

STRUCTURE (Q = 0.0039)  (7,8) (1) (2) (3) (4) (5) (6) (9)
STRUCTURE (Q = 0.0037)  (7,9) (1) (2) (3) (4) (5) (6) (8)
STRUCTURE (Q = 0.0037)  (8,9) (1) (2) (3) (4) (5) (6) (7)

 BEST STRUCTURE IN THIS LEVEL: (1,7) (2) (3) (4) (5) (6) (8) (9)
 BEST QUALITY FOUND IS: 0.0039
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.0119)  (1,2) (1,7) (3) (4) (5) (6) (8) (9)
STRUCTURE (Q = 0.0087)  (1,3) (1,7) (2) (4) (5) (6) (8) (9)
STRUCTURE (Q = 0.0120)  (1,4) (1,7) (2) (3) (5) (6) (8) (9)
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...

STRUCTURE (Q = 0.0118)  (1,7) (7,8) (2) (3) (4) (5) (6) (9)
STRUCTURE (Q = 0.0113)  (1,7) (7,9) (2) (3) (4) (5) (6) (8)
STRUCTURE (Q = 0.0113)  (1,7) (8,9) (2) (3) (4) (5) (6)

 BEST STRUCTURE IN THIS LEVEL: (1,4) (1,7) (2) (3) (5) (6) (8) (9)
 BEST QUALITY FOUND IS: 0.0120
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.0288)  (1,2) (1,4) (1,7) (3) (5) (6) (8) (9)
STRUCTURE (Q = 0.0217)  (1,3) (1,4) (1,7) (2) (5) (6) (8) (9)
STRUCTURE (Q = 0.0287)  (1,4) (1,5) (1,7) (2) (3) (6) (8) (9)

...

STRUCTURE (Q = 0.0286)  (1,4) (1,7) (7,8) (2) (3) (5) (6) (9)
STRUCTURE (Q = 0.0270)  (1,4) (1,7) (7,9) (2) (3) (5) (6) (8)
STRUCTURE (Q = 0.0270)  (1,4) (1,7) (8,9) (2) (3) (5) (6)

 BEST STRUCTURE IN THIS LEVEL: (1,4) (1,7) (6,7) (2) (3) (5) (8) (9)
 BEST QUALITY FOUND IS: 0.0289
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.0648)  (1,2) (1,4) (1,7) (6,7) (3) (5) (8) (9)
STRUCTURE (Q = 0.0483)  (1,3) (1,4) (1,7) (6,7) (2) (5) (8) (9)
STRUCTURE (Q = 0.0647)  (1,4) (1,5) (1,7) (6,7) (2) (3) (8) (9)
STRUCTURE (Q = 0.0289)  (1,4) (1,6,7) (2) (3) (5) (8) (9)

...

STRUCTURE (Q = 0.0596)  (1,4) (1,7) (6,7) (7,9) (2) (3) (5) (8)
STRUCTURE (Q = 0.0596)  (1,4) (1,7) (6,7) (8,9) (2) (3) (5)

 BEST STRUCTURE IN THIS LEVEL: (1,4) (1,7) (2,4) (6,7) (3) (5) (8) (9)
 BEST QUALITY FOUND IS: 0.0648
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.0648)  (1,7) (6,7) (1,2,4) (3) (5) (8) (9)
STRUCTURE (Q = 0.1039)  (1,3) (1,4) (1,7) (2,4) (6,7) (5) (8) (9)
STRUCTURE (Q = 0.1433)  (1,4) (1,5) (1,7) (2,4) (6,7) (3) (8) (9)
STRUCTURE (Q = 0.0648)  (1,4) (2,4) (1,6,7) (3) (5) (8) (9)

...

STRUCTURE (Q = 0.1282)  (1,4) (1,7) (2,4) (6,7) (7,9) (3) (5) (8)
STRUCTURE (Q = 0.1282)  (1,4) (1,7) (2,4) (6,7) (8,9) (3) (5)

 BEST STRUCTURE IN THIS LEVEL: (1,4) (1,7) (2,4) (5,6) (6,7) (3) (8) (9)
 BEST QUALITY FOUND IS: 0.1433
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.1433)  (1,7) (5,6) (6,7) (1,2,4) (3) (8) (9)
STRUCTURE (Q = 0.2219)  (1,3) (1,4) (1,7) (2,4) (5,6) (6,7) (8) (9)
STRUCTURE (Q = 0.1433)  (1,4) (1,5) (1,7) (2,4) (5,6) (6,7) (3) (8) (9)

...

STRUCTURE (Q = 0.2756)  (1,4) (1,7) (2,4) (5,6) (6,7) (7,9) (3) (8)
STRUCTURE (Q = 0.2756)  (1,4) (1,7) (2,4) (5,6) (6,7) (8,9) (3)

 BEST STRUCTURE IN THIS LEVEL: (1,4) (1,7) (2,4) (5,6) (6,7) (6,8) (3) (9)
 BEST QUALITY FOUND IS: 0.3161
 SEARCH CONTINUES WITH THIS STRUCTURE
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STRUCTURE (Q = 0.3162)  (1,7) (5,6) (6,7) (6,8) (1,2,4) (3) (9)
STRUCTURE (Q = 0.4748)  (1,3) (1,4) (1,7) (2,4) (5,6) (6,7) (6,8) (9)
STRUCTURE (Q = 0.3162)  (1,4) (1,5) (1,7) (2,4) (5,6) (6,7) (6,8) (3) (9)
STRUCTURE (Q = 0.3162)  (1,4) (2,4) (5,6) (6,8) (1,6,7) (3) (9)

...

STRUCTURE (Q = 0.5975)  (1,4) (1,7) (2,4) (5,6) (6,7) (6,8) (7,9) (3)
STRUCTURE (Q = 0.5975)  (1,4) (1,7) (2,4) (5,6) (6,7) (6,8) (8,9) (3)

 BEST STRUCTURE IN THIS LEVEL: (1,4) (1,7) (1,9) (2,4) (5,6) (6,7) (6,8) (3)
 BEST QUALITY FOUND IS: 0.5975
 SEARCH CONTINUES WITH THIS STRUCTURE

STRUCTURE (Q = 0.5975)  (1,7) (1,9) (5,6) (6,7) (6,8) (1,2,4) (3)
STRUCTURE (Q = 0.9252)  (1,3) (1,4) (1,7) (1,9) (2,4) (5,6) (6,7) (6,8)
STRUCTURE (Q = 0.5975)  (1,4) (1,5) (1,7) (1,9) (2,4) (5,6) (6,7) (6,8) (3)
STRUCTURE (Q = 0.5975)  (1,4) (1,9) (2,4) (5,6) (6,8) (1,6,7) (3)

...

STRUCTURE (Q = 0.5976)  (1,4) (1,7) (1,9) (2,4) (5,6) (6,7,8) (3)
STRUCTURE (Q = 0.5975)  (1,4) (2,4) (5,6) (6,7) (6,8) (1,7,9) (3)
STRUCTURE (Q = 0.5975)  (1,4) (1,7) (1,9) (2,4) (5,6) (6,7) (6,8) (8,9) (3)

BEST STRUCTURE IN THIS LEVEL HAS QUALITY: 0.9642
CONSIDERED ENOUGH. SEARCH FINISHES

RESULTANT STRUCTURE: (1,4) (1,7) (1,9) (2,4) (3,9) (5,6) (6,7) (6,8)

The structure aggregation procedure terminates when the quality of the reconstruction is
higher than the prescribed limit. In this case, the quality found is Q = 0.9642 for a
decomposition in which only two-variable subsystems have been formed.

Finally, the results obtained when using the single-step refinement algorithm are given:

ERROR BINARY RELATION OMITTED

0.000037 1 , 2
0.000108 1 , 3
0.000092 1 , 4
0.000000 1 , 5
0.000090 1 , 6
0.000232 1 , 7
0.000125 1 , 8
0.000142 1 , 9
0.002886 2 , 3
0.000232 2 , 4
0.000274 2 , 5
0.000368 2 , 6
0.000177 2 , 7
0.000555 2 , 8
0.002532 2 , 9
0.000290 3 , 4
0.004500 3 , 5
0.001133 3 , 6
0.000225 3 , 7
0.008466 3 , 8
0.275960 3 , 9
0.000227 4 , 5
0.000213 4 , 6
0.000090 4 , 7
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0.000166 4 , 8
0.000166 4 , 9
0.000754 5 , 6
0.000126 5 , 7
0.001280 5 , 8
0.004249 5 , 9
0.000159 6 , 7
0.000503 6 , 8
0.000992 6 , 9
0.000193 7 , 8
0.000091 7 , 9
0.012071 8 , 9

BINARY RELATIONS WITH AN ERROR LARGER THAN 0.1000 ARE CONSIDERED

RESULTANT STRUCTURE: (3,9) (1) (2) (4) (5) (6) (7) (8)

If only those relations that, when removing them, give a reconstruction error larger than
0.1 are considered, a single two-variable subsystem composed by variables 3 and 9 is
encountered. Notice that these results make a lot of sense, as the FIR boiler model
computed in Appendix I.2 only uses input variables 2, 3, and 8 to model the output
(variable 9). If the limit for the reconstruction error is being decreased to 0.01, two
subsystems are formed: (3,9) and (8,9).  If the limit is being decreased further to 0.008, a
single three-variable structure (3,8,9) is found.  The next variable to be considered is
variable 4.  Variable 2 follows shortly afterwards.  The FRA single-step refinement
algorithm found a good decomposition for this boiler system within an acceptable
computing time.  Neither of the other two algorithms offered good results within
reasonable computation time.

Note than even with a small-scale system, such as the nine-variable boiler system, the
FRA procedures were not able to converge within reasonable time, except for the single-
step refinement algorithm, which indeed arrived at a good result. When the FRA
techniques were applied to the garbage incinerator system, a 20-variable MISO system,
even the single-step refinement algorithm involved substantial computations leading to
long waiting times. Of course, if a truly complex system, consisting of some hundred
measured variables, were encountered, application of even the single-step refinement
algorithm of FRA to obtain a decomposition of the system using the current Matlab
implementation would surely require considerably more computation time than the
practical life-span of any computer. This makes the available code impractical for the
purposes of this dissertation.

A compiled C-code implementation of the single-step refinement algorithm might
execute within acceptable time limits, but its implementation was not attempted in this
dissertation, as the algorithms presented in the sequel gave good results for the considered
test cases, while being much more computationally efficient.  The author recommends a C-
code implementation of the single-step refinement algorithm in a future research effort, as
FRA is expected to exploit non-linear correlations in a more optimal fashion than the
algorithms presented in the sequel.
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4.2.6 Application of Reconstru ction Analysis in conjunction with a variable selection
technique

In this section, FRA is applied to the incinerator system (described in Appendix I.3), but
only involving the 15 variables remaining from the correlation analysis presented in
section 3.4.1. In that subsection, redundant variables, in a linear sense, were dropped out of
a possible posterior modelling process. Using that result, it is possible to reduce the
number of structures that FRA needs to investigate to determine the internal structure of
the system. In this way, the computing time of the FRA engine can be significantly
reduced when searching for a plausible structure within the set of system variables.

The variables discarded in Section 3.4.1 were X1, X3, X15, X16, and X17, so 14 input
variables remain for the analysis. The output variable needs to be added to the group of
variables to be analysed, thus 15 variables need to be considered. Due to the size of the
system, only the single-step refinement algorithm has been used.

With the available data from the incinerator system, the single-step refinement
algorithm required roughly 11 hours of computing time on a Sun Ultra-Sparc II. The
results from this experiment are listed below:

ERROR BINARY RELATION OMITTED

0.000121 2 , 4
0.000031 2 , 5
0.000024 2 , 6
0.000011 2 , 7
0.011050 2 , 8
0.014203 2 , 9
0.000042 2 , 10
0.021082 2 , 11
0.016028 2 , 12
0.027111 2 , 13
0.010561 2 , 14
0.008524 2 , 18
0.000286 2 , 19
0.009398 2 , 20
0.000033 4 , 5
0.028183 4 , 6
0.012103 4 , 7
0.013151 4 , 8
0.012272 4 , 9
0.016134 4 , 10
0.014261 4 , 11
0.025047 4 , 12
0.013029 4 , 13
0.008572 4 , 14
0.006091 4 , 18
0.016835 4 , 19
0.005103 4 , 20
0.000067 5 , 6
0.000026 5 , 7
0.013272 5 , 8
0.000661 5 , 9
0.000017 5 , 10
0.021411 5 , 11
0.000019 5 , 12
0.000011 5 , 13
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0.015141 5 , 14
0.004083 5 , 18
0.000075 5 , 19
0.011106 5 , 20
0.024196 6 , 7
0.022142 6 , 8
0.015137 6 , 9
0.000028 6 , 10
0.000001 6 , 11
0.023185 6 , 12
0.014601 6 , 13
0.000084 6 , 14
0.000079 6 , 18
0.031102 6 , 19
0.000174 6 , 20
0.021566 7 , 8
0.012323 7 , 9
0.000367 7 , 10
0.000221 7 , 11
0.022214 7 , 12
0.016339 7 , 13
0.020031 7 , 14
0.013191 7 , 18
0.021365 7 , 19
0.014242 7 , 20
0.023871 8 , 9
0.018399 8 , 10
0.000102 8 , 11
0.000115 8 , 12
0.006032 8 , 13
0.023143 8 , 14
0.000282 8 , 18
0.018324 8 , 19
0.018102 8 , 20
0.000067 9 , 10
0.014634 9 , 11
0.015811 9 , 12
0.018401 9 , 13
0.014753 9 , 14
0.000297 9 , 18
0.000214 9 , 19
0.000216 9 , 20
0.008464 10 , 11
0.015678 10 , 12
0.018031 10 , 13
0.013597 10 , 14
0.023159 10 , 18
0.000157 10 , 19
0.021783 10 , 20
0.014957 11 , 12
0.019011 11 , 13
0.021164 11 , 14
0.008869 11 , 18
0.008357 11 , 19
0.008176 11 , 20
0.024819 12 , 13
0.031104 12 , 14
0.000116 12 , 18
0.011067 12 , 19
0.000258 12 , 20
0.023164 13 , 14
0.000103 13 , 18
0.000037 13 , 19
0.000135 13 , 20
0.021305 14 , 18
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0.000109 14 , 19
0.000099 14 , 20
0.002862 18 , 19
0.004012 18 , 20
0.002243 19 , 20

BINARY RELATIONS WITH AN ERROR LARGER THAN 0.1000 ARE CONSIDERED

RESULTANT STRUCTURE: (2) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
(18) (19) (20)

BINARY RELATIONS WITH AN ERROR LARGER THAN 0.0100 ARE CONSIDERED

RESULTANT STRUCTURE: (5,8,20) (5,11,14) (7,8,20) (7,14,18) (8,10,20)
(10,14,18) (2,8,9,14) (4,6,7,8,19) (4,6,7,12,19) (4,9,11,12,13)
(2,9,11,12,13,14) (4,6,7,9,12,13)

BINARY RELATIONS WITH AN ERROR LARGER THAN 0.0150 ARE CONSIDERED

RESULTANT STRUCTURE: (4,10) (10,13) (10,18) (14,18) (2,11,13) (2,12,13)
(4,6,12) (4,6,19) (5,11,14) (8,10,20) (9,12,13) (6,7,8,19) (6,8,9,12)
(7,8,12,14) (7,12,13,14)

Three different largest reconstruction error values were applied: emax = 0.1, emax = 0.01,
and emax = 0.015.  Notice that the bulk of the computing time is needed to compute the
relative strengths of the binary relations, not to find the final composite structure, thus
evaluating the effect of different emax values on the resulting composite structure is cheap.

Let us analyse the results of this experiment. When the largest reconstruction error of a
single binary relation between variables to be omitted is set to emax = 0.1, the algorithm
does not find any binary relation to consider, so all of them are omitted, and a totally
unconnected structure is obtained.

In contrast with emax = 0.01, 55 out of the 105 possible binary relations are considered.
The resulting subsystems, labelled S1FRA0.01 to S12FRA0.01, are listed in Table 4-I.
Unfortunately, the result is difficult to interpret.  Three different structures contain the
system output, X20.  Which of those should be used to compute the output?  Do the other
two occurrences introduce feedback loops into the resulting topological structure?  How
are algebraic loops among variables avoided?
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S1FRA0.01 X5 X8 X20

S2FRA0.01 X5 X11 X14

S3FRA0.01 X7 X8 X20

S4FRA0.01 X7 X14 X18

S5FRA0.01 X8 X10 X20

S6FRA0.01 X10 X14 X18

S7FRA0.01 X2 X8 X9 X14

S8FRA0.01 X4 X6 X7 X8 X19

S9FRA0.01 X4 X6 X7 X12 X19

S10FRA0.01 X4 X9 X11 X12 X13

S11FRA0.01 X2 X9 X11 X12 X13 X14

S12FRA0.01 X4 X6 X7 X9 X12 X13

Table 4-I Incinerator subsystem decomposition obtained with FRA using emax = 0.01.

To avoid this problem, the largest reconstruction error was increased to emax = 0.015.  In
this case, 36 of the 105 binary relations are retained, and only one subsystem containing
the output variable is found.  The resulting substructures are listed in Table 4-II.

S1FRA0.015 X4 X10

S2FRA0.015 X10 X13

S3FRA0.015 X10 X18

S4FRA0.015 X14 X18

S5FRA0.015 X2 X11 X13

S6FRA0.015 X2 X12 X13

S7FRA0.015 X4 X6 X12

S8FRA0.015 X4 X6 X19

S9FRA0.015 X5 X11 X14

S10FRA0.015 X8 X10 X20

S11FRA0.015 X9 X12 X13

S12FRA0.015 X6 X7 X8 X19

S13FRA0.015 X6 X8 X9 X12

S14FRA0.015 X7 X8 X12 X14

S15FRA0.015 X7 X12 X13 X14

Table 4-II Incinerator subsystem decomposition obtained with FRA using emax = 0.015.

The output is computed using variables X8 and X10.  How are those variables evaluated?
Unfortunately, both X8 and X10 appear in 3 of the remaining substructures.  Which of those
should be used to compute them?  What about feedback structures?  Quite evidently, the
previously mentioned causality problem has not been solved, only delayed.
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4.2.7 Understanding the differ ent types of structures in FRA

All throughout the chapter, we have talked about how the internal structure of a system
can be found, up to now only using FRA-based algorithms. Three different structure types
were introduced:

� The topological structure, represented by a block diagram showing subsystems
with inputs and outputs as well as interconnections between them. An example of
this kind of structure is shown in Figure 4-3.

� The composite structure, obtained from the topological structure by enumerating
the variables of each subsystem, ignoring whether they are input or output, and
ignoring the topology of connections between the subsystems. For example, the
composite structure c_st3 is derived from the topological structure represented in
Figure 4-3.

� The binary structure, obtained from the composite structure by expanding the
variables of each subsystem into a set of binary relations and then merging all these
sets into one in order to eliminate the redundant binary relations. For instance, the
binary structure b_st2 can be derived from the composite structure c_st3.

It is already known that the conversion from the topological structure via the composite
structure to the binary structure is unique and straightforward. Unfortunately, the reverse is
not true. The conversion from the binary to the composite structure is not unique, and we
need additional rules to decide, which of the possible composite structures is to be selected.
For instance, the binary structure b_st2 previously used in this chapter may correspond to
either the c_st2 or the c_st3 composite structures.

The conversion from the composite structure to the topological structure is not unique
either. There may exist 0, 1, or multiple topological structures representing the same
composite structure.

Whereas the binary structure is most useful for searching through a structure space and
for comparing different structures with each other, what we ultimately need for a practical
realisation is the topological structure. The single-step refinement algorithm of FRA will
give us the relative strengths of all binary relations. It can be used to derive different binary
structures (depending on the largest allowed reconstruction error of a binary relation to be
omitted), which then in turn can be converted to a composite structure. Unfortunately,
there is no known way to obtain a topological structure from that.

Since we need a topological structure, a different FRA-based algorithm is now proposed
that can be used to derive the topological structure directly.  It is based on the observation
that the complete connectedness of a substructure only remains important as long as no
causality is attached to it.  Once it has been decided, which variable needs to be computed
from the substructure, it is only important that the binary relations between the inputs and
that output are strong.  The binary relations among the different inputs are no longer of any
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major concern.  In fact, it might be preferable that they are weak so that the model does not
operate on unnecessary redundant information.  The algorithm works as follows.

� We look at the relative strengths of all binary relations with the output variable.
Those relations with strength larger than x are identified, where x may assume a
value such as 0.01.  For the example at hand, i.e., the incinerator system, we find
the following significantly large binary relations with the output (the binary
relations are listed using the indices of the variables only):

5, 20 err = 0.011106
7, 20 err = 0.014242
8, 20 err = 0.018102
10, 20  err = 0.021783

� Since individual submodels that are too complex are not desired, the 4 most
important inputs are selected, if there are at least 4 inputs with strengths greater
than x, otherwise, all inputs with strengths greater than x are selected. For the case
of the incinerator system, exactly 4 binary relations with the output variable are
found that comply with these requirements. Consequently, the first substructure is
found to be:

� The algorithm is repeated for every one of these inputs, excluding relations with
those variables that had previously been used as outputs of subsystems. In the
current situation, this only applies to X20. The following substructures are found:

5, 8 err = 0.013272
5, 11 err = 0.021411
5, 14 err = 0.015141

4, 7 err = 0.012103
6, 7 err = 0.024196
7, 8 err = 0.021566
7, 9 err = 0.012323
7, 12 err = 0.022214
7, 13 err = 0.016339
7, 14 err = 0.020031
7, 18 err = 0.013191
7, 19 err = 0.021365

ST1

x7

x5

x8

x10

x20

ST2

x8

x11

x14

x5

ST3

x8

x6

x12

x19

x7
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2, 8 err = 0.011050
4, 8 err = 0.013151
5, 8 err = 0.013272
6, 8 err = 0.022142
7, 8 err = 0.021566
8, 9 err = 0.023871
8, 10 err = 0.018399
8, 14 err = 0.023143
8, 19 err = 0.018324

4, 10 err = 0.016134
8, 10 err = 0.018399

   10, 12 err = 0.015678
   10, 13 err = 0.018031
   10, 14 err = 0.013597
   10, 18 err = 0.023159

� Now it is necessary to eliminate algebraic loops.  There is one algebraic loop in this
example, because X8=f(X7) and X7=f(X8). The largest not selected relation among
those of the two substructures is identified under the constraint to be different from
the one that provokes the algebraic loop. For the studied example we find the
relation (7, 14).  We substitute the algebraic loop relation by the new one, thus, the
ST3 substructure it is replaced by:

4, 7 err = 0.012103
7, 8 err = 0.021566
7, 9 err = 0.012323
7, 13 err = 0.016339
7, 14 err = 0.020031
7, 18 err = 0.013191

� In this step, the variables that have not been used in any of the found substructures
need to be studied. For the given example all variables except X2 have been used.
Thus, the strengths of all variables that have not yet been used as outputs can be
checked with that variable:

2, 9 err = 0.014203
2, 11 err = 0.021082
2, 12 err = 0.016028
2, 13 err = 0.027111
2, 14 err = 0.010561

� The strongest relation is with variable X13, thus we make a model of that variable:

2, 13 err = 0.027111
4, 13 err = 0.013029
6, 13 err = 0.014601
9, 13 err = 0.018401

   11, 13 err = 0.019011
   12, 13 err = 0.024819
   13, 14 err = 0.023164

ST4

x7

x6

x9

x14

x8

ST5

x8

x4

x13

x18

x10

ST6

x12

x6

x14

x19

x7

ST7

x11

x2

x12

x14

x13
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By now a complete topological structure has been extracted from the single-refinement
information of FRA. Before we had 15 variables, thus in order to model the output (X20)
from the full set of inputs, we would have needed 14 sensors.  By now, we have 6
submodels. Each of them computes one variable, thus we only need 9 sensors now. We
could easily continue adding more substructures, until the number of sensors has been
reduced to the desired level.  Of course, these additional models will be poorer and poorer
in quality, because there may be strong relations with previously used outputs that cannot
be used again.  Thus, there is a compromise to be made.

The resulting structure of applying this algorithm to the incinerator system is depicted in
Figure 4-5.

Figure 4-5 Topological structure obtained by means of a FRA based algorithm.

The proposed methodology offers a comprehensive approach to determining the
substructure of a model, assuming that all variables need to be used (which makes sense,
because these are the variables left over after the elimination step of Chapter 3).  Once a
structure has been found that accounts for all the variables, additional substructures can be
added to reduce the number of true system inputs, i.e., the number of sensors that need to
be used in the system.  Yet, additional substructures should be added sparingly and after
serious contemplation only, as these substructures will inevitably exhibit poorer tracking
capabilities.

The single-step refinement algorithm found 55 important binary relations.  The structure
resulting from the proposed algorithm contains 46 binary relations, 37 of which are
important, and 9 are unimportant.
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4.3 Using FIR to find the structure of a system

Up to this point, FRA has been proposed as a technique for identifying the internal
structure of a system.  It was shown that its single-step refinement algorithm indeed could
provide the information needed to determine a meaningful internal structure of a system.
Unfortunately, the algorithm, at least in its current Matlab implementation, is far too slow
to be used on a truly large-scale system.

In this section, an alternative algorithm based on FIR is proposed to derive the internal
structure of the system under study.  FIR is more efficient than FRA, and therefore, it is
hoped that similarly good results can be obtained considerably faster using this
methodology.  In order for the reader to be able to compare the different algorithms with
each other, also this new algorithm is applied to the garbage incinerator system.

The algorithm follows similar paths of reasoning as the previously introduced FRA-
based algorithm.  As before, the algorithm is applied to the subset of variables remaining
after the variable elimination step of Chapter 3.  As before, only static relations are
considered for now.

How can the FIR methodology, a level-3 tool on the GSPS epistemological ladder, be
used to determine the internal structure of a system, a problem that clearly calls for a level-
4 tool? The answer to this question is straightforward.  FIR, although predominantly
located at level 3, still provides some level-4 information that can be exploited by an
appropriate algorithm.  The levels of Klir’s epistemological ladder are idealized concepts.
The practical GSPS tools do not fully coincide with this classification.

In the sequel, the FIR-based structure identification algorithm is presented.

� With the variables remaining after the variable elimination step of Chapter 3, a flat
(static) FIR model of the output variable is constructed. Due to the complexity
issue, FIR will select only a subset of the possible inputs, probably not more than 4
or 5 of them.  For the example at hand, the incinerator system, there remain
fourteen variables after the variable selection step performed in Section 3.4.1.
Those variables are X2, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X18, and X19, to
which the output variable X20 should be added. When an optimal mask search is
performed for this 15 variables system, FIR chooses the following model:

X20 = f1 (X4, X5, X6, X12, X19) Q = 0.2089

Although we already know that X20 depends on all of the remaining 14 inputs, FIR
only selects a subset of those variables, namely the ones that are most useful in
interpreting the observations made about the output.  The reader may notice that the
set of variables selected by FIR is dramatically different from the one chosen by
FRA.  The two models have only one variable, X5, in common.  The variable with
the strongest binary relation to the output, X10, was not selected at all by FIR.
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� Now it is necessary to determine the relative importance of each of the inputs used
by the model that was previously found. In the given example, there are 5 inputs.
The relative importance of the five inputs could, of course, be determined using
FRA, but the same can also be accomplished using FIR in the following manner:
One at a time, each of the five inputs is severed, and the quality of the resulting FIR
model without the severed input is computed [Nebot and Mugica, 1996]. Thus, in
the case at hand, the fuzzy quality of the five following models is computed:

X20  = f2 (X4, X5, X6, X19) à Q = 0.1752
X20 = f3 (X4, X5, X12, X19) à Q = 0.1735
X20 = f4 (X5, X6, X12, X19) à Q = 0.1521
X20 = f5 (X4, X6, X12, X19) à Q = 0.1339
X20  = f6 (X4, X5, X6, X12) à Q = 0.1165

Now, we have a measure of the importance of each of the inputs that model the
output variable of the system. Since f6 reduces the quality most, X19 was the most
important input. Similarly X12 is the least important one.

� In this next step of the algorithm, a FIR model is generated for each of the inputs,
starting with the least important one, excluding those variables as possible inputs
that had previously been used as outputs.  In the current situation, only X20 needs to
be excluded. , The least important input for the incinerator system is X12, and the
FIR model found for this variable is:

X12 = f7 (X4, X6, X7, X9, X13) with Q = 0.4690

Thus, we just found the next substructure:

Figure 4-6 Second substructure found for the incinerator system using FIR.

� Now, we proceed with the next least important input of f1, which happens to be X6.
Thus we make a FIR model, excluding all of those variables that were already
outputs, namely X12 and obviously X20.  In this way, we find the next substructure.
The procedure continues in the same fashion until all physical inputs of the system,
in this case 14, appear among the inputs of the model.  This gives us a complete
structure. For the incinerator system, the following models are found for each of the
inputs of the f1 model:

f7 f1
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x7 x12
x20
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X6 = f8 (X4, X7, X8, X13) with Q = 0.4922
X4 = f9 (X2, X9, X13, X14, X19)  with Q = 0.2765
X5 = f10 (X8, X10, X11, X14, X18) with Q = 0.4696
X19 = f11 (X7, X8, X11, X14)  with Q = 0.1375

The given algorithm is based on the idea that it may not be economical to provide the
system with sensors for all of the inputs (in this case, fourteen input variables). Instead, by
providing an internal structure, sensors need only be provided for the true inputs, whereas
the internal variables (such as X12 in Figure 4-6) can be estimated using FIR models.  The
least important inputs were modelled first, in order to reserve sensors for the more
important ones.

For the incinerator system, when applying the algorithm explained above, the following
structure is found:

Figure 4-7 Possible structure for the incinerator system found with FIR.

The proposed methodology offers an alternative approach to determining the
substructure of a model, assuming again at all variables need to be used.  Just as in the
previous case, once a structure has been found that accounts for all the variables, additional
substructures can be added to reduce the number of true system inputs, i.e., the number of
sensors that need to be used in the system.  Yet, additional substructures should be added
sparingly and after serious contemplation only, as these substructures will inevitably
exhibit poorer tracking capabilities.

The structure resulting from the proposed FIR-based algorithm contains 62 binary
relations, 39 of which are important, whereas 23 are unimportant.

f11

f10

x7, x8,x11,x14

x8,x10,x11,x14,x18

x19

x5

f9x2,x9,x13,x14

x4

f8x7, x8, x13
x6

f7
x7,x9,x13 f1

x12
x20

x2

x7

x8

x9

x10

x11

x13

x14

x18



100

4.4 Correlation matrix singu lar value decomposition

The aspects tackled in this section together with the work presented in Section 3.4.1 and
the work that will be presented in the next section form part of a full statistics-based
methodology for decomposing a complex system into subsystems.  The work has been
partially published in [Mirats and Verde, 2000]. In Section 3.4.1, a method based on
simple linear correlation coefficients was presented with the purpose of performing a
variable selection. With this variable selection, those variables that are redundant, in a
linear sense, so containing the same information about the studied system, are dropped out
of the posterior modelling process.

Now, with the variables remaining after the variable selection step, we want to form
subsets (subsystems) of variables that are linearly correlated among each other. The
process presented here to achieve this goal is based on the first steps of a principal
component analysis.

First, the correlation matrix of the remaining variables together with the output has to be
computed. In fact, it is not necessary to recompute this matrix, because in the previous
variable selection step, the full correlation matrix for the system under consideration was
already calculated. Since the linear correlation between two system variables is invariant to
the presence or absence of other variables in the correlation matrix, it is only necessary to
eliminate those rows and columns of the full correlation matrix that pertain to the removed
variables.

Once the reduced correlation matrix has been found, a singular value decomposition of
this matrix is performed, so its eigenvalues and eigenvectors are obtained. For the
particular case of normalised data, the eigenvectors coincide with the principal components
of the system. Then, those eigenvectors, known to be orthogonal, are projected onto the
principal axes. Theoretically the projections onto all of the subspaces spanned by each pair
of eigenvectors have to be examined, but, in practice, it is enough to take into account
those projections only that primarily account for the system variance. Then, for each
projection, the space spanned by the axes is divided into regions of 30º, and the variables
with larger projection in the obtained regions are joined in the same subset7. The reason to
use narrow angle regions is derived from the fact than the cosines of the angle between two
vector variables on the factorial plane is proportional to the correlation between those two
variables. In this way, subgroups of linearly related variables are obtained.

Let us show how the described process works using the example of the garbage
incinerator system described in the Appendix I.3.  The results from Section 3.4.1 are
recalled here. For this example, variables X1, X3, X15, X16, and X17, had already been
eliminated because they contained redundant information. The remaining correlation
matrix is:

                                                          
7 The regions are 30º wide beginning at 0º and 15º, that is regions [0,30], [30, 60]…[0, -30] [0, -60]… [15,
45], [45, 75]… and [-15, 15], [-15, -45]… have been considered for the analysis.
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X2 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X18 X19 X20

X2 1,00
X4 0,25 1,00
X5 0,02 0,01 1,00
X6 0,51 0,39 0,13 1,00
X7 0,55 0,34 0,22 0,71 1,00
X8 0,07 0,26 0,28 0,46 0,59 1,00
X9 0,27 0,06 0,00 0,18 0,29 0,07 1,00
X10 0,16 0,09 0,08 0,16 0,32 0,26 0,20 1,00
X11 0,54 0,31 0,07 0,46 0,54 0,31 0,17 0,49 1,00
X12 0,44 0,53 0,02 0,40 0,66 0,51 0,53 0,28 0,51 1,00
X13 0,62 0,37 0,14 0,56 0,72 0,53 0,32 0,37 0,70 0,69 1,00
X14 0,27 0,31 0,19 0,47 0,60 0,59 0,11 0,52 0,27 0,43 0,53 1,00
X18 0,00 0,10 0,07 0,06 0,03 0,04 0,09 0,02 0,01 0,02 0,02 0,03 1,00
X19 0,00 0,03 0,25 0,17 0,20 0,35 0,02 0,09 0,11 0,06 0,23 0,20 0,04 1,00
X20 0,00 0,31 0,35 0,47 0,20 0,42 0,12 0,03 0,01 0,34 0,11 0,05 0,22 0,34 1,00

Table 4-III Remaining correlation matrix for the garbage incinerator system after performing a
variable selection.

Now, a singular value decomposition of this matrix is performed. In our case, this was
done using a built-in Matlab function, but there exist many other commercial software
packages that allow performing this operation, so the algorithm can easily be implemented
on a variety of different hardware and software platforms. Once the eigenvectors are
obtained, the projection onto the principal axes is computed. For instance, Figure 4-8
shows the projection onto the first and second principal axes.

Figure 4-8 Incinerator system: projections onto the first and second principal axes.
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Then as previously explained, each quadrant of the figure is divided into different 30°
regions, and variables with large projection8 in each of those regions are grouped together.
The subsystems that are obtained from the projection shown in Figure 4-8 are presented in
Table 4-IV.

X5 X8 X14

X8 X14

X4 X6 X7 X12 X13

X6 X7 X13

X2 X11 X12

Table 4-IV Subsystems resulting from the projection onto the first and second principal axes.

The reader may notice that X5 got lumped together with X8 and X14 in spite of the fact
that X5 is almost 180o off from the other two variables.  The reason is that X5 is strongly,
albeit negatively, correlated with the other two variables.

Three additional projections have been taken into account in this example to obtain
subsets of variables: the third plane versus the first, the second versus the third, and the
fourth versus the first. Table 4-V shows all the subsets determined by those projections.
The S1 to S6 subsets correspond to the projection of axes 1-3, S7 to S9 to that of axes 1-4,
and S10 to S13 to that of axes 2-3. If more projections are investigated, it is found that they
do not offer any additional information about subsystems.

S1 X10 X14

S2 X7 X12 X13

S3 X4 X6 X8

S4 X8 X14

S5 X4 X6 X7 X12 X13

S6 X2 X11 X12

S7 X7 X8 X13 X14

S8 X4 X12

S9 X2 X11 X13

S10 X4 X6 X8

S11 X2 X11 X13

S12 X5 X11 X14

S13 X7 X8 X13 X14

Table 4-V Obtained static subsystems for the garbage incinerator system from different principal
axes projections.

Some of the projections onto the principal axes provide redundant information about the
subsystems to be formed. In the case of the considered example, as can be seen from Table
4-V, there exists a redundancy between some of the subsystems found. For example,
subsystem S2 is included in S5, and therefore does not offer new information about the
process being studied. Thus, subsystem S2 can be dropped out for a posterior modelling
analysis. Finally, the obtained subsystem decomposition for this system, after eliminating
                                                          
8 Here, a large projection means a normalised projection greater than 0.6. This limit has been derived
heuristically.
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the redundant ones, is shown in Table 4-VI. The remaining subsystems have been
relabelled from S1 to S8.

S1 X5 X8 X14

S2 X4 X6 X7 X12 X13

S3 X2 X11 X12

S4 X4 X6 X8

S5 X10 X14

S6 X2 X11 X13

S7 X5 X11 X14

S8 X7 X8 X13 X14

Table 4-VI Obtained static subsystem decomposition for the garbage incinerator system only taking
into account linear relations.

So far, only linear relations among variables were considered.  Yet, a purely linear
analysis tool cannot be competitive when dealing with practical engineering systems, as
non-linear relations among variables invariably play an important role in most of them.

In the next section, the method will be extended to also consider non-linear relations
among variables.

4.5 Finding non-linear relat ions between variables and subsystems

In the previous section, a method for grouping variables, based on a singular value
decomposition of the data correlation matrix, has been presented that only looked at linear
relations between variables. The method was applied to the garbage incinerator system,
and the subsystems that were formed in this way have been reported in Table 4-VI.

Unfortunately, statistical techniques are, in general, linear techniques.  How can a
statistical method be applied to a non-linear problem?  If the problem is known, the answer
to this question is simple:  We first apply a non-linear transformation to the non-linear
problem to make it linear, then apply the statistical method to the previously linearised
problem.  What if the problem is unknown, like in our case?  The trick then is to find a
non-linear transformation that has a tendency of making the unknown problem more linear
in the process.  This is what shall be attempted here.

We shall analyse each subsystem separately, and check whether any of the variables not
currently included in that subsystem exhibits a non-linear correlation with the cluster of
variables forming the subsystem.  If this is the case, that variable is then added to the
subsystem.

Not all non-linear relations will necessarily be found in this way.  It could happen, for
example, that two variables exhibit a non-linear correlation between themselves, yet
neither of them is linearly related to any of the subsystems that were previously found.  In
that case, a new subsystem ought to be declared.
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Let us assume the overall system consists of n variables, among which m subsystems
have been identified.  Let us denote the ith subsystem as Si = {X(i1) … X(iki)},  i � 1,m. It
contains ki variables, namely the variables X(i1) up to X(iki).  Parentheses and double
indices are used here to avoid multiple subscripts.  There are n-ki variables not included in
the ith subsystem.  Let us call the set of those variables Ti = {X(iki+1) … X(in)},  i � 1,m.
Thus, the set of all variables V is the concatenation of the sets Si and Ti, V = {Si, Ti }.   Let
Zj = X(iki+j) �� Ti  be one of the variables that are not included in the subsystem.

Then, in order to study a possible non-linear relation between a given subsystem Si, or
any subset of its variables, and a given variable Zj not included in Si, the normal linear
correlation between (Zj

*,�i) is calculated, where Zj
* = spline(Zj) is a non-linear

transformation of variable Zj, using a spline curve, and �i = linear(X(i1)�X(iki)) is a linear
combination of the ki variables from the ith subsystem.

Splines are usually curves required to be continuous and smooth. The splines are
normally defined as piecewise polynomials of degree q, the function values and first q-1
derivatives of which coincide at the points where they join.  The abscissa values of the
points where neighbouring splines meet are called knots in the mathematical literature
[Smith, 1979]. The term spline is sometimes also used to denote polynomials (splines
without knots) and piecewise polynomials with more than one discontinuous derivative.
Splines without knots are generally smoother than splines with knots, which in turn are
generally smoother than splines with multiple discontinuous derivatives. Splines with few
knots are generally smoother than splines with many knots; however, increasing the
number of knots usually improves the fit of the spline function to the data. For more
information about splines and their mathematical properties, the reader is referred to
[Smith 1979] and [de Boor, 1978], which offer excellent insights into the properties of
spline functions.

When a variable is fit by a spline curve, two possibilities can be considered: the first is
to use a unique spline curve that fits the entire data vector, this has been the solution
adopted here. The second, advocated by [Brieman and Friedman, 1985; Friedman, 1991],
is to split the data into different regions, as when a regression tree is constructed [Siciliano
and Mola, 1996; 1997], and find a spline that fits each of these regions. Constraints are
imposed when computing the different splines in order to maintain continuity of the fit. In
this way, the obtained fit is better than in the previous case, but the algorithm that decides
into which regions the data should be divided, i.e., that constructs the regression tree, is
very time consuming since all the possible splits are taken into account. For this reason9, a
unique spline curve was used in this research to non-linearly transform the data. In the case
at hand, cubic splines (q = 3) with three knots have been used.

The spline transformation for variable Zj is computed taking into account that the
variable Zj has to be analysed together with the variables of the subset Si. This means that
each time, we investigate the existence of a non-linear correlation between a variable Zj

and a given subset Si, the computed spline transformation for variable Zj may be different.

                                                          
9 Intuitively, it is supposed that the non-linear relation is invariant in the considered time interval.
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How is this spline curve computed that takes into account the subsystem information?
The trick is to consider each of the Zj variables as a dependent (output) variable, and the
X(i1)�X(iki) variables as independent (input) variables. Then a linear regression of the ith

subset variables is performed onto the non-linear transformation of the Zj variable. An
iterative algorithm that automatically adjusts the parameters of the non-linear spline
transformation, Zj

*, and those of the regression equation, �i, has been used, so the best
transformation [Verde, 1994] of variable Zj is obtained. This algorithm is based on the
alternating least squares of [Young et al., 1976; Young, 1981], and it is internally provided
in the SAS software statistical package [SAS, 1988].

Thence, the currently investigated variable, Zj, is replaced with the newly found
iteratively derived optimal non-linear transformation, Zj

*, that fits best, in a least squares
sense, the specified subsystem, Si.  In this way, a non-linear transformation of variable Zj

has been obtained that takes into account that it has to be analysed jointly with the set of
variables Si.

Previous to the transformation of variable Zj, the linear correlation between Zj and each
of the variables of the Si subset was weak. Now, the non-linear transformed variable, Zj

*,
may have increased its linear correlation with some of the variables of the Si subset, or the
computed linear combination, �i.

So finally, to decide if variable Zj exhibits a non-linear correlation with the considered
subsystem Si, the linear correlation between this non-linear transformed variable, *

iZ , and

each of the variables of the Si subset as well as the linear combination �i is computed. If
any of those linear correlation coefficients is sufficiently high10, the variable is considered
to exhibit non-linear correlation with the corresponding subsystem, and is, thus, added to
the subsystem.

Let us now return to the garbage incinerator example. In the previous section within this
chapter, a subsystem decomposition of this system has already been obtained. Eight
different subsystems, S1 … S8, resulted, containing between two and five variables each.
Some of the system variables, namely X9, X18, X19, and X20 do not form part of any of these
subsystems.  At this point, possible non-linear correlations between the previously found
subsets and those variables not included in them need to be investigated. To this end, the
previously explained algorithm is applied to investigate if any of these variables can form
part of any one of these eight subsystems.

With each of the eight subsystems, the best non-linear transformation, cubic spline
based, is computed for each of the system variables not contained in the subsystem being
investigated using the previously explained non-linear iteration algorithm.  The correlation
matrices between each of the spline-transformed variables and the subsystem variables are
not reported here. Table 4-VII summarises all these computations, and shows where
variables need to be added to the existing subsystems, because these spline-transformed
variables have been found to exhibit non-linear correlation with the corresponding
subsystem.  In this table, variables that were already present in the previously found

                                                          
10 Here, the adopted criterion is the same that was used in Section 3.4.1 when looking for simple linear
correlation between input variables.
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subsystems have been labelled as 'lin' whereas variables that are found to exhibit non-linear
correlation with a given subsystem are labelled 'add'.

S1 S2 S3 S4 S5 S6 S7 S8
*
2X add - lin - - lin - -
*
4X - lin - lin - - - -
*
5X lin - - - - - lin -
*
6X - lin - lin - - - -

*
7X - lin - add add - - lin
*
8X lin - - lin - - - lin

*
9X - add - - - add - add

*
10X - - - - lin - - -

*
11X - - lin - add lin lin -
*
12X - lin lin - add - - -
*
13X - lin - - - lin - lin
*
14X lin - - - lin - lin lin
*
18X - - - - add - - -
*
19X - - - add - - - -

*
20X - - - - - - - -

Table 4-VII Non-linear correlations between non-linear transformed variables of the incinerator
and the previously found subsets.

The algorithm was executed multiple times, because once a variable has been added to a
subset, it is possible that another variable now exhibits non-linear correlation with the
already enlarged subset.  The algorithm was terminated only when no more additional
variables were added to any of the subsystems during an entire step.  Finally, Table 4-VIII
shows the subsystem decomposition of the garbage incinerator process.

S1 X2 X5 X8 X14

S2 X4 X6 X7 X9 X12 X13

S3 X2 X11 X12

S4 X4 X6 X7 X8 X19

S5 X7 X10 X11 X12 X14 X18

S6 X2 X9 X11 X13

S7 X5 X11 X14

S8 X7 X8 X9 X13 X14

Table 4-VIII Final subsystem decomposition for the garbage incinerator system including linear as
well as non-linear static relations among variables.

The reader may notice that almost all of the variables now form part of some subsystem
or other.  The exception is the output variable, X20, which still does not form part of any of
the subsystems.  Since there is only one variable left, there is no need to consider
additional new groups of variables.
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It is utterly annoying that, of all the variables in question, it is precisely the output that
doesn’t form part of any system, i.e., that seems uncorrelated, both in a linear and in a non-
linear sense, with the rest of the system, as this prevents us from deriving a topological
structure for the incinerator system using the statistical approach.  Of course, the same
accident could have occurred in the FRA-based algorithm, although it did not in the
example at hand.

Interpreting the results obtained as a composite structure, it is now possible to expand
the structure into a binary structure, listing all the binary relations that exist among the
variables of all eight of the subsystems.  It turns out that this binary structure lists 50 binary
relations, 44 of which are among the 55 important binary structures discovered by FRA,
whereas only 6 of them are unimportant.  It is evident that the proposed approach can be
used as an alternative technique to the single-step refinement algorithm of FRA for
discovering important binary relations among system variables.

How can the statistical technique be used to derive a topological structure, assuming the
output variable forms part of the structure?  One possible algorithm would be as follows.

� Starting with the output, all binary relations with the output that were considered by
the statistical technique are offered to FIR as potential inputs, and FIR is asked to
compute the optimal (static) mask for this subsystem.  FIR may choose to make use
of all of these binary relations as inputs, or it may select a subset of them.

� Each of these inputs is, in turn, treated as an internal variable, and all considered
binary relations with that variable, except for the output, are offered to FIR as
potential inputs for the next substructure.  FIR chooses the set of input variables to
be used.

� The algorithm continues until all variables have been referenced in the model either
as output, as internal variables, or as external inputs.

Unfortunately, the operation of this algorithm cannot be demonstrated at hand of the
incinerator system, because the statistical technique did not consider any of the binary
relations with the output, either linear or non-linear, to be significant, at least not in a static
sense.  It shall be shown later that the technique indeed discovers significant correlations
with the output, when time-dependent relations are allowed, i.e., when a dynamic model is
being constructed.

As for the case of the previous section, the reader is informed that some aspects of the
non-linear extensions to the statistical approach to substructure identification have already
been outlined in [Mirats and Verde, 2000].
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4.6 Conclusions

This chapter dealt with the difficult problem of structure identification in large-scale
systems. Three different algorithms were proposed, each of which has the potential of
discovering the internal topological structure of a system:

� an algorithm based on Fuzzy Reconstruction Analysis (FRA),
� an algorithm based on Fuzzy Inductive Reasoning (FIR), and
� an algorithm based on linear and non-linear correlation techniques.

Let us discuss briefly the pros and cons of these three algorithms?

The FRA-based algorithm is clearly the best from the point of view that FRA, when
executed in an exhaustive fashion, looks at every possible projection of every variable onto
every subspace formed by any subset of the other variables.  Unfortunately, the number of
variations to be considered grows so rapidly with the number of variables in the system
that this approach is at best of academic interest.  Only one highly suboptimal FRA-based
algorithm has any chance of terminating within a reasonable time span: the single-step
refinement algorithm.  Unfortunately, even this algorithm becomes highly inefficient for an
even modestly large number of variables.  Hence FRA-based techniques can only be
applied to small- to medium-scale systems.

FRA-based algorithms operate on the binary structure of the system.  Whereas the
composite structure can be derived from the binary structure, it is not possible to derive the
topological structure (which is our aim) from the composite structure.  A heuristic
algorithm was proposed that derives a topological structure directly from the relative
strengths of the binary relations found by the single-step refinement algorithm of FRA.
The algorithm has two major drawbacks:

1. The number of inputs of each subsystem was limited to four.  Why four?  Why not
three of five?  Shouldn’t the number of possible inputs depend on the quantity and
quality of available observational data?  FIR clearly does a better job at selecting
inputs in a dynamical and rational fashion.

2. The algorithm only considers the strengths of binary relations between the
individual inputs and the output of each subsystem.  The relative strengths of the
binary relations among the inputs are not considered.  Hence FRA chooses those
variables with the largest strengths of binary relations to the output, but maybe, two
of those input variables have strong binary relations between them so that another
input variable might offer more additional information in spite of exhibiting a
smaller strength of its binary relation with the output.  Again, FIR does a
considerably better job than FRA in deciding the relative importance of different
potential inputs.  This is precisely what FIR was designed to do.

The FIR-based algorithm makes use of all the variables to select an optimal mask for
the output variable.  It then works its way back towards the inputs, treating each of the
inputs of this submodel in turn as an internal variable, proposing a FIR-model for it.  The
algorithm continues until all variables are accounted for.  The FIR-based approach has the
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advantage that it makes use of a methodology that was designed as a tool for the generation
of simulation models with optimal prediction power.  Hence the resulting FIR-model
decomposition should offer excellent prediction capabilities.  The FIR-based algorithm
also has its drawbacks:

1. The algorithm, as proposed, considers the weaker inputs first as internal variables.
This makes sense, because it allows sensors to be reserved for the stronger
variables.  Yet in the given example, all inputs of the last stage turned out to be
made into internal variables.  Wouldn’t it then have made more sense to model the
stronger inputs first?  Doesn’t FIR try to make a compromise in each model
between completeness of available information (many inputs) and complexity of
the model (few inputs), in order to optimise the usage of the available observational
data?  Isn’t there a “conflict of interest” between choosing stronger vs. weaker
variables first?

2. The main goal of this dissertation is to find techniques that reduce the workload for
FIR by reducing the number of potential input variables to be considered.  Yet
already in the first step of this algorithm, a complete FIR problem is being solved,
i.e., the main purpose of the investigation is defeated.  Clearly, FIR is not suited as
a tool for dealing with large-scale systems directly.

The statistical approach proposed in this chapter is clumsy and awkward.  Its
functioning is much less transparent than in the case of either FRA- or FIR-based
algorithms.  Statistical techniques are inherently linear techniques, and somewhat dubious
tricks had to be invented in order to capture the non-linear information contained in the
observational data in a meaningful way.  Yet, the final results obtained are amazingly
good.  The statistical approach is capable of identifying almost the complete set of
important binary relations between pairs of variables.  Yet, and contrary to FRA, this
technique executes rather rapidly and is perfectly capable of dealing with large-scale
systems.  Thus, in spite of its awkwardness, this technique may be the only technique
available when dealing with a truly large-scale system, which we haven’t done so far in
this dissertation.

It may be interesting to compare the three approaches from the point of view of their
coverage of the important binary relations.  To this end, the binary relations of the
incinerator system were reordered in terms of decreasing relative strengths, and next to
each binary relation, it was marked whether or not it was captured by any or all of the three
proposed algorithms.

Importance of
binary relation

Binary relation FRA-based
method

FIR-based
method

Statistical
method

0.031104 12 , 14 Ö    

0.031102 6 , 19 Ö Ö Ö

0.028183 4 , 6   Ö Ö

0.027111 2 , 13 Ö Ö Ö

0.025047 4 , 12   Ö Ö

0.024819 12 , 13 Ö Ö Ö

0.024196 6 , 7 Ö Ö Ö
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0.023871 8 , 9 Ö   Ö

0.023185 6 , 12 Ö Ö Ö

0.023164 13 , 14 Ö Ö Ö

0.023159 10 , 18 Ö Ö Ö

0.023143 8 , 14 Ö Ö Ö

0.022214 7 , 12 Ö Ö Ö

0.022142 6 , 8 Ö Ö Ö

0.021783 10 , 20 Ö    

0.021566 7 , 8 Ö Ö Ö

0.021411 5 , 11 Ö Ö Ö

0.021365 7 , 19 Ö Ö  

0.021305 14 , 18   Ö Ö

0.021164 11 , 14 Ö Ö Ö

0.021082 2 , 11 Ö   Ö

0.020031 7 , 14 Ö Ö Ö

0.019011 11 , 13 Ö   Ö

0.018401 9 , 13   Ö Ö

0.018399 8 , 10 Ö Ö  

0.018324 8 , 19   Ö Ö

0.018102 8 , 20 Ö    

0.018031 10 , 13 Ö    

0.016835 4 , 19   Ö Ö

0.016339 7 , 13   Ö Ö

0.016134 4 , 10 Ö    

0.016028 2 , 12 Ö   Ö

0.015811 9 , 12   Ö Ö

0.015678 10 , 12     Ö

0.015141 5 , 14 Ö Ö Ö

0.015137 6 , 9 Ö Ö Ö

0.014957 11 , 12 Ö   Ö

0.014753 9 , 14 Ö Ö Ö

0.014634 9 , 11     Ö

0.014601 6 , 13   Ö Ö

0.014261 4 , 11      

0.014242 7 , 20 Ö    

0.014203 2 , 9   Ö Ö

0.013597 10 , 14   Ö Ö

0.013272 5 , 8 Ö Ö Ö

0.013191 7 , 18     Ö

0.013151 4 , 8 Ö Ö Ö

0.013029 4 , 13 Ö Ö Ö

0.012323 7 , 9 Ö Ö Ö

0.012272 4 , 9   Ö Ö

0.012103 4 , 7   Ö Ö

0.011106 5 , 20 Ö Ö  

0.011067 12 , 19 Ö Ö  

0.01105 2 , 8     Ö

0.010561 2 , 14 Ö Ö Ö

0.009398 2 , 20      

0.008869 11 , 18   Ö Ö
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0.008572 4 , 14   Ö  

0.008524 2 , 18      

0.008464 10 , 11   Ö Ö

0.008357 11 , 19   Ö  

0.008176 11 , 20      

0.006091 4 , 18 Ö    

0.006032 8 , 13 Ö Ö Ö

0.005103 4 , 20   Ö  

0.004083 5 , 18   Ö  

0.004012 18 , 20      

0.002862 18 , 19      

0.002243 19 , 20   Ö  

0.000661 5 , 9      

0.000367 7 , 10 Ö   Ö

0.000297 9 , 18      

0.000286 2 , 19   Ö  

0.000282 8 , 18 Ö Ö  

0.000258 12 , 20   Ö  

0.000221 7 , 11   Ö Ö

0.000216 9 , 20      

0.000214 9 , 19   Ö  

0.000174 6 , 20   Ö  

0.000157 10 , 19      

0.000135 13 , 20      

0.000121 2 , 4   Ö  

0.000116 12 , 18      

0.000115 8 , 12      

0.000109 14 , 19   Ö  

0.000103 13 , 18 Ö    

0.000102 8 , 11 Ö Ö  

0.000099 14 , 20      

0.000084 6 , 14 Ö    

0.000079 6 , 18      

0.000075 5 , 19   Ö  

0.000067 5 , 6   Ö  

0.000067 9 , 10      

0.000042 2 , 10      

0.000037 13 , 19   Ö  

0.000033 4 , 5   Ö  

0.000031 2 , 5     Ö

0.000028 6 , 10      

0.000026 5 , 7 Ö    

0.000024 2 , 6      

0.000019 5 , 12   Ö  

0.000017 5 , 10 Ö Ö  

0.000011 2 , 7      

0.000011 5 , 13      

0.000001 6 , 11      

Table 4-IX Capturing of binary relations by the three proposed structure identification algorithms.
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All three algorithms do a good job at capturing the majority of the important binary
relations.  Let us look at the most important binary relation relating variables X12 and X14

with each other.  This binary relation is captured by the FRA-based algorithm only.  The
way, all of these algorithms operate, by working their way back from the output to the
inputs, a strong binary relation between inputs may be missed if neither of these inputs
exhibits a strong binary relation with the output, as is the case in the given example.  Yet,
and this is interesting indeed, the FIR-based algorithm made use of X12 as an internal
variable, but didn’t include X14 among the inputs to be used by the optimal mask.
Evidently, it found that X12 is better predictable from a combination of other variables.
The FIR-based approach also employs a variety of less important variables as part of its
inputs, because they still contain useful information that can be exploited.  The reader is
reminded that FIR is truly a simulation tool, whereas FRA and the statistical technique are
structuring tools.  It is very promising to recognize that techniques as different as FRA and
the correlation method indeed come up with a relatively similar set of important binary
relations.
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5. Methodologies leading to a dynamic model

5.0 Abstract

In this chapter results from aspects discussed in Chapters 3 and 4 as well as new
contributions are organised into (complete) methodologies to reduce the FIR mask search
space. Section 5.2 presents different methods that lead to a static model; a comparison of
model quality loss and computation alleviation with respect to FIR exhaustive static
models is given. Subsection 5.2.1 discusses the results obtained with the methods
explained in Chapter 3 as well as other regression based methods, all of them based on
linear relationship search between variables. Subsection 5.2.2 deals with a proposal of
methodologies that also take into account possible non-linear relations between variables.
Section 5.3 deals with dynamic models constructed from searching linear as well as non-
linear relationships between variables. An original methodology based on the results of
Subsection 5.2.2.1 is proposed in Subsection 5.3.1, where time is included in the
previously developed subsystem decomposition method. Finally, Subsection 5.3.2 offers a
new energy-based approach to propose a reduced candidate mask to FIR.

5.1 Introduction

Chapters 3 and 4 dealt with model reduction and structure identification techniques for
static models, i.e., for models whose input variables are all sampled at the same time
instant as the output.  Clearly, such models will rarely offer decent forecasting capabilities
when applied to complex physical systems.  It is simply a fact that most physical systems
are dynamic in nature, and a decent model will have to take time into account.  Why then
our infatuation with static models through two entire chapters of this dissertation?  What
purpose does such a discussion serve?

The answer to this question is quite simple: Any methodology that can be used to
generate static models can also be used to generate dynamic models. Figure 5-1 illustrates
this truth.  The same model that was already used in Chapter 2 to introduce the concept of
a mask is reused here again.  The system has five variables, i.e., it is a small-scale system.
The mask is of depth three, i.e., the output at time t may depend on information sampled at
time instants t, t-�t, and t-2�t.  With a simple trick, the mask can be reduced to depth one.
To this end, the data matrices (containing the class, membership, and side information) are
triplicated. The copies are then concatenated to the original matrices from the right, each
time shifted up by one row.  The so modified system has now 15 variables instead of five,
i.e., it is now a medium-scale system.  However, a mask of depth one now contains the
same information as the previous mask of depth three, i.e., instead of a dynamic model of a
five-variable system, we can search for a static model of a 15-variable system.
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Figure 5-1 Expressing a 5-variable dynamic system by means of a 15-variable static one.

The same technique that was here demonstrated for the case of FIR can be applied to
any inductive modelling approach.  In order to allow the model inputs to be sampled at k
different time instants, k-1 copies of the data file(s) have to be made.  These are
concatenated to the original data from the right, each time moving the latest copy up by the
time difference between the corresponding samples.  In the process, an n-variable system
turns into a (k·n)-variable system, i.e., a small-scale system gets converted to a medium-
scale system, a medium-scale system becomes a large-scale system, and a large-scale
system turns into a nightmare.  If methodologies that can effectively and efficiently deal
with large-scale systems were important for the identification of static models, they
become truly essential when dealing with dynamic models.

Once the system has been converted in this way, any of the previously discussed
techniques can be applied to it.  Of course, the algorithms must be modified to take into
account the issue of causality.  No output may depend on an input at some future time;
thus, causality adds a constraint on the legal combinations that need to be searched.

In the current discussion, FIR shall always serve as the baseline approach.  The reason
for this decision is that the research group to which this author belongs has convinced itself
in numerous studies, such as [López, 1999], that FIR indeed offers excellent inductive
modelling capabilities in that the forecasts obtained with FIR models are often the best and
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always very good.  Thus, other techniques will be compared with FIR in terms of the
reduction in computational complexity that they provide versus the reduction of model
quality that the user has to accept.  The purpose of the study is to identify computationally
efficient algorithms that can be applied to large-scale systems and that can serve as
precursors to a later FIR analysis, simplifying the subsequent FIR modelling task, such that
it remains tractable.

The previous two chapters have demonstrated that FIR and FRA are techniques that are
robust (in the sense that they do not require fine-tuning by the user), easy to use, and very
general.  The price to be paid for the sheer generality of these system-theory-based
modelling techniques is their computational complexity.  While there exist suboptimal
search algorithms for both FIR and FRA, as investigated in [van Welden, 1999; Nebot and
Jerez, 1997; Jerez and Nebot, 1997], some of these, such as the genetic algorithms, are
unreliable in terms of their speed of convergence, whereas others, such as some of the
faster hill-climbing techniques, are unreliable in terms of the quality of the suboptimal
models that they generate.  In this dissertation, we have looked at statistical approaches as
precursors to FIR, since statistical techniques, though less general than FIR or FRA and
therefore more difficult to manage, provide models of excellent quality at moderate
computational cost, when applied correctly.

In Chapters 3 and 4, only a few statistical techniques have been looked at.  In the
current chapter, the statistical approaches to inductive modelling shall be investigated in a
more thorough fashion to determine, which of them are most suitable as precursors to a
subsequent FIR analysis.

As has been outlined in previous chapters, there are basically two lines of thought in
the present dissertation, as depicted in Figure 5-2. The first one would be composed of
those methods that do not reduce, a priori, the number of variables (m-inputs) present in
the candidate matrix. Their aim is to simplify the mask search space of FIR trying to
directly simplify the candidate mask that is proposed to FIR. This is based on reducing the
number of ‘-1’ elements of the candidate mask, and up to now it can be done using the
increasing depth mask search algorithm proposed in Chapter 2. This algorithm starts out
with a mask candidate of depth one.  In response, FIR finds the best static model for the
problem at hand.  The mask depth is then iteratively incremented, each time adding a top
row of ‘-1’ elements to the mask candidate.  Thus, instead of solving the dynamic
modelling task in a single highly complex step, the problem is decomposed into a serious
of computationally simpler problems, whereby the computational complexity of the
iterative algorithm is still considerably lower than that of the original problem.

Along the same lines of thought, another possibility to reduce the computational
complexity of a FIR model identification task, would be to gain knowledge about which
are the most important delays in each of the considered system variables that contain the
most complete information about the studied output. This idea will be further studied in
Section 5.3.2 of this dissertation, where energy considerations are used to identify
important delays. Each variable trajectory can be seen as the collection of values
measuring a desired physical characteristic, such as the fuel flow through a pipe, plus an
added noise, such as measuring noise or thermal noise.  Each of these trajectories can be
interpreted as a realisation of a stochastic process, i.e., there exists a deterministic as well
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as a random part in the available trajectory. With this interpretation, the energy of the
signals can be computed and used to determine at which delays each input variable
contains most energy relative to the output.  In this way, a unique sparse candidate mask
can be proposed to FIR so as to find a qualitative model of the underlying system.

Figure 5-2 The main lines of thought along the dissertation.

The second line of thought is the one exposed in Chapter 4, that is, to obtain a
decomposition of the whole system into subsystems. This would allow obtaining a model
of the system from its subsystems, which in turn simplifies the computational time needed
for such an effort. Given a k-variable system, the cost of computing a unique k-variable
model is much higher than computing some p models of jp < k variables. An efficient
method for obtaining a decomposition can be formed using, in this order, the technique
discussed in Section 3.4.1 followed by those of Sections 4.4 and 4.5. As already outlined in
Section 4.5, the subsets of variables found in this way can then serve as candidate variables
for a subsequent FIR analysis.

The chapter starts out by evaluating different statistical approaches to deriving static
qualitative models of small-scale systems.  In each case, the proposed technique is
compared to FIR in terms of efficiency and resulting model quality. This is the content of
Section 5.2. Then, in Section 5.3, it is explained how the subsystem decomposition method
can be extended with time information, and the previously mentioned energy-based
method, which inherently includes time information, is explained in detail. All of the
examples used throughout the chapter are accurately described in Appendix I.

Methods that do not
reduce, a priori, the
number of m-inputs

of the candidate
matrix

Methods that
perform a priori
reduction in the

number of m-inputs
of the candidate

matrix

Non-exhaustive sub-optimal search (Chapter 2)

Method based on the determination of the relevant
delays (to be presented in this Chapter)

Sets of variables containing maximum information
about the system (Chapter 3)

Sets of variables maximally related between them
(Chapter 3)
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5.2 Methodologies that lead to a static model

As it was explained in Chapter 3, the term ‘static’ is used in the sense that, for a variable
trajectory (quantitative) or episode (qualitative), no relations between delayed versions of
the variables are considered, i.e., only the present values of the variables are taken into
account. A static model is one that models the considered output from inputs and other
system outputs at present time, i.e., the same time instant for which the model is trying to
predict a new value of the output.

In that chapter, a first approach to reduce the model search space of the FIR qualitative
modelling methodology was investigated with the aim of providing forecasts of trajectory
behaviour of measured variables for control purposes. In particular, Chapter 3 dealt with
the problem of pre-selecting a set of candidate input variables and hence reducing the
model search space of the FIR methodology. To perform this variable selection, principal
component analysis, the method of the unreconstructed variance, and correlation-based
methods were used. Only linear static relations between variables composing the system
were searched. Of course, a model that only contemplates linear static relations between its
variables is not very useful for practical applications. Yet, it may help to identify, which
are the most promising candidate variables to be used for modelling the output.  We cannot
ascertain that a discarded variable does not have any relation to the considered output, but
we are sure that the chosen variables do have important relation to it.

This research presented in Section 5.2 is subdivided into two important subsections. The
first one, Section 5.2.1, deals with methodologies that, either individually or in conjunction
with other algorithms, can formulate a model of the system, but that only consider linear
relations between variables. All these methods were first presented in [Mirats et al., 2000].
The second one, Section 5.2.2, deals with methodologies that, using FIR as modelling
engine, also consider non-linear relations between the system variables.  All the techniques
presented in Section 5.2 only deal with static relations, but as we meanwhile know, this
constraint does not truly limit the generality of these algorithms.

All throughout the section, two situations should be distinguished. Some of the
algorithms presented here, such as algorithms involving the use of regression coefficients,
offer complete modelling approaches that can be considered alternatives to FIR.  Other
algorithms are auxiliary techniques used in conjunction with FIR.  They are used
exclusively to propose a candidate matrix to FIR, such that FIR can subsequently find a
good model more economically than by means of exhaustive search.



118

5.2.1 Methods based on linear  relationship searching

The different methodologies presented throughout this subsection are provided together
with the results of applying them to the steam generator process explained in Appendix I.2.
As outlined before, the methods used in this section only consider linear relations in the
task of choosing or discarding variables for a posterior analysis1.

The aim of this section is to evaluate the goodness of the different variable selection
techniques used and should be compared to the variable selection achieved with the FIR
methodology. In Section 5.2.1.1, static FIR models are obtained so as to compare the
obtained results with the other methodologies.

Three different methods, presented in Subsections 5.2.1.2 to 5.2.1.4, are based on
regression coefficients are used to analyse how to select a subset of variables to be retained
within a model. These methods are ordinary least squares, principal component regression,
and partial least squares. A general review of these methods can be found in [Jackson,
1991; Geladi and Kowalski, 1986]. Those regression coefficient methods do not need the
FIR modelling engine, because they can formulate a linear static model by themselves. The
contents of these three subsections is as follows:

- First, a brief description of the presented method is given.

- Then, the described method is used as originally formulated to model the
output variable of the steam generator process. At this step, no variable
selection is performed.

- Finally, a variable selection technique associated with the given method
is used so as to obtain a set of selected variables. Then two models, using
the described method in each of the subsections, are generated for the
output variable of the boiler system: one using the selected variables
from the given method, the other using the given method with the
variables that FIR selects (as described in Appendix I.2).

In this way a comparison between the sets of variables that each of the presented
techniques selects and the variables FIR that selects can be done.

Subsection 5.2.1.5 presents a clustering method that allows performing a variable
selection. This method is then combined with FIR, because it is not a complete modelling
methodology in its own right, so as to evaluate the goodness of the variable selection.

Finally in Subsection 5.2.1.6, all the derived sets of variables using the previously
presented techniques, including the sets of variables obtained from the PCA methods
discussed in Chapter 3, are used to propose to FIR a static candidate matrix. The quality of
the obtained static models is then compared and discussed.
                                                          
1 Some of the methods used in this section will be combined with the FIR methodology. FIR is not limited to
find linear relations; it also considers non-linear relationships between variables. Yet, if only a group of
linearly related variables, derived from another method, is proposed to FIR as a candidate mask, we can talk
of using FIR only considering linear relations.
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Each one of the methods advocated in this section proposes a set of selected variables
from which a static candidate mask could be proposed and a static FIR model obtained. Of
course, as stated before, obtaining static qualitative models is not meaningful because none
of them will be good enough to model a dynamic system. The reason for doing this is
because the main objective is to reduce the model search space of the FIR methodology,
and in order to attain this goal, the research must be done following some order. In this
dissertation, first linear static relations between variables are explored, then non-linear
relations are tackled, then time is added, i.e., dynamic relations are searched. In each stage,
the reduction on the computational cost achieved when computing a FIR model as well as
the quality of the resulting model are reported, so as to assess the success of the
investigated technique relative to the proposed objectives.

5.2.1.1 FIR models excluding te mporal relations

In order to be able to compare the quality and the computing reduction achieved when
using different variable selection techniques, static FIR models of the boiler example are
needed, that is, models excluding temporal relationships. The candidate mask of depth 1,
allowing all the possible static relations between the system variables, proposed for this
purpose is:

� �111111111 --------=mcan

Table 5-I shows the retained masks for each of the allowed complexities, as well as the
normalised MSE2 value of the prediction using each of them.

Complexity Model Quality MSE
2 (0 0 0 0 0 0 0 -1 1) 0.1532 1.1510
3 (0 0 0 0 0 0 -1 -2 1) 0.1523 1.2087
4 (0 0 -1 -2 0 0 0 -3 1) 0.1418 1.0974
5 (0 -1 -2 0 -3 0 0 -4 1) 0.0900 0.8234

Table 5-I Boiler FIR models without temporal relations.

FIR concludes that variables 1 and 6 can be safely discarded, whereas all other variables
need to be retained for the time being. All of the static models found are of fairly low
quality, and the MSE values resulting from their use are consequently rather high.  This is
not further surprising, as a static model cannot be expected to offer accurate predictions of
future output values for this system.

Notice that, in the FIR methodology, the quality of masks can only be truly compared to
each other as long as their complexities are the same. Moreover, for a given mask, the
MSE value depends on the validation data set, and both considerations must be taken into
account when attempting to extract conclusions from Table 5-I.

                                                          
2 Later on, some statistical techniques based on regression coefficients, such as OLS, PLS, and PCR are used
to derive a linear static model of the same example. Those methods normalise data previous to analysing
them. In order to compare FIR with those other methodologies using as index the MSE, that of FIR has to be
normalised.
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Section 5.2.1.1 was only added for completeness and readability.  It only represents an
excerpt of some results presented in Appendix I.2 in more detail.

5.2.1.2 Ordinary Least Squares  method

Given n observations of an input/output system with k input or predictor variables and
one output or response variable, the traditional regression model can be written as:

y = Xb + e

where X denotes an n x k matrix of observations of the input variables normalised to zero
mean and unit variance, y denotes an n x 1 vector of the output also normalised, b a k x 1
vector of regression coefficients, and e an n x 1 vector of residuals (also called
perturbations in the literature, that is, e is the effect of all the variables that affect variable y
and that are not included in the model). The least squares solution for b is:

b = [X' X]-1 X' y

This expression is obtained under the following considerations about the residuals:

- Their expectation is zero, E[ei] = 0, and their variance is constant, �2.

- Perturbations are independent, E[eiej] = 0, i�j, and their distributions are normal.

Table 5-II shows the regression coefficients found when using the training data set, i.e.,
the 85% of the gathered data, to compute them. The left column shows the regression
coefficients, the second column expresses the 95% confidence interval for each regression
coefficient computed in accordance with equation (5.1), and the last column shows the
percentage that each coefficient contributes to variable y.

iiRkni qst ˆ)2(ˆ
1 ��
--

� (5.1)

In equation (5.1), i�̂  accounts for the regression coefficients, t(�/2) is the Student-

Fischer distribution with a probability threshold of (1-�/2) and n-k-1 degrees of freedom,

Rŝ  is the estimation of the residual standard deviation, and qii are the diagonal elements of
the matrix (X'X)-1.
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Coefficient 95% confidence interval % contribution
-1.8925 -3.0524     -0.7326 20.1015
2.3633 1.3890      3.3377 25.1023
0.3493 -0.1639      0.4346 3.7098
1.8467 0.5612      3.1322 19.6146
0.5028 0.0598      0.9459 5.3408
-0.1847 -0.6177      0.2483 1.9620
-2.1369 -2.7344     -1.5394 22.6976
0.1385 -0.0976      0.3746 1.4714

Table 5-II Regression coefficients using OLS with the boiler system.

The Ordinary Least Squares (OLS) technique is a very simple technique, and
consequently, more refined techniques should be rejected if they cannot outperform OLS.
Using an OLS model, it might be expected that the best prediction could be obtained when
all variables (all regression coefficients) are being used.  Figure 5-3 shows an OLS
prediction of the validation data, i.e., the 15% of data not used for deriving the model, of
the boiler system using all the input variables. As in other figures along the dissertation,
the continuous line shows the measurement data of the output variable during the
validation period. The dashed line shows the predictions made by the considered model
The MSE value for the training data set is 0.6466, and for the validation data set, it is
1.1973.

Figure 5-3 Boiler OLS prediction using all input variables.

Contrary to the PCA models presented in Section 3.3.2, when analysing the variable
selection achieved with the unreconstructed variance method (see Figures 3-2 and 3-3), the
OLS model represents also the higher frequency oscillatory components of the behaviour.
Yet, the MSE values are still larger than in the case of the PCA model.

How can the regression coefficients be used to determine a subset of variables to be
retained in a simplified model? Different variable selection methods can be found in the
literature. In [Peña, 1989], a statistical analysis based on the t distribution is performed to
check whether the ith regression coefficient can assume a value of 0 or not with a given
probability. In [Daling and Tamura, 1970; Lindgren et al., 1995], those variables with
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smaller coefficients in the regression equation are discarded. These two methods are
similar to each other. When computing the confidence interval for a small coefficient, the
probability that 0 is within this interval is high. In other words, when performing a t-test on
this coefficient, the observed t value, computed in accordance with equation (5.2), will not
be of significant magnitude, and therefore, the hypothesis 0ˆ �i� cannot be refused.

Consequently, this variable should not be taken into consideration within the model.

iiR
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The criterion adopted here has been to select those variables with significant
contribution to the regression equation, and to drop those with smaller contributions. The
cut-off between selected and discarded variables is set to be 5% of contribution to the total
regression line.

Applying this criterion to the obtained coefficients in Table 5-II, variables 1, 2, 4, 5, and
7 are to be retained. Their regression coefficients are recomputed after eliminating from the
X matrix those columns corresponding to the discarded input variables. The newly
obtained regression coefficients are tabulated in the left column of Table 5-III.

Coef. 1,2,4,5,7 Coef. 2,3,8

0.7389 0.6693

0.7051 0.0844

0.7575 -0.013

0.6024

-2.152

Table 5-III. Regression coefficients for the boiler variables 1, 2, 4, 5, and 7 (left column) and for
variables 2, 3, and 8 (right column).

The top portion of Figure 5-4 shows the real and predicted validation output values
when using a regression model with variables 1, 2, 4, 5, and 7. The MSE value is 0.7483
when predicting the training data set and 1.3250 when predicting the validation data set.
The prediction turns out to be a little poorer than that obtained when keeping all variables
in the regression analysis.

Remembering the results obtained with the PCA models (Chapter 3), it may be of
interest to check what happens when those variables that FIR suggested to retain are kept
in the regression model, i.e., variables 2, 3, and 8 (see Appendix I.2). The regression
coefficients for this case are tabulated in the right column of Table 5-III. The bottom
portion of Figure 5-4 shows the corresponding prediction. In this case, the MSE value is
0.6482 for the training data set and 1.0703 for the validation data set. The results are
clearly better than using the variables that the OLS modelling approach suggested to retain,
and in the case of the validation data set, the results are even better than keeping all
variables in the regression model.



123

As it happened in the case of the PCA analysis performed in Section 3.2, the FIR
qualitative modelling engine did a better job than the OLS modelling approach in terms of
deciding, which variables should be kept in the model and which should be discarded from
it. This is true not only for the purpose of a FIR qualitative simulation, but also when a
PCA or OLS simulation is to be made.

Figure 5-4 Boiler OLS predictions using variables 1, 2, 4, 5, and 7 (top), and variables 2, 3, and 8
(bottom).

5.2.1.3 Principal Components R egression model

In this methodology, the input variables are transformed to principal components before
calculating the regression coefficients. The Principal Components Regression (PCR) model
thus pre-processes the input data, converting them to a set of equivalent PCs. It then uses
those PCs to estimate the output by means of an OLS approach.

A PCR analysis has been performed on the training data set of the boiler system, and a
cross-validation method [Wold, 1978; Osten, 1988] has been used to determine the number
of Latent Variables (LVs) to be kept in the regression model. To this end, the training data
have been split into 10 blocks of equal size, and the Predictive Residual Error Sum of
Squares (PRESS) value has been calculated for each of them.

Analysing the results obtained, it was decided to retain 4 of the possible 8 latent
variables in the regression model, and the regression coefficients were subsequently
calculated. Since the PCA analysis results in a linear transformation on the input space, it
is possible to transform the resulting regression coefficients for the 4 PCs back to 8
equivalent regression coefficients for the original input variables. Table 5-IV shows those
coefficients (first column) as well as the percentage that each coefficient contributes to the
regression equation (second column).
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Figure 5-5 shows the predictions obtained for the validation data set using a PCR model
made of all input variables whereby the 4 most important PCs (latent variables) were
retained. The resulting MSE values are 0.7189 for the training data set and 1.2798 for the
validation data set.

Coefficients % contribution
-0.0404 1.5098
-0.1418 5.2951
0.0618 2.3079
0.2670 9.9665
1.2325 46.0144
-0.3242 12.1031
-0.4718 17.6139
0.1390 5.1893

Table 5-IV Regression coefficients for all variables when using PCR with the boiler system.

Figure 5-5 Boiler PCR model using all input variables retaining 4 LVs.

It may make sense to throw some of the input variables out from the beginning.  Using
the same criterion that was applied in the case of the OLS model, the regression
coefficients of Table 5-IV suggest that variables 1 and 3 be discarded from the model,
while variables 2, 4, 5, 6, 7, and 8 are to be retained. A PCR model for this reduced set of
input variables was subsequently computed. Cross-validation revealed that, in this case, 5
of the 6 possible LVs ought to be retained in the regression model. The left column of
Table 5-V lists the regression coefficients transformed back to the original input variables.
The top portion of Figure 5-6 shows the prediction using this PCR model. The resulting
MSE values are 0.6866 for the training data set and 1.1587 for the validation data set. The
results are slightly better than for the PCR model involving all input variables.

Just like in the previous section, a third PCR model was then calculated using input
variables 2, 3, and 8, as proposed by FIR in Appendix I.2. In this case, 2 of the possible 3
LVs are to be retained. The right column of Table 5-V shows the corresponding regression
coefficients. The bottom portion of Figure 5-6 shows the predictions obtained. In this case,
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the resulting MSE values are 0.7532 for the training data and 1.0645 for the validation
data.

Coef. 2,4,5,6,7,8 Coef. 2,3,8
0.7260 0.3271
0.9852 0.0697
0.6313 0.3297
0.0787
-1.9695
0.2074

Table 5-V. Boiler regression coefficients for variables 2, 4, 5, 6, 7, and 8 (left column); and
variables 2, 3, and 8 (right column).

The results here are less good for the training data, but consistent with the results
obtained for the previous two methods, OLS in previous subsection and PCA in Chapter 3,
they are better in the case of the validation data set. These results could be interpreted in
such a way as to suggest that statistical techniques offer decent interpolation capabilities,
but FIR exhibits better generalisation power.

Figure 5-6 Prediction of the boiler output using a PCR model with variables 2, 4, 5, 6, 7, and 8
(top); and 2, 3, and 8 (bottom).

5.2.1.4 Partial Least Squares re gression method

A brief description of the PLS technique is included in this subsection. For a full
description, the reader is encouraged to review the extensive literature written on this
methodology, for example [Jackson, 1991; Geladi and Kowalski, 1986] offer a good
review on this issue.

The PLS (PLS based regression) technique operates in a similar form as PCR in the
sense that a set of vectors is obtained from the predictor (input) variables. The main
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difference is that as each vector is obtained, it is related to the responses and the reduction
of variability of the inputs. The estimation of the next vector takes into account this
relationship, and simultaneously, a set of vectors for the outputs it is also obtained that
takes into account such a relationship.

PLS has often been presented as an algorithm rather than a linear model, it is based on
the NIPALS algorithm (a least squares algorithm for obtaining principals components). In
this brief review of the method, the notation offered in [Geladi and Kowalski, 1986] has
been used.

Consider X and Y real data matrices of size n x p and n x q respectively, representing n
observations on p input and q output variables. The first step is to normalise both X and Y
to zero mean and unit variance, then two operations are carried out together:

X = TP + E (T has size n x k, P has size k x p, and E has size n x p)
Y = UQ + F* (U has size n x k, Q has size k x q , and F* has size n x q)

k � q is the number of vectors associated with X. E is the matrix of residuals of X at the kth

stage (when k = p, E = 0). F* is an intermediate step in obtaining the residuals for Y at the
kth stage.

In the singular value decomposition associated with PCA, matrices Q and P would be
the characteristic vectors, and matrices T and U the principal component scores. These
matrices do not have the same properties in PLS, but may still be thought of in the same
vein; T and U are referred to as X-scores and Y-scores, respectively.

It is possible to use regression to predict the output block of variables from the input
one. This is done decomposing the X block and building up the Y block. In PLS, a
prediction equation is formed by:

Y = TBQ + F

where F is the actual matrix of residuals for Y at the kth stage, and B is a transformation
matrix of size k x k.

It is possible to calculate as many PLS components as the rank of the X matrix, but not
all of them are normally used. In order to decide how many components (also referred to as
latent variables) to use there are several methods advocated in the literature. One of them is
using the number of components that minimises a measure of PRESS (predictive residual
error sum of squares).

Hence, the Partial Least Squares (PLS) method operates in similar ways as the PCR
method. The PCR method transforms the input space into a set of PCs. However, it does
not do anything to the outputs. The PLS method transforms both the inputs and the outputs
to sets of PCs using a PCA analysis, and in addition, takes into account the relationship
between the input space and the output space.
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The PLS technique has been applied to the training data of the boiler system. Just like in
the PCR method, it is necessary to decide how many latent variables are to be retained in
the regression model. Hence cross-validation was used, splitting the available data into 10
blocks of equal sizes. The result of this study was that 4 of the possible 8 latent variables
are to be retained in the regression model. As in the previous method, the regression
coefficients found for the 4 retained PCs were then translated back to equivalent regression
coefficients for the 8 original input variables. Table 5-VI lists, in its first column, the
resulting regression coefficients, and in the second column, the percentage that each one of
them contributes to the regression equation.

Coefficients % contribution
-0.1660 2.4436
1.6099 22.6983
0.2671 3.9315
1.5364 22.6154
0.4340 6.3880
-0.3468 5.1052
-2.4332 35.8170
0.0001 0.0009

Table 5-VI Regression coefficients for all variables when using PLS with the boiler system.

      Figure 5-7 shows the prediction of the validation data set for the PLS model using all
input variables and retaining 4 latent variables. The resulting MSE values are 0.6536 for
the training data set, and 1.1192 for the validation data set.

Figure 5-7 PLS model using 4 LVs and all physical variables.

Next, variable selection is performed. The same criterion is used as in the two previous
sections. This time, variables 2, 4, 5, 6, and 7 are selected. The PLS model for these
variables was then calculated. After performing the cross-validation test, it was decided to
retain 2 of the possible 5 LVs. The left column of Table 5-VII lists the regression
coefficients obtained for this group of variables. The top portion of Figure 5-8 shows the
prediction of the validation data set using a PLS model in the 5 selected variables with 2
LVs retained. The resulting MSE values are 0.6967 for the training data set, and 1.2429 for
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the validation data set. Hence the results are a little poorer than in the previous case, where
all variables had been used.

As in the previous two sections, a comparison was made with a PLS model in variables
2, 3, and 8, as proposed by FIR in the Appendix I.2. Cross-validation revealed that 2 of the
possible 3 LVs ought to be retained. The resulting regression coefficients are listed in the
right column of Table 5-VII. The bottom portion of Figure 5-8 shows the prediction
obtained using this model. The resulting MSE values are 0.7527 for the training data set,
and 1.0484 for the validation data set. As in the case of the PCR analysis, the results are
poorer for the training data (reduced interpolation capability) but better for the validation
data (improved generalisation power).

Coef. 2,4,5,6,7 Coef. 2,3,8
0.4469 0.3461
0.7674 0.0790
1.0934 0.3100
-0.4233
-1.2280

Table 5-VII. Boiler regression coefficients for a PLS model for variables 2,4,5,6, and 7 (left
column); and variables 2,3, and 8 (right column).

 

Figure 5-8 Prediction of the boiler output using a PLS model with physical variables 2, 4, 5, 6, and
7 (top); and 2, 3, and 8 (bottom).
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5.2.1.5 Methods based on cluster analysis

The two last methods to be discussed in this section are based on cluster analysis.
Although many clustering methods have been reported in the literature, only two of those
methods have been included here.

Before discussing the results obtained, a sketch of the four steps of the clustering
methods applied in this study is presented.

First, it is necessary to define a measure of similarity, say RXY, between two groups of
variables X and Y. Two such metrics will be used here in order to compare the two
different clustering methods.

The first metric is for a single-linkage method and is given by
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The second measure is for an average-linkage method and is given by
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where rij are the correlation coefficients between variables i and j; and n1 and n2 are the
number of variables contained in groups X and Y, respectively.

Second, once the measure of similarity has been chosen, RXY is computed for each of the
k(k-1)/2 pairs of single variable groups of a k-variable3 system.

Third step: if A and B are the two groups for which RAB is a maximum, replace A and B
by the single group C = A � B.

Fourth and last step: for each group not involved in the previous step, calculate RXC and
return to the third step.

The clustering process cycles between steps three and four until the number of groups
has decreased to a sufficiently small value. Two more decisions need to be made: (1) when
to stop with the clustering algorithm, and (2) which variable to choose from each of the
obtained clusters.

A criterion for terminating the clustering algorithm is to continue with steps three and
four until all RXY between the remaining clusters fall below some level R0. In accordance
with [Jollife 1972; Jollife 1973], the following values for R0 have been taken: 0.55, when
the single-linkage method is used, and 0.45, when the average-linkage method is applied.
Two methods of choosing variables from each cluster have been implemented:

                                                          
3 In this analysis all the system variables form part of either one group of another, i.e., k = n1+n2.
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- Inner-clustering selects one of the first two variables forming each cluster.

- Outer-clustering selects the last variable that joined each cluster.

Table 5-VIII summarises the results obtained when applying this method to the boiler
system. Using either the single-linkage method or the average-linkage method leads to the
same results, thus, Table 5-VIII is valid for both metrics. The variables in each cluster are
given in the order in which they joined the cluster.

Method Inner clustering Outer clustering
Variables kept 2,3 3,8
Clusters found 2,4,1,7,6,5,8

3
2,4,1,7,6,5,8

3

Table 5-VIII Boiler variable selection achieved using cluster analysis.

The reader may notice that both techniques selected a subset of the variables that FIR
proposed to retain. Combining the inner and outer clustering methods, the set of variables
determined by FIR would have been found in the case of the example at hand.

5.2.1.6 Using subsets of variables for static FIR predictions

To this point, the predictions made by statistical techniques, as presented in Subsections
5.2.1.2 to 5.2.1.5, were compared against prediction made by these very same techniques if
the variables used to model the output of the boiler system would be those proposed by
FIR in Appendix I.2 (Figure I-8). Such a comparison is unfair, because all statistical
techniques presented in this section employed static models only, whereas FIR made use of
a dynamic (time dependent) model. All techniques discussed in Subsections 5.2.1.2 to
5.2.1.5 could also have been used to generate dynamic models by simply duplicating and
triplicating the sets of variables, i.e., the columns of the data matrix, shifting them up each
time by one row, as explained in the introduction to this chapter. This form of adding time
to the analysis will be used later for the case of decomposing the system into subsystems.
The computational work for these methods would have been enlarged, because they would
have had to deal with more variables in this way, but the predictions would certainly have
been improved.

Yet, this was not the purpose of this section. The purpose was to find a set of
bootstrapping techniques for FIR that, with little computational effort, could encounter
subsets of variables to be considered in a FIR optimal mask search. To this end, static
models, which can be obtained easily at low computational cost, have been generated, in
the hope that the variables not used by these models would be less likely candidates also in
a dynamic model search. Such an assumption makes sense due to the autocorrelation
inherent in any physical signal. If x(t) is a poor choice for predicting y(t), then it is unlikely
that x(t-�t) or x(t-2�t) would be very good choices either.
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Mask Qualities Number of computed
masks

Method
Selected variables

C4 C5 C4 C5 MSE

None All 0.6080 0.6196 82160 1581580 0.5522

FIR (Static) 2,3,4,5,7,8 0.6080 0.6196 37820 557845 0.5522

Unreconstr. var. 1,2,4,5,6,7,8 0.5943 0.4290 59640 1028790 0.7324

OLS 1,2,4,5,7 0.5943 0.4258 23426 292825 0.7516

PCR 2,4,5,6,7,8 0.5943 0.4290 37820 557845 0.7324

PLS 2,4,5,6,7 0.5943 0.4258 23426 292825 0.7516

MC* 2,3 0.6080 0.6167 2600 14950 0.5529

PCA_A1* 3,8 0.6057 0.6177 2600 14950 0.5845

PCA_A2* 2,3 0.6080 0.6167 2600 14950 0.5529

PCA_B1* 1,2 0.5943 0.4258 2600 14950 0.7516

PCA_B2* 1,3 0.6049 0.6123 2600 14950 0.5640

Inner clust. 2,3 0.6080 0.6167 2600 14950 0.5529

Outer clust. 3,8 0.6057 0.6177 2600 14950 0.5845

Table 5-IX Boiler FIR Dynamical models obtained from different reduced sets of variables.

Table 5-IX lists the results of employing the static methods obtained in previous
sections as bootstrapping techniques for a dynamic model search using FIR.

The first row of Table 5-IX shows the results of performing an optimal mask search
using all 9 variables and a candidate mask of depth 16, as it has been done in the Appendix
I.2. Hence the corresponding candidate mask contains 16·9-1 = 143 potential inputs (‘-1’
elements). An exhaustive search was performed analysing the quality of masks consisting
of up to four of these inputs plus the output. To this end, 1.581.580 masks had to be
evaluated. The search consumed 160 minutes of computation time on a Sun Ultra Sparc II
Workstation. The optimal masks of complexities 4 and 5 (columns C4 and C5) were
tabulated with respect to their resulting mask qualities (columns 3 and 4). The number of
different masks visited in the process of searching for the optimal mask of complexity 4 is
listed in column 5, and the number of masks visited in search of the optimal mask of
complexity 5 is presented in column 6. Column 7 shows the MSE error obtained in a
prediction that combines the predictions made by the optimal masks of complexities 4 and
5. As discussed in [López, 1999], FIR not only makes a prediction of an output variable; it
simultaneously provides a measure of confidence in its own prediction. In the simulation
leading to the MSE value reported in column 7, predictions were made in parallel with the
optimal masks of complexities 4 and 5, and in each step, the prediction accompanied by
the larger confidence value was kept.

The subsequent rows tabulate the results obtained when using the optimal mask search
algorithm but using the sets of variables proposed by the different studied methods. For
example, the second row tabulates the results of the performed search where the variables
to be considered were obtained using the static FIR models found in Section 5.2.1.1 of this
chapter. Those models suggested that variables 1 and 6 are less likely candidates for input
                                                          
* Those methods have been presented in chapter 3. MC stands for Multiple correlation, PCA stands for
principal components analysis.
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variables. Consequently, variables 1 and 6 were discarded from the set of potential inputs.
This is shown in column 2. The mask candidate now contains 0 elements (forbidden
connections) in columns 1 and 6, and consequently, it only contains 16·7-1 = 111 potential
inputs. The subsequent exhaustive search through all masks compatible with the mask
candidate matrix and the constraint of not having more than 4 inputs resulted in a search
through 557.845 masks. Hence the computational effort was about 1/3 of the one needed
for the experiment described in the previous paragraph. It consumed 53 minutes of
execution time on a Sun Ultra Sparc II Workstation. It turned out that FIR did a good job at
discarding variables. The resulting masks of complexities 4 and 5 are exactly the same as
found using the three times more expensive search through all possible masks.

Rows three to six correspond to the results obtained with a static FIR model using the
set of variables proposed by each of the techniques discussed in Subsections 5.2.1.2 to
5.2.1.5. The regression techniques of Subsections 5.2.1.2 to 5.2.1.4 as well as the
unreconstructed variance methodology explained in Chapter 3, were not well suited for the
task at hand. All of these techniques threw out variable 3, which turned out to be essential
in making good FIR predictions. This variable was discarded, because it exhibits a
relatively poor cross-correlation with the other variables. Consequently, these statistical
techniques considered the variable of lesser relevance. This decision let to optimal masks
of reduced quality, and as was to be expected, the use of these masks in a FIR prediction
led to substantially larger prediction errors.

Obviously, cross-correlation only evaluates the strengths of linear relationships,
whereas the FIR forecasting engine exploits also non-linear relationships among variables.
Yet, this does not fully explain the comparatively poor performance of these techniques,
since even the described statistical modelling techniques, using perfectly linear regression
models, exhibit better prediction results when they are applied to the set of variables
selected by FIR (which includes variable 3) than when they are based on their own variable
selection. Evidently, and in spite of its relatively poor cross-correlation with the other
variables, variable 3 still contained valuable information that could be exploited in
predictions.

The final set of rows summarises the results of using FIR with the variables selected by
each of the techniques presented in Sections 3.2 and 3.4.2, as well as the clustering
methods discussed in Subsection 5.2.1.5. These techniques performed considerably better
than those based on regression coefficients or unreconstructed variance. Except for method
PCA_B1, all methods resulted in optimal masks that were either the truly optimal ones, or
at least of almost equal qualities. In accordance with this finding, also the resulting MSE
values were close to optimal. Why did these techniques work better? The reason is that
they did not attempt to eliminate variables with poor cross-correlation to the output.
Instead, they eliminate variables with strong cross-correlation to other inputs. This makes
sense, because if two inputs are strongly correlated with each other, they contain almost
identical information, and therefore, either one of them will suffice to explain the output.
This strategy works even in the case of non-linear systems and for use by non-linear
prediction algorithms.

The techniques presented in Chapter 3 and the clustering methods are considerably
more aggressive in throwing out variables than the other algorithms presented in this
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chaopter. Since the set of remaining variables is small, the optimal mask search, for the
given example, can be performed quickly. These searches are completed on a Sun Sparc II
Workstation within less than 2 minutes, i.e., they execute about 100 times faster. All of
these techniques exhibit another important advantage. They sort the variables in order of
increasing or decreasing importance. Hence it would be easy to add one more variable and
repeat the optimal mask search to check whether or not the mask quality improves. This
could still be done rather inexpensively.

Now, another experiment of interest can be performed with the different obtained sets
of variables. Those can be used to propose to FIR a candidate mask with a given depth4, so
as to obtain a dynamic FIR model, but only setting to '-1' the columns corresponding to the
variables selected by each of the methods at a time. The loss of prediction quality incurred
when computing FIR dynamic models from the different subsets of variables is
summarised in Table 5-X. The columns labelled P stand for the percentage of mask quality
lost by the different variable subsets relative to that of the exhaustive FIR model of equal
complexity. P is computed as:

100×

-

=

dynamicFIR

MODELidynamicFIR

Q

QQ
P

The columns labelled N represent the percentage of MSE error increase due to the
selection of different subsets of variables relative to that of the exhaustive FIR model. N is
computed as:

100×

-

=

dynamicFIR

dynamicFIRMODELi

MSE

MSEMSE
N

The values in the rows labelled C+ were computed combining the predictions made by
the optimal masks of complexities 4 and 5 as explained earlier.

FIR Unrecons.FIR (dynamic)

(static) variance

PCR OLS, PLS

Q P Q P Q P Q P Q P

C4 0.6080 0 0.6080 0 0.5943 2.2 0.5943 2.2 0.5943 2.2

C5 0.6196 0 0.6196 0 0.4290 30.7 0.4290 30.7 0.4258 31.3

MSE N MSE N MSE N MSE N MSE N

C+ 0.5522 0 0.5522 0 0.7324 32.6 0.7324 32.6 0.7516 36.1

                                                          
4 Here a depth of 5 has been used so as to be consistent with the analysis performed in the Appendix I.2
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MC*,
PCA_A2*,

Inner
clustering

PCA_A1*,
Outer

Clustering

PCA_B1* PCA_B2*

Q P Q P Q P Q P

C4 0.6080 0 0.6057 0.4 0.5943 2.2 0.6049 0.51

C5 0.6167 0.5 0.6177 0.3 0.4258 31.3 0.6123 1.2

MSE N MSE N MSE N MSE N

C* 0.5529 0.1 0.5845 5.9 0.7516 36.1 0.5640 2.14

Table 5-X Loss of prediction quality due to selection of variable subsets.

From Table 5-X, it is evident that there exists a strong positive correlation between the
percentage-wise reduction in mask quality and the corresponding increase in prediction
error, at least for the example at hand.

Table 5-XI shows the reduction in computing effort attained when using FIR with each
one of the proposed subsets of variables. Each column stands for the reduction in the
number of masks to compute and it has been calculated as:

100
#

##
×

-

=

dynamicFIR

MODELidynamicFIRR

where # is the number of masks to be evaluated for a given complexity. The last column in
Table 5-XI relates to methods MC, PCA_A1, PCA_A2, PCA_B1, PCA_B2, inner and outer
clustering, because they all achieve the same reduction of the FIR model search space.

FIR
(dynamic)

FIR (static)
PCR

Unreconstructed
variance

OLS, PLS MC,
PCA_A1...

C4 0 53.97 27.41 71.49 96.84
C5 0 64.73 34.95 81.49 99.05

Table 5-XI Model search space reduction attained with each of the methods applied to the boiler system.

                                                          
* Methods analysed in chapter 3 for which in the present Chapter only results are given and compared to
other methodologies.
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5.2.2 Methods based on linear  and non-linear relationship search

The method described in this subsection is based on the application of different ideas
previously explained in Chapters 3 and 4. In fact, applying in order the method described
in Subsections 3.4.1, followed by variants of those methods presented in Sections 4.4 and
4.5, leads to a methodology that allows obtaining a FIR model of a large-scale system,
whereby the algorithm presented here keeps the computational burden within acceptable
bounds. The method is applied to the garbage incinerator system detailed in Appendix I.3.
The reason for using this example rather than follow the study with the boiler system was
that the latter only has 9 variables whereas the former has 20 physical variables. This
makes the garbage incinerator system a better academic example so as to demonstrate the
applicability of the proposed technique. The research presented in this section was first
published in [Mirats and Verde, 2000].

The algorithms of Sections 4.4 and 4.5 are slightly modified here due to the radically
different goals of Chapters 4 and 5.  The purpose of Sections 4.4 and 4.5 was the design of
an alternative method to FRA for identifying the set of important binary relations
governing the system under investigation, with the aim of deriving, in a more economical
fashion, the topological structure underlying the system under study.  The purpose of the
present subsection is to design an algorithm that can support FIR in determining a
suboptimal mask of high quality for predicting future values of the output variable.  As
almost all FIR models, this suboptimal mask will usually contain no more than 5 to 7 input
variables, i.e., there is no need or even desire to include all remaining variables in the
model, as this was the case in Chapter 4.

5.2.2.1 Subsystem decomposition algorithm

The first step of the developed method is to perform a rough variable selection via
correlation analysis of the input data. As is well known, correlation as well as covariance
measures provide measures of linear association, i.e., association along a line. When using
such indices to study possible relations among variables, the modeller must take into
account that possible non-linear relations may exist that are not revealed by these
descriptive statistics. These non-linear relations are investigated in a posterior step of the
methodology.

As discussed already in Chapter 3 and confirmed in Subsection 5.2.1, it is impossible to
develop linear statistical techniques that can decide on their own, which variables to retain
for a posterior analysis.  Every one of the successful techniques did just the opposite.  They
all concluded, which variables can safely be eliminated from the posterior analysis.  The
reason for this is simple.  A linear statistical technique by itself cannot know whether or
not important non-linear relations exist, and therefore, cannot decide that a variable
exhibiting negligible linear correlation with the other variables can be discarded.  All it can
do is eliminate input variables that are strongly linearly correlated with other input
variables, since they evidently contain primarily redundant information.



136

Hence, the first step of the proposed method is based on the simple idea to identify
clusters of input variables that roughly contain the same information about the system and
drop all of them except one out of the subsequent analysis so simplifying a posterior model
computation.  One such technique was explained in Subsection 3.4.1: a correlation analysis
of the input data is performed, obtaining the data correlation matrix, so variables with a
strong linear relationship can be detected. Afterwards, those input variables with an
absolute linear correlation coefficient equal or higher than an absolute upper limit r0 are
identified. The input variables in these groups contain almost the same information about
the studied process and hence, one of them may be chosen to represent this information.
The criterion used to select this variable, as described in Subsection 3.4.1, is to maximise
the variation coefficient. This index is a normalisation of each variance variable using its
mean as normalisation factor.

Then, as explained in Section 4.4, the previously found correlation matrix can be
reduced by eliminating those of its rows and columns that correspond to already eliminated
variables.  The reduced correlation matrix is then enlarged by adding one row and one
column to it representing the output variable.  A singular value decomposition of the so
modified correlation matrix is then performed, so its eigenvalues and eigenvectors are
obtained. Subsequently, the (orthogonal) eigenvectors are projected onto the principal
axes. Theoretically, the projections onto all of the subspaces spanned by each pair of
eigenvectors have to be examined, but in practice, it suffices to take into account only
those projections that contribute to the system variance the most.  For each projection, the
axes are divided into sectors of 30º, and the variables with larger projection in the obtained
sections are joined into the same subsets.  In this way, subgroups of linearly related
variables are obtained.  The algorithm of Section 4.4 is more sensitive than that of
Subsection 3.4.1, so that new linearly related groups of input variables are discovered in
spite of the fact that the most strongly related input variables had already been dropped.
Furthermore, clusters involving the output variable are now found as well.

The algorithm of Section 4.4 is modified in that only the sectors starting at 0º and
multiples of �30º are considered here, accepting the fact that groups formed by variables
located in the vicinity of the dividing landmarks may be missed in this way.  The reason
for this simplification is additional speedup.  The simplification is acceptable, because the
purpose here is a quick identification of a promising set of variables to be offered as
candidate inputs to a subsequent FIR analysis, rather than the desire to identify every one
of the important binary relations between variables, as was the case in Chapter 4.

The resulting (slightly smaller) set of subsystems is presented in Table 5-XII.

S1 X8 X14

S2 X4 X6 X7 X12 X13

S3 X2 X11 X12

S4 X4 X6 X8

S5 X10 X14

Table 5-XII Garbage incinerator static subsystem decomposition.
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The fact that some groups of variables have been missed reduces the number of
important binary relations identified by the algorithm, but does not significantly hamper
the ability of FIR to subsequently identify a high-quality model of the output variable.

Yet, as already explained in Section 4.5, no statistical analysis can be successful in
identifying a promising set of candidate input variables to FIR that only takes linear
relations into account.  All that such techniques can accomplish is to exclude redundancy,
which unfortunately, will not suffice, as the set of remaining variables would in most cases
still be too large in the case of a large-scale system.  In Section 4.5, a technique was
introduced that enables the modeller to identify non-linear relations among variables using
linear statistical approaches.  The trick was to apply a non-linear transformation to the non-
linear relation that strengthens the linear component of the transformed relation.

The same approach is used here.  However, rather than investigating possible non-linear
relations between each group and every variable not already belonging to that group, the
search shall be limited to investigating potential non-linear relations between the
previously found groups on the one hand and variables not belonging to any group on the
other.  The reason for this simplification is again speedup.  The aim here is to ensure that
every variable that contains a linear or non-linear relation with any other variable shall be
included in at least one group.  The purpose is no longer the identification of the complete
set of important binary relations.  It is sufficient to ensure that promising candidate inputs
are dutifully discovered and included in the set of variables offered to FIR to be used in its
posterior analysis.

For the garbage incinerator system, the best non-linear transformation, cubic-spline-
based, for the variables X5, X9, X18, X19, and X20, i.e., those variables not contained in any of
the five subsets S1 - S5, has been computed. The correlation matrices between each of the
transformed variables and the subsystem variables are not reported here. Table 5-XIII,
summarises all of these tables and shows whether the transformed variables have been
found to have a non-linear relationship with the different subsystems or not.

S1 S2 S3 S4 S5
*
5X Yes - - - -

*
9X - Yes Yes - -

*
18X - - - - Yes
*
19X - - - Yes -
*
20X - - - - -

Table 5-XIII Non-linear correlations between not chosen variables of the incinerator and the five
previously identified subsets.

Now, those variables with non-linear correlation with any of the subsets are joined to
the corresponding subsets. Table 5-XIV shows the resulting subsystem decomposition of
the garbage incinerator process.
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S1 X5 X8 X14

S2 X4 X6 X7 X9 X12 X13

S3 X2 X9 X11 X12

S4 X4 X6 X8 X19

S5 X10 X14 X18

Table 5-XIV Final subsystem decomposition for the garbage incinerator system including linear as
well as non-linear relations between variables.

FIR models of different complexities are computed for every variable contained in at
least one subsystem.  For each variable, a number of candidate masks is proposed to FIR
that contains only those variables as possible inputs that are joined with that variable in one
of the groups.  For example, since the variable x8 forms part of two groups, two candidate
masks for variable x8 are proposed containing ‘-1’ elements in the positions corresponding
to x5 and x14 on the one hand, and x4, x6, and x19 on the other.  With each of these mask
candidate matrices, the optimal mask is computed by FIR.  The qualities of these optimal
masks are then evaluated, and the best of these models is retained as the proposed
suboptimal FIR model for that variable.

For comparison purposes, optimal FIR models for each of these variables are also
computed, offering to FIR all variables as potential inputs.  To compare the results
obtained, the quality of the FIR models is used. A measure of the relative loss of quality of
the suboptimal FIR models with respect to the optimal ones is computed.

Figures 5-9 and 5-10 display the percentage of lost quality in each case, computed as

opt

suboptopt

Q

QQ -

where Qopt is the quality of the optimal mask when a full candidate mask is used, and
Qsubopt is the quality of the optimal mask when a candidate mask with only a subset of
potential input variables is used. In these figures, each point is labelled with a variable
number, representing the variable that has been modelled from the others. Some of the
variables do not appear in the figures, because it is not possible to compute its FIR model
for the corresponding complexities (for example, x5 is only related to x8 and x14, and
therefore, only models of complexities 2 and 3 can be computed).
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Figure 5-9 Loss of quality for models of complexity 3 (left) and 4 (right), when each of the incinerator
system variables is modelled from other variables with which they are related through one or more

subsystems.

Figure 5-10 Loss of quality for models of complexity 5 (left) and 6 (right), when each of the incinerator
system variables is modelled from other variables with which they are related through one or more

subsystems.

The loss of quality is almost always below 15%.  Only few models exhibit a loss that is
slightly greater; for example, the complexity 6 model for x7 has a loss of the 21.2%, and the
complexity 4 model for x13 shows a loss of 17%. Only one model exhibits a very high loss:
the complexity 3 model for x10 with a loss of quality of 82%. These results show that, with
the obtained decompositions, there may indeed occur a loss of quality when modelling a
system from its subsystems, but as shown later, the computational reduction achieved
makes up for the quality lost.

To reinforce the evaluation of the results, another experiment has been performed. The
qualities of the FIR models that are obtained using candidate masks with the
complementary sets of variables have been computed. The results from this experiment
have been compared with those stemming from the use of a full candidate mask in terms of
percentage of quality lost.
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Figure 5-11 Loss of quality for models of complexity 3 (left) and 4 (right), when each of the incinerator
system variables is modelled from the complementary sets of variables to those used in Figure 5-9.

Figure 5-12 Loss of quality for models of complexity 5 (left) and 6 (right), when each of the incinerator
system variables is modelled from the complementary sets of variables to those used in Figure 5-10.

 Figures 5-11 and 5-12 are labelled as before. This time it is possible to compute FIR
models for all considered complexities of all variables. These four figures show that the
loss of quality of FIR models, using the complementary sets, is much higher than that
obtained in Figures 5-9 and 5-10, with the exception of variable x10, which in this case does
not ever exhibit a loss of quality.  It is an encouraging result indicating that the information
regarding the whole system contained in the obtained subsystems is indeed generally much
higher than that contained in any other subgroup of variables.

To offer a more quantitative view of the results obtained, Figure 5-13 shows the loss of
quality found in the two performed experiments for FIR model complexities 3 and 4. The
dotted line represents the quality lost when using a candidate mask based on the
subsystems obtained by the advocated methodology.  The continuous line shows the results
obtained with the complementary sets of variables.
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Figure 5-13 Comparative loss of quality, when using the two different presented sets of the
incinerator variables for models of complexities 3 and 4.

Now looking at the computational complexity involved in the FIR methodology, it can
be seen that a substantial reduction in the model computing time is achieved when the
whole system is modelled from the obtained subsystems.

Time dependency of a variable on the past values of the others has not been considered
in the proposed methodology for the identification of subsystems, but FIR copes with this
issue. Let us suppose that a FIR model of the incinerator process is to be built using
exhaustive search.  The mask depth is assumed to be 16, and all 20 variables are being
considered.  Consequently, the mask candidate matrix contains 319 ‘-1’ elements.  Table
5-XV lists the number of models (masks) that must be computed for each allowed
complexity if an exhaustive search is performed.

Complexity No. of  models to compute
C2 319
C3 50.721
C4 5.359.519
C5 423.402.001

Table 5-XV. Number of FIR models to compute considering a full candidate matrix.

We wish to evaluate the computational complexity of the proposed suboptimal search
strategy.  The output to be modelled is variable y.  A problem is encountered, because
precisely that variable does not form part of any of the submodels.  In order to be able to
apply the proposed methodology to the task at hand, the output y of the system is added to
each one of the found subsystems, listed in Table 5-XII. The cardinality of the subsets will
be 4,7,5,5 and 4 respectively. Table 5-XVI gives the number of FIR models that need to be
calculated for systems with 4, 5, and 7 variables. It also includes the total sum of models
(two times column 1 plus two times column 2 plus column 3) to be computed in this
example when the system is modelled from its subsystems. The last column of Table
5-XVI shows the relative computational reduction achieved with the proposed method.
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If column 2 of Table 5-XV is named NMC, and column 4 of Table 5-XVI is called T,
the percent of reduction is computed as 100-(T/NMC)*100. Note, that a consistent
reduction in computational time is achieved, except for those few models to be computed
with complexity 2.

4 Var. 5 Var. 7 Var. Total % reduction
C2 63 79 111 395 -23.82
C3 1.953 3.081 6.105 16.173 68.11
C4 39.711 79.079 221.815 459.395 91.42
C5 595.665 1.502.501 5.989.005 10.185.337 97.59

Table 5-XVI Reduction of computation effort in the garbage incinerator system, when using the
proposed subsystem decomposition method.

5.3 Methodologies leading to  a dynamic model

As it was explained in Chapter 3, the term ‘dynamic’ is used in the sense that relations
between variables and their delayed versions are considered in the model, i.e., time is
explicitly taken into account in the analysis. A static model has been previously defined as
one which models the considered output from inputs and other system outputs at zero time
delay, i.e., all variables are sampled simultaneously.  A dynamic model takes also into
consideration past values of all the possible variables involved in the modelling process.

In this section, two different dynamic methods are presented that allow simplifying the
mask search space of the FIR methodology. The first technique is an extended version of
the subsystem decomposition method discussed in section 5.2.2.1. The second algorithm is
based on energy considerations of the available signals or variable trajectories.

5.3.1 Subsystem decomposition method extended with time

The subsystem decomposition method previously discussed in section 5.2.2.1, applied
to the garbage incinerator system, can be extended with the explicit inclusion of time in the
analysis. The approach taken is the one already outlined in the introduction to this chapter:
the raw data model is duplicated and triplicated; each new copy is concatenated to the
previous model from the right, after shifting it up by one row; and the so enlarged data
model is now considered in a static analysis.

The method will be demonstrated using the same example, i.e., the garbage incinerator
system described in Appendix I.3. In accordance with the previous analysis, the considered
mask depth is chosen to be 16, i.e., fifteen copies of the original raw data matrix are
created and concatenated to the original data matrix from the right.

Hence, the enlarged raw data model is a very big matrix of dimensions 43186 � 320.
Thus, a system of 320 variables now needs to be decomposed into subsystems.
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The analysis begins by applying the correlation analysis to all the variables of the
enlarged garbage incinerator system, corresponding to those variables listed in Table I-III
in Appendix I.3 as well as their delayed versions up to (t-15�t). Note that in this first
variable selection step, only redundancy among input variables is being searched, as it was
done in the case of the static models; thus we should not include in the analysis the
considered output variable y(t), but we must consider its delayed versions, from y(t-1) to
y(t-15) since now, those are considered new possible input variables to model the output.
The sample correlation matrix for those 319 input variables is not reported here. The value
chosen for the discriminator r0 is r0 = 0.75, the same as in the previous analysis. In Table
5-XVII, a list of the variables chosen by this first selection step is given. Note that in this
first variable selection step, variables x3, x15, x16, and x17, are already discarded entirely
from the set of variables. This reduces enormously the mask search space of FIR, since
(20*16)-1 = 319 possible relations among variables (number of ‘-1’ elements of a
candidate mask of a 20-variable system of depth 16), are reduced to 319-(4*20) = 239
allowed relations among the remaining variables.  Yet, the actual savings are even larger,
as shown in Table 5-XVII.

Selected variables
x1(t), x1(t-9)
x2(t)
x4(t-dt)
x5(t-14dt)
x6(t-14dt)
x7(t-14dt)
x8(t)
x9(t-14dt)
x10(t-14dt)
x11(t-2dt)
x12(t)
x13(t-13dt)
x14(t)
x18(t), x18(t-dt), x18(t-2dt), x18(t-3dt), x18(t-4dt), x18(t-5dt),
x18(t-7dt), x18(t-8dt), x18(t-10dt), x18(t-11dt), x18(t-13dt),
x18(t-14dt)
x19(t-14dt)
y(t-dt), y(t-4dt), y(t-10dt)

Table 5-XVII Garbage incinerator system selected variables, when including time in the subsystem
decomposition method.

Therefore, in this very crude first variable selection step, plenty of redundant input
variables are already dropped out of the posterior modelling process. Only 30 of the 319
possible input variables are retained.  Now with the remaining input variables together with
the output, that is a total of 31 variables, subsets (subsystems) of variables are formed that
are linearly correlated among each other. The process used to this aim is based on the first
steps of a principal component analysis.
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The correlation matrix of the remaining variables together with the output can be
derived from the entire correlation matrix (with dimensions 320 � 320) previously
computed (although for the first variable selection step it was used without the column and
row corresponding to the y(t) variable) by eliminating each row and column that reflect a
dropped variable. In this way, a new n � n matrix, n = 31, of correlation coefficients is
obtained. Then, a singular value decomposition of this matrix is performed, and the
obtained eigenvectors are projected onto the principal axes.

In the case at hand, information from only two projections was necessary to derive the
groups of linearly related variables. The used projections were first versus second, and first
versus third axes. Other projections, such as first versus fourth, second versus third, and
second versus fourth axes, were analysed, yet the subsystems derived from these
projections were already included in the two main projections.  Table 5-XVIII lists the
obtained subsystems that only include linear relations among variables.

Formed subsystems
S1 x18(t-5) x18(t-7) x18(t-8) x18(t-10) y(t-10)

S2 x4(t-1) x6(t-14)

S3 x18(t-2) x18(t-3) x18(t-4)

S4 x1 x2 x6(t-14) x7(t-14) x8 x11(t-2) x12 x14

S5 x18(t-11) y(t-10)

Table 5-XVIII Formed subsystems for the garbage incinerator when only linear relations are
considered and time is included.

Therefore at this stage of the subsystem decomposition method, we already have
identified 5 subsystems with varying numbers of variables. It may be noted that not all of
the variables under consideration have been included in one or more of the obtained
subsystems.  Concretely, variables x1(t-9�t), x5(t-14�t), x9(t-14�t), x10(t-14�t), x13(t-13�t),
x18(t), x18(t-�t),  x18(t-14�t), x19(t-14�t), y(t), y(t-�t) and y(t-4�t) do not form part of any
subsystem. This is to be expected, because up to now, only linear relations have been
investigated among the system variables to group them into possible subsystems5.

Now, for those 12 variables that were not included in any of the 5 subsystems, possible
non-linear relations between them and the formed subsets should be considered. The
previously explained algorithm of Section 4.5 is used for this task.

After computing all the necessary linear combinations, splines and correlations among
variables, the subsystem decomposition of the garbage incinerator system remains as listed
in Table 5-XIX. In this table, the variables that joined the subsystems in the final non-
linear step are marked in bold.  Eleven of the twelve previously excluded variables joined
the subsystems at this time.  Only x13(t-13�t) is permanently removed from the list of
remaining variables.

                                                          
5 Of course, the formed subsystems may also contain non-linear relations among the included variables.
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Final obtained subsystems

S1 x10(t-14) x18(t-5) x18(t-7) x18(t-8) x18(t-10)x18(t-14)x19(t-14) y(t-10)

S2 x4(t-1) x6(t-14) x18(t-13) y(t) y(t-1) y(t-4)
S3 x5(t-14) x9(t-14) x10(t-14) x18(t-1) x18(t-2) x18(t-3) x18(t-4) x18(t-14)x19(t-14)
S4 x1 x1(t-9) x2 x6(t-14) x7(t-14) x8 x11(t-2) x12 x14 y(t) y(t-1) y(t-4)
S5 x5(t-14) x18 x18(t-1) x18(t-11) y(t-10)

Table 5-XIX Final subsystem decomposition when time is included for the garbage incinerator system.

Note that two of the final obtained subsystems include the output variable at time t
within them, namely subsystems S2 and S4. If none of the subsystems would contain y(t),
this variable would have to be added to all of the subsystems.  Now, those subsystems that
include the output variable at time t are used to postulate candidate masks to FIR and hence
serve to derive models of the considered output6. One of the subsystems, S2, is by itself a
complexity six model of the output:

yS2_C6(t) = f{ x4(t-1), x6(t-14), x18(t-13), y(t-1), y(t-4) }

The quality of this model is found to be Q = 0.4153.

As we have been using FIR models of complexity 5 all throughout the dissertation, FIR
is presented with the candidate matrix that can be derived from the S2 subsystem:
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The number of models to compute are 5 of complexity 2, 10 of complexities 3 and 4,
and 5 of complexity 5, a total 30 models, a very low number if one takes into consideration
the number of models we have to compute with FIR in a typical application.

                                                          
6 In fact, subsystems containing the output variable at time t, i.e., containing y(t), could be considered by
themselves models of the output variable. In section 5.2.2.1 it was shown that when a variable is FIR-
modelled from other variables with which it is related in the found subsystems, the loss of quality with
respect to those FIR models derived from all the variables is small. Here, the criterion of proposing to FIR
candidate masks extracted from those subsystems, has been adopted in order to obtain suboptimal FIR
models and then compare the results with the rest of the models derived in the dissertation.
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When the optimal mask search algorithm is used with this candidate mask, the
following optimal models are obtained, one for each of the allowed complexities, together
with their corresponding qualities:

yS2_C2(t) = f{ y(t-1) } Q = 0.6137
yS2_C3(t) = f{y(t-1), x4(t-1) } Q = 0.5834
yS2_C4(t) = f{ y(t-1), x4(t-1), x6(t-14) } Q = 0.5781
yS2_C5(t) = f { y(t-1), x4(t-1), x6(t-14), x18(t-13dt) } Q = 0.5775

For the other subsystem, S4, we find that it contains 12 variables, which is clearly not
optimal in terms of FIR. Accordingly, the following candidate mask is proposed to FIR:
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In this case, 11 models of complexity 2, 55 of complexity 3, 165 of complexity 4, and
330 of complexity 5, a total of 561 models, must be computed, also a very low number of
models with FIR applications. Hence, when the optimal mask search algorithm is used
with this candidate mask, the following optimal models are obtained, one for each of the
allowed complexities, together with their corresponding qualities:

yS4_C2(t) = f{ y(t-1) } Q = 0.6137
yS4_C3(t) = f{y(t-1), x2(t) } Q = 0.5983
yS4_C4(t) = f{ y(t-1), x1(t-9dt), x2(t) } Q = 0.5809
yS4_C5(t) = f { y(t-1), x1(t-9dt), x2(t), x7(t-14dt) } Q = 0.5897

The result of simulating the output variable with the complexity 5 yS2(t) model is
presented in Figure 5-14. As was done with all other simulations, 85% of the available data
were used to derive the model, whereas the remaining 15% were considered to be the
validation data set, in this case 36.720 and 6.480 data points respectively. Figure 5-14
shows the last 500 points of the simulated output. In this figure, the real output trajectory is
depicted as a continuous line, whereas the simulated output is plotted as a dotted line. It
can be appreciated that the simulated output follows the real trajectory rather accurately.
The reader may appreciate the quality of predictions achievable by a carefully chosen
suboptimal dynamic FIR model. It should be noted that this model is capable of following
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the spurious changes on the NOx gas emission present in the data. The MSE error when
using this model is 0.1135.

Figure 5-14 Garbage incinerator output variable simulated with the complexity 5 model derived from S2.

There is another simulation that ought to be evaluated: the one obtained using the
corresponding model of equal complexity derived from the S4 subsystem. Figure 5-15
shows it. Also these simulation results are excellent, with a slight increase of quality.  The
MSE for this model is 0.1108.

Figure 5-15 Garbage incinerator output variable simulated with the complexity 5 system derived from
subsystem S4.

As can be seen from the presented figures, the results obtained with the proposed
algorithm are quite satisfactory. Note that probably none of the obtained models is truly
optimal.   We cannot be sure because solving the exhaustive search problem of finding the
true optimal mask of a system with 319 ‘-1’ elements is by far outside the capabilities of
our current day computers.  The importance of optimality in a FIR model is relative; this in
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turns is logical since we are computing qualitative models. Hence it is possible to obtain a
good prediction without using the truly optimal model, which in a FIR sense, is defined by
the mask of highest quality.

The subsystem decomposition method extended with the inclusion of time allows
obtaining a decent FIR model of a large-scale system acceptably fast, i.e., while keeping
the computational burden within acceptable limits. Finally, in this section, a flowchart is
added so as to summarize the four principal stages of the presented method.
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Figure 5-16 Flowchart summarizing the subgroup decomposition method.

Four main steps form the advocated method. In the first variable reduction step, the
output is not considered. Input variables that, in their recorded history, contain very similar
information, i.e., can be considered redundant, are grouped together. At the end of this
step, the following variables survive:

- one from each of the formed groups,
- all variables not belonging to any group, and
- the output.
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In the second linear clustering step, the output is considered and groups of linearly
related variables are formed. A different clustering algorithm is used than in step one, an
algorithm that is more sensitive than the one previously used, and in this way, new groups
of related variables are formed.  No variables are eliminated in this second step.

In the third non-linear clustering step, the variables not forming part of any group yet
may join groups. To this end, the algorithm used here investigates possible non-linear
relations between each one of these variables separately and any one of the clusters
formed.  Those variables that do not join any groups are eliminated now, except for the
output, which may never be eliminated.

In the fourth FIR-modelling step, those groups not containing the output are eliminated
first. Groups containing less than 6 variables lead directly to a FIR model. On the other
hand, for groups of 6 or more variables, a candidate mask is proposed to FIR using as m-
inputs and m-output the variables of those groups.

By using this method, a FIR-model of a complex system can be obtained in a reasonable
amount of time.

5.3.2 Delay estimation using energy information

Up to now, each variable trajectory has been analysed from a deterministic point of
view, i.e., at each time interval, each measured value has been considered to match the real
value of the observed physical variable. At this point, a more realistic interpretation of the
data vector should be introduced.

Each variable trajectory can be seen as the collection of values measuring a desired
physical characteristic, such as the fuel flow through a pipe, plus an added noise,
representing e.g. measurement noise or thermal noise.  So each of the obtained trajectories
can be interpreted as a realisation of a stochastic process, i.e., their exists a deterministic as
well as a random part in the available trajectories. With this interpretation, the energy of
the signals can be computed and used to determine, at which delays each input variable has
more energy related to the output, i.e., obtaining the most probable delays for which the
input variables are to appear in a FIR qualitative model.

Considering data episodes as stochastic signals is, of course, not a new concept in the
engineering world, but it is in the mark of the FIR methodology.  The concept of obtaining
those input variable delays that are more energetically related to the output variable is
different from other approaches previously taken in the context of FIR-related research.

In the open literature, delay estimation is usually understood to mean the time delay
between an emitted signal and a delayed (possibly distorted) version of the same signal
when it is being received. A number of approaches have been treated in the literature that
relate to the processing of radar or acoustics signals.  A first group of techniques are those
based on correlation or spectral analysis. These approaches have been broadly used in
acoustics and involve calculating the correlation between the signals before and after the
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time delay. A comparison of different delay estimation correlation-based methods is
offered in [Fertner and Sjölund, 1986]. In [Jacovitti and Scarano, 1993], the direct cross-
correlation method is analysed and compared to other delay estimators when two
differently positioned sensors receive the same signal at different time instants:

x1(t) = s(t) + n1(t)
x2(t) = A·s(t-D) + n2(t)

where n1(t) and n2(t) are different random processes representing the measurement noise of
the two sensors.  In [Marple, 1999], cross-correlation algorithms are provided for
estimating the group and phase delay between two finite N-point real-valued signals. A
different perspective is given in [Readle and Henry, 1994], where a high-order recursive
least squares estimator together with a fuzzy-logic-based reasoning engine are used to
estimate the time delay. In [Ettaleb, et al., 1998], an off-line extended least squares method
is used for time delay estimation purposes. In [Händel, 1999], a frequency-selective
algorithm is applied to estimate the time delay between a signal x1(k) and its delayed
version x2(k-D).

All these techniques compute a unique, real- or integer-valued, time delay and need the
original as well as the delayed versions of the signal to estimate it. In this dissertation, the
concept of delay estimation is different. It is desired to identify those (possibly multiple)
time delays, for which each input variable is most strongly related to the selected output.
This information can then be used to propose a sparse mask candidate matrix, so leading to
a substantial FIR model search-space reduction.  There are two main differences between
the previously described techniques and the one developed here: more than one time delay
may be considered, and there are no original and delayed versions of the same signal, but
rather input/output trajectories of a system.

A brief review of stochastic signal theory is offered previous to explaining the
developed approach.  The notation employed here is that used in [Kalouptsidis, 1997].

Stochastic signals provide a successful approach for modelling those signals that cannot
be completely determined.  For example when transmitting a signal several times by the
same source through a communication channel, the received signal is not always exactly
the same. Measuring the same signal under the same environmental conditions yields
slightly different waveforms due to random noise in the system. The value x(n) of a
stochastic or random discrete signal at time instant n can be expressed as a random variable
x(n) : � � R, � � x(n) (�). So it depends on the outcome � of a probabilistic experiment
specified by the space �, the set of events, and a probability law P. The behaviour of the
signal at time n is given by the distribution function of the random variable x(n),

Fn(x) = P{VÎ W : x(n) (V) £ x} = P[x(n) £ x], x Î R

where x is the independent variable of the distribution function and should not be confused
with the signal x. If the distribution function is differentiable with respect to x, the
behaviour of the signal at time n is determined by the probability density function

� �
� �

dx

xdF
xf n

n �
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This function, fn(x), expresses the probability that the value of the signal at time n lies
inside an infinitesimal interval given by

fn(x)dx = P[x £ x(n) £ x + dx]

At this point an important question arises: Which is the necessary information to fully
describe a stochastic process? It can be thought that the family of density functions for
each n � [0, N-1] is enough, but this family does not suffice to characterise the statistical
evolution of the signal. Consider, for example, that the signal at time n2 is to be predicted
from information gathered at a past time instant n1. In such application, the conditional
density function fn1|n2(x1,x2) would be involved, which in turn relates to the second order
density fn1,n2(x1,x2). In a more general case when trying to infer conclusions on the
behaviour of the signal at time nk from information gathered at times n1, n2, ..., nk-1, the
family of kth order distribution functions is necessary:

Fn1, n2, ..., nk-1(x1, x2, ..., xk) = P[x(n1) £ x1, x(n2) £ x2, ..., x(nk) £ nk]

It can be shown that the family of distributions

{Fn1, n2, ..., nk-1(x1, x2, ..., xk) : k  Î Z+, n1, n2, ..., nk-1Î Z}

characterises the probabilistic behaviour of the signal x(n). A deeper mathematical
development for stochastic processes is offered in [Papoulis, 1991; Wong, 1971;
Jazwinski, 1970].

In practice, however, determination of the above families is an unmanageable task.
Hence alternative considerations should be found that involve only a few parameters of the
mentioned family of functions.  To this end, the stochastic signals to be considered need to
be limited in appropriate ways.  We shall now briefly discuss the class of stochastic signals
referred to as stationary signals.

A random signal x(n), n � Z, is called stationary, if for every integer I, the x(n + I)
shifted signal has the same family of distributions, meaning that every distribution remains
invariant under a time shift. For purely random processes, it is a necessary as well as
sufficient condition for stationarity that first-order densities are identical, i.e., the mean
m(n) and all moments mk(n) are constant, independent of n.
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This is insufficient for processes with a non-random component, for which, to ensure
strict stationarity, shift invariance of the entire family of densities must be accomplished.
Yet, as this property is hard to establish in practice, the class of considered stochastic
processes is widened to include so-called quasi-stationary signals.  To this end, the concept
of a Wide Sense Stationary Process (WSSP) is defined.  A random process is said to be a
WSSP when the family of second-order densities depends on the time difference n1 - n2
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only. Thus a signal x(n) is called wide sense stationary, if its mean is constant and its
autocorrelation function, R(n1,n2), depends only on the difference |n1 - n2|.

� � � � � �� �2121, nxnxEnnR �

Hence, for a WSSP, the following expressions hold:

R(n1, n2) = R(n1-n2+n2, 0+n2) = R(n1-n2,0) = r(n1-n2)
r(n) = E[x(n+k) x(k)]

For this concrete class of stochastic processes, it is possible to extend the harmonic
analysis of deterministic signals so as to perform a spectral analysis. The Fourier transform
of the autocorrelation sequence r(n)
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is the so-called power spectral density of the signal. S(w) is a 2�-periodic function. The
autocorrelation can be recovered by means of the inverse Fourier transform of S(w).

In the ongoing research, there only is information available about the trajectories of the
measured variables. So rather than computing the second-order statistics of the process and
then its spectral density from its probability density function, it is necessary to proceed
directly from the observed data. An obvious approach is to first estimate the
autocorrelation r(n) from the available data, and then use the discrete Fourier transform
(DFT) to compute the power spectral density S(w). Two possible estimators of the r(n)
sequence are
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The first of these two estimators is biased, whereas the second one is an unbiased
estimator of the autocorrelation r(n). Once the r(n) sequence has been determined, the
power spectral density S(w) can be estimated by means of the FFT (Fast Fourier
Transform) algorithm. This approach is usually called indirect, because it computes the
autocorrelation prior to computing the power spectral density. Another possibility to
determine S(w) is to use the so-called direct approach, which computes the power spectral
density directly from the available data:
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where w(n) is a window in the time domain, normally real and even, that minimises the
effects of the finite data length. This estimator is also called periodogram, or modified



154

periodogram when windowing is used. A detailed description of these and other methods
to estimate the power spectral density, as well as their implementation in the Matlab
software package can be found in [Stearns and David, 1996; Marple, 1987].

Another comment should be made about the mathematical properties of stationary
stochastic processes. Each time the researcher gathers data from the system, the variable
trajectories have slightly different waveforms due to the random noise associated with the
signal and the measurement process. One interesting property would be to ensure that the
statistics of the stochastic process are invariant with respect to their realisation; this
property is called ergodicity. Strictly, a stationary process is said to be ergodic if every
invariant random variable of the process is almost surely equal to a constant. This would
guarantee that it is possible to derive a valid model of the system from a single data set of
the input/output variables forming the system, supposing that the data are gathered in the
normal operational mode of the plant to be modelled.

The interest of this section is, given a matrix of discrete real-valued trajectories of a
MISO system, to obtain the time delays, for which each input variable is most strongly, in
energy terms, related to the selected output variable.  The computation of those delays is
based on the determination of the power spectral densities of the signals. In order to
compute the signal power spectra, it is necessary to work with stationary or quasi-
stationary stochastic processes. Moreover, if only one realisation of the process is
available, ergodicity is also required.

The data sets analysed in this research effort stem from large-scale industrial systems.
In this kind of systems, supposing a normal operation status of the plant, the involved
variables lay inside a given margin of values. Hence it is reasonable to interpret their
trajectories as realisations of quasi-stationary stochastic processes when the observation
time is significantly longer than the largest time constant of the system. Ergodicity is also a
reasonable hypothesis. Suppose for example, that a model is to be constructed of a system
from which data have been gathered during an entire hour. If the system is in its normal
operational mode and supposing that a time span of an hour suffices to cover the system
dynamics, the resulting model should be identical to the one obtained if the data had been
gathered during the following hour.  The information that the variables contain about the
system under study is the same, although the shape of the trajectories may be slightly
different due to noise. Of course, this implies that the signal-to-noise ratio (SNR) of the
signals to be measured is sufficiently high, but this depends on the system design and the
method used to gather data from the system, both beyond the scope of this work.

So under the hypothesis of quasi-stationarity and ergodicity of the available signal
trajectories, a power-spectral-density-based method for estimating the delays for which the
(measured) input variables are most strongly related to the (measured) output is presented.
This approach is directly based on computing the so-called spectral coherence function.
Using this method, only delays from 2 to � can be computed.  No information can be
obtained in this way about delays 0 and 1.  Consequently, the method does not provide any
information about the bottom two rows of the FIR mask candidate matrix.  There are two
possibilities to deal with this problem.  The first and most obvious solution is to fill those
two rows entirely with -1 elements. The second solution is to use another technique, such
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as the methodology proposed in Section 2.4.1, to obtain a depth-two candidate mask and
then combine it with the results obtained here.

The proposed algorithm finds a single sparsely populated mask candidate matrix by
computing the delays of each variable that are most relevant to the considered output. This
is accomplished by means of a spectral analysis performed on the observed trajectories. To
this end, Matlab’s spectrum function is applied separately to each input/output pair after
detrending all variables individually. The spectrum function returns the frequency range, F,
over which the power spectra are being sampled. Assuming the time signals were sampled
at time intervals of length ts, the spectra then range from –fs /2 until  +fs /2, where fs = 1/ ts .
The spectrum lines are equidistantly spaced over the spectral range. The number of spectral
lines, ns, to be chosen is an input parameter to the spectrum function. The output parameter
F is a vector of length ns providing the frequency values of the spectral lines.

The system has n observed variables, one of which is the selected output, the remaining
(n-1) variables are potential inputs. The input variables are called x1, x2, …, xn-1, and the
output variable is called y. The spectrum function, applied separately to each pair <xi,y>,
returns, beside from the frequency vector, F, the following power spectra: Pxxi, the power
spectral density of the input variable xi; Pyy, the power spectral density of the output
variable y; and Pxyi, the cross-spectral density of the input/output pair. It also returns the
coherence function, Cxyi, which is defined as follows [Marple, 1987]:
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where fi are the frequency values over which the spectra were sampled. The Cxyi values are
positive real values in the range [0,1]. They are relative measures of the cross-energy
density that exists between the input variable xi and the output variable y at different
frequencies fi .

After applying the algorithm, (n-1) coherence functions have been calculated, one for
each of the potential inputs. These coherence functions are now used to identify the
significant inputs. A significant input exists, where its corresponding coherence function
exhibits a significant peak. The time delays, ti, associated with these significant peaks are
simply the inverses of the frequency values, fi, at which these peaks occur.

The following algorithm is proposed to identify the significant peaks and significant
inputs of the coherence functions:

1. Each coherence function is detrended separately.  Since the coherence functions are
quasi-stationary, detrending essentially means removing the mean. Matlab’s
detrend function is used to accomplish the task. After detrending the coherence
function, the negative values of the detrended coherence function are set to zero, as
those values correspond to the smallest of the peaks.

2. If desired, the same process can be repeated several times. Each time, the smallest
of the remaining peaks will be cancelled, and only the larger peaks remain.
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3. The significant peaks are defined as those peaks that are larger than 2.5 times the
standard deviation of the detrended coherence function:

sig_peak = F(find(Cxy > 2.5*std(Cxy)));

4. The significant inputs are those delays that correspond to the significant peaks:

sig_inp = round(fs ./ sig_peak);

The significant inputs denote the positions within the mask candidate matrix that need
to be filled with ‘-1’ elements. Due to the limited resolution of the method, the smallest
delay obtainable is 2, i.e., no information can be obtained about delays 0 or 1. The
algorithm can be completed by either filling the two bottom rows of the mask candidate
matrix with ‘-1’ elements, since the algorithm does not provide any information for that
case, or alternatively, by using the first two steps of the algorithm discussed in Section
2.4.1 to obtain the missing information.

This approach has been applied to study the garbage incinerator system reported in
Appendix I.3. For incineration systems, turbulent combustion with the interaction of fluid
mechanics, chemical kinetics, and heat transfer makes the process highly non-linear, where
it is difficult to apply linear statistical techniques to perform variable selection. In the
example presented here, 19 input variables and one output variable are taken into account,
i.e., a MISO system is considered. It is desired to simplify the system as well as obtain a
good predictive model; the system under study has 20 variables, leading to a huge space of
possible masks when no criterion is applied to find information about the important delays
between variables. The approach can also be extended to MIMO systems analysing each
output separately so as to obtain a different FIR model for each of the outputs.

In the stream of the previous experiments, 85% of the gathered data (in this concrete
case, 36720 data points) have been used to perform the model search. The sampling period
of this data is 1 minute. Table 5-XX shows the most important delays found between the
input and output variables when applying the power-spectral-density-based proposed
method.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 y
15
12
9
4
3
2

10
9
6
5
4
3
2

7
6
5
4
3
2

3 20
19
18
12
11
9
7
3
2

4
3
2

18
17
8
7
5
3
2

3
2

15
12
11
9
8
7
3
2

7
6
3
2

8
7
5
4
2

5
4

5
4
3
2

3 5
2

18
17
4
3
2

18
7
2

_ _ 24
23
20
18
8
6
5
4
3
2

Table 5-XX Delays to consider between inputs and output variable for the garbage incinerator system.
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With this information, a candidate mask up to depth 25 could be proposed. In order to
compare the newly obtained models to those obtained in the previous section, where a
subgroup decomposition method has been applied to the garbage incinerator system, a
candidate mask of depth 16 is to be proposed to FIR.  Since the energy approach does not
provide information about delays 0 and 1, the first two rows of the candidate mask should
be filled with -1 elements. This would lead to a mask candidate matrix with 113 -1
elements out of 319. Although the simplification achieved is significant, there still are lots
of models to compute. Yet, a more economic candidate mask could be proposed for delays
0 and 1 using the information given by a previously presented approach, namely the mask
search algorithm discussed in Section 2.4.1 of this dissertation.  Using this approach, the
following depth-16 candidate mask can be proposed7:
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Note that, in this candidate mask, variable 18 has already been discarded, i.e., a lateral
effect of the given approach is variable selection. The proposed mask has 94 -1 elements,
so 94 masks of complexity 2, 4.371 of complexity 3, 134.044 of complexity 4, and
3.049.501 of complexity 5 must be computed. If a full candidate mask had been proposed,
the number of masks, models, to compute would have been 319, 50.721, 5.359.519 and
423.402.001 for complexities 2, 3, 4, and 5 respectively, so an important reduction in the
number of models to be computed has been achieved. Results of presenting the previous
reduced candidate mask to the FIR optimal search engine are given in Table 5-XXI.

In order to better understand this table, we recall the sub-optimal search algorithm
discussed in Section 2.4.1. That algorithm was based on proposing to FIR candidate masks
of increasing depth. The optimal (exhaustive) mask search algorithm was then employed to
evaluate the quality of each mask of complexity c ���.  Masks were grouped in sets of
equal complexity.  For each complexity, c, the mask of highest quality was found.  Its
value is Qbest.  The relative quality of any one of these masks is defined as Qrel = Q / Qbest.
All masks with a relative quality of Qrel > s were considered to be good masks8.  All good
masks of a given complexity were then investigated.  If a given input was being used by at
                                                          
7 Results of applying the algorithm of Section 2.4.1 to the garbage incinerator system are presented in
Appendix II.1. The depth–2 mask used here for rows 0 and 1 of the presented candidate mask is borrowed
from this Appendix.
8 In the current implementation of the algorithm, s = 0.975.
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least t % of all good masks of a given complexity, it was considered a significant input to
the next step of the algorithm.

Here, the same post-analysis that we used in the algorithm described in Section 2.4.1
has been used since, as it has been mentioned all throughout the dissertation, there may be
more than one good qualitative model to simulate the system. All of the masks that the FIR
optimal search engine computed from the given depth-16 candidate mask were analysed so
as to find, which variables were used for those masks with a relative quality higher than
0.975.  Table 5-XXI shows the inputs used by the good masks for each of the allowed
mask complexities. Since every mask includes the output variable, the last row for delay 0
shows how many good masks were found for each of the allowed complexities.  Due to
space requirements, this table only shows the results for mask complexities 4 and 5 and
only lists those delays, from 0 to 15, that were used in the selected models. For those
masks with complexities 2 and 3, the results of this simulation are the same as for the
simulations presented in Appendix II.1.

Complex. 4 (Qmax= 0.6340)
Q>0.975Qmax -- 37 masks

Complex. 5 (Qmax= 0.6274)
Q>0.975Qmax -- 180 masks

Delay 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 12
x1 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 3 3 3 3 3 ¾ ¾ ¾ ¾ 69 1
x2 3 2 3 3 3 3 3 0 0 3 3 3 3 3 3 3 3 ¾ ¾ 102 ¾
x6 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 6 6 6 5 7 ¾ ¾ ¾ ¾ ¾ ¾
x7 1 1 1 1 1 1 1 1 1 1 28 7 7 7 ¾ 7 ¾ 6 6 ¾ ¾
x12 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 3 3 ¾ ¾ 3 3 ¾ ¾ ¾ ¾ ¾
x13 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 3 4 3 3 4 ¾ ¾ ¾ ¾ ¾
x19 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 5 5 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾
y 37 37 4 4 5 13 13 ¾ 12 ¾ 180 180 ¾ 9 19 51 59 ¾ 66 ¾ ¾

Table 5-XXI Results obtained when determining the most important delays in energy terms.

Using this approach, good qualitative models are obtained while achieving an important
reduction of the overall computational cost.  The qualities of the obtained models are very
similar to those obtained in the analysis provided in Appendix II.1. In this study, the input
variables 1, 2, 6, 7, 12, 13, and 19 are selected to model the output while all other input
variables are discarded. In Table 5-XXII, the percentage of computational savings for
complexity 5 models is shown, achieved with respect to the case of proposing a full
candidate mask to FIR.

Number of visited models Number of models to visit
using a depth 10 full

candidate mask

Percent of
computation
alleviation

C5 3.049.501 428.812.560 99,29%

Table 5-XXII Reduction on the computational cost for the garbage incinerator system.
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Just to see the quality of the obtained models, the result of simulating the output
variable with the model of complexity 5 with highest quality is presented in Figure 5-17.
This model is given by the equation:

y(t) = f { y(t-dt), y(t-8dt),  x2(t-9dt),  x7(t) } Q = 0.6274

As was done with all other simulations, 85% of the available data were used to derive
the model, whereas the remaining 15% were considered to be the validation data set, in this
case 36.720 and 6.480 data points respectively. Figure 5-17 shows the last 500 points of
the simulated output. In this figure, the real output trajectory is depicted as a continuous
line, whereas the simulated output is plotted as a dotted line. It can be appreciated that the
simulated output follows the real trajectory rather accurately. The MSE error when using
this model is 0.1096.

Figure 5-17 Garbage incinerator output variable simulated with the highest quality complexity 5 model when
the candidate mask given to FIR is derived from the energy method.

Information about good models in Table 5-XXI was given in order to manifest that a
good prediction can be achieved not only with the qualitative model of highest quality,
precisely because we are dealing with qualitative models. So another model, the one that
used as inputs those four variables that show the highest frequencies among all the
complexity-5 masks, is used to simulate the last 500 points of the output trajectory. This
model is given by the equation:

y(t) = f { y(t-dt), y(t-8dt), x1(t-9dt), x2(t-9dt) } Q = 0.6249

Note the similarity with the optimal model for this study, in which three of the four
input variables of the model coincide. Note also the slightly inferior quality of the non-
optimal model. Results of this simulation can be appreciated in Figure 5-18. The MSE
error when using this model is 0.1108.
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Figure 5-18 Garbage incinerator output variable simulated using a complexity-5 model, the inputs of which
are those four variables that show the highest frequencies among all the complexity-5 masks. The candidate

mask given to FIR is derived from the energy method

This section has shown a second method of deriving a FIR-model of a complex system
by reducing the mask search space, in this case, by means of energy considerations. The
following flowchart summarizes the primary aspects of the advocated method.

Figure 5-19 Flowchart of the energy-based method.
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5.4 Conclusions

The behaviour of systems can be predicted using either a priori knowledge (deductive
techniques) or observations (inductive techniques). Some inductive prediction techniques
were analysed in this chapter. All but the simplest of those techniques make predictions in
two steps. In a first step, an input/output model is being created based on the observations
made; in the second step, a simulation of the previously made model is then performed
with the purpose of making predictions. All of the techniques surveyed in Section 5.2.1,
first make a model that is then being used in a simulation.

When creating a model, the observations can either be used directly (quantitative
modelling techniques), or they can first be discretised or at least fuzzified (qualitative
modelling techniques). All of the techniques studied in this chapter make use of
quantitative modelling techniques, except for FIR, which embraces a qualitative modelling
approach.

The modelling process, be it quantitative or qualitative in nature, is usually performed in
two steps. In a first step, the laws or equations that govern the system are being identified.
In a second step, the model parameters are being estimated. Most of the techniques
discussed in this chapter operate in such a fashion. The equations determine the set of
variables to be used by the model. In the case of the techniques discussed in Sections
5.2.1.2 to 5.2.1.5 of the chapter, as well as those previously discussed in Sections 3.2 and
3.3, these variables are then being used, either directly or indirectly, in a linear regression
model. The parameter estimation step determines the regression coefficients. FIR also
starts out by determining the laws governing the system, i.e., by selecting the set of
variables to be used in the simulation.  However, no parameter estimation takes place, as
FIR is a non-parametric technique.  During its qualitative simulation, FIR refers directly
back to the training data, rather than capturing the knowledge contained in the training data
in a set of parameter values.

Models can be either dynamic or static, as defined in Chapter 3. In a dynamic model, the
current value of the output may depend on its own past, as well as on current and past
values of the inputs. In a static model, the current value of the output only depends on the
current values of the inputs. All of the techniques advocated in this chapter may be used to
create either static or dynamic models, though the majority of them were only
demonstrated in the context of static modelling.

Since all of the discussed techniques first select a set of variables to be used, they can be
arbitrarily combined with each other, i.e., any one of the techniques can be used to select
the set of variables, which can then be used by either the same or any other technique to
make predictions.

Sections 5.2.1.2 to 5.2.1.4 of the chapter analyse a set of statistical modelling and
simulation techniques. All of these techniques were used exclusively for the creation of
static models. In each subsection, a technique was used to select a subset of variables to be
subsequently used in a linear regression analysis for making predictions. The simulation
results obtained in this way were compared against simulations making use of the variables
proposed by FIR, i.e., the first step of each technique was replaced by a FIR model
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selection, whereas the subsequent parameter identification and regression techniques were
preserved from the methods discussed. It turned out that none of these linear modelling
techniques did a very good job at choosing a pertinent subset of variables of the non-linear
plant used as an example. The variables proposed by FIR were usually superior, even for
the purpose of being used in linear regression models.

Section 5.2.1.5 discussed a set of clustering techniques for the purpose of variable
selection. These are pure modelling techniques that can be combined with any of the
previously discussed simulation approaches. No simulations were performed in that
section. All of the techniques discussed in this section were used for static modelling only.
It turned out that the techniques advocated in Section 5.2.1.5 were excellently suited for
the purpose of variable selection.

Section 5.2.1.6 made use of the subsets of variables proposed by the different
techniques presented in the earlier sections for the purpose of creating dynamic FIR
models to be used in subsequent FIR simulations.

Of all the techniques discussed in this chapter, FIR is by far the best both in terms of its
modelling capabilities as well as the power of its simulation engine. Hence FIR can be
used as a gauge against which the other techniques can be measured. Yet, FIR is
deplorably slow both during modelling and during simulation. FIR’s modelling engine is of
exponential computational complexity, at least if an exhaustive mask search is being used,
and consequently, FIR is unsuited for dealing with large-scale models. Only Fuzzy
Reconstruction Analysis (FRA) and Artificial Neural Networks (ANN) are yet slower in
terms of creating models from observations.  Hence FIR needs a booster technique. Some
of the discussed approaches revealed themselves as excellently suited for such purpose.

In order to deal with the exponential complexity of the FIR modelling engine and
simplify the mask search space of FIR, while using its entire modelling capabilities as well
as the power of its simulation engine, two methodologies were proposed in Section 5.3
based on the work developed in this dissertation. Both methods use FIR in order to obtain a
qualitative model of the system; yet, their computational effort is alleviated, by proposing
to FIR a sparse mask candidate matrix obtained by means of a booster algorithm.

The first of these approaches makes use of a refined set of statistical techniques to
minimise the number of ‘-1’ elements in the mask candidate matrix.  It is based on a
decomposition of the system into subsystems.  The second technique is based on energy
considerations.  It calculates the energy content from any input signal to the output signal
at different frequencies, corresponding to different time delays.  The former approach is
more refined than the latter.  However, it suffers from the fact that statistical techniques are
inherently linear in nature, i.e., special considerations are needed to take into account the
strongly non-linear nature of most engineering systems.  The latter approach is based on
engineering knowledge, as energy considerations are the true cornerstones of physics in
general and engineering in particular.  This approach is inherently non-linear, and
therefore, does not require special techniques to be applicable to engineering systems.

Whereas the former approach is more computationally intensive than the latter, it results
in a set of mask candidate matrices of fairly low complexity, leaving less work to FIR.
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The energy-based method is very fast, but the resulting mask candidate matrix is of higher
complexity, which slows down the subsequent FIR modelling step, yet may result in a final
suboptimal model of slightly superior quality.  Yet, both approaches are very competitive,
and since both of them lead to suboptimal models, it may be justified to use both of them
in parallel.

The reader may have gotten the impression that the two techniques introduced in
Section 5.3 are closed algorithms that should always be executed as proposed.  Yet, the
author prefers to view these techniques as open methods, because any one of their
individual steps may be performed independently and may be combined with other
algorithms as needed.  Thus, whereas the occasional user may prefer to use these
algorithms as two black boxes, the more knowledgeable user may get more mileage out of
analysing their internal steps separately and combining them in the most suitable ways to
get the best performance in any given situation.

Chapter 6 presents a truly large-scale industrial application, and applies the two
techniques introduced in Section 5.3 to it.  Yet, rather than applying the two algorithms
blindly as proposed, they are modified in suitable ways, employing the available
engineering knowledge, in order to further increase their efficiency.  The example
demonstrates clearly the suitability of either technique to the task at hand, i.e., the efficient
qualitative modelling of large-scale industrial processes for the purpose of making accurate
predictions about their future behaviour.
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6 Application of the proposed methodologies to an industrial system: a
gas turbine for electric power generation.

6.0 Abstract

This chapter presents a real industrial application of the methods that have been
discussed in the previous chapters.  Concretely, a gas turbine for electric power generation
is analysed and modelled. In the first two sections of the chapter, a brief description of the
turbine principles as well as some remarks about its uses along time are given. In Section
6.3.2, a decomposition of the gas turbine system using the subsystem decomposition
method offered in Section 5.3.1 is performed for the purpose of determining a high-quality
FIR model of the turbine within acceptable computational time. In Section 6.3.3, the
energy-based method proposed in Section 5.3.2 is applied to the turbine system.

6.1 Introduction

Gas turbines are central to many industrial plants and provide one of the primary means
for electric power generation. Turbines are highly complex devices, with a large number of
measurement variables to monitor, and with extremely high maintenance cost.  This is
particularly true for very large turbines that generate over 200 megawatts of electricity. It
is of interest, as for any other industrial complex system, to find a way of reducing the
maintenance cost while increasing the availability of the gas turbine. This could be done by
means of computing an accurate model of the device that allows, if desired, to rapidly
diagnose the cause of a trip or failure so that power can be restored as quickly as possible.
Although fault detection and/or identification is not an objective of the current research, it
is a direct consequence of it, because almost all fault detection systems are model based
and thus depend heavily on technologies such as the one analysed in this research effort.
The aim of this chapter is to demonstrate the feasibility of using the introduced
methodologies in the analysis of an industrial large-scale system such as a modern gas
turbine.

It has been mentioned that modern turbines are today frequently used for electric power
generation, yet the concept of a turbine is very old. The earliest example of jet propulsion
can be traced as far back as 150 BC to an Egyptian by the name of Hero. Hero invented a
toy that rotated on top of a boiling pot due to the reaction effect of hot air or steam exiting
several nozzles arranged radially around a wheel. He called this invention an aeolipile.  It
is drawn in Figure 6-1.

Many centuries later, in 1232, the Chinese used rockets to frighten enemy soldiers, so
using what can be called the first missiles.
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Figure 6-1 The Hero's aeolipile.

Around 1500 AD, Leonardo da Vinci drew a sketch of a device that rotated due to the
effect of hot gasses flowing up a chimney. The device was intended for rotating meat being
roasted. In 1629, another Italian by the name of Giovanni Branca actually developed a
device that used jets of steam to rotate a turbine that in turn was used to operate machinery.
This was the first practical application of a steam turbine.  In 1678, Ferdinand Verbiest, a
Jesuit in China, built a model carriage that used a steam jet for power.

Figure 6-2 Steam turbine to operate machinery.

The first patent for a turbine engine was granted in 1791 to an Englishman by the name
of John Barber. It incorporated many of the elements of a modern gas turbine, but used a
reciprocating compressor. There are many more early examples of turbine engines
designed by various inventors, but none were considered to be true gas turbines because
they incorporated steam at some point in the process. In 1872, a man by the name of Stolze
designed the first true gas turbine. His engine incorporated a multistage turbine section and
a multi-stage axial flow compressor. He tested working models of his invention in the early
1900’s.

Charles Curtis was the inventor of the Curtis steam engine.  He filed the first patent
application for a gas turbine engine in the U.S.  His patent was granted in 1914, but not
without some controversy.
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The General Electric Company started their gas turbine division in 1903. An engineer
by the name of Standford Moss led most of the project. His most outstanding development
was the General Electric turbo-supercharger during World War 1, although credit for the
concept is given to Rateau of France. It used hot exhaust gasses from a reciprocating
engine to drive a turbine wheel that in turn drove a centrifugal compressor used for
supercharging. The revolutionary design of the turbo-supercharger made it possible to
construct the first reliable gas turbine engines.

Sir Frank Whittle of Great Britain patented a design for a jet aircraft engine in 1930. He
first proposed using the gas turbine engine for propulsion in 1928 while a student at the
Royal Air Force College in Cramwell, England. In 1941, an engine designed by Whittle
was the first successful turbojet aeroplane flown in Great Britain.

Concurrently with Whittle's development efforts, Hans von Ohain and Max Hahn, two
students at Göttingen in Germany, developed and patented their own engine design in
1936.  Their design was adopted by the Ernst Heinkel Aircraft Company. The German
Heinkel Aircraft Company is credited with the first flight of a gas turbine-powered jet-
propelled aircraft on August 27th, 1939. The HE178 was the first jet aeroplane to fly.
The Heinkel HE178 developed 1100 lbs. of thrust and flew over 400 mph. Later came the
ME262, a 500-mph fighter plane.  By the end of the Second World War, more than 1600 of
these planes had been built. The German jet engines were more advanced than their British
counterparts and offered such features as blade cooling and variable-area exhaust nozzles.

In 1941, Frank Whittle began flight tests of a turbojet engine of his own design in
England. Eventually, The General Electric Company manufactured engines in the U.S. that
were based on Whittle's design.

Modern turbines implement many improvements with respect to the early designs; for
example, modern sensors to monitor many different variables that participate in the turbine
functioning cycle, or an expert system capable of identifying anomalous situations. Yet,
they are based on the same principles, and there is nothing conceptually new about them.

The turbine that is going to be analysed in this chapter is a General Electric MARK 5
Frame 6 gas turbine. These kinds of turbines are single-shaft machines designed to
generate electric power.  A MARK 5 Frame 6 turbine can generate up to 40 megawatts of
power. The analysed turbine is presently at use in an electric power generation plant
located at Aylesford in the south of England. Data was obtained from this turbine thanks to
a European project (ESPRIT project, nº 27548).

The aim of this chapter is to apply the different methods, separately or in combination,
developed in the previous chapters that allow reducing the computation time of a FIR
qualitative model. Up to now, computing a FIR model of such a large system had not been
feasible due to the amount of computation time required for such purpose.
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6.2 Turbine principles

A simple gas turbine is comprised of three main sections: a compressor, a combustor,
and a power turbine. The gas turbine operates on the principle of the Brayton cycle, where
compressed air is mixed with fuel and burned under constant pressure conditions. The
resulting hot gas is allowed to expand through a turbine to perform work. In a 33%
efficient gas turbine, 67% of this work is spent compressing the air, driving auxiliary
devices, and overcoming inefficiency (mechanical friction); the rest is available for other
work, such as a mechanical drive or electrical power generation.

Hence the gas turbine, like any other heat engine, is a device designed to convert a part
of the chemical energy contained in a fuel into useful available mechanical power (later
convertible to electric power). It does this in a manner similar in many ways to the cycle
used by a four-stroke internal combustion engine. The main apparent difference is that
work is accomplished in a continuous manner in the turbine power process, whilst in the
reciprocating engine, this is an intermittent process. Figure 6-3 illustrates the basic cycle of
a gas turbine.

Figure 6-3 The basic cycle of a gas turbine.

As indicated by this illustration, air is drawn into the compressor through an air filter
situated in the so-called filter house. This filter removes any harmful solid particles from
the air stream before it enters the compressor. Although the air is filtered before being
drawn into the compressor, small particles can still get into the compressor, which can
gradually build up dirt on the compressor blades and hence reduce the efficiency of the
compressor. The efficiency of the compressor is one of the key factors in the efficiency of
the whole turbine. After the filtration stage, the air is compressed as it passes through the
axial compressor thanks to multiple sets of fixed and rotating blades. In this compressor
stage, the air, as well as being raised to a higher pressure, also becomes hotter. This hot
compressed air is then fed to the combustion system, where it is mixed with injected fuel.

Several types of compressors are available for gas turbine applications, for example, the
so-called Centrifugal, Axial Flow, and Intermeshing Lobe types. The turbine analysed in
this research uses an axial compressor. It has the ability to pump large volumes of air at
better efficiency than either the centrifugal or lobe types. Axial flow compressors are so
designed that the air moves axially through the blading with essentially no radial travel.
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This type of compressor is made of rows of air-foiled shape blades with each set of rotating
blades followed by a set of similar stationary blades.

In the combustion chamber, the fuel burns and adds its energy to the air. The
combustion zone of a turbine is the space required for the actual burning of the fuel and the
subsequent dilution by secondary air from flame temperatures to usable values between
1650 and 1750 oF. The combustion chamber comprises an outer casing, an inner casing (or
‘liner’) and the necessary air and gas passages. The combustion process raises the air
temperature to a flame zone value of between 2500 and 3200 oF which is immediately
reduced to usable values by mixing secondary air that enters the combustion chamber
through specifically placed holes.

The hot, high-pressure gas is then delivered to the turbine section from the combustion
chamber at a temperature and flow required by the load. During its flow through nozzles
and buckets (turbine blades), the gas loses both heat and pressure, until it is discharged
from the final stage at exhaust stack pressure and temperature. It is within the turbine
section of a gas turbine that a part of the thermal energy contained in the hot gas, provided
by the combustion system, is converted to mechanical energy. In the turbine process,
sufficient mechanical energy must be taken out of the gas stream to supply the necessary
power to drive the axial flow main compressor and the driven auxiliaries, such as the
accessory gear-box, fuel pump, cooling water pumps, lube oil pumps etc., provide for
bearing frictional losses, and have enough excess power to do a reasonable amount of
external work, such as drive an alternator, for electric power generation, a load
compressor, or some other type of load equipment. In Figure 6-4, a general scheme of a
gas turbine is shown that is used together with an alternator for electric power generation.

Figure 6-4 Simplified schematic of a gas turbine with a load generator for electric power generation.

Two main types of turbine blade designs are used for energy conversion, the so-called
Reaction and Impulse types. In the first of these two types of blade designs, the hot gas is
allowed to expand in both the rotating and stationary blading. This is an efficient method
of extracting work from a gas stream, but since not much pressure drop can be used per
stage, many stages are required. In the other type, the so-called Impulse type, most of the
pressure drop occurs in the stationary elements with only a small percentage taking place
in the rotating parts. This type has the advantage of being able to do more work per stage,
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hence fewer stages are required than with the Reaction type. It also permits larger pressure
and temperature drops to occur in the stationary parts, rather than in the more highly
stressed and difficult to cool rotating elements.

After the turbine section, the used gas is allowed to flow to the exhaust stack system,
also called exhaust pipe. This air can either be released to the atmosphere or be used for
other purposes, such as heating up water or as hot feed supply to a separately fired boiler.
It is of interest to monitor the exhaust temperature and use it to model the system since it
provides a means of measuring the energy left in the exhaust air, and, hence, calculating
the turbine efficiency. Any heat recovery method employed will help to increase the
overall thermal efficiency of the turbine cycle.

So far, descriptions of the turbine cycle have primarily been made for a single-shaft
non-regenerative unit. Whilst this type of machine is simple, powerful, and reasonably
good on thermal efficiency, some applications require more flexibility of operation and
thermal efficiencies, than this basic machine configuration is capable of providing.

It is for this reason that the two-shaft machine was developed. This type of engine has
the load turbine and the compressor turbine on separate shafts with a controllable angle
nozzle in between. The angle nozzle is effectively a variable area orifice. This other type of
turbine has different advantages, such as a better thermal efficiency, the ability to run
compressor and load shafts at different speeds, so that best results can be achieved and a
lower starting power is required. With wide-open nozzles, the �P over the high-pressure
turbine is maximised, thus the turbine develops more power in the starting moment, which
reduces the starting power required.

Higher overall thermal efficiencies may be achieved by the addition of a regenerator. In
this component, the turbine exhaust gas is allowed to give up some of its heat to the
compressor discharge air. In this way, heat that would be otherwise wasted is returned to
the cycle, thereby reducing the required amount of fuel and increasing the output power.

As a general observation and in order to avoid confusion, the ‘gas’ in the gas turbine
refers to the products of combustion when liquid or gaseous fuels are burnt in pressurised
air in a closed chamber. The gas is at high temperature and pressure, which, when
channelled through fixed nozzles, impinges on buckets mounted on the circumference of a
rotor, causing the rotor to rotate.

In this section, it is not intended to provide a deep insight into the operation of gas
turbines, but rather to offer a general description of its functioning cycle. We will not enter
in the description of the thermo-dynamic equations that govern the turbine work. This is
not necessary since it is intended to obtain a qualitative model of a gas-turbine using the
data gathered from different sensors situated all along the engine. More information about
gas turbines may be found in [Bathie, 1996].
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6.3 FIR model of a General Electric MARK 5 Frame 6 gas turbine

As was mentioned in the introduction section of the present chapter, data was obtained
from a General Electric MARK 5 Frame 6 turbine type, actually used in an electric power
generation plant in the south of England, thanks to the European project ESPRIT nº 27548.
Data have been gathered since the year 1997 using a sampling time of one second. The
company that generates the electric power uses these data to feed an expert system that is
capable of informing the plant operator when an anomalous situation occurs within the
plant. In this research, a period of 2 hours worth of data on August 21, 1999 has been used
to obtain a qualitative model of the gas turbine plant. 85% of those data (a total of 7200
data points are available) is used to compute the qualitative models whilst the remaining
15% will be used to validate the model.

Abnormal as well as normal situations can be found in this short period of considered
time.  More concretely, data corresponding to an emergency stop followed by a start up
and the coupling of the turbine shaft with the generator are found beside from data
representing normal operating conditions.  The trajectory of the considered output variable,
the generated electric power, is shown in Figure 6-5. In this way, the obtained model will
be capable of simulating and predicting the system under normal operating conditions as
well as detecting that an anomalous situation has occurred, although fault detection and
identification is beyond the scope of the present research. The aim of the present
investigation is limited to reducing the computation time of a FIR model, so that
qualitative FIR models for large-scale systems, that were impossible to compute
previously, can now be obtained.

Figure 6-5 Trajectory of the considered gas turbine output (7200 data points).
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6.3.1 System description

The General Electric MARK 5 Frame 6 turbine analysed in this research effort follows
the general description of gas turbines offered in previous sections of this chapter. The
turbine works along a single shaft, and has been designed to generate a maximum of 40
megawatts of electric power. The only particularity of this turbine with respect to the
previously provided general description is that it can use either gas or liquid fuel in order to
make the turbine rotate and generate electric power. Figure 6-6 provides a general
schematic of the used turbine as well as the location in the system of some of the variables
(only some temperatures, fluxes, and pressures have been depicted out of hundreds of
variables) that can be measured.

Figure 6-6 Schematic of the General Electric MARK 5 Frame 6 turbine.

A full list of the measured variables, including their names, measurement units, and a
brief description, is given in the Appendix I.4. Not all of the variables described in this list
have been used for the computation of the FIR qualitative model. Although the first idea
was to apply the methods previously studied with all the system variables, it was rapidly
decided that it made little sense to proceed in this way. This first idea originated because of
the nature of the studied inquiry: we want to compute a qualitative model (particularly of a
large-scale system) using only information contained in the system data, with,
theoretically, no knowledge about the system being analysed.  Yet, such an approach
would have slowed down the analysis in unnecessary ways, and furthermore, it can be
expected that a user possesses a basic understanding of the system that he or she is about to
analyse.  It seems wasteful, not to make use of such knowledge.  The variable pre-
selection, as used here, shall be fully explained and does not require any knowledge that
the average user would not possess.  Furthermore, the methodology explained in the sequel
is not dependent on such a pre-selection.  It would have worked without it, albeit a bit
slower.

The first criterion was to discard all those variables that were logic signals, used by the
expert system to analyse the status of the plant. This kind of output variables, although
useful to the expert system as well as to the plant engineers, does not provide us with any
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useful information about the behaviour of the gas turbine, so only provoking an increase of
the computational cost of the qualitative model.  If left in the raw data, FIR would certainly
not select any of these variables as inputs to the model of the generated electric power.
Hence they can be safely discarded.

Second, we may wish to review here what it is understood by the word model. In
Chapter 2, it was said that Fuzzy Inductive Reasoning is a modelling and simulation
methodology capable of generating a qualitative input/output model of a system from real-
valued trajectories of its physical variables. Hence it is wanted to find a causal relation
between the input variables and the output variable (assuming a MISO system). Note that
an input to the model, in the FIR context, can be either a physical input to the system, an
internal variable, or even the same output delayed some sampling interval times.
Therefore, only those variables measuring physical quantities that can directly influence
the studied output must be considered as potential input variables. But how can we decide
whether a variable may or may not influence the considered output? There will be
variables that evidently influence the output, and others, for which a relation with the
output is less obvious. In the given case, there are a number of local control loops used to
regulate some physical properties of the system, such as flow rates, pressures, and
temperatures.  It may be acceptable to only keep the controlled quantities in the model,
while discarding the local control variables, as those contain essentially redundant
information, assuming that the time constants of the local control loops are considerably
smaller than those of the overall plant to be modelled.  Consider, for example, the control
scheme depicted in Figure 6-7.

Figure 6-7 Control loops for the fuel gas input pipe.

This is a simplified scheme of the control module of the gas fuel system [Escobet et. al,
1999]. The main components of this control unit are two series-connected valves that
control the flow of gas fuel that enters the combustion chambers. The first of these valves,
V1, is controlled by a feedback loop that maintains constant gas pressure at its output
(named fpg2 in Figure 6-7). The second valve, V2, is a position-controlled valve. The
meaning of the other variables appearing in Figure 6-7 is given in Table 6-I.
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Variable name Description
fpgrout inter-valve pressure reference

fagr V1 servo current
fsgr V1 position
fpg2 inter-valve gas pressure
fqg gas fuel flow

fsrout V2 position reference
fag V2 fag servo current
fsg V2 position

Table 6-I Variables of the gas fuel system control module.

From these eight variables, only one, the gas fuel flow, labelled fqg, may influence the
considered output, i.e., the generated electric power, in a direct way. The other seven
variables would only be useful if a model of the control gas fuel module were to be
computed. For the purpose of modelling the generated electric power, the information
contained in these other seven variables is essentially redundant. Therefore, the seven
variables involved in the control loop may be safely discarded from the list to be offered to
the FIR qualitative modelling engine.  If left in the raw data, these redundant variables
would be filtered out during the variable reduction stage.

Last, a third obvious criterion can be used to discard some more variables in this first
pre-analysis stage. Those variables with a constant value, due either to a sensor
malfunction or because the variable is indeed constant in the considered period of time of
gathered data, can also be discarded. Variables with constant values do not carry any useful
information about the dynamic behaviour of the system. Therefore, it is safe to discard
them, so further reducing the initial computational complexity for a FIR qualitative model
search.

Using the three techniques described above, only 64 variables out of a total of 209
measured variables were selected in this first pre-analysis stage to later apply to them some
of the methods developed in the mark of this doctoral thesis. Table 6-II lists the names and
offers a one-line description of the chosen variables. As previously mentioned, a full list of
all measured variables is given in the Appendix I.4.

Variable name Description
x1, AFPBD Compressor differential pressure
x2, AFPCD Compressor discharge pressure
x3, AFQ Compressor inlet air flow
x4, AFQD Compressor inlet dry airflow
x5, ATID Inlet air heating thermocouple
x6, BB1 Vibration transducer #1
x7, BB10 Vibration transducer #10
x8, BB11 Vibration transducer #11
x9, BB12 Vibration transducer #12
x10, BB2 Vibration transducer #2
x11, BB4 Vibration transducer #4
x12, BB5 Vibration transducer #5
x13, BTGJ1 Bearing metal temperature generator journal #1
x14, BTGJ2 Bearing metal temperature generator journal #2
x15, CMHUM Specific humidity



174

x16, CPD Compressor discharge pressure
x17, CTD Compressor discharge temperature
x18, CTDA1 Compressor temperature thermocouple #1
x19, CTDA2 Compressor temperature thermocouple #2
x20, CTIF1 Compressor inlet flange temperature – thermocouple #1
x21, CTIF2 Compressor inlet flange temperature – thermocouple #2
x22, DF Generator frequency
x23, DTGGC10 Generator cold gas rtd
x24, DTGGC11 Generator cold gas rtd
x25, DTGGH18 Generator hot gas rtd
x26, DTGGH19 Generator hot gas rtd
x27, DV Generator line voltage
x28, FQG Gas fuel flow
x29, FQLM1 Liquid fuel mass flow, LFS
x30, SDSJ1 Steam injection low-range differential pressure
x31, SDSJ2 Steam injection high-range differential pressure
x32, SPSJ1 Steam injection supply pressure
x33, STSJ Steam injection temperature
x34, SVL System line voltage
x35, TGSDIFU1 Generator U phase winding temperature. #1, main input exciter
x36, TGSDIFU2 Generator U phase winding temperature. #2, centre
x37, TGSDIFV1 Generator V phase winding temperature. #1, exciter end
x38, TGSDIFV2 Generator V phase winding temperature. #2, centre
x39, TGSDIFW1 Generator W phase winding temperature. #1, exciter end
x40, TGSDIFW2 Generator W phase winding temperature. #1, centre
x41, TIFDP1 Gas turbine inlet filter differential pressure, #2
x42, TIFDP2 Gas turbine inlet filter differential pressure, #3
x43, TIFDP3 Gas turbine inlet filter differential pressure, #4
x44, TNH Turbine rotation speed
x45, TTWS1AO1 Turbine wheelspace temperature 1st stage aft. outer, #1
x46, TTWS1AO2 Turbine wheelspace temperature 1st stage aft. outer, #2
x47, TTWS1FI1 Turbine wheelspace temperature 1st stage fwd. inner, #1
x48, TTWS1FI2 Turbine wheelspace temperature 1st stage fwd. inner, #2
x49, TTWS1FO1 Turbine wheelspace temperature 1st stage fwd. outer, #1
x50, TTWS1FO2 Turbine wheelspace temperature 1st stage fwd. outer, #2
x51, TTWS2AO1 Turbine wheelspace temperature 2st stage aft. outer, #1
x52, TTWS2AO2 Turbine wheelspace temperature 2st stage aft. outer, #2
x53, TTWS2FO1 Turbine wheelspace temperature 2st stage fwd. outer, #1
x54, TTWS2FO2 Turbine wheelspace temperature 2st stage fwd. outer, #2
x55, TTWS3AO1 Turbine wheelspace temperature 3st stage aft. outer, #1
x56, TTWS3AO2 Turbine wheelspace temperature 3st stage aft. outer, #2
x57, TTWS3FO1 Turbine wheelspace temperature 3st stage fwd. outer, #1
x58, TTWS3FO2 Turbine wheelspace temperature 3st stage fwd. outer, #2
x59, TTXM Exhaust temperature
x60, TTXSP1 Combustion actual spread, #1
x61, TTXSP2 Combustion actual spread, #2
x62, TTXSP3 Combustion actual spread, #3
x63, WQJ Wet low NOX injection flow
y, DWATT Generator load watts

Table 6-II Turbine variables used to compute the FIR qualitative model.

The last variable of Table 6-II is the considered output variable, i.e., the variable to be
modelled, whereas the other 63 variables are considered potential inputs to the system. The
turbine plant could be considered as a MIMO system instead of a MISO system, if other
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variables such as the DV or DF variables were considered as additional outputs. Here, only
the generator load power has been considered as output. If a MIMO system were to be
analysed, the steps presented in the next sections would have to be applied separately for
every output, taking into account that every output variable may be considered as a
potential input variable for each of the other output variables.

6.3.2 Turbine FIR model from its subsystem decomposition

In chapter 5, two different methodologies were presented that enable a user to identify a
qualitative model of a large-scale system within reasonable time limits. One of these
methodologies is based in obtaining subsystems of the whole system using a statistical
approach.

The first step of the developed methodology is to perform a first rough variable
selection via a correlation analysis of the data. It is well known that correlation and
covariance measures provide measures of linear association, or, in other words, association
along a line. When using this kind of indices to study possible relations among variables,
one must consider that possible non-linear relations may exist that cannot be revealed by
these descriptive statistics. These non-linear relations are investigated in a posterior step of
the methodology. Also, these statistics are very sensitive to outlier observations that may
indicate a relation when in fact there exists very little relation if any. In spite of its
shortcomings, the correlation index is a very useful tool as it is easy and quick to compute
and may offer a first insight about what variables are related to which others when the
structure of a system is being investigated.

The first step of the proposed methodology is thus based on a simple idea: to identify
those variables that contain redundant information about the system and eliminate them
from the set of variables to be used in the subsequent analysis, so simplifying a posterior
model computation. A correlation analysis of the input data is performed, obtaining the
data correlation matrix (Equation 3.21), so variables with a strong linear relationship can
be detected. Afterwards, those variables with an absolute linear correlation coefficient
equal to or greater than an absolute upper limit r0 are identified. The variables in these
groups contain almost identical information about the studied process, and therefore, any
one of them may be chosen to represent such information. The criterion used to select this
variable, as described in Section 3.4.1, is to maximise the variation coefficient (Equation
3.22). This index is a normalisation of each variance variable using its mean as
normalisation factor.

Then, as explained in Chapter 5, a singular value decomposition of the newly reduced
correlation matrix is performed, so its eigenvalues and eigenvectors are obtained. Then, the
orthogonal eigenvectors are projected onto the principal axes. Theoretically, the
projections onto all of subspaces spanned by each pair of eigenvectors have to be
examined, but in practice, it suffices to take into account only those projections that
account primarily for the system variance. Then for each projection, the axes are divided
into sectors of 30º, and the variables with larger projection in the obtained sections are
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joined into the same subsets. In this way subgroups of linearly related variables are
obtained.

Finally, there exists the possibility that some of the system variables do not form part of
any of the found subsystems due to the fact that, since now, only linear relations among
variables have been considered. Possible non-linear relations between each of those non-
included variables and the obtained subsets should be investigated, in a way that, if a
significant non-linear correlation is found between a variable and any subsystem, the
variable should be included in it.

Two decompositions of the gas turbine system have been performed. The first
decomposition does not include time in the analysis, so the obtained model is static. The
second subsystem decomposition extends the analysis with the inclusion of time. Time is
included enlarging the data matrix to the right with the trajectories of the variables delayed
one sampling interval each time.

6.3.2.1 Static system decomposi tion

The analysis starts by applying correlation analysis to the chosen variables of the gas
turbine system as given in Table 6-II. The sample correlation matrix for the 63 input
variables and one output of the turbine system is not reported here. It is not useful to look
at a matrix of 64 x 64 = 4096 real elements and analyse it by hand. The described variable
selection step is performed automatically using Matlab.  For this example, the value chosen
for r0 has been r0 = 0.75, exactly the same as it was used in the garbage incinerator
example of Chapter 3. This value has been considered sufficiently high to discriminate
whether a linear correlation exists or not. Table 6-III lists the variables chosen by this first
variable selection step.  20 of the 63 input variables survive this first variable reduction
stage.

Now with those remaining input variables plus the added output, subsets (subsystems)
of variables are formed that are linearly correlated among each other. The process used to
this aim, as explained in Chapter 5, is based on the first steps of a principal component
analysis. First, the correlation matrix of the remaining variables has to be computed.
Actually it is not necessary to re-compute this matrix because the full correlation matrix for
the system under consideration has been computed in the previous variable selection step.
Since the linear correlation between variables is independent of the presence or absence of
other variables, it is only necessary to eliminate those rows and columns pertaining to the
removed variables. In this way, a new n �� n matrix, n = 21, of correlation coefficients is
obtained. Then a singular value decomposition of the newly reduced correlation matrix is
performed. The obtained eigenvectors are projected onto the principal axes. In the sequel,
the axes are divided into sectors of 30º, and the variables with larger projection in the
obtained sections are joined into the same subsets.
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Variable Description
x2, AFPCD Compressor discharge pressure
x5, ATID Inlet air heating thermocouple
x6, BB1 Vibration transducer #1
x8, BB11 Vibration transducer #11
x9, BB12 Vibration transducer #12
x11, BB4 Vibration transducer #4
x16, CPD Compressor discharge pressure
x17, CTD Compressor discharge temperature
x20, CTIF1 Compressor inlet flange temperature – thermocouple #1
x27, DV Generator line voltage
x28, FQG Gas fuel flow
x29, FQLM1 Liquid fuel mass flow, LFS
x31, SDSJ2 Steam injection high-range differential pressure
x34, SVL System line voltage
x42, TIFDP2 Gas turbine inlet filter differential pressure, #3
x48, TTWS1FI2 Turbine wheelspace temperature 1st stage fwd. inner, #2
x56, TTWS3AO2 Turbine wheelspace temperature 3st stage aft. outer, #2
x59, TTXM Exhaust temperature
x60, TTXSP1 Combustion actual spread, #1
x63, WQJ Wet low NOX injection flow
y, DWATT Generator load watts

Table 6-III Turbine variables chosen after the correlation analysis of the data has been performed

In Figure 6-8, the projections of the principal components onto the first and second
principal axes are shown. The projection space is divided into 30º sectors, and those
variables with large projection (here, as in Chapters 4 and 5, a large projection means a
modulus of the projection p > r0) within these sectors are considered to form subsets of
linearly related variables.

The subsystems generated from Figure 6-8 for the turbine system are listed in Table
6-IV.

Formed subsystems
S1 x2 x11 x16 x17 x20 x27 x34 x42 x48

S2 x6 x11

S3 x1 x8 x28 x48 x56 x59 y
S4 x31 x63

Table 6-IV Subsystems formed from the projection of the first versus the second principal axes.
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Figure 6-8 Projection onto the first and second principal axes.

As dividing the figure into 30º sections is a heuristic criterion, those variables located at
the boundaries between neighbouring division are taken into account in both of them. This
is why variable X11 is in the first, S1, and second, S2, subsystems listed in Table 6-IV.

The algorithm proceeds by looking at other axes projections. The next one to analyse is
the projection of the first versus the third axes. Figure 6-9 shows this projection.

Figure 6-9 Projection onto the first and third principal axes.

From this new projection, different subsystems may be formed from those previously
constructed using the information contained in the projection of the first and second
principal axes. They are listed in Table 6-V.
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Formed subsystems
S5 x2 x8 x16 x27 x28 x42 x48 x56 y
S6 x17 x42 x59

S7 x5 x20

S8 x29 x60

Table 6-V Subsystems formed from the first versus second principal axes projection.

Again, variable X42 is in the S5 and S6 subsystems listed in Table 6-V.

As further projections are analysed, no new subsets of variables are obtained, so this
analysis can be terminated at this point. Note that, conversely to what happened with the
garbage incinerator example given in Chapter 4, no redundant subsets of variables were
encountered for the gas turbine system. Therefore, at this stage of the subsystem
decomposition, we have 8 subsystems with varying numbers of variables. It is also
important to note than not all of the 21 variables that survived the variable reduction stage
were included in at least one of the obtained subsystems. Concretely, variable x9 does not
form part of any subsystem.

Now, for variable x9, which was not included in any of the subsystems, a possible non-
linear relation between it and the formed subsets should be considered. The variable is
found to exhibit high non-linear correlation1 with all of the formed subsystems except for
S2. So this variable is added to every one of those subsystems. Finally in Table 6-VI, the
obtained subsystem decomposition is listed.

Final formed subsystems
S1 x2 x9 x11 x16 x17 x20 x27 x34 x42 x48

S2 x6 x11

S3 x1 x8 x9 x28 x48 x56 x59 y
S4 x9 x31 x63

S5 x2 x8 x9 x16 x27 x28 x42 x48 x56 y
S6 x9 x17 x42 x59

S7 x5 x9 x20

S8 x9 x29 x60

Table 6-VI Final formed subsystems for the gas turbine system.

From this subsystem decomposition, it can be noted that two of the subsystems include
the output variable within them, namely subsystems S2 and S5 in Table 6-VI.  These two
subsystems can be considered as models of the output. This would be equivalent to having
found, in this case, two different FIR masks, the first with complexity 8 and the second
with complexity 10. Yet, those models have been obtained without taking into account the
possible delays between the signals. As these models are not very useful by themselves, no
simulations are added at this point.

                                                          
1 Here, ‘high non-linear correlation’ refers to the same limit used when computing the linear correlation, i.e.,
if a variable has a non-linear correlation Rnl > 0.75 with respect to a subset of variables, it is considered to
form part of it.



180

6.3.2.2 Extended system decomp osition including time

The subsystem decomposition method presented in Chapter 5, which has been applied
in the previous section to the gas turbine system for obtaining a static model, can be
extended with the inclusion of time to obtain a dynamic model. Time can be introduced in
the analysis by means of duplicating several times the raw data model, shifting each copy
up by one row relative to the previous one, and concatenating the shifted data from the
right to the already existing data set. The method had been introduced already in Chapter 5.
Contrary to the algorithm proposed in Chapter 2, the statistical approach advocated in
Chapter 5 does not offer a recipe for how to choose the number of delays, i.e., the mask
depth, to be considered.  In the given study, a mask depth of 6 was chosen, i.e., 5 copies of
the original data set are made and concatenated to the original data from the right.  If the
models obtained in this way are unsatisfactory, the user may need to increase the mask
depth and repeat the analysis.  Of course, it is always possible in such a case to only
preserve those columns of the already enlarged data set that were previously selected when
concatenating more copies of the original data set from the right.  In this way, the
modelling effort that was made before will not be lost.

When 6 time delays are considered, the raw data model turns into a huge matrix of
dimensions 7195 � 384. Now a system of 384 variables, comprising the original and the
delayed ones, is to be decomposed into subsystems. The analysis begins again by applying
correlation analysis to all input variables of the enlarged gas turbine system, corresponding
to those variables listed in Table 6-II as well as their delayed versions up to (t-5�t). Of
course, the output variable does not take part in this first step of the methodology. The
sample correlation matrix for those 383 possible input variables is not reported here. A
value of r0 = 0.75 was chosen for the analysis just like before. In Table 6-VII, a list of the
variables surviving this first variable reduction step is given.  Only 28 of the original 383
input variables survived the selection.  Hence this first variable reduction step is very
important.  It reduces the number of variables to be retained drastically.  In fact, the
number of variables to be analysed henceforth is not much larger than in the case of the
static model, where 20 out of 63 possible input variables had survived the variable
reduction step.

In this case, it happened that the output one time step delayed, y(t-�t), was eliminated
from the set of variables to be retained.  This is understandable under the given
circumstances.  From each group of variables, only the one with the largest variability
index survives.  Since y(t) is a controlled variable, its values do not change much except
during transition periods  between different set  values  of  the  control  inputs.   Although
y(t-�t) formed part of a number of different groups, each group contained at least one other
variable with a larger variability index.  Hence y(t-�t) was eliminated.  Since y(t-�t), in any
system, is the variable that contains most information about the output to be predicted, y(t),
it was decided to add this variable to the set of retained variables.

With this rough variable selection, those variables that are redundant, except for y(t-�t),
are eliminated from the posterior modelling process. Now with the remaining input
variables and the added output, subsets (subsystems) of variables are formed that are
linearly correlated among each other. The process used to this aim is based on the first
steps of a principal component analysis.
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The correlation matrix of the remaining input variables and the output can be derived
from the total correlation matrix (with dimensions 384 � 384) previously computed by
throwing out those rows and columns that correspond to the eliminated variables. In this
way, a new n �� n matrix, n = 30, of correlation coefficients is obtained. Then, a singular
value decomposition of this matrix is performed, and the obtained eigenvectors are
projected onto the principal axes. Then for each relevant projection, the axes are divided
into sectors of 30º, and the variables with larger projection in the obtained sections are
joined into the same subsets.

Variable Description

x5, ATID Inlet air heating thermocouple

x9, BB12 Vibration transducer #12

x11, BB4 Vibration transducer #4

x20, CTIF1 Compressor inlet flange temperature – thermocouple #1

x27, DV Generator line voltage

x28, FQG Gas fuel flow

x29, FQLM1 Liquid fuel mass flow, LFS

x44, TNH Turbine rotation speed

x60, TTXSP1 Combustion actual spread, #1

y, DWATT Generator load watts
y(t-dt), DWATT One sampling time delayed version of y

x5(t-dt), ATID One sampling time delayed version of x5

x28(t-dt), FQG One sampling time delayed version of x28

x5(t-2dt), ATID Two sampling times delayed version of x5

x28(t-2dt), FQG Two sampling times delayed version of x28

x29(t-2dt), FQLM1 Two sampling times delayed version of x29

x44(t-2dt), TNH Two sampling times delayed version of x44

x5(t-3dt), ATID Three sampling times delayed version of x5

x9(t-3dt), BB12 Three sampling times delayed version of x9

x28(t-3dt), FQG Three sampling times delayed version of x28

x31(t-3dt), SDSJ2 Three sampling times delayed version of x31

x42(t-3dt), TIFDP2 Three sampling times delayed version of x42

x5(t-4dt), ATID Four sampling times delayed version of x5

x9(t-4dt), BB12 Four sampling times delayed version of x9

x20(t-4dt), CTIF1 Four sampling times delayed version of x20

x34(t-4dt), SVL Four sampling times delayed version of x34

x56(t-4dt), TTWS3AO2 Four sampling times delayed version of x56

x60(t-4dt), TTXSP1 Four sampling times delayed version of x60

x5(t-5dt), ATID Five sampling times delayed version of x5

x28(t-5dt), FQG Five sampling times delayed version of x28

 Table 6-VII Turbine variables chosen after the correlation analysis of the data including time
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Figure 6-10 shows the projection of the principal components onto the first and second
principal axes. The figure is divided into 30º sectors, and those variables with high
projection, that is a modulus of the projection p > r0 in these sectors, are considered to
form subsets of linearly related variables. Subsystems obtained from Figure 6-10 are listed
in Table 6-VIII.

Figure 6-10 Projection onto the first and second principal axes when time is considered.

Formed subsystems
S1 x9 x9(t-3) x9(t-4)

S2 x27 x42(t-3)

S3 x5(t-2) x5(t-3) x27 x28 x28(t-1) x28(t-5) x31(t-3) x44 x44(t-2) x56(t-4) y(t-1) y

S4 x20 x20(t-4)

Table 6-VIII Subsystems formed from the first versus second principal axes projection when time is
considered.

As dividing the figure into 30º sectors is a heuristic criterion, those variables pertaining
to the neighbourhood of each division are taken into account in both of the neighbouring
sectors. This is why variable x27 is in the second, S2, and third, S3, subsystems listed in
Table 6-VIII.

The method then proceeds by looking at other axes projections. The next one to analyse
is the projection of the first versus the third axes, depicted in Figure 6-11. In this way
projections of decreasing explained variance are analysed.

x28,x44,y, y(t-1), x28(t-1), x5(t-2),
x5(t-3), x56(t-4), x28(t-5)

x42(t-3)
x11

x9, x9(t-3), x9(t-4)

x60,
x60(t-4)

x27

x34(t-4), x44(t-4)

x31(t-3)x29,
x29(t-2)

x20, x20(t-4)
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Figure 6-11 Projection onto the first and third principal axes when time is included.

From this new projection different subsystems may be formed from those previously
constructed using the information contained in the projection of the first and second
principal axes. The newly obtained subsystems are listed in Table 6-IX.

Formed subsystems
S5 x5 x5(t-1) x5(t-4) x5(t-5) x20 x20(t-4) x28(t-2) x28(t-3)

S6 x60 x60(t-4)

S7 x11 x31(t-3) x42(t-3) x56(t-4)

S8 x5(t-2) x5(t-3) x27 x28 x28(t-1) x28(t-5) x31(t-3) x44 y(t-1) y

Table 6-IX Subsystems formed from the first versus third principal axes projection when time is included in
the analysis.

Again, variable x31(t-3) is in the S7 and S8 subsystems listed in Table 6-IX.

Other projections can still be considered. In the case at hand, the projection of the first
versus the fourth axes gives subsystem information that is not included in the previous
analysed projections. This projection is shown in Figure 6-12.

From this third considered projection different subsystems may be formed from those
previously constructed. The newly obtained subsystems are listed in Table 6-X.

Formed subsystems
S9 x20 x20(t-4)

S10 x5 x5(t-1) x5(t-4) x5(t-5) x28(t-2) x28(t-3)

S11 x31(t-3) x56(t-4)

S12 x5(t-2) x5(t-3) x27 x28 x28(t-1) x28(t-5) x42(t-3) x44 y(t-1) y

S13 x11 x34(t-4) x44(t-2)

Table 6-X Subsystems formed from the first versus fourth principal axes projection when time is included in
the analysis.

x60,
x60(t-4)x29,

x29(t-2)

x9, x9(t-3), x9(t-4) x11, x42(t-3), x56(t-4)

x27, x28, x44, y, y(t-1), x28(t-1),
x5(t-2), x5(t-3), x31(t-3), x28(t-5)

x5, x5(t-1), x28(t-2), x28(t-3),
x5(t-4), x5(t-5), x20, x20(t-4) x34(t-4),

x44(t-4)
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Figure 6-12 Projection onto the first and fourth principal axes when time is included.

Theoretically all the projections between different axes should be taken into account. In
practice, if other projections are analysed, no new subsets of variables are obtained, so the
algorithm can be terminated at this point.

In this analysis, i.e., the gas turbine system including time information, redundant
subsets of variables have been encountered, as it happened in Chapter 4 with the garbage
incinerator example. Note that subsystem S2 is included in S12, subsystems S4, S9 and
S10 are included in S5, and subsystems S8 and S11 are included in S3. Those redundant
subsystems do not add new information to the analysis of the system, as they form part of
other bigger subsystems. Therefore, they are eliminated from the set of subsystems. The
remaining subsystems are listed in Table 6-XI, in which they have been relabelled from S1
to S7.

Formed subsystems
S1 x9 x9(t-3) x9(t-4)

S2 x5(t-2) x5(t-3) x27 x28 x28(t-1) x28(t-5) x31(t-3) x44 x44(t-2) x56(t-4) y(t-1) y

S3 x5 x5(t-1) x28(t-2) x28(t-3) x5(t-4) x5(t-5) x20 x20(t-4)

S4 x60 x60(t-4)

S5 x11 x31(t-3) x42(t-3) x56(t-4)

S6 x5(t-2) x5(t-3) x27 x28 x28(t-1) x28(t-5) x42(t-3) x44 y(t-1) y

S7 x11 x34(t-4) x44(t-2)

Table 6-XI Considered subsystems formed from linear relations between variables when time is included in
the gas turbine analysis.

At this stage of the subsystem decomposition, we have 7 subsystems with varying
numbers of variables. It is important to note than in the previous analysis not all the
variables that have been considered have been included in at least one of the obtained
subsystems. Concretely, variables x29 and x29(t-2�t) do not form part of any subsystem.

Now, for those variables that have not been included in any of the subsystems, a
possible non-linear relation between them and the formed subsets is being considered.

x20, x20(t-4)

x5, x5(t-1), x28(t-2),
x28(t-3), x5(t-4), x5(t-5)

x29,
x29(t-2)

x60,
x60(t-4)

x9, x9(t-3), x9(t-4)

x31(t-3)

x27, x28, x44, y, y(t-1), x28(t-1),
x5(t-2), x5(t-3), x28(t-5), x42(t-3)

x56(t-4)

x11, x34(t-4),
x44(t-2)
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Both, x29 and x29(t-2�t) are found to exhibit high non-linear correlation (Rnl > 0.75 ) with the
formed subsystem S4. Variable x29(t-2�t) is found to also exhibit non-linear correlation
with subsystem S7. So the S4 and S7 subsystems are augmented with the corresponding
variables. In Table 6-XII, the final subsystem decomposition is provided.

Final formed subsystems
S1 x9 x9(t-3) x9(t-4)

S2 x5(t-2) x5(t-3) x27 x28 x28(t-1) x28(t-5) x31(t-3) x44 x44(t-2) x56(t-4) y(t-1) y

S3 x5 x5(t-1) x28(t-2) x28(t-3) x5(t-4) x5(t-5) x20 x20(t-4)

S4 x29 x29(t-2) x60 x60(t-4)

S5 x11 x31(t-3) x42(t-3) x56(t-4)

S6 x5(t-2) x5(t-3) x27 x28 x28(t-1) x28(t-5) x42(t-3) x44 y(t-1) y

S7 x11 x29(t-2) x34(t-4) x44(t-2)

Table 6-XII Final susbsystem decomposition when time is included in the gas turbine system.

Note that two of the final obtained subsystems include the output variable within them,
those are subsystems S2 and S6.  Those subsystems will be used to postulate candidate
masks to FIR and hence derive a model of the considered output2. The following candidate
masks are separately proposed to FIR:
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When the optimal mask search algorithm is used with these candidate masks, the
following optimal models are obtained, one for each of the allowed complexities.  They are
listed together with their respective qualities:

yS2(t) = f{y(t-dt) } Q = 0.9959
yS2(t) = f{ x28(t), y(t-dt) } Q = 0.9741

yS2(t) = f{ x5(t-2dt), x28(t), y(t-dt) } Q = 0.8262
yS2(t) = f { x5(t-2dt), x28(t), x31(t-3dt), y(t-dt) }Q = 0.6603

                                                          
2 In fact, subsystems containing the output variable form by themselves models of the studied system. Yet,
those subsystems are composed of more than 5 variables; in the given case, 9 variables for S2 and 8 variables
for S6. This determines the complexity of the FIR model. In Chapter 2, it was discussed that the higher the
complexity is, the more deterministic the model becomes; yet, the predictiveness of such a model may be
very poor since, probably, already the next predicted state has never been observed before. Much more data
points than those that are available here would be needed so as to justify the use of complexity 8 or 9 FIR
models. This is the reason for proposing the search of complexity 5 models. Moreover, FIR models can only
be truly compared for equal complexity, and complexity 5 models have been used all throughout the
dissertation.
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yS6(t) = f{y(t-dt) } Q = 0.9959
yS6(t) = f{ x28(t), y(t-dt) } Q = 0.9741

yS6(t) = f{ x5(t-2dt), x28(t), y(t-dt) } Q = 0.8262
yS6(t) = f { x5(t-2dt), x28(t), x42(t-3dt), y(t-dt) }Q = 0.6165

The result of simulating the output variable with the yS2(t) model of complexity 5 is
presented in Figure 6-13. As it has been done with other simulations, 85% of the available
data were used to derive the model, while the remaining 15% were used as validation data
set. The left graph of Figure 6-13 shows 1080 points, corresponding to the full validation
data set, of the output variable.  The measurement data are shown as a continuous line,
whereas the simulation results are presented as a dash-dotted line. The simulated output
seems to follow the real data quite accurately, yet there are so many points on that graph
that it is difficult to appreciate the difference between the two curves. The right graph of
Figure 6-13 zooms in on the validation data set, limiting the shown data points to the range
from 450 to 520. Here it is possible to better judge the quality of the prediction obtained
with the FIR model. The model treats the small variations during the controlled periods as
noise, i.e., essentially models their mean value.  The spike representing a transient is
simulated correctly, albeit with a short delay and with a reduced amplitude.  The MSE
error associated with this simulation is 0.1152.

Figure 6-13 Gas turbine output simulation results using a complexity-5 FIR model derived from subsystem
S2 taking into account the time variable.

If the model of complexity 4, derived from the information of the S2 subsystem, is used
to simulate the output, a slightly inferior result from that provided in Figure 6-13 is found.
The simulation results are shown in Figure 6-14.  When comparing the two figures, the
reader notices that the FIR predictions are almost identical. However, the new simulation
shows a second smaller peak that does not correspond to a transient of the measurement
data.  Consequently, the MSE value for this new simulation is 0.1348, slightly higher than
in the previous case.



187

Figure 6-14 Gas turbine output simulation results using a complexity-4 FIR model derived from subsystem
S2 taking into account the time variable.

There are two more simulations that should be evaluated: those obtained from the
complexity-4 and complexity-5 models derived from the S6 subsystem. The complexity-4
model obtained from the S6 subsystem is exactly the same as that obtained from the S2
subsystem. Hence this simulation has already been presented in Figure 6-14.

For the complexity-5 model, the obtained simulation is depicted in Figure 6-15. As can
be seen from this figure, the simulated output again follows well the behaviour of the real
system. However, the delay of the simulated peak is slightly larger.  The MSE value found
in this case is 0.1271.

Figure 6-15 Gas turbine output simulation results using a complexity 5 FIR model derived from subsystem
S6 having into account the time variable.

All of the FIR models that were simulated gave similar results. As can be seen from the
presented figures, these results are quite satisfactory. Note that the used models are not
necessary optimal; in fact, it is very likely that they are suboptimal.  It would be very much
of a coincidence if the optimal model had been found. This helps to understand the
concepts underlying the envisaged suboptimal search strategy. The importance of
optimality in a FIR model is relative.  This in turns is logical, since we are dealing with
qualitative models. Hence it is possible to obtain very good predictions without using the
truly optimal (in a FIR sense: the one with the highest mask quality) model.
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6.3.3 Dynamic FIR model of the gas turbine using energy information

A different point of view is taken when considering the variable trajectories as
stochastic signals. As was described in Chapter 5, each observed variable trajectory can be
seen as a superposition of two values, one measuring a desired physical characteristic, such
as the fuel flow through a pipe, the other denoting a noise term, representing e.g.
measurement noise or thermal noise.  So each of these trajectories can be interpreted as a
realisation of a stochastic process, i.e., there exists a deterministic as well as a random
component in the observed trajectory. With this interpretation, the energy of the signals
can be computed and used to determine, at which delays each input variable exhibits more
energy relating to the output.  This interpretation enables the modeller to obtain the most
probable delays for which the input variables are to appear in a FIR qualitative model.

This method of obtaining the positions in which to place ‘-1’ elements in the mask
candidate matrix has been applied to the 64 variables chosen for the gas turbine system.
The results obtained are summarised in Table 6-XIII, where the delays at which each input
variable exhibits more energy relating to the output are shown. The integer numbers in the
second column represent the number of sampling interval times that the signal is delayed
with respect to time reference 0, that is, for example in row one, the numbers 9, 6, 3, 2
represent x1(t-9), x1(t-6), x1(t-3), and x1(t-2).

Variable Delays with maximum energy related to the output variable
x1, AFPBD 9, 6, 3, 2
x2, AFPCD 9, 8, 7, 5, 3, 2
x3, AFQ 9, 6, 5, 3
x4, AFQD 11
x5, ATID 85, 8, 7, 4, 3, 2
x6, BB1 3
x7, BB10 28, 26, 23, 21, 20, 16, 14, 13
x8, BB11 43, 32, 28, 23, 20, 17, 16, 3, 2
x9, BB12 43, 28, 23, 21, 16, 12, 3, 2
x10, BB2 6, 4, 3, 2
x11, BB4 10, 6, 5, 3, 2
x12, BB5 5, 3, 2
x13, BTGJ1 10, 9, 5, 4, 3, 2
x14, BTGJ2 10, 6
x15, CMHUM 14, 12, 10, 6, 4, 3
x16, CPD 64, 37, 6, 4, 3
x17, CTD 64, 37, 6, 5, 3, 2
x18, CTDA1 64, 37, 4, 3
x19, CTDA2 64, 37, 3
x20, CTIF1 32, 28, 9, 7, 3
x21, CTIF2 8, 5, 4, 3
x22, DF 13, 12, 11, 5, 3
x23, DTGGC10 7, 6, 5, 4, 3, 2
x24, DTGGC11 37, 6, 5, 3
x25, DTGGH18 6, 5, 3, 2
x26, DTGGH19 10, 9, 7, 5, 4, 3, 2
x27, DV 28, 26, 23, 22, 16, 14, 13, 12, 11, 2
x28, FQG 64, 43, 37, 28, 23, 14, 13, 5
x29, FQLM1 3
x30, SDSJ1 3, 2
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x31, SDSJ2 6, 4, 3, 2
x32, SPSJ1 7, 4, 3, 2
x33, STSJ 9, 8, 7, 6, 4, 3
x34, SVL 21, 20, 18
x35, TGSDIFU1 10, 5, 2
x36, TGSDIFU2 10, 5, 4, 2
x37, TGSDIFV1 5, 4, 3, 2
x38, TGSDIFV2 10, 4, 2
x39, TGSDIFW1 11, 9, 2
x40, TGSDIFW2 12, 11, 10, 5
x41, TIFDP1 16, 13, 6, 4, 3
x42, TIFDP2 6, 4, 3, 2
x43, TIFDP3 32, 16, 6, 4, 3, 2
x44, TNH 13, 12, 11, 5
x45, TTWS1AO1 8, 6, 4, 3, 2
x46, TTWS1AO2 6, 5, 4, 3, 2
x47, TTWS1FI1 6, 4, 2
x48, TTWS1FI2 8, 6, 5, 3, 2
x49, TTWS1FO1 13, 5, 4, 2
x50, TTWS1FO2 9, 5, 4, 3, 2
x51, TTWS2AO1 64, 51, 37, 20, 3, 2
x52, TTWS2AO2 64, 51, 37, 11, 10, 9, 2
x53, TTWS2FO1 7, 6, 4, 3
x54, TTWS2FO2 6, 5, 4, 2
x55, TTWS3AO1 11, 9, 5, 4, 2
x56, TTWS3AO2 11, 9, 5, 3, 2
x57, TTWS3FO1 13, 12, 11, 10, 9, 4
x58, TTWS3FO2 9, 5, 4, 2
x59, TTXM 37, 4, 3
x60, TTXSP1 4, 3, 2
x61, TTXSP2 4, 3, 2
x62, TTXSP3 3, 2
x63, WQJ 8, 4, 3, 2
y, DWATT 85, 64, 51, 43, 37, 32, 28, 26, 23, 21, 20, 18, 17, 16, 15, 14,

13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2

Table 6-XIII Delays with maximum energy related to the output variable.

Notice that delays 0 and 1 do not show up in Table 6-XIII, because the method
employed cannot resolve these delays.  They need to be treated separately.

Prior to using this delay information to generate a mask candidate matrix, it is necessary
to decide the number of delays to allow, i.e., to decide, which mask depth is necessary to
cover the system dynamics. People who worked with the gas turbine plant within the
European project mentioned in the introduction advised to use a number of delays equal to
30. If variable information up to delay 30, i.e., xi(t-30), is to be used, a depth-31 candidate
mask would need to be proposed to FIR in order to find a model of the system.

Let us discuss the case in which 30 delays are considered. A 31 x 64 matrix is filled
with ‘-1’ elements in the positions corresponding to the delays (up to 30) listed in Table
6-XIII so as to form a mask candidate matrix. The element (31, 64) of this candidate mask
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is set to ‘+1’ denoting the variable considered as the output of the system, i.e., the variable
that is to be modelled3.

Using this information, the resulting mask candidate matrix contains a total of 287 out
of 1984 possible ‘-1’ elements. Moreover, it must be taken into account that the energy
method does not say anything about delays 0 and 1, so the total number of ‘-1’ entries of
the candidate mask is raised to a maximum of 287 + (64 + 63) = 414 ‘-1’ elements. An
estimation of the time needed to compute the FIR model of a 414 and a 1984 ‘-1’ element
mask candidate matrix can be made4. Table 6-XIV lists the number of models to compute
for both masks and for each allowed model complexity. The total number of models that
have to be computed when a mask candidate matrix with n elements set to ‘-1’ and a
maximum allowed complexity of c, is given by the formula:
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For example, if a candidate mask is used that has 191 ‘–1’ elements and the maximum
allowed complexity is 5, the number of models to be computed is:
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There are 191 models of complexity 2, 18’145 models of complexity 3, and so on,
leading to a total number of models of almost 55 millions.

FIR model
complexity

Number  of  models  for  a  414
‘-1’ elements candidate mask

Number  of  models  for  a  1984
‘-1’ elements candidate mask

2 414 1984
3 85’491 1’967’136
4 11’740’764 1’299’621’184
5 1’206’363’501 643’637’391’376

Table 6-XIV Number of models to compute for a candidate mask containing 414 and 1984 '-1' elements
respectively.

In Table 6-XV, the total number of models to be computed (considering up to
complexity 5), an estimation of the model computation time, and the reduction of
computation achieved with the energy method are provided.

                                                          
3 In the referenced European project, a model using only 5 time delays was used. In Section 6.3.2.2, a depth-6
FIR model was derived using a subsystem decomposition technique. In order to provide a fair comparison
between the two techniques, a depth-6 FIR model shall be adopted here also. For the suggested depth-31
model, considering 30 delay times, a discussion of how a corresponding mask candidate matrix could be
derived is provided as well, since the author considers this discussion to be of interest.
4 This estimation has been made using information gained by computing FIR models with the gas turbine
system later in the same section. The SUN ULTRASPARC II workstation used for the calculations was able
to compute 1727 models per minute.
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Number  of
‘-1’ elements

Total number of
models to be computed

Time estimation for
computing these models

Achieved time
reduction

1984 644’938’981’680 711 years -
414 1’218’190’170 1 year and 125 days 99.9811%

Table 6-XV Estimation of the computing time needed for candidate masks with 414 and 1984 '-1' elements,
respectively.

From Table 6-XV, we can see the estimation of time needed to obtain (sub)optimal FIR
depth-30 models for the gas turbine. If the FIR model of the studied system were to be
computed without any pre-analysis at all, about 711 years would be needed to accomplish
this, which is impractical. About thirty generations of people would be needed to find such
a model, and, after such a long time, surely the gas turbine would have become inoperable.
Using the energy method presented in Chapter 5, a dramatic reduction on the FIR model
computation time is achieved. Yet, this reduction it is insufficient, as it is also unrealistic to
assume that the workstation used all along the dissertation would have its electric power
uninterrupted during almost 1.5 years. Precisely, while the author was writing these lines, a
strong autumn storm over Barcelona interrupted the electric power of the laboratory for a
few minutes, which caused a modelling effort requiring two hours of computing time to be
lost.

One way to further reduce the computation time of the gas turbine FIR model is to use,
for the first row of the proposed candidate mask, i.e., the row corresponding to the zero
delay, information gained by a correlation analysis. This correlation analysis has already
been performed for the gas turbine system in the previous subsection. Using this
information, the delay-0 row of the depth-30 candidate mask contains only 20 ‘-1’
elements out of 63, which reduces the number of mask inputs to the proposed candidate
mask from 414 to 371. This reduction in the number of possible m-inputs to the model
reduces also the estimation of the computation time from 1 year and 125 days to 315 days,
almost half a year less. Yet, this reduction is still insufficient to compute a model for the
gas turbine system within an acceptable amount of time.

A further reduction on the computation time of this model could be obtained if the
algorithm described in Chapter 2, Section 2.4.1, were combined with the results obtained
with the energy method. With this procedure, and in a first step, the most important
qualitative relations for the first delay, i.e., the second row of the candidate matrix, now all
filled with -1 elements, can be reduced.

This algorithm, as explained in Chapter 2, permits to propose candidate masks of
increasing depths. N candidate masks are proposed such that its total computation time is
much less than if a unique depth-N candidate mask were proposed to the FIR exhaustive
search model algorithm. Let us resume the functioning of the suboptimal search algorithm
proposed in Chapter 2. This algorithm reduces the total number of models to compute by
reducing the number of ‘-1’ elements in the mask candidate matrix.  In the situation at
hand, since information about delay-0 has already been obtained, it can start with a mask
of depth d=2, in which the entire second row of the candidate mask is set to ‘–1’. In this
way, a depth-2 candidate mask is proposed that has a total of 84 ‘-1‘ elements.  For this
candidate mask, the number of models to be calculated is offered in Table 6-XVI.
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Model complexity C2 C3 C4 C5 Total
Number of models 84 3.486 95.284 1.929.501 2.028.355

Table 6-XVI Number of models to be computed for each allowed complexity with a 84 '-1' element candidate
mask.

This computation took exactly 19.5 hours on the SUN workstation. After an analysis5 of
all the computed masks using the algorithm provided in Chapter 2 with the specified
parameters, those qualitative relations that are most strongly related to the output are
identified. In Table 6-XVII such relations are shown.  In this table, only those variables
used by the selected masks are listed, in order not to generate large tables listing all 64
variables each time. The complexity-2 models are not listed since they do not have crucial
importance for the study; yet, the maximum quality found for those kinds of models was
Qbest  = 0.9959, and the number of selected models, complying with the restrictions of the
algorithm, is 23.

For each complexity separately, only those inputs are considered significant inputs that
are present in at least the 10% of the good masks of that complexity. In Table 6-XVII,
those significant inputs are enhanced in bold. Note that of all the possible m-inputs in the
previously proposed candidate mask, corresponding to all of the 64 physical variables, the
algorithm only chooses 10 m-inputs (of only 6 physical variables) that will form part of the
next depth-3 candidate mask.  For this new candidate mask, the elements that must be set
to ‘-1’ in the first two rows, i.e., delays 0 and 1, are determined by the previous
experiment. Those are columns (variables) 5, 9, 22, 27, 44, and 60 for the delay-1 row, and
columns (variables) 5, 9, 27, and 60 for the delay-0 row.

This technique could be combined with the depth-30 energy model search, providing
the ‘-1’ entries in the bottom two rows of the mask candidate matrix.  Hence the number of
‘-1’ entries in the subsequent depth-30 mask candidate matrix is now 287 + 10 = 297.  This
reduces the computing time of the depth-30 suboptimal mask to 129.5 days, which is still
too long, taking into consideration the reliability of the electric circuits at this university.

What if the energy method were not used at all, and instead, the hill-climbing technique
proposed in Chapter 2 would be continued all the way to depth 30?  At each step of the
algorithm, a similar number of important inputs, in the order of 10 to 25 are retained.
Thus, each step is of similar computational complexity, i.e., takes about one day of
computing time.  Thus, the entire algorithm could be completed within roughly 30 days,
which is still unpleasant, but maybe feasible.

Of course, a better approach would be to increase the threshold parameter that
distinguishes a significant power peak from an insignificant one.  In this way, the number
of ‘-1’ elements of the energy method can be reduced easily and quickly, and a suboptimal
mask can be obtained within a few hours of computing time.

                                                          
5 This analysis means to look for masks with a quality equal or greater than 97.5 % of the best found quality,
and then identify those variables that have been used by at least 10% of those masks. These operations are
performed using user-programmed codes in Matlab. The analysis time needed for this operation adds up to
about 0.5 hours for each performed run, which must be taken into account in the total used model
computation time.
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Complex. 3 (Qbest= 0.9912)
Q>0.975Qbest masks – 58

Complex. 4 (Qbest= 0.8342)
Q>0.975Qbest masks – 117

Complex. 5 (Qbest= 0.5934)
Q>0.975Qbest masks - 4

Delay 0 1 0 1 0 1
x5 5 5 59 77 4 4
x9 ¾ ¾ 4 4 2 2
x17 2 2 ¾ ¾ ¾ ¾
x18 ¾ 2 ¾ ¾ ¾ ¾
x22 ¾ ¾ ¾ 36 ¾ ¾
x23 ¾ 2 ¾ ¾ ¾ ¾
x24 ¾ 2 ¾ 1 ¾ ¾
x27 ¾ ¾ 4 4 2 2
x28 4 2 6 6 ¾ ¾
x44 ¾ ¾ ¾ 36 ¾ ¾
x45 ¾ 2 ¾ 6 ¾ ¾
x46 ¾ 2 ¾ 6 ¾ ¾
x47 ¾ 2 ¾ 6 ¾ ¾
x48 2 2 6 6 ¾ ¾
x49 ¾ 2 ¾ 6 ¾ ¾
x50 ¾ 2 ¾ 6 ¾ ¾
x51 ¾ 2 ¾ 1 ¾ ¾
x52 ¾ 2 ¾ 5 ¾ ¾
x53 ¾ 2 ¾ 6 ¾ ¾
x54 ¾ 4 ¾ 6 ¾ ¾
x55 ¾ 2 ¾ 6 ¾ ¾
x56 4 4 6 6 ¾ ¾
x57 ¾ 2 ¾ 6 ¾ ¾
x58 ¾ 2 ¾ 6 ¾ ¾
x60 24 24 18 ¾ ¾ ¾
y 58 4 117 6 4 ¾

Table 6-XVII Results from the analysis of all the computed masks, when a depth-2 candidate mask with 84 '-
1' elements is proposed to FIR. Enhanced in bold are the m-inputs to the next depth-3 candidate mask.

Instead of continuing with this hypothetical (and rather depressing) computational
analysis, the discussion shall now focus on the computation of a depth-6 model using the
energy-based method.  The bottom two rows are, of course, computed as outlined above.

For the third row of the new candidate mask, the (t-2�t) row, the elements that must be
set to ‘-1’ are given by the energy-based information shown in Table 6-XIII, so combining
the hill-climbing approach with the energy method in order to simplify the model search
problem. Those elements are columns (variables) 1, 2, 5, 8, 9, 10, 11, 12, 13, 17, 23, 25,
26, 27, 30, 31, 32, 35, 36, 37, 38, 39, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 58,
60, 61, 62, 63 and 64. In this list, column 64 stands for the considered output variable two
time steps in the past.

The new depth-3 mask candidate matrix contains 51 out of 191 possible ‘-1’ elements.
An optimal model search is now performed, proposing this mask candidate matrix to FIR.
This time, the total number of models to be computed (considering models up to
complexity 5) was 272.051, and it took 2.5 hours to compute them all. Table 6-XVIII
shows the results of this model search. In this table, only those variables used in the
selected masks are shown. This is the reason why this new table does not contain exactly
the same variables as the previous one. In the given case, variables 18, 23, 24, 28, 53 and
57 that were used in the depth-2 models are no longer selected in the depth-3 models. The
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qualities of the best masks of each complexity are only slightly higher than in the case of
the depth-2 models. 65 good masks of complexity 3, 66 good masks of complexity 4, and
27 good masks of complexity 5 were found. At this point, FIR shows preferences for some
variables one time-step back over others. The reason is that FIR now has more choices, and
often prefers the same variable two time-steps back.

C3 (Qbest= 0.9912)
selected masks  65

C4 (Qbest= 0.8457)
selected masks 66

C5 (Qbest= 0.6142)
selected masks 27

Delay 0 1 2 0 1 2 0 1 2
x5 7 7 6 21 22 31 18 18 18
x9 ¾ ¾ ¾ ¾ ¾ ¾ 9 9 9
x17 ¾ ¾ 3 ¾ ¾ 2 ¾ ¾ ¾
x22 ¾ ¾ ¾ ¾ 7 ¾ ¾ ¾ ¾
x27 ¾ ¾ ¾ ¾ ¾ ¾ 9 9 9
x44 ¾ ¾ 6 ¾ 6 ¾ ¾ ¾ ¾
x45 ¾ ¾ 6 ¾ ¾ 4 ¾ ¾ ¾
x46 ¾ ¾ 5 ¾ ¾ 5 ¾ ¾ ¾
x47 ¾ ¾ 6 ¾ ¾ 4 ¾ ¾ ¾
x48 ¾ ¾ 3 ¾ ¾ 4 ¾ ¾ ¾
x49 ¾ ¾ 3 ¾ ¾ 4 ¾ ¾ ¾
x50 ¾ ¾ 3 ¾ ¾ 4 ¾ ¾ ¾
x51 ¾ ¾ 3 ¾ ¾ ¾ ¾ ¾ ¾
x52 ¾ ¾ 3 ¾ ¾ 1 ¾ ¾ ¾
x54 ¾ ¾ 6 ¾ ¾ 12 ¾ ¾ ¾
x55 ¾ ¾ 3 ¾ ¾ 4 ¾ ¾ ¾
x56 ¾ ¾ 6 ¾ ¾ 12 ¾ ¾ ¾
x58 ¾ ¾ 6 ¾ ¾ 4 ¾ ¾ ¾
x60 15 15 15 23 11 12 ¾ ¾ ¾
y 65 ¾ 6 66 ¾ 5 27 ¾ ¾

Table 6-XVIII Results from the analysis of all computed masks when a depth-3 candidate mask with 51 '-1'
elements is proposed to FIR. Enhanced in bold are the m-inputs to the next depth-4 candidate mask.

The way the algorithm is implemented, once an input variable at a certain time delay
has been eliminated from one of the mask candidate matrices, it will never show up again
in any of the subsequent mask candidate matrices. Therefore, the discriminator value (in
the turbine gas system analysed here it is set to the 10%) must be chosen carefully, in order
not to eliminate potentially useful inputs too early. A smaller discriminator might generate
a better suboptimal mask at the end, but this goes at the expense of having to evaluate more
masks in the process. A higher discriminator value leads to a faster search, but may result
in a suboptimal mask of lower quality.

Again, those inputs that are selected to inhabit the next depth-4 candidate mask are
enhanced in bold in Table 6-XVIII. These inputs will form the first three rows of the new
proposed candidate mask. This mask candidate matrix will have, in the row corresponding
to the 0 delay, columns (variables) 5, 9, 27, and 60 set to ‘–1’. For the row (t-�t), the
columns 5, 9, 22, 27, and 60 should be set to ‘-1’, so as to denote possible mask inputs to
the next FIR models to be computed. Row (t-2�t) has ‘-1’ elements in columns 5, 9, 27, 54,
56, and 60. Finally for the (t-3�t) row, the information which elements should be set to ‘-1’
is gathered from Table 6-XIII. Those elements are columns (variables):  1, 2, 3, 4, 5, 6, 8,
9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 37, 41,
42, 43, 45, 46, 48, 50, 51, 53, 56, 59, 60, 61, 62, 63 and 64.
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As in the list of the previous candidate mask, column 64 stands for the considered
output variable, now three time steps back.  Although this has not been explicitly
mentioned so far, for a candidate mask with an actual depth of N, the element (N, 64) is
always set to ‘+1’, denoting the position of the m-output within the FIR qualitative model.

The new depth-4 mask candidate matrix contains 61 out of 255 possible ‘-1’ elements.
In each step of the algorithm, a candidate mask that has its depth increased by 1 with
respect to the  previous step  is proposed.  Each time,  as can be stated with the  number of
‘-1’ elements that inhabit the candidate mask, the relative reduction in the number of
models to compute is increased.

An optimal model search is now performed, proposing the newly computed mask
candidate matrix to FIR. This time, the total number of models to compute (considering
models up to complexity 5) was 559.736, and it took 4 hours and 58 minutes to calculate
them all. Table 6-XIX shows the results of this new model search.

C3 (Qbest= 0.9912)
selected masks  82

C4 (Qbest= 0.8557)
selected masks 103

C5 (Qbest= 0.6425)
selected masks 26

Delay 0 1 2 3 0 1 2 3 0 1 2 3
x5 6 7 5 6 20 32 29 34 20 7 6 16
x9 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 5 4 8 7
x17 ¾ ¾ ¾ 4 ¾ ¾ ¾ 3 ¾ ¾ ¾ ¾
x18 ¾ ¾ ¾ 4 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾
x19 ¾ ¾ ¾ 4 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾
x22 ¾ ¾ ¾ ¾ ¾ 10 ¾ 10 ¾ ¾ ¾ ¾
x23 ¾ ¾ ¾ 4 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾
x24 ¾ ¾ ¾ 4 ¾ ¾ ¾ 1 ¾ ¾ ¾ ¾
x27 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 8 7 8 ¾
x45 ¾ ¾ ¾ 5 ¾ ¾ ¾ 6 ¾ ¾ ¾ ¾
x46 ¾ ¾ ¾ 7 ¾ ¾ ¾ 8 ¾ ¾ ¾ ¾
x48 ¾ ¾ ¾ 4 ¾ ¾ ¾ 8 ¾ ¾ ¾ ¾
x50 ¾ ¾ ¾ 4 ¾ ¾ ¾ 8 ¾ ¾ ¾ ¾
x51 ¾ ¾ ¾ 4 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾
x53 ¾ ¾ ¾ 7 ¾ ¾ ¾ 8 ¾ ¾ ¾ ¾
x54 ¾ ¾ 7 ¾ ¾ ¾ 19 ¾ ¾ ¾ ¾ ¾
x56 ¾ ¾ 8 8 ¾ ¾ 19 11 ¾ ¾ ¾ ¾
x60 15 14 14 15 24 19 18 12 ¾ ¾ ¾ ¾
y 82 ¾ ¾ 10 103 ¾ ¾ 9 26 ¾ ¾ 8

Table 6-XIX Results from the analysis of all computed masks when a depth-4 candidate mask with 61 '-1'
elements is proposed to FIR. Enhanced in bold are the m-inputs to the next depth-5 candidate mask.

The qualities of the best masks of each complexity increased a little more with respect
to the case of the depth-3 models. 82 good masks of complexity 3, 103 good masks of
complexity 4, and 26 good masks of complexity 5 were found. Again in Table 6-XIX, only
those variables used in the depth-4 selected masks are shown, and so, the rows differ form
those of the previously presented tables. In this particular case, variables 18, 19, 23, 24,
and 53 appears (for example, variable 19 has not been used by either the depth-2 models or
the depth-3 ones) or re-appears (as variables 23 and 24, not used in the previous
simulation, but used in the depth-2 models). In the other hand, variables 44, 47, 49, 52, 55
and 58 that were used in the depth-3 models are no longer selected in the depth-4 models.
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Note, also, that in this simulation the self-output at delay (t-3�t) is selected to form part of
the next candidate mask, up to now, no autoregressive information had been selected.

In Table 6-XIX, those inputs that the algorithm selects to inhabit the next depth-5
candidate mask are enhanced in bold. This mask will have the columns (variables) 5, 9, 27,
and 60 set to ‘-1’ for the delay 0 row. In the row corresponding to (t-�t), columns
(variables) 5, 9, 22, 27, and 60 should be set to ‘–1’. For the row (t-2�t), the columns 5, 9,
27, 54, 56, and 60 should be set to ‘-1’. Row (t-3�t) has ‘-1’ elements in columns 5, 9, 22,
56, 60, and 64. Finally for the (t-4�t) row, the information which elements should be set to
‘-1’ is taken from Table 6-XIII. Those elements are columns (variables) 5, 10, 13, 15, 16,
18, 21, 23, 26, 31, 32, 33, 36, 37, 38, 41, 42, 43, 45, 46, 47, 50, 53, 54, 55, 57, 58, 59, 60,
61, 63 and 64.

This new proposed mask candidate matrix, actually with a depth of 5, contains 54 out of
319 possible ‘-1’ elements. In this step of the algorithm, the relative reduction in the
number of models to compute is considerable. An optimal model search is now performed,
proposing this mask candidate matrix to FIR. For this particular experiment, the total
number of models to be computed (considering models up to complexity 5) was 342.540,
and it took 3 hours and 18 minutes to calculate them. Results of this model search are
provided in Table 6-XXI. Note that, once again, some of the variables that were
encountered in the selected masks of the depth-4 models are not used in the depth-5
models.  Those are variables 17, 19, 24, and 51. Conversely, variables 47, 49, 55, 57, and
58 are found in the depth-5 selected masks, variables that were not used by the depth-4
models.

Once again the overall qualities of the computed models increased slightly with respect
to the last model computation. This suggests proposing a new depth-6 candidate mask
using the information contained in Table 6-XXI and the information given by the cross-
spectrum method. Those inputs that the algorithm selects to inhabit the next depth-6
candidate mask are enhanced in bold. This mask has the columns (variables) 5, 9, 27, and
60 set to ‘-1’ for the delay 0 row. In the row corresponding to (t-�t), columns (variables) 5,
9, 27, and 60 should be set to ‘–1’. For the row (t-2�t), the columns 5, 9, 27, 54, 56, and 60
should be set to ‘-1’.  Row (t-3�t) has ‘-1’ elements  in columns  5,  9,  60,  and  64.  Row
(t-4�t) has ‘-1’ elements in columns 5 and 60. Finally for the (t-5�t) row, the information
which elements should be set to ‘-1’ is taken from Table 6-XIII. Those elements are
columns (variables) 2, 3, 4, 11, 12, 13, 17, 22, 23, 24, 25, 26, 28, 35, 36, 37, 40, 44, 46, 48,
49, 50, 54, 55, 56, 58 and 64.
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C3 (Qbest= 0.9912)
selected masks  122

C4 (Qbest= 0.8657)
selected masks 266

C5 (Qbest= 0.7025)
selected masks 42

Delay 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
x5 7 7 7 9 7 63 50 56 55 80 20 20 10 16 15
x9 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 8 8 11 11 ¾
x18 ¾ ¾ ¾ ¾ 5 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾
x22 ¾ ¾ ¾ ¾ ¾ ¾ 12 ¾ 12 ¾ ¾ ¾ ¾ ¾ ¾
x23 ¾ ¾ ¾ ¾ 5 ¾ ¾ ¾ ¾ 1 ¾ ¾ ¾ ¾ ¾
x27 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 14 14 12 ¾ ¾
x45 ¾ ¾ ¾ ¾ 5 ¾ ¾ ¾ ¾ 14 ¾ ¾ ¾ ¾ ¾
x46 ¾ ¾ ¾ ¾ 5 ¾ ¾ ¾ ¾ 14 ¾ ¾ ¾ ¾ ¾
x47 ¾ ¾ ¾ ¾ 5 ¾ ¾ ¾ ¾ 14 ¾ ¾ ¾ ¾ ¾
x49 ¾ ¾ ¾ ¾ 5 ¾ ¾ ¾ ¾ 13 ¾ ¾ ¾ ¾ ¾
x50 ¾ ¾ ¾ ¾ 5 ¾ ¾ ¾ ¾ 13 ¾ ¾ ¾ ¾ ¾
x53 ¾ ¾ ¾ ¾ 10 ¾ ¾ ¾ ¾ 13 ¾ ¾ ¾ ¾ ¾
x54 ¾ ¾ 10 ¾ 10 ¾ ¾ 29 ¾ 14 ¾ ¾ ¾ ¾ ¾
x55 ¾ ¾ ¾ ¾ 6 ¾ ¾ ¾ ¾ 13 ¾ ¾ ¾ ¾ ¾
x56 ¾ ¾ 10 10 ¾ ¾ ¾ 29 18 ¾ ¾ ¾ ¾ ¾ ¾
x57 ¾ ¾ ¾ ¾ 5 ¾ ¾ ¾ ¾ 15 ¾ ¾ ¾ ¾ ¾
x58 ¾ ¾ ¾ ¾ 10 ¾ ¾ ¾ ¾ 17 ¾ ¾ ¾ ¾ ¾
x60 17 17 17 17 17 57 39 44 32 32 ¾ ¾ ¾ ¾ ¾
y 122 ¾ ¾ 1 1 122 ¾ ¾ 27 ¾ 42 ¾ ¾ 9 ¾

Table 6-XXI Results from the analysis of the computed masks when a depth-5 candidate mask with 54 '-1'
elements is proposed to FIR. Enhanced in bold are the m-inputs to the next depth-6 candidate mask.

The new depth-6 proposed mask candidate matrix contains 47 out of 383 possible ‘-1’
elements. As outlined before, as the algorithm proceeds while increasing the mask depth, a
higher relative reduction in the number of models to be computed is achieved. As with the
other proposed candidate masks, the new depth-6 candidate mask is proposed to FIR, and
an optimal model search is performed. Now, the total number of models to be computed
(considering models up to complexity 5) was 195.713, and it took 1 hour and 53 minutes to
calculate them. Results of this model search are provided in Table 6-XXII. Note that, once
again, some of the variables that were encountered in the selected masks for the depth-5
models are not used in the depth-6 models.  Those are variables 17, 19, 24, and 51.
Conversely, variables 47, 49, 55, 57, and 58 have been found in the depth-6 selected masks
that were not used by the depth-5 models.

Results from this last model computation are interesting. First, the overall quality of the
masks incurred a smaller increase than in the previous cases, although it still grew
somewhat. Second, FIR rather preferred to choose primarily variables with delays < 5, as
can be seen by looking at Table 6-XXII. This fact may indicate that the maximum mask
quality that the search algorithm can find has been reached. Yet, in order to better assess
the results, a new depth-7 candidate mask should be proposed using the elements enhanced
in bold in Table 6-XXII as well as the information provided in Table 6-XIII. This mask
will have the columns (variables) 5, 9, 27, and 60 set to ‘-1’ for rows corresponding to
delay 0 and (t-�t). For the row (t-2�t), the columns 5, 9, 27, 54, 56, and 60 should be set to
‘-1’. Row (t-3�t) has ‘-1’ elements in columns 5, 9, 60, and 64. Row (t-4�t) has ‘-1’
elements in columns 5 and 60. Row (t-5�t) has a unique ‘-1’ element in column 28. Finally
for the (t-6�t) row, the energy-based method proposes to set ‘-1‘ elements in columns 1, 3,
4, 10, 11, 14, 15, 16, 17, 23, 24, 25, 31, 33, 41, 42, 43, 45, 46, 47, 48, 53, 54, and 64.
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C3 (Qbest= 0.9912)
selected masks  92

C4 (Qbest= 0.8658)
selected masks 215

C5 (Qbest= 0.7127)
selected masks 42

Delay 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
x5 3 5 2 5 2 ¾ 51 40 48 45 66 ¾ 20 22 11 19 15 ¾
x9 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 9 9 11 10 ¾ ¾
x17 ¾ ¾ ¾ ¾ ¾ 5 ¾ ¾ ¾ ¾ ¾ 3 ¾ ¾ ¾ ¾ ¾ ¾
x22 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 10 ¾ ¾ ¾ ¾ ¾ ¾
x23 ¾ ¾ ¾ ¾ ¾ 5 ¾ ¾ ¾ ¾ ¾ 2 ¾ ¾ ¾ ¾ ¾ ¾
x24 ¾ ¾ ¾ ¾ ¾ 5 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾
x27 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 12 13 11 ¾ ¾ ¾
x28 ¾ ¾ ¾ ¾ ¾ 9 ¾ ¾ ¾ ¾ ¾ 22 ¾ ¾ ¾ ¾ ¾ ¾
x44 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 10 ¾ ¾ ¾ ¾ ¾ ¾
x46 ¾ ¾ ¾ ¾ ¾ 4 ¾ ¾ ¾ ¾ ¾ 14 ¾ ¾ ¾ ¾ ¾ ¾
x48 ¾ ¾ ¾ ¾ ¾ 4 ¾ ¾ ¾ ¾ ¾ 11 ¾ ¾ ¾ ¾ ¾ ¾
x49 ¾ ¾ ¾ ¾ ¾ 4 ¾ ¾ ¾ ¾ ¾ 11 ¾ ¾ ¾ ¾ ¾ ¾
x50 ¾ ¾ ¾ ¾ ¾ 4 ¾ ¾ ¾ ¾ ¾ 13 ¾ ¾ ¾ ¾ ¾ ¾
x54 ¾ ¾ 10 ¾ ¾ 7 ¾ ¾ 29 ¾ ¾ 14 ¾ ¾ ¾ ¾ ¾ ¾
x55 ¾ ¾ ¾ ¾ ¾ 7 ¾ ¾ ¾ ¾ ¾ 13 ¾ ¾ ¾ ¾ ¾ ¾
x56 ¾ ¾ 10 ¾ ¾ 5 ¾ ¾ 24 ¾ ¾ 16 ¾ ¾ ¾ ¾ ¾ ¾
x58 ¾ ¾ ¾ ¾ ¾ 8 ¾ ¾ ¾ ¾ ¾ 16 ¾ ¾ ¾ ¾ ¾ ¾
x60 15 15 15 15 15 ¾ 42 35 33 24 26 ¾ ¾ ¾ ¾ ¾ ¾ ¾
y 92 ¾ ¾ ¾ ¾ 5 215 ¾ ¾ 22 ¾ ¾ 42 ¾ ¾ 11 ¾ ¾

Table 6-XXII Results from the analysis of the computed masks when a depth-6 candidate mask with 47 '-1'
elements is proposed to FIR. Enhanced in bold are the m-inputs to the next depth-7 candidate mask.

This new proposed candidate mask implies computing a total of 149.984 models (again
considering models up to complexity five). The process took 1 hour and 12 minutes to
complete. In this experiment, the overall quality of the masks did not increase from the
quality values found in the depth-6 models, so the termination condition for the search
algorithm is reached, and the model computation finishes here. Note that the used search
algorithm suggests an optimal depth for the FIR models of 6, i.e., considering variables
delayed up to five time steps, as some models of the referenced European project, from
where the data were borrowed, suggested. If the search is not stopped here, and additional
candidate masks of depth 8, 9, or 10 are proposed, the found mask qualities are seen to
remain unchanged. Results from these last experiments are not shown here because they do
not add any new or valuable information to the gas turbine model computation.

The computed models can now be used to simulate the turbine system. The highest
quality is found for depth-6 models that are constructed using variables x5, x9, x17, x22, x23,
x24, x27, x28, x44, x46, x48, x49, x50, x54, x55, x56, x58, x60 and the output variable itself at
various delays. From these variables, as can be seen from Table 6-XXII, only variables x5,
x9, x27, x28, x54, x56 and x60 are used in more of the 10% of the selected masks.

Let us simulate the system with the best complexity-5 model found, i.e., the one with
quality 0.7127 and a mask depth of 6. was outlined in the beginning of this section, 85% of
the available data have been used to generate the FIR qualitative model, while the
remaining 15% are used to validate the model.
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Figure 6-16 Real gas turbine output, 1080 points (15% of the available data).

In Figure 6-16, the entire validation data set of the considered output variable is
depicted. These data correspond to a normal operating condition of the electric power
generation plant. It can be seen that the generator load is almost constantly at 40 MW,
except for one short oscillation.

The suboptimal model found by the energy-based algorithm is given by:

y(t) = f { x5(t-3�t), x9(t-3�t), x27(t-2�t), y(t-3�t) }

which means that the generator load, y, can be modelled from the air temperature in the
compressor, x5, a measure of the vibration in the shaft that transmit the mechanical
movement from the turbine to the electric generator, x9, a measure of the generator voltage,
x27, and a delayed version of the output itself.  Interestingly enough, y(t-�t) is not used by
the model.  Instead, the model prefers to work with y(t-3�t).  The model found seems to be
a quite plausible model, since three important factors are taken into account. First the
temperature of the air in the compressor is directly related to the fuel consumption, which
in turn is directly related to the electric power that the system is able to generate. Second,
the shaft vibration measures the efficiency of the energy transmission between different
parts of the whole system; if vibration in the shaft is important, a substantial amount of
energy is being lost to produce such a vibration. Last, the voltage of the generator is
directly related to the generated power. Therefore, using the combination of three methods,
the energy based method introduced in Section 5.3.2, the hill-climbing algorithm discussed
in Chapter 2, and the correlation analysis described in Chapter 3, a FIR model has been
computed in a reasonable time. Table 6-XXIII summarizes the number of computed
models as well as the computing time needed to obtain the final model. A time of 30
minutes, needed to compile the information related to the computed FIR models, has been
added for each of the model computations, in order to provide a fair time calculation.
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Depth Number of
computed models

Computing
time

Model
processing time

2 2.028.355 19h 30 min
3 272.051 2h 30min 30 min
4 559.736 4h 58min 30 min
5 342.540 3h 18min 30 min
6 195.713 1h 53min 30 min
7 149.984 1h 12min -

Total 3.548.379 35h 21min

Table 6-XXIII Total computation required to obtain a depth-6 gas turbine model using the energy-based
method described in this research work.

The numbers given in this last table may be compared to those given in Table 6-XV.
The achieved simplification is evident. Here, a model has been computed in approximately
35.5 hours, whereas the best option before was to spend 1 year and 125 days to get the
submodel, or 711 years if a full candidate mask were to be used. The model obtained in
this way is not necessary the best model that can be found.  It is a suboptimal model, yet
one that is based on engineering common sense, and that is expected to lead good
simulation results.

In Figure 6-17, the measured validation data set, represented by a continuous line, is
overlaid with the simulated output when using the proposed complexity-5 model, shown
by a dash-dotted line.  At a first glance, the model seems to mimic quite well the behaviour
of the system, even in the oscillation present between data points 400 and 500 of the given
figure. Only two important simulation errors occur between data points 500 and 600. In
Figure 6-18, the previous graph is zoomed in, containing only the data points from 450 to
580, so as to show more clearly the details of the simulated data set relative to the
measured data set.

Figure 6-17 Real (continuous line) and simulated (dotted line) gas turbine output variable.



201

Figure 6-18 Real (continuous line) and simulated (dotted line) trajectory between data points 450 to 580.

It can be seen in these figures that the simulated data follows quite well the behaviour of
the system.  Just as in the case of the subsystem decomposition approach, the simulation
essentially predicts the mean value of the output during the controlled regions.  It also
shows oscillations, this time even of the correct amplitude, though not exactly at the
correct time instants.  The MSE value for these data is 0.1873, which is slightly worse than
using the model found by the subsystem decomposition method.

Another simulation has been performed using the best complexity-4 model found by
means of the energy-based approach. This model is given by:

y(t) = f { x28(t-5), x5(t-3), y(t-3�t) }

which means that the output variable can be modelled from the fuel consumption, x28,  the
air temperature in the compressor, x5, and a delayed version of the output itself. The 1080
data points of the measured validation data set as well as the simulated data are depicted
together in Figure 6-19.

Also this model mimics well the behaviour of the system. In Figure 6-20, two different
windows of this simulation are shown; on the left, the data points from 450 to 520 are
shown so as to exhibit more clearly the details of the modelled peak. On the right, the data
points from 240 to 320 are shown so as to enlarge the erroneous peak that the complexity-4
model simulates.
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Figure 6-19 Real (continuous line) and simulated (dotted line) data when using the best complexity-4 model.

It can be seen that the simulated data follows the real data quite well. Yet, the used FIR
qualitative model does not model the oscillation present in the validation data set as well as
before.  In despite of this detail, the MSE value of this simulation is 0.1734, slightly
smaller than that of the complexity-5 model.

Figure 6-20 On the left, data points from 450 to 520 for the real and simulated data sets when using a
complexity-4 model showing details of the real output peak simulation. On the right, data points from 240 to

320 showing an erroneous peak resulting present in the simulation only.
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6.4 Conclusions

In previous chapters, some methods to reduce the FIR mask search space were
presented so as to be able to compute a qualitative model of a large-scale system.  Two
subsets of these methods were combined in Chapter 5 to offer two different and
independent approaches to dealing with large-scale systems in effective and efficient ways.
Chapter 6 showed the application of these two methods to an industrial large-scale system,
an industrial gas turbine used for electrical power generation.

The discussion offered in this chapter demonstrates the usefulness of having explained
the stages of these algorithms individually, rather than having treated them as monolithic
pieces of code.  The subsystem decomposition method was slightly modified in order to
ensure that the variable y(t-�t) would not be eliminated from the data set.  The energy-
based method was modified in an even greater sense.  Rather than computing one
suboptimal model making use of the important power peaks up to the chosen mask depth, a
series of suboptimal masks of increasing depths was computed.  This was necessary in
order to keep the number of ‘-1’ elements inhabiting the mask candidate matrices
sufficiently small.

Both the subsystem decomposition method and the energy-based approach found
excellent suboptimal masks that can be used to qualitatively simulate the gas turbine
system.  Both techniques are acceptably fast considering the complexity of the modelling
task at hand.
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7 Final considerations

I got involved with Fuzzy Inductive Reasoning almost by chance. After obtaining my
engineering degree, I went immediately to work in the private industry, yet the contact
with the university was never lost. I was primarily interested in robotics, far from the
methodologies developed in this dissertation, an area that I had worked on in my final
project. Hence small studies in the mark of the university, parts of bigger projects, were
still performed by me in those days.

It was a day, no matter which, in the spring of the year 1997, while working as a
system and network administrator for a private company near Barcelona, that I went to
the recently created Institute of Robotics. The purpose of that visit was to talk to a
professor, for whom I was developing a system, part of a European project, to see if
there was any possibility of getting a financial contract. While waiting in the hall of the
Institute, a man, actually the director of that Institute, Rafael Huber, came out of his
office and asked me whom I was waiting for. I was told that, unfortunately (or
fortunately, we shall never know), this professor was not present as he had to attend an
urgent interdepartmental meeting, so he could not meet with me that evening, and that,
in turn, I could come into his office and talk to him.

During that talk, apart from other things, he told me about the Fuzzy Inductive
Reasoning methodology. At first sight, it seemed like a fantastic methodology that
could be used to predict a system without having any knowledge at all about it.
Immediately it went through my head that this methodology could be implemented in
the onboard computer of a mobile robot, and hence, be used to create models of the
environment in which it lived. In this way, the robot would have an independent
capacity to dynamically model its environment and to survive in it, just analysing
information from its sensors, without any previous knowledge of the surrounding
environment. So I began to study this methodology.

By the month of September within the same year, the possibility of obtaining a grant
from the Spanish Government for performing FIR-related research arose. My
application for this grant was approved, and so I began my research work on FIR.

In the first stages of this research, while learning about the FIR methodology,
different bugs in the already implemented version of FIR (within the SAPS platform)
were detected and fixed. This allowed me as well as other users of the tool to obtain
improved accuracy in the predictions made with this methodology. Then, while
researching different methods to evaluate the predictions that FIR makes, a new idea
was conceived in the context of performing fault detection using FIR: the so-called
envelopes. The envelope approach was compared with previous techniques published
by the same group in Simulation in the years 1989 and 1994 simulating faults in a B-
747 commercial aircraft, the same example that had been used in the previous
publications. The formerly used crisp detection was replaced by the new approach,
based on the computation of an acceptability interval for each predicted variable. The
new approach resulted in improved capabilities of detecting faults earlier and in a more
reliable manner.



205

It was not until some months of the year 1998 had passed that the work to be
performed as part of my dissertation crystallised. The weather had become good enough
in Barcelona so as to enjoy the sea. Dr. Cellier had just landed in Barcelona for one
month, as he did frequently in order to provide guidance to the research direction of the
group, and so, we had the opportunity to get acquainted and to talk about the FIR
methodology.

I had realised that there existed a fundamental problem in the FIR methodology that
had not yet been tackled: FIR was incapable to deal with large-scale systems effectively
and efficiently due to the nature of its modelling engine.  The model search engine of
FIR is of exponential computational complexity, which makes it unsuited for dealing
with large-scale systems (as in fact, most real industrial processes are). Hence it was
agreed that my research should focus on studying methods so as to simplify the mask
search space of FIR.

With this goal in mind, a first research stay of mine was organised to take place at
the University of Texas during the fall semester of 1998, where I studied statistical
methods under the supervision of Dr. S. J. Qin, who had previously published a number
of interesting articles that let us to believe that the FIR methodology could benefit from
that knowledge. Statistical methods were studied in order to perform a first variable pre-
selection among all of the variables of a large-scale system in order to provide FIR with
a reduced set of variables. Yet in this first stay, only linear and static relations between
variables were considered. As non-linear relations are very important in most
engineering systems, and since the attained results suggested that linear techniques on
their own were inappropriate to deal with the complex tasks at hand, a second research
stay was organised to take place in the fall of 1999, when I had the chance to study non-
linear statistical techniques in a research group of the Università degli studi di Napoli
under the direction of Dr. Carlo Lauro, head of the Mathematical and Statistical
department of that university.  My research focused on searching for methods to
simplify large-scale systems, but this time including potential non-linear relations
among variables, as well as dynamic information, i.e., taking into account the time
variable.

The two research stages abroad proved very valuable indeed and provided the
framework for the research performed in this dissertation, as this dissertation deals with
a variety of methodologies, predominantly statistical in nature, to reduce the mask
search space of the FIR qualitative modelling methodology by pre-selecting a subset of
variables and by reducing the number of potential inputs in the mask candidate matrix
to be considered, thereby allowing the FIR methodology to deal with large-scale
systems (real industrial systems) within reasonable time. Among all of the methods
considered in this research work, two complete methodologies have been derived. They
both can be viewed either as exploratory steps taken for the purpose of gaining
information about the physical system under study, or as complete modelling
methodologies when used in combination with the FIR modelling engine.

Those developed methodologies enhance the FIR methodology with a large-scale
system modelling capability, by means of reducing the computing time needed to obtain
a sub-optimal qualitative model. Previously, given a large-scale system, FIR was
theoretically capable of finding the optimal model, but in practice, the computational
cost was so high that this could not be accomplished within reasonable time. Now, it has
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become possible to obtain a qualitative FIR model of a large-scale system within a few
hours, where previously the same task would have required years if not centuries of
computing time. This was the case of the gas turbine system for electric power
generation analysed in Chapter 6; the given methods allowed to compute a qualitative
model for this system in a time of approximately 35.5 hours on a SUN/Solaris
workstation.

Both of the developed techniques are designed for use as precursors to a FIR optimal
mask search.  They both reduce the computational burden of the subsequent FIR
modelling task by reducing the number of potential inputs (‘-1’ entries in the mask
candidate matrix).  Both techniques employ heuristic parameters by which the number
of remaining ‘–1’ entries can be indirectly controlled.

How many ‘–1’ entries should remain in the mask candidate matrix?  If the
techniques are tuned such that the number of ‘-1’ entries is reduced to 4 or less, the
techniques become alternatives to FIR rather than precursors to FIR, since no further
model simplification is then needed.  The resulting potential inputs can in this case
simply be taken as the inputs of a suboptimal qualitative model.  Although it would be
possible to tune the algorithms in such a way, this is not desirable, since FIR is clearly
the best technique available for finding good masks.  Thus, if the FIR step were
bypassed, the algorithms would often result in suboptimal models of significantly
inferior quality compared to the optimal model.  The trick is to keep the number of
remaining ‘-1’ entries large enough to include, among the masks compatible with that
mask candidate matrix, one or several masks of very high quality, not significantly
inferior to the truly optimal mask (which often may indeed be among those spanned by
the mask candidate matrix), yet keep the number of remaining ‘-1’ entries small enough
so that the subsequent FIR model search can be performed exhaustively within
reasonable time limits.

What is the largest number of ‘-1’ elements that FIR can handle within reasonable
time?  A mask candidate matrix with somewhere between 15 and 25 ‘-1’ entries can be
searched very quickly.  Depending on the size of the database, the exhaustive search
algorithm may take from a few seconds to a few minutes to find the optimal mask.
Given a mask candidate matrix with somewhere between 25 and 40 ‘-1’ entries, it takes
the search algorithms from a few minutes to a few hours to complete the search.  If a
mask candidate matrix with somewhere between 40 and 60 ‘-1’ entries is considered,
the modelling engine will take from a few hours to a few days to complete its search.
Anything beyond that is unreasonable.  Due to the exponential computational
complexity of the exhaustive search algorithm, the amount of time needed grows
rapidly with increasing numbers of ‘-1’ elements.  Soon we would need weeks or
months or even years to complete a search, and with a mask candidate matrix containing
only a few hundred ‘-1’ entries, the search algorithm would take the entire life span of
this universe to complete an exhaustive search.

What is the smallest number of ‘-1’ elements that should be retained?  The answer to
this question may depend on the application.  Evidently, most real-time applications
requiring on-line modelling are out of the question.  Luckily, many applications allow a
model to be made off-line, such that only the FIR simulation is to be performed on-line.
Then, a few hours or even days for obtaining a good model may be acceptable, if the
resulting model is of high quality and capable of performing its designated task.  Thus,
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the smallest number of ‘-1’ elements is one that avoids unnecessary computation while
preserving a high probability that a model of excellent quality can be found.  It has been
our experience that the optimal number of ‘-1’ entries to be retained is somewhere
between 15 and 50.

How can a promising set of variables be pre-selected?  First investigations, and many
of those are presented in Chapters 3 and 5 of this dissertation, tried to answer this
question by throwing a palette of statistical methods at the problem.  Unfortunately, the
results obtained in this way were not very good.  Most large-scale engineering problems
are highly non-linear, whereas all of the standard statistical techniques are linear.  Thus,
important non-linear relations are being overlooked in this way, and variables are not
included in the list of important variables because of this.

Hence another paradigm was needed: rather than searching for variables to be
included in the set of good variables, it may be better to start by looking for variables
that can be discarded from the set of good variables.  The reasoning leading to this
conclusion is straightforward: if two potential input variables are highly linearly
correlated with each other, then they contain essentially redundant information.  It is not
necessary to keep both of them in the set.  Any one of them suffices, while the other can
be discarded without restrictions to generality.  Non-linear relations do not matter in this
context.  If there exists a strong non-linear relation between two potential inputs, the
algorithm would simply keep both variables, though one might suffice also.  No harm is
done in this way.  No potentially valuable information is being thrown away.

Consequently, an algorithm was designed that groups all input variables into subsets
of variables that are strongly linearly correlated with each other.  Variables may belong
to more than one such subset.  Once the groups are formed, one variable is retained
from each subset, as are all variables that are not included in any of the subsets.
Usually, this technique gets rid of at least 80% of all variables forming a large-scale
system.

Good techniques exhibit weak correlations among its inputs, minimising the
redundancy of information contained in them, yet they exhibit strong correlation to the
output.  The previously outlined algorithm takes care of the former requirement, but
ignores the latter, since the output has not yet been looked at.  The second step of the
method thus identifies groups of variables that are strongly correlated with the output.
If there exists a strong non-linear relation between a potential input and the output, it
will not be discovered; yet, no harm is done, since no variables are being discarded in
this step.  Variables that do not exhibit strong linear correlation with the output are
simply set aside for later consideration.

The third step analyses non-linear relations between variables not chosen so far and
the output.  Since non-linear relations cannot be analysed in general using a closed-form
algorithm, this step is iterative.  It performs a parameterised non-linear transformation
on the data available for the variable in question using a spline transformation.  The
parameters of that transformation are optimised so as to maximise the linear correlation
of the transformed variable with the output.  If a strong correlation can be found in this
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way, then the variable in question is non-linearly related with the output and joins the
set of variables to be retained1.

The resulting variables except for the output itself are proposed as potential inputs to
the FIR model search engine.  The algorithm, as it is currently implemented, retains
usually in the order of 20 to 30 variables, which is just about right.  We know that the
output one time instant delayed, y(t-�t), contains the most valuable information in any
system for predicting y(t).  Thus, if that variable got thrown out in step 1, as this
sometimes happens, it is immediately added again to the set of retained variables.

In spite of the fact that the algorithm summarized above gives excellent results most
of the time, it is a suboptimal search algorithm.  There is no guarantee that the optimal
mask is retained within the set of masks to be searched, and therefore, the user is left
unclear as to how optimal the “optimal mask” returned by the algorithm really is.  The
algorithm is certainly reasonable, and frankly, I have not found a single case where the
optimal mask returned was far off from the truly optimal one (for those cases, where
this could be checked, which is not true when dealing with large-scale systems).

Yet, due to the suboptimal nature of the proposed algorithm, it may be useful to have
access to an alternative suboptimal search algorithm that operates on different
principles, so that the user can run both suboptimal algorithms in parallel.  If both
algorithms return masks of similar quality, this will increase the confidence of the user
that he or she has indeed found a high-quality mask that is not much inferior to the truly
optimal one.

For this reason, a second suboptimal search algorithm has been developed as part of
this dissertation.  It is based on energy considerations.  Each input/output pair can be
considered as the input and output signals of a SISO system.  It may make sense to look
at the power spectrum relating the input to the output.  The greater the “energy
contents” that is being transferred from the input to the output, the larger the likelihood
that there indeed can be postulated a system connecting the input to the output that is
able to regenerate large portions of the output signal from the input signal.  This is
similar to a cross-correlation analysis, yet it is intrinsically non-linear, and makes use of
engineering considerations to select an appropriate non-linear relation.  Energy and
power are at the heart of physics.  These concepts are useful for arbitrarily non-linear
physical systems, and the relations among power variables are essentially linear in every
system.  Let us consider, for example, a non-linear resistor, such as a hydraulic valve.
The relations between the signal variables (pressure and volume flow) are non-linear,
yet the power transfer across the valve is linear.  It simply states that the power
dissipated in the valve equals the heat generated by it.

Details of the algorithm were provided in Chapter 5.  Of course, it may make sense
to precede the application of this algorithm by the first step of the previous algorithm,
i.e., replace only steps 2 and 3 by it; yet, by doing so, the two algorithms share an
important component, and therefore, the argument of independence of the two
algorithms is somewhat lost.  For this reason, the energy-based method, as discussed in
Chapter 5 and applied to a large-scale system in Chapter 6 did not make use of the
variable reduction step of the subsystem decomposition algorithm.
                                                          
1 The algorithm as it is implemented works somewhat differently.  Rather than looking for relations with
the output only, groups of variables are formed, and those groups are retained that contain the output.
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7.1 Contributions

There are two main lines of contributions in this dissertation. The first one concerns
the contributions made to the FIR methodology, around which the dissertation has been
developed. The second line relates to the methodologies presented so as to reduce the
mask search space of FIR, so reducing the computational time needed to obtain a FIR
qualitative model of a large-scale system. Those, although developed in a FIR context,
can be used as precursors to any dynamic modelling methodology.

In the context of the FIR methodology, three main contributions were made:

- The corrected five-neighbours prediction formula.

When working with an academic model of a water tank [Mirats and Escobet,
1997b] with one input (an electric signal control to drive a pump) and one output
variable (the signal read out from a flow sensor), an error was found in one of the
formulas of the FIR prediction module. A non-existing class was found to be
predicted by FIR, causing the next input state vector in the behaviour matrix not
to be found and making the prediction unstable, even when predicting already
observed data. The error relates to the formula computing the new output state as
a weighted sum of the output states of the five nearest neighbours.  Due to the
rounding used in that formula, it sometimes happened, when all five nearest
neighbours were in the highest class, that a class was predicted for the output state
that was one higher than the largest class (and similarly for the lowest class).
Since these classes are not contained in the data base, already the next step, which
invariably makes use of y(t-�t) among its inputs, would be confronted with an
input state that is not contained in the data base at all, either leading to an
immediate termination of the prediction or making the prediction of the
subsequent output state arbitrary, depending on how the SAPS program had been
written. This error has been corrected.  The problem was briefly mentioned in
Section 2.5 of the dissertation.  This and similar improvements of the existing
SAPS code were not elaborated on in the bulk of the dissertation, since they do
not represent new concepts, and their detailed explanation would not have aided
the understanding of the important new concepts developed in this dissertation;
yet, their implementation consumed a considerable amount of time, especially
during the early phases of the dissertation research.

- The new hill-climbing algorithm for a suboptimal mask search.

A new hill-climbing approach for suboptimal mask search was designed and
implemented as part of this dissertation.  This aspect of my work was reported in
Section 2.4.1 of the dissertation.  It uses a bootstrapping approach to obtain
successively masks of improved quality.  It begins with a mask candidate matrix
of depth one with ‘-1’ entries in all input variable locations and determines the
optimal mask, i.e., the optimal static model.  It then keeps the selected inputs as
potential inputs of a new mask candidate matrix of depth two, adding a second
row to the mask candidate matrix from the top that is again filled with ‘-1’
elements.  A second optimal mask is computed in this way.  The algorithm
proceeds by successively incrementing the depth, until the quality of the resulting
optimal mask can no longer be improved.
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Why is this technique attractive?  Instead of solving one optimal mask search
problem with d·n – 1 ‘-1’ entries, where d is the depth of the mask and n is the
number of variables, it solves d optimal mask search problems with usually
somewhere between n and 2n ‘-1’ entries.  The latter is far more economical than
the former.  In addition, the algorithm offers a natural criterion for the selection of
d, which in most other algorithms must be manually chosen.

Contrary to the previously known hill-climbing algorithms, which often generate
suboptimal masks of vastly inferior quality, this algorithm works amazingly well
in most cases, generating a suboptimal mask of very high quality.  Yet, the
algorithm was not proposed as an alternative to the subsystem decomposition
method and the energy method discussed in Chapter 5 and applied to a large-scale
system in Chapter 6, because it is less economical than either of those approaches.
The technique is still too slow to be used for modelling large-scale systems.

The method is nevertheless important, because its first two steps are used as part
of the energy-based approach, since the energy consideration has a limited
resolution and does not provide information for delays � 2.

The algorithm was first proposed in [Mirats and Verde, 2000] and applied to a
garbage incinerator system, which is described in the Appendix I.3.

- The concept of variable acceptability, the so-called ‘envelopes.’

The concept of a variable acceptability interval, called “envelope,” is a new idea
introduced in the FIR methodology. It was derived when working with a B-747
aircraft in order to detect structural changes in the simulated aircraft model, so it
was used for fault detection purposes (cf. Appendix II.2 for an application).  The
method was reported in Section 2.5.1 of the dissertation.  However, since this
contribution concerns the simulation engine of FIR, whereas the bulk of my
research relates to its modelling engine, it was not further elaborated on in the
subsequent chapters of the dissertation.

The algorithm works as follows.  Apart from the predicted signal, which is a
weighted sum of the five nearest neighbours, two more predictions are computed,
representing the smallest and largest predictions possible with any one of the five
nearest neighbours.  In this way, an interval of acceptability of the real trajectory
value is obtained for each forecast.  By this method, three separate trajectories are
computed, the predicted one, and an upper and lower limit to it, forming an
acceptability interval into which the predicted signal (as well as the real monitored
signal when the obtained model is good) should fit. The formed interval has two
main applications: fault detection and model validation.  The method was reported
in [Mirats and Huber, 1999; Escobet et al., 1999].
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- The use of a modified Hr value as a variable similarity measure.

The quality of the mask is based on two quantities, Hr, representing an uncertainty
reduction ratio, and Or representing an observation ratio. Hr is based on the
Shannon entropy formula applied to the so-called state transition matrix (STM).
Each element of this matrix provides a measure of confidence in an output state
given an input state vector. If this matrix is generated for a two-variable system, a
measure of linear as well as non-linear correlation between the two variables can
be derived. In this case, the state transition matrix is of size N�M, where N and M
are the numbers of classes into which the two variables have been recoded. When
the two variables are strongly positively correlated with each other, the STM is
close to a diagonal matrix with the diagonal elements assuming values close to 1.
When the two variables are strongly negatively correlated, the STM is close to an
anti-diagonal matrix.  Finally, when the two variables are uncorrelated, the STM
approaches a matrix where all elements assume the same value, this value being
1/number of classes of the output variable. Hence the STM can be used as an
indicator of linear as well as non-linear correlation between two variables.  The
method was reported in Section 3.4.3 of the dissertation.  It can be used as an
alternative to the linear correlation technique in the first step of the subsystem
decomposition method.

- Improvement made to the FIR simulation engine.

When predicting the future behaviour of an electrical DC motor [Mirats and
Escobet, 1997a], it was discovered that the peaks of the predicted signal were
frequently underestimated, whereas the valleys were overestimated.  Thus, the
predictions did not span the entire range of the observations made.  These errors
were caused by a bug in the fforecast routine of SAPS.  The same error was also
present in the newer version of that routine, called mexfforecast, which uses
dynamical memory programming techniques. Since the predictions had not been
incorrect, only imprecise, the bug had not previously been discovered. I fixed this
error, and all of the FIR simulations presented in the dissertations make use of the
corrected version of the FIR simulation engine.  The problem was briefly reported
in Section 2.5 of the dissertation.

The contributions in the line of reducing the mask search space of FIR, also viewed
as previous modules to modelling methodologies, are:

- New use of the unreconstructed variance methodology.

This contribution represents not a new design, but only a new use of an already
existent methodology that had originally been developed at the University of Texas
in Austin [Dunia and Qin, 1998; Dunia, 1997; Qin and Dunia, 1998]. The
unreconstructed variance methodology was previously used to select the number of
principal components to be retained in a PCA model, based on the best
reconstruction of the variables. The purpose of the PCA model was to identify
faulty sensors in a system, and to reconstruct sensor data values from measurements
of sensors attached to other signals, exploiting the redundancy inherent in multiple
sensor data streams. The methodology had not been designed as a tool for finding
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an input/output model of a system, though the two tasks are evidently related to
each other.

When a PCA model is used to reconstruct missing or faulty values, the
reconstruction error is a function of the number of intervening principal
components. In order to determine the number of principal components (PCs) to be
used, the methodology proposes making use of the variance that the model cannot
reconstruct; that is, it uses the variance of the reconstruction error.

Prior to determining the number of PCs to be retained in the model, the available
measurement data are analysed to determine what variables are well reconstructed
from which others. Given a system with k variables, every variable is reconstructed
from the other k-1 variables, and its unreconstructed variance is computed as a
function of the number of retained principal components. The method then
proceeds by summing up the unreconstructed variances of each column. The
number of PCs for which the sum of the unreconstructed variances is a minimum is
determined. The method then throws out those variables that exhibit, for the
optimal number of retained PCs, unreconstructed variances that are bigger than the
value that would be obtained if the measurement data for those variables were
replaced by their mean values.

Now, if variable selection is intended with this methodology, two subsets of
variables are obtained. The first one corresponds to a subset of variables with a high
linear correlation between them. The second subset is formed with variables with
low linear correlation with the first one. The concept has been reported in Section
3.3.2 of the dissertation.  The performed variable selection can be used, as shown in
Chapters 3 and 5, as a precursor to the FIR modelling methodology.

- Delay estimation based on energy considerations.

In the FIR context, each variable trajectory has always been analysed from a
deterministic point of view, i.e., at each time interval, every measured value has
been considered to match the real value of the physical observed variable. In
reality, each observed variable trajectory represents a superposition of two values,
one measuring a desired physical characteristic, such as the fuel flow through a
pipe, the other denoting an added noise component, representing e.g. measurement
noise or thermal noise. The energy-based approximation considers each of these
trajectories as a realisation of a stochastic process, i.e., it acknowledges the
existence of a deterministic as well as a random component in the available
trajectory. With this interpretation, the energy of the signals can be computed and
used to determine, at which delays each input variable contains more energy
relating to the output.  In this way, the most probable delays, for which the input
variables are to appear in a FIR qualitative model, can be obtained.  Details of the
algorithm were presented in Section 5.3.2 of the dissertation, and the algorithm was
applied to modelling a large-scale system in Section 6.3.3.  This contribution
represents one of the two most important cornerstones of this dissertation.
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- Subsystem decomposition.

The bulk of this dissertation focuses on the exponential computational complexity
of the FIR modelling engine, which hampers its application to large-scale systems.
If a decomposition of the complex system into subsystems can be achieved, the
computational cost may be dramatically reduced: given a k-variables system, the
cost of computing one global model involving all k��1 variables is much higher
than that of computing p submodels, each of which involves a much smaller
number of variables.   Several subsystem decomposition methods were studied in
this dissertation.

� Subsystem decomposition using FRA.

A new complete subsystem decomposition algorithm employing Fuzzy
Reconstruction Analysis (FRA) was proposed in Section 4.2.7.  It makes use of
one of the suboptimal structure search algorithm of FRA, called the single
structure refinement algorithm.  It makes use of the relative strengths of the
binary relations between each pair of variables to derive a meaningful
subsystem decomposition of the overall system.  Unfortunately, the technique is
not applicable to large-scale systems, as the computational complexity
properties of FRA are even worse than those of FIR.

� Subsystem decomposition using FIR.

A new complete subsystem decomposition algorithm employing Fuzzy
Inductive Reasoning (FIR) was proposed in Section 4.3.  The algorithm starts
with the output, finds an optimal mask of the output.  It then treats each of the
inputs of that model as new outputs, determining additional optimal masks to
compute those.  The algorithm proceeds until all variables of the overall system
appear in the decomposition.  The method offers an alternative to the FRA-
based method, but it also cannot be applied to large-scale systems.  Its very first
step already involves finding a FIR model of the overall system, which, as we
meanwhile know, cannot be done in the case of a large-scale system, using FIR
alone.

� Subsystem decomposition using statistical techniques.

A new complete subsystem decomposition algorithm based on linear and non-
linear statistics was proposed in Sections 4.4 and 4.5 of the dissertation.  The
algorithm uses statistical considerations to determine a set of input variables
that are strongly correlated with the output, yet weakly correlated among each
other.  The algorithm consists of two steps.  In a first step, only linear
correlations are being studied.  The second step takes also non-linear
correlations into account.  Just like the FIR-based approach, the method starts
with the output and identifies a set of input variables, i.e., a model of that
output.  It then treats each of the inputs as a new output, and finds a model for
each of them in the same way.  The algorithm proceeds until all variables of the
overall system appear in the decomposition.  Albeit much more complex than
its two competitors, this is the algorithm of choice, as it is the only one of the
three algorithms that can be applied to large-scale systems.
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- Decomposition-based method for variable pre-selection.

An algorithm was developed to determine a sparsely populated mask candidate
matrix by reduced set of ‘-1’ elements, to be used as a precursor to FIR modelling
of a large-scale system.  The algorithm is based on the statistical subsystem
decomposition method.  In a first step, the method reduces the number of variables
by considering the redundancy of information contained in the available potential
inputs.  The second and third steps of the algorithm represent variants of the
statistical subsystem decomposition method mentioned above.  The fourth step is a
FIR modelling step using a sparsely populated mask candidate matrix.  This
algorithm is the second cornerstone of the dissertation.  Its details are explained in
Section 5.3.1 of the dissertation.  Its application to modelling a large-scale system
is presented in Section 6.3.2.

- Re-implementation of the Fuzzy Reconstruction Analysis module.

As FRA in its former implementation was limited to studying systems with no
more than 20 variables, I decided to re-implement the entire FRA module from
scratch using Matlab.  The FRA methodology and software module are presented
in Section 4.2 of the dissertation.  All FRA results presented in this dissertation
were obtained using the new implementation of the FRA methodology.

7.2 Future work

There are two main aspects of the methodologies discussed in this dissertation that
should be further investigated. The first of them, and perhaps the most important issue,
is the manner, in which time is included in the analysis when lots of variables are taken
into account. As stated in the work presented here, time can be introduced in the
analysis by means of duplicating the raw data model, shifting it by one row, and adding
the shifted data to the original data as additional variables. Yet, this form of including
the inherent time dependency of the data makes the obtained raw data model huge,
which in turn makes the analysis exceedingly slow. Other forms of including time
information in the data should be researched.

Also, both the decomposition-based method and the energy-based approach proposed
as precursors to FIR modelling of a large-scale system contain parameters that indirectly
influence the sparsity of the resulting FIR mask candidate matrix.  No investigation was
done trying to optimise the values of these parameters with the goal to maximise the
computational efficiency of the overall algorithms.  This should be further investigated.

The second main aspect refers to the decomposition of a large-scale system into
subsystems. Three algorithms for obtaining complete subsystem decompositions were
outlined in Chapter 4 of the dissertation.  Yet, it was not further analysed whether such
complete subsystem decompositions might be preferable to the approaches taken in
Chapters 5 and 6 when simulating a large-scale system using FIR.  Questions revolve
around the resolution of simulation results obtainable by such complete subsystem
decompositions and around the optimal number of sensors that a large-scale system
should be equipped with.
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7.3 Concluding remarks

Ph.D. research is necessarily open-ended.  If the results to be obtained could be
assessed in advance, the work would not have the depth and breadth expected of a Ph.D.
research effort.  However, a beginning Ph.D. student is not yet an expert in the field of
his or her research area.  It is difficult for such a student to assess, ahead of time, how
promising a given research direction might be.  This requires a lot of experience,
experience that the student is lacking at that time in his or her career.

Due to the open-ended nature of Ph.D. research, the precise duration of a Ph.D.
research effort cannot be known in advance.  Yet, research grants are usually of a pre-
determined duration, and students deserve to have confidence that their respective
research efforts are likely to be completable within the foreseen time frame.  This can
only happen if the student is guided well by his or her dissertation advisor(s).  I was
lucky in this respect.  My two dissertation advisors, Dr. Huber and Dr. Cellier, devoted
an unusual amount of time and dedication to me and to my research, for which I am
eternally grateful.  Unfortunately, this is far from the norm.  I have known a fair number
of Ph.D. students who started their respective projects with a lot of enthusiasm, but got
lost in the details of their work due to a lack of devotion and, it seems, interest on the
part of their advisors, and finally gave up, when their respective research grants expired,
without ever completing their dissertations.  This is unjust, and it frightens the other
students, when they see occurrences of such outcomes over and over again.  It also
frightened me.  Would I be able to complete my thesis, or would my efforts end in the
same way as those of numerous others?  This surely gave me a good number of
nightmares as well as sleepless nights throughout my dissertation research.

Would I do it again, knowing what I know now?  I guess so, but I am glad I didn’t
know the size of the wall ahead of me when I started climbing it.



Cuando alguien busca, puede ocurrir fácilmente
 que su espíritu sólo vea el objeto que busca
 -que no sea capaz de encontrar nada ni de
admitir la entrada de ninguna cosa en sí mismo,
porque sólo piensa en lo buscado, porque tiene
un objetivo y está poseído de él.

 Buscar es tener un objetivo, pero hallar es ser libre, estar abierto, no tener una meta.

Hermann Hesse
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Appendices

I Case Studies

In this appendix, the different systems used throughout this dissertation as examples are
presented.

I.1 Water tank

This system is presented as an academic example to illustrate the description of the FIR
methodology given in Chapter 2. The water tank system exhibits a second order dynamics.
In Figure I-1, a plant scheme of the system is given, [Mirats and Escobet, 1997].

PumpControl
signal

Plant
response

Flow
Sensor

Figure I-1 Plant scheme for the water tank system

The electric pump is driven by a DC voltage, ranging between zero and ten Volts. It
makes the water stored in the tank re-circulate. The flow of this water is measured by
means of a flow sensor, giving the considered output for this academic example. This
system is available in the labs of the department, thus it is easy to excite it in different
ways so as to obtain data for the qualitative modelling effort.

In order to gather dynamic data from the water tank, a control signal is used that can
take any value between 0 and 10 Volt, allowing random changes in the control signal value
once every second. Data is gathered during 100 seconds, and the used sampling period is
0.02 seconds. Under those conditions, 5000 data points were obtained from the system. In
Figure I-2, the input signal to the pump is shown as a continuous line, whereas the obtained
output is depicted as a dotted line.
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Prior to the qualitative modelling process a quantitative model is to be identified.
Considering the given system as a second order system, it can be modelled by the
following transfer function:

9136.305257.8

9136.30
)(

2
��

�

ss
sH

Figure I-2 Real input and output signals of the system

The system is simulated in Matlab by means of its transfer function representation. If a
Bode analysis is performed, the cut-off frequency when the gain is -3 dB is w3db = 5.56. In
this case, the w3db frequency coincides with the bandwidth of the system, so the minimum
required sampling frequency for this system would be 2 Hz. When gathering data, the
system was sampled at a 50 Hz frequency, so the data have been gathered correctly.

The presented quantitative model can be used to predict the future of the system. The
results of predicting the last 10 seconds of the output, when using the real input for this
time span are shown in Figure I-3.

Figure I-3 Real and simulated (dotted) output signals when using the quantitative model
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The relative error for this quantitative simulation is shown in Figure I-4.

Figure I-4 Percent of relative error in the quantitative simulation

Now, a FIR qualitative model is to be obtained. The input and output variables are to be
recoded into 3 classes each. The model is constructed using 90% of the available data,
whereas the remaining 10% are used to validate it. The depth of the proposed candidate
mask is 15, and the maximum allowed complexity is 5. All elements of the mask candidate
matrix are set to ‘-1’ except the element (15,2), which is set to ‘+1’ as it represents the m-
output. The mask candidate matrix is provided together with the measured data to the
qualitative modelling engine. The optimal masks found for complexities 2, 3, and 4 are:
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Figure I-5 shows the real and simulated output obtained with the optimal FIR model,
which is of complexity 3, and Figure I-6 exhibits the percentage of relative error of the
simulation results. The obtained results are considerably better than those obtained with the
quantitative simulation.

Figure I-5 Real and simulated output when using the qualitative model

Figure I-6 Relative error (percent) of the qualitative simulation

I.2 Steam generator (boiler)

Data stemming from a steam generator process have been used throughout the
dissertation as an example, in order to compare the results obtained using different variable
selection techniques. Concretely, the system analysed in this section has been utilised in
Sections 4.2, 4.3, 4.4, and 4.5.
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Figure I-7 shows a schematic of the boiler process. The variable to be predicted is the
NOx content sampled from the boiler stack. Eight input variables are considered to have
influence on the NOx emission level. Table I-I shows the considered variables.

Fuel

Air

DDP

NOx
O2
Pressure

Feed
waterSteam

Economizer
inlet temp.

Figure I-7 Schematic of the boiler process

Variable Physical meaning
1 (input) AirFlow (KPPH)
2 (input) Fuel Flow (Pct)
3 (input) Stack Oxygen (%)
4 (input) Steam Flow (KPPH)
5 (input) Economiser Inlet Temp (F)
6 (input) Stack Pressure (in H2O)
7 (input) Windbox Pressure (in H2O)
8 (input) Feedwater Flow (KPPH)
9 (output) NOx, PPM

Table I-I Variables of the boiler system

Using a sampling interval of five minutes, 632 data points were collected during a
period of significant change in the boiler throughput so as to cover a wide range of process
behaviour.

A full FIR model was constructed using 85% of the gathered data. The remaining 15%
of the measurement data were used to validate the model. Since the system under
investigation contains only 9 variables, the FIR approach can be used directly to model the
system under study, and to select a group of input variables to predict the output of the
boiler.

It was decided to recode each of the 9 variables separately into 3 classes using equal
frequency partitioning to determine the landmarks. A mask candidate matrix of depth 5
was proposed, postulating that significant m-inputs may lag no more than 20 minutes
behind the m-output. All elements of the mask candidate matrix were preset to ‘–1,’ except
for the element (5,9), which was set to ‘+1,’ as it represents the location of the m-output.
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The optimisation problem was solved using exhaustive search, except that the maximum
allowed complexity of the mask (the maximum number of mask elements different from 0)
was limited to five. The set of best masks of each complexity was retained as promising
masks to be investigated further.

The retained masks are shown below. The mask of complexity 4 exhibits the highest
quality, followed by the mask of complexity 5, followed by that of complexity 3. The mask
of complexity 3 treats the NOx level as a univariate time series, since it proposes that the
future behaviour of the NOx level can best be predicted taking into consideration its own
past behaviour only.
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None of the masks made use of any variables except variables 2, 3, 8, and 9. Hence any
successful variable pre-selection algorithm should retain these same variables, filtering out
the ones that FIR would not consider in an optimal mask analysis.

FIR can itself be used as a variable pre-selection algorithm, as long as the overall
number of variables is not too large. In the example presented here, it is not evident that a
mask depth of 5 suffices to capture the best possible masks. Yet, a candidate mask of
greater depth would already, in the case of a 9 variable system, lead to unacceptably large
optimisation cost. Hence, the previously obtained results were used to postulate a new
candidate mask, this time of depth 16, spanning a time period of 75 minutes, in which the
variables 1, 4, 5, 6, and 7 were disabled by presetting all elements of the mask candidate
matrix located in those columns to 0.

The same optimisation approach was used as before to determine the set of best masks.
Evidently, the masks found earlier are still within the search space, i.e., if other masks are
retained, they must be better than those found earlier. The three retained models are as
follows:
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complexity 5 : y(t) = f{x3(t),x3(t-15),x8(t-9),y(t-1)}

complexity 4 : y(t) = f{x2(t-1),x3(t-15),y(t-1)}

complexity 3 : y(t) = f{y(t-1), y(t-5)}

None of the retained masks is identical to any of the ones found earlier, i.e., the larger
mask depth indeed paid off. As before, FIR chose an autoregressive model in the case of
the mask of complexity 3.

Figure I-8 shows the output data validation set and the prediction of the output variable
using the three retained masks. To this end, another facet of the FIR methodology is being
used. In a prediction, i.e., a qualitative simulation, FIR not only forecasts future values of
the m-output; in addition, it generates estimates of the quality of these predictions in the
form of a confidence value.  How FIR estimates the confidence it has in its own
predictions is explained in detail in [López, 1999]. The predicted value at each time instant
is determined as follows. In each simulation step, the three masks are used to compute
three separate predictions of the m-output value. Each prediction is accompanied by a
confidence value. The prediction with the highest confidence value is retained as the true
prediction for that step.

Figure I-8 Original and predicted validation set for the output using FIR

The reader may notice that no NOx value beyond 29.7 PPM was ever predicted, i.e.,
whereas the lower NOx levels are predicted (dashed line) fairly accurately, the higher
values are not. The reason is that the training data do not contain any NOx levels beyond
29.7 PPM.  FIR can only predict patterns that it has observed before. Since it has never
seen such high NOx levels, it cannot predict their existence. The MSE error of this forecast
is 0.5522.
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I.2.1 FIR models excluding te mporal relations

In order to be able to compare the quality and the computing reduction achieved when
using different variable selection techniques (see Chapters 3 and 5), static FIR models of
the boiler are needed, that is, models excluding temporal relationships. The candidate mask
of depth 1 proposed for this purpose is:

� �111111111 --------=mcan

Table I-II shows the retained masks for each of the allowed complexities, as well as the
normalised MSE values of the predictions obtained using each one of them.

Complexity Model Quality MSE
2 (0 0 0 0 0 0 0 -1 1) 0.1532 1.1510
3 (0 0 0 0 0 0 -1 -2 1) 0.1523 1.2087
4 (0 0 -1 -2 0 0 0 -3 1) 0.1418 1.0974
5 (0 -1 -2 0 -3 0 0 -4 1) 0.0900 0.8234

Table I-II FIR models without temporal relations

Since the search space is now much smaller, the optimal masks can be found much
more rapidly. However, the information obtained is also less valuable. FIR concludes that
variables 1 and 6 can be safely discarded, whereas all other variables need to be retained
for the time being. All static models found are of fairly low quality, and the MSE values
resulting from their use are consequently rather high.

Notice that, in the FIR methodology, the quality of masks can only be truly compared to
each other as long as their complexities are the same. Moreover for a given mask, the MSE
value depends on the validation data set, and both considerations must be taken into
account when attempting to extract conclusions from Table I-II.

I.3 Garbage incinerator sys tem

Another of the processes analysed in this work is a thermal incinerator. The description
given here is a general description of the functioning of these kinds of systems [Valle et
al., 1999]. In this unit, high temperature and chemical reactions burn up process fumes and
change them into harmless carbon dioxide and water vapours, which are then released
through a stack into the atmosphere. The fumes processed in the incinerator are commonly
called NOx fumes, and mainly consist of: nitric oxide (NO), nitrogen dioxide (NO2), and
nitrous oxide (N2O). Hydrogen Cyanide (HCN) is also present. The gases are converted
into nitrogen and water vapour in a three-stage combustion process. The first stage is
reduction, the second is re-oxidation, and the third is catalytic oxidation. A de-mineralised
water heat exchanger is located between the second and third combustion stages.

Data were gathered from the system at a sampling rate of 1 minute, and 43200 data
points were recorded. The considered output variable for this study is the emission of NOx
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gas. Table I-III gives a short description of the variables in the system that this paper deals
with. Figure 1 shows a general diagram describing the layout of the system.

Figure I-9 Incineration process scheme

Variable Physical meaning Variable Physical meaning
1 (input) DNT unit one vent (SCFM) 11 (input) Column B top pressure (inch W)
2 (input) DNT unit two vent (SCFM) 12 (input) Column C top pressure (inch W)
3 (input) A column overhead (F) 13 (input) Column D top pressure (inch W)
4 (input) C column overhead (F) 14 (input) DP on A column (PSIG)
5 (input) DNT vent rate (SCFM) 15 (input) DP on B column (PSIG)
6 (input) Stack gas recycle (ACFM) 16 (input) DP on C column (PSIG)
7 (input) Stack gas recycle (F) 17 (input) DP on D column (PSIG)
8 (input) Strip vent rate (SCFM) 18 (input) Excess O2 in stack (%)
9 (input) DNT vent head VA (WC) 19 (input) Reduction furnace (F)
10 (input) Column A top pressure (inch W) 20 (output) NOx, (PPM)

Table I-III Garbage incinerator system variables.

The reduction section is a large natural gas (methane) furnace. The air needed for the
combustion is provided by either a vent header (DNT) or a stripper vent header (DNA).
The burning of natural gas provides all the heat required for the reduction stage. There are
four major chemical reactions that occur in the reduction section furnace:

1. Burning of natural gas CH4 + 2O2 => 2H2O + CO2

2. NOx gas is destroyed by CH4 + 2NO2 => N2 + 2H2O + CO2
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3. Additional fuel is added without air to increase the reaction between natural gas
and the NOx, and to remove any trace of oxygen in the system

CH4 + 4NO => 2N2 + 2H2O + CO2

4. CO2 gas is destroyed by CH4 + CO2 => 2CO + 2H2

The hot gases leaving the reduction furnace thus consist of: carbon monoxide, nitrogen,
hydrogen, water vapour, carbon dioxide, NOx (below 200 ppm), and HCN (below 500
ppm). After the reduction furnace, hot gases are quenched, by mixing them with cooler
recycled stack gas. The quenched gas then flows into the stage section called the re-
oxidation stage. This section is not used for NOx abatement, but to convert CO and H2, the
combustibles from the reduction furnace into CO2 and water vapour. In this section, fuel
gas is not used, and a blower adds ambient air to the section. Two additional reactions
occur:

2CO + 2O2 => O2 + 2CO2 2H2 + O2 => 2H2O

The hot gases from the re-oxidation section then flow through an economiser where
they are cooled by de-mineralising water. The hot de-mineralised water (DMW) is then
routed to the plant. Gases exiting the economiser flow through a honeycomb grid of a
platinum catalyst, where the CO and the organics are converted to inert flue gases before
their discharge from the stack to the atmosphere:

CO + 2HCN + C6H5CH3 + O2 => CO2 + H2O + N2

Analyser probes in the stack monitor the O2, CO, CO2, and NOx levels.

I.4 Gas turbine for electric p ower generation

In this appendix, a full list of the variables of the gas turbine system, analysed in
Chapter 6, is given.

Variable name Description
96HQ1 (bar) Hydraulic circuit pressure
ACCUM_1_LSW(logic) Manually initiated starts counter lsw
ACCUM_1_MSW(logic) Manually initiated starts counter msw
ACCUM_12_LSW(logic) Total fired hours lsw
ACCUM_12_MSW(logic) Total fired hours msw
ACCUM_13_LSW(logic) Peak fired hours lsw
ACCUM_13_MSW(logic) Peak fired hours msw
ACCUM_14_LSW(logic) Fired hours – gas fuel lsw
ACCUM_14_MSW(logic) Fired hours – gas fuel msw
ACCUM_15_LSW(logic) Fired hours – liquid fuel lsw
ACCUM_15_MSW(logic) Fired hours – liquid fuel msw
ACCUM_2_LSW(logic) Total starts counter lsw
ACCUM_2_MSW(logic) Total starts counter msw
ACCUM_3_LSW(logic) Fast load starts counter lsw
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ACCUM_3_MSW(logic) Fast load starts counter msw
ACCUM_4_LSW(logic) Fired starts counter lsw
ACCUM_4_MSW(logic) Fired starts counter msw
ACCUM_5_LSW(logic) Emergency trips counter lsw
ACCUM_5_MSW(logic) Emergency trips counter msw
ACCUM_6_LSW(logic) Spare accumulator lsw
ACCUM_6_MSW(logic) Spare accumulator msw
ACCUM_7_LSW(logic) Spare accumulator lsw
ACCUM_7_MSW(logic) Spare accumulator msw
ACCUM_8_LSW(logic) Spare accumulator lsw
ACCUM_8_MSW(logic) Spare accumulator msw
ACCUM_9_LSW(logic) Spare accumulator lsw
ACCUM_9_MSW(logic) Spare accumulator msw
AFPAP (mm Hg) Ambient barometric pressure
AFPBD (mm H2O) Compressor differential pressure
AFPCD (bar) Compressor discharge pressure
AFPCS (mm H2O) Inlet duct differential pressure
AFPEP (mm H2O) Exhaust duct pressure
AFQ (Kg/s) Compressor inlet air flow
AFQD (Kg/s) Compressor inlet dry airflow
ATID (deg C) Inlet air heating thermocouple
BB_MAX (mm/s) Vibration max select
BB1 (mm/s) Vibration transducer #1 (turbine)
BB10 (mm/s) Vibration transducer #10 (generator)
BB11 (mm/s) Vibration transducer #11 (generator)
BB12 (mm/s) Vibration transducer #12
BB2 (mm/s) Vibration transducer #2 (turbine)
BB3 (mm/s) Vibration transducer #3 (turbine)
BB4 (mm/s) Vibration transducer #4 (turbine)
BB5 (mm/s) Vibration transducer #5 (turbine)
BB6 (mm/s) Vibration transducer #6
BB7 (mm/s) Vibration transducer #7 (load gear)
BB8 (mm/s) Vibration transducer #8 (load gear)
BB9 (mm/s) Vibration transducer #9 (load gear)
BTGJ1 (deg C) Bearing metal temperature generator journal #1
BTGJ2 (deg C) Bearing metal temperature generator journal #2
C48DSX (logic) Diesel cooldown counter
CAGV (%) IGV control servo current
CMHUM (kg/kg) Specific humidity
CNCF Speed correction factor
CPD (bar) Compressor discharge pressure
CQTC Compressor airflow temperature correction
CSGRVOUT Gas turbine inlet guide vane servo valve
CSGV Gas turbine inlet guide vane lvdt – feedback
CSRIH (%) Inlet heating
CSRIH1 (%) Inlet bleed heat setpoint
CT_BIAS (deg C) Compressor inlet temperature bias
CTD (deg C) Compressor discharge temperature
CTDA1 (deg C) Compressor temperature thermocouple #1
CTDA2 (deg C) Compressor temperature thermocouple #2
CTIF1 (deg C) Compressor inlet flange temperature – thermocouple #1
CTIF2 (deg C) Compressor inlet flange temperature – thermocouple #2
CTIM (deg C) Max compressor inlet flange temperature
DF (Hz) Generator frequency
DTGGC10 (deg C) Generator cold gas rtd
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DTGGC11 (deg C) Generator cold gas rtd
DTGGH18 (deg C) Generator hot gas rtd
DTGGH19 (deg C) Generator hot gas rtd
DV (KV) Generator line voltage
DVAR (Mvar) Generator load vars (scaled)
DWATT (MW) Generator load watts
DWATT_NOX (Kg/s) MW based WLNOX injection flow reference input
FAG (%) Gas control valve servo current
FAGR (%) Speed ratio valve servo current
FAL (%) Liquid fuel bypass valve servo current
FD_INTENS_1 (logic) TCEA flame uv counter 1
FD_INTENS_2 (logic) TCEA flame uv counter 2
FD_INTENS_3 (logic) TCEA flame uv counter 3
FD_INTENS_4 (logic) TCEA flame uv counter 4
FPG2 (bar) Intervalve gas fuel pressure input
FPKGNG (bar/%) Fuel gas pressure ratio control gain
FPKGNO (bar) Fuel gas pressure ratio control offset
FPRGOUT (bar) Gas ratio valve servo command
FQG (Kg/s) Gas fuel flow
FQG1 (Kg/s) Gas fuel flow right sensor
FQG2 (Kg/s) Gas fuel flow left sensor
FQL1 (%) Liquid fuel flow magnetic pickup input
FQLM1 (Kg/s) Liquid fuel mass flow, LFS
FQROUT (%) Liquid fuel flow reference
FSG (%) Gas control valve lvdt position feedback
FSGR (%) Speed ratio valve lvdt position feedback
FSR (%) Fuel stroke reference
FSR_CONTROL (logic) Fuel control enumerated state
FSR1 (%) Liquid fuel stroke reference from fuel splitter
FSR2 (%) Gas fuel stroke reference from fuel splitter
FSRACC (%) FSR acceleration control
FSRMAN (%) FSR manual control
FSRMIN (%) FSR minimum
FSRN (%) Speed control fuel stroke reference
FSRNH (%) FSR hp speed control
FSROUT (%) Gas control valve position output
FSRSD (%) Shutdown FSR signal
FSRSU (%) FSR start up control
FSRT (%) Temperature control fuel stroke reference
IT_PROP (%) Calculated inlet heating reference
ITPD (deg C) Anti icing dew point temperature
L14DMY (logic) Diesel minimum speed aux timer logic
L14HA (logic) HP accelerating speed signal
L14HM (logic) Minimum speed signal
L14HR (logic) HP zero speed signal
L14HS(logic) HP operating speed signal
L14HSX (logic) Auxiliary signal to L14HS
L14P1 (logic) Starting device above min speed
L14P2 (logic) Starting device above cranking speed
L20CS1X (logic) Starting clutch solenoid driver
L20DAR1 (logic) Diesel accelerating 4 way solenoid driver
L26DT1H (logic) Gas turbine diesel engine water temperature high
L2DW (logic) Diesel warm up timer
L2DW1 (logic) Diesel accelerate timer
L33CSE (logic) Starting clutch engaged
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L33HRF (logic) Hydraulic ratchet in forward stroke
L48DS (logic) Diesel incomplete sequence timer
L48DSX (logic) Diesel starts counter
L4DE (logic) Diesel engine control signal
L4DEY (logic) TD loss of diesel master control
L4DEZ (logic) Diesel stop
L4DS (logic) Perm to start diesel engine starter
L4HR (logic) Perm to start hydraulic ratchet pump
L60BOG (logic) Starting device bogged down
L63QDN (logic) Diesel lube oil pressure normal
L72HR (logic) Lube oil starts counter
L90PSEL (MW) Preselected load analog setpoint
LK90PSR (Meg/s) Preselect load ramp rate
LTB1D (deg C) Lube oil temperature – brg. drain #1
LTB2D (deg C) Lube oil temperature – brg. drain #2
LTBT1D (deg C) Lube oil temperature – thrust drain #1
LTE1D (deg C) Lube oil temperature – exciter brg. drain #1
LTG1D (deg C) Lube system temperature – generator drain #1
LTG2D (deg C) Lube system temperature – generator drain #2
LTTH1 (deg C) Lube oil temperature – turbine header
PN (%) Turbine starting device speed
PO (bar) Liquid fuel pressure
SDSJ1 (mm H2O) Steam injection low-range differential pressure
SDSJ2 (mm H2O) Steam injection high-range differential pressure
SFL2 (Hz) Ioma bus_pt frequency
SPSJ1 (bar) Steam injection supply pressure
SS43 Command state
SS43F Fuel selection enumerated state variable
SS43LOAD Load selection enumerated state variable
SS43SYNC Sync control selection
STSJ (deg C) Steam injection temperature
SVL (KV) System line voltage
SVP Stop fuel control valve position
TGSDIFU1 (deg C) Generator U phase winding temperature. #1, main input exciter
TGSDIFU2 (deg C) Generator U phase winding temperature. #2, centre
TGSDIFV1 (deg C) Generator V phase winding temperature. #1, exciter end
TGSDIFV2 (deg C) Generator V phase winding temperature. #2, centre
TGSDIFW1 (deg C) Generator W phase winding temperature. #1, exciter end
TGSDIFW2 (deg C) Generator W phase winding temperature. #1, centre
TIFDP1 (mm H2O) Gas turbine inlet filter differential pressure, #2
TIFDP2 (mm H2O) Gas turbine inlet filter differential pressure, #3
TIFDP3 (mm H2O) Gas turbine inlet filter differential pressure, #4
TNH (m/rad) Turbine rotation speed
TNR (%) Speed control reference
TOP Trip oil pressure
TTRX (deg C) Temperature control reference
TTWS1AO1 (deg C) Turbine wheelspace temperature 1st stage aft. outer, #1
TTWS1AO2 (deg C) Turbine wheelspace temperature 1st stage aft. outer, #2
TTWS1FI1 (deg C) Turbine wheelspace temperature 1st stage fwd. inner, #1
TTWS1FI2 (deg C) Turbine wheelspace temperature 1st stage fwd. inner, #2
TTWS1FO1 (deg C) Turbine wheelspace temperature 1st stage fwd. outer, #1
TTWS1FO2 (deg C) Turbine wheelspace temperature 1st stage fwd. outer, #2
TTWS2AO1 (deg C) Turbine wheelspace temperature 2st stage aft. outer, #1
TTWS2AO2 (deg C) Turbine wheelspace temperature 2st stage aft. outer, #2
TTWS2FO1 (deg C) Turbine wheelspace temperature 2st stage fwd. outer, #1
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TTWS2FO2 (deg C) Turbine wheelspace temperature 2st stage fwd. outer, #2
TTWS3AO1 (deg C) Turbine wheelspace temperature 3st stage aft. outer, #1
TTWS3AO2 (deg C) Turbine wheelspace temperature 3st stage aft. outer, #2
TTWS3FO1 (deg C) Turbine wheelspace temperature 3st stage fwd. outer, #1
TTWS3FO2 (deg C) Turbine wheelspace temperature 3st stage fwd. outer, #2
TTXD_1 (deg C) Exhaust temperature thermocouple #1
TTXD_10 (deg C) Exhaust temperature thermocouple #10
TTXD_11 (deg C) Exhaust temperature thermocouple #11
TTXD_12 (deg C) Exhaust temperature thermocouple #12
TTXD_13 (deg C) Exhaust temperature thermocouple #13
TTXD_14 (deg C) Exhaust temperature thermocouple #14
TTXD_15 (deg C) Exhaust temperature thermocouple #15
TTXD_16 (deg C) Exhaust temperature thermocouple #16
TTXD_17 (deg C) Exhaust temperature thermocouple #17
TTXD_18 (deg C) Exhaust temperature thermocouple #18
TTXD_2 (deg C) Exhaust temperature thermocouple #2
TTXD_3 (deg C) Exhaust temperature thermocouple #3
TTXD_4 (deg C) Exhaust temperature thermocouple #4
TTXD_5 (deg C) Exhaust temperature thermocouple #5
TTXD_6 (deg C) Exhaust temperature thermocouple #6
TTXD_7 (deg C) Exhaust temperature thermocouple #7
TTXD_8 (deg C) Exhaust temperature thermocouple #8
TTXD_9 (deg C) Exhaust temperature thermocouple #9
TTXD2_1 (deg C) Exhaust temperature thermocouple sorted by temperature value
TTXD2_18 (deg C) Exhaust temperature thermocouple sorted by temperature value
TTXM (deg C) Exhaust temperature median
TTXSP1 (deg C) Combustion monitor actual spread, #1
TTXSP2 (deg C) Combustion monitor actual spread, #2
TTXSP3 (deg C) Combustion monitor actual spread, #3
TTXSPL (deg C) Combustion monitor allowable spread
WQJ (Kg/s) Wet low NOX injection flow
WQJR2REF (Kg/s) Wet low NOX injection reference
WQR1 (Kg/s) Required wet low NOX injection flow
WQR2 (Kg/s) Wet low NOX injection reference
WXC Required WLNOX injection to fuel ratio
WXJ Actual WLNOX injection to fuel ratio
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II Assessment of results

II.1 Application of the algori thm discussed in Section 2.4.1 to the garbage incinerator
system

This appendix presents an application of the new suboptimal mask search algorithm,
detailed in Section 2.4.1, for Fuzzy Inductive Reasoning (FIR).

The modelling engine of FIR determines a so-called optimal mask, that indicates, which
variables best explain any given output, and how much time delay these variables should
have relative to the chosen output.  Unfortunately, any algorithm that can find the optimal
mask is necessarily of exponential complexity, i.e., the number of masks to be visited
during the search for the optimal mask grows exponentially with the number of available
input variables, and with the allowed depth of the mask. For this reason, suboptimal search
algorithms are needed for dealing with large-scale systems.

The used technique operates on the already recoded, i.e., qualitative, data.  It starts with
a mask depth of 1 and performs an exhaustive search. It subsequently increments the depth
of the mask, while making use of the results of the previous searches to select, which
elements of the mask candidate matrix can be eliminated from the list of potential inputs.
Instead of solving one optimal search with a mask candidate matrix of size d·n, it solves d
separate optimal searches of sizes n, 2n, …, d·n, yet with ever more sparsely populated
mask candidate matrices. The maximal mask depth d does not need to be pre-selected. The
algorithm proposes an optimal value for d.

II.1.1 Reducing the mask searc h space using qualitative data

As has been outlined in Appendix I.3 for the incinerator system, 19 input variables and
one output variable are taken into account. The task to be accomplished is to derive a
qualitative model of this process with high predictive power. The process was sampled in
1-minute intervals. 43,200 data records were obtained, representing a time period of 30
days. The first 85% of these data records were used to perform the variable selection with
the two previously described suboptimal search procedures. The remaining 15% of the data
records were used to validate the obtained model.

Hence, the system under study has 20 variables leading to a large search space of
possible masks when an exhaustive search is applied to all possible combinations of input
variables. Following the procedure for selecting variables outlined in Section 2.4.1, the
first mask candidate matrix proposed is of depth d=1, so only static models are being
considered. As, at this stage, the number of masks to be evaluated is still fairly low, the
maximum complexity is set to 6. Potential inputs of the proposed mask are set to ‘–1,’
except for the output element, which is set to ‘+1,’ so that all the possible masks are being
considered. The corresponding mask candidate matrix is:

� �11111111111111111111 +-------------------
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The number of ‘-1’ elements of the mask is 19. Table II-I presents, for each allowed
complexity, the variables that are used as inputs by the good masks, i.e., the masks with
Q>0.975Qbest.

Qbest Variables used in masks
with Q>0.975Qbest

Number of masks with
Q>0.975Qbest

C2 .0214 19 1
C3 .0643 5,19 1
C4 .1185 5,6,19 1
C5 .1773 2,4,5,6,9,19 3
C6 .2170 1,4,5,6,7,9,12,19 4

Table II-I Static model search results

None of these masks is particularly good. The best masks are those of complexity 6, but
even they are of relatively low quality. Evidently, none of the static models will do a very
good job at predicting the output.

Proceeding to the second step of the algorithm of Section 2.4.1, a mask candidate matrix
of depth d=2 is now proposed. Its lower row, i.e., the row corresponding to time t, that is
representing inputs without time delay relative to the output, obtains ‘-1’ elements only in
those positions, where significant inputs were discovered in the previous step of the
algorithm, i.e., in columns 1, 2, 4, 5, 6, 7, 9, 12, and 19. Since no information is available
with respect to the upper row, all of its elements are set to -1. The proposed mask
candidate matrix thus takes the form:
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The new mask candidate matrix has 29 ‘-1’ elements. Since there are now more possible
masks, it was decided to reduce the maximum allowed complexity from 6 to 5. Table II-II
shows the inputs used by the good masks for each of the allowed mask complexities. Since
every mask includes the output variable, the last row shows, how many good masks were
found for each of the allowed complexities. There were 25 good masks of complexity 3,
313 good masks of complexity 4, and 2009 good masks of complexity 5. The masks of
complexity 2 were not presented, because they are trivial. The only good mask of
complexity two is the one that uses y(t-�t) as its input. The qualities of the good masks of
depth d=2 are considerably higher than of the good static masks, because now, the output
to be predicted, y(t), may depend on its own past, i.e., the value of the output one sample
back, y(t-�t), which helps a lot with the prediction.

Every single one of the good masks makes use of y(t-�t) as an input. Therefore, the
values in the “delay-1” columns of the row entitled “y” are the same as the values in the
“delay-0” columns of the same row, which denote the output itself. This search step
indicates that most of the 20 variables one time-step back are of similar usefulness for
predicting the output, as they are used almost uniformly by the good masks. There exists a
much better discrimination concerning the usefulness of the variables at time t.
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Complex. 3 (Qbest= 0.5975)
Q>0.975Qbest masks

Complex. 4 (Qbest= 0.5915)
Q>0.975Qbest masks

Complex. 5 (Qbest= 0.5927)
Q>0.975Qbest masks

Delay 0 1 0 1 0 1
x1 1 1 24 24 214 208
x2 1 1 26 26 232 236
x3 ¾ 1 ¾ 21 ¾ 200
x4 1 1 22 22 229 226
x5 1 1 21 21 195 198
x6 1 1 26 26 247 241
x7 1 1 26 26 238 237
x8 ¾ 1 ¾ 26 ¾ 241
x9 ¾ ¾ 11 10 118 123
x10 ¾ ¾ ¾ 11 ¾ 98
x11 ¾ 1 ¾ 20 ¾ 184
x12 1 1 25 27 238 239
x13 ¾ 1 ¾ 24 ¾ 225
x14 ¾ 1 ¾ 24 ¾ 208
x15 ¾ 1 ¾ 24 ¾ 225
x16 ¾ 1 ¾ 23 ¾ 224
x17 ¾ 1 ¾ 22 ¾ 219
x18 ¾ 1 ¾ 16 ¾ 187
x19 1 1 26 26 302 295
y 25 25 313 313 2009 2009

Table II-II Good masks obtained by a depth-2 model search.

For each complexity separately, only those inputs are considered significant inputs that
are present in at least 10% of the good masks of that complexity. Using this heuristic rule,
a mask candidate matrix of depth d=3 can now be constructed. Since no information is
available about the usefulness of any of the variables two time-steps back, the top row of
the new mask candidate matrix must be filled with ‘-1’ elements.
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The new mask candidate matrix contains 41 out of 59 possible ‘-1’ elements. An
optimal model search is now performed, proposing this mask candidate matrix to FIR.
Table II-III shows the results of this search. The qualities of the best masks of each
complexity are only slightly higher than in the case of the depth-2 models. 4 good masks of
complexity 3, 254 good masks of complexity 4, and 4047 good masks of complexity 5
were found. At this point, FIR shows preferences for some variables one time-step back
over others. The reason is that FIR now has more choices, and often prefers the same
variable two time-steps back.

The way the algorithm is implemented, once an input variable at a certain time delay
has been eliminated from one of the mask candidate matrices, it will never show up again
in any of the subsequent mask candidate matrices. Therefore, the discriminator value (in
the example shown here set to 10%) must be chosen carefully, in order not to eliminate
potentially useful inputs too early. A smaller discriminator might generate a better
suboptimal mask at the end, but this goes at the expense of having to evaluate more masks
in the process. A higher discriminator value leads to a faster search, but may result in a
suboptimal mask of lower quality.



233

Complex. 3 (Qbest= 0.6113)
Q>0.975Qbest masks

Complex. 4 (Qbest= 0.5996)
Q>0.975Qbest masks

Complex. 5 (Qbest= 0.5931)
Q>0.975Qbest masks

Delay 0 1 2 0 1 2 0 1 2
X1 ¾ ¾ ¾ 17 17 17 ¾ 307 322
X2 1 1 1 24 24 24 405 418 426
X3 ¾ ¾ ¾ ¾ ¾ 1 ¾ ¾ 148
X4 ¾ ¾ ¾ 1 1 1 225 239 250
X5 ¾ ¾ ¾ ¾ ¾ 1 ¾ ¾ 200
X6 ¾ ¾ ¾ 20 20 20 379 415 409
X7 ¾ ¾ ¾ 22 22 22 417 410 408
X8 ¾ ¾ ¾ ¾ 8 7 ¾ 331 326
X9 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 58
X10 ¾ ¾ ¾ ¾ ¾ 1 ¾ ¾ 61
X11 ¾ ¾ ¾ ¾ ¾ 1 ¾ ¾ 175
X12 ¾ ¾ ¾ 17 20 20 340 410 415
X13 ¾ ¾ ¾ ¾ 20 20 ¾ 406 408
X14 ¾ ¾ ¾ ¾ 4 4 ¾ 237 232
X15 ¾ ¾ ¾ ¾ 14 14 ¾ 304 324
X16 ¾ ¾ ¾ ¾ 1 1 ¾ 257 266
X17 ¾ ¾ ¾ ¾ 1 1 ¾ 203 210
X18 ¾ ¾ ¾ ¾ ¾ 1 ¾ ¾ 108
X19 ¾ ¾ ¾ 20 20 21 530 530 536
y 4 4 1 254 254 38 4047 4047 154

Table II-III Good masks obtained by a depth-3 model search.

Using the information provided in Table II-III, a new mask candidate matrix of depth
d=4 can now be proposed.
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In this new candidate mask only 37 -1 elements out of 79 possible are used, so leading
to a significant reduction of the model search space. This depth-4 candidate mask is given
as an input to the modelling engine of FIR, which performs an optimal search in this
reduced model search space. Results of this simulation are given in Table II-IV. Again, a
slight increase in the mask qualities is found with respect to the case of the depth-3 models.
Models with complexities 2 and 3 are not reported in Table II-IV. The reason for that is
that they are trivial autoregressive models. For the complexity-2 model, the optimal quality
was 0.6128 for a mask in which the output depends on itself one time step in the past, i.e.,
y = f(y-�t). In the case of complexity 3, Qbest = 0.6230, and two masks are found that
accomplishes the condition Q>0.975Qbest: the first one models the output variable as y(t) =
f(y(t-1),y(t-3)), and the second one uses the input-output model y(t) = f(y(t-2),y(t-3)).
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Complex. 4 (Qbest= 0.6127)
Q>0.975Qbest masks

Complex. 5 (Qbest= 0.6088)
Q>0.975Qbest masks

Delay 0 1 2 3 0 1 2 3
X1 ¾ ¾ ¾ 1 ¾ ¾ ¾ 30
X2 2 2 2 2 30 30 30 30
X3 ¾ ¾ ¾ 1 ¾ ¾ ¾ 29
X4 ¾ ¾ ¾ 1 ¾ ¾ ¾ 27
X5 ¾ ¾ ¾ 1 ¾ ¾ ¾ 26
X6 ¾ 1 1 1 ¾ 31 26 29
X7 2 2 2 2 29 30 30 30
X8 ¾ ¾ ¾ 1 ¾ ¾ ¾ 32
X9 ¾ ¾ ¾ ¾ ¾ ¾ ¾ 20
x10 ¾ ¾ ¾ 1 ¾ ¾ ¾ 25
x11 ¾ ¾ ¾ 1 ¾ ¾ ¾ 26
x12 ¾ 1 1 1 ¾ 29 27 29
x13 ¾ 1 1 1 ¾ 29 30 29
x14 ¾ ¾ ¾ 1 ¾ ¾ ¾ 31
x15 ¾ ¾ ¾ 1 ¾ ¾ ¾ 26
x16 ¾ ¾ ¾ 1 ¾ ¾ ¾ 27
x17 ¾ ¾ ¾ 1 ¾ ¾ ¾ 28
x18 ¾ ¾ ¾ 1 ¾ ¾ ¾ 27
x19 1 1 1 1 30 30 30 30
Y 41 41 8 33 487 487 ¾ 487

Table II-IV Good masks obtained by a depth-4 model search.

The information contained in Table II-IV is used to derive a new depth-5 candidate
matrix. In this case, the discriminator value (up to now, it has been set to 10%) has to be
changed in order not to eliminate potentially useful inputs. Note that if a value of 10% is
used for the discriminator parameter no input variables are selected as possible m-inputs to
the next model search. Hence, for each complexity separately, only those inputs are
considered significant inputs that are present in at least 6% of the good masks of that
complexity. This discriminator value keeps the variables that seem to be more important in
the analysis performed up to this point, yet conserves a reduced search space model. Using
this heuristic rule, a mask candidate matrix of depth d=5 can now be constructed.
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This new proposed candidate mask has 46 -1 elements. Results are given in Table II-V.
The best complexity 2 mask is the same that in the previous computation and it will be the
same all over the next runs to be performed, so it will not be named again. The models of
complexity 3 that satisfies the conditions of the used algorithm explain the output with a
maximum found quality of Qbest = 0.6272 as y(t) = f(y(t-1), y(t-3)) and y(t) = f(y(t-1), y(t-
4)). Again a slight overall increase in the mask quality is obtained.

Notice that, as the procedure is proceeding, the input variable space is decomposed into
subspaces of more and less related input variables to the output, so allowing a
simplification of the model search.
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Complex. 4 (Qbest= 0.6257)
Q>0.975Qbest masks

Complex. 5 (Qbest= 0.6146)
Q>0.975Qbest masks

Delay 0 1 2 3 4 0 1 2 3 4
x1 ¾ ¾ ¾ 1 1 ¾ ¾ ¾ 70 73
x2 2 2 2 2 2 73 73 73 74 73
x3 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 49 44
x4 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 45
x5 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 57
x6 ¾ 1 ¾ 1 1 ¾ 48 ¾ 73 74
x7 1 1 1 1 1 74 74 74 74 74
x8 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 70 73
x9 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 29
x10 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 35
x11 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 54
x12 ¾ 1 ¾ 1 1 ¾ 60 ¾ 74 63
x13 ¾ 1 1 1 1 ¾ 73 74 59 75
x14 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 73 65
x15 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 52
x16 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 58
x17 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 53
x18 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 56
x19 1 1 1 1 1 75 ¾ 74 74 74
y 34 34 1 6 29 1228 1228 ¾ 503 729

Table II-V Good masks obtained by a depth-5 model search.

Using the information of Table II-V, again with the discriminator value set to the 6%,
the following depth-6 candidate mask is proposed for the next model computation:
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This new candidate mask has again 46 -1 elements. Results obtained with this mask are
given in Table II-VI.
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Complex. 4 (Qbest= 0.6301)
Q>0.975Qbest masks

Complex. 5 (Qbest= 0.6228)
Q>0.975Qbest masks

Delay 0 1 2 3 4 5 0 1 2 3 4 5
x1 ¾ ¾ ¾ ¾ 1 1 ¾ ¾ ¾ ¾ 60 59
x2 2 2 2 2 2 2 68 72 69 70 74 73
x3 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 8
x4 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 26
x5 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 20
x6 ¾ ¾ ¾ 1 1 1 ¾ ¾ ¾ 43 48 43
x7 2 2 2 2 2 2 60 60 64 62 62 63
x8 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 41 64
x9 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 1
x10 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 1
x11 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 19
x12 ¾ ¾ ¾ 1 ¾ 1 ¾ ¾ ¾ 64 ¾ 53
x13 ¾ 1 1 ¾ 1 1 ¾ 64 65 ¾ 65 53
x14 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 44 ¾ 39
x15 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 36
x16 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 43
x17 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 30
x18 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 7
x19 1 ¾ 1 1 1 1 60 ¾ 67 63 65 64
y 43 43 ¾ 2 14 30 1080 1080 ¾ 104 419 605

Table II-VI Good masks obtained by a depth-6 model search.

The obtained complexity-3 models that comply with the imposed conditions are simple
autoregressive models with Qbest = 0.6384. These models are:

y(t) = f(y(t-1), y(t-3)); y(t) = f(y(t-1), y(t-4)); y(t) = f(y(t-1), y(t-5))

In this new simulation, a better discrimination of the variables is obtained. For example,
the models satisfying the conditions of the algorithm have used variables 9 and 10 only
once, which says that those variables are not important to model the output. The
discriminator value used is again 6%. Therefore, variables used more than twice, in the
case of the complexity-4 models, and more than 64 times for complexity-5 models, are
selected to propose the next depth-7 candidate mask.
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Complex. 4 (Qbest= 0.6319)
Q>0.975Qbest masks

Complex. 5 (Qbest= 0.6250)
Q>0.975Qbest masks

Delay 0 1 2 3 4 5 6 0 1 2 3 4 5 6
x1 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 75
x2 3 3 3 3 3 3 3 72 73 73 71 77 76 73
x3 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 3
x4 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 3
x5 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 3
x6 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 51
x7 1 3 3 3 3 3 1 61 60 61 64 67 64 62
x8 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 54 54
x9 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 3
x10 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 3
x11 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 3
x12 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 65 ¾ ¾ 50
x13 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 64 67 ¾ 64 ¾ 67
x14 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 25
x15 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 53
x16 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 30
x17 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 3
x18 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 3
x19 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 75 ¾ 75 75 75
y 48 48 ¾ ¾ 1 1 1 1060 1060 ¾ 88 288 390 417

Table II-VII Good masks obtained by a depth-7 model search.

The new candidate mask has 44 -1 elements. Results of the optimal search performed
when giving this candidate mask to FIR are provided in Table II-VII.

The discriminator value has again been chosen to be 6%. In this simulation, more
discrimination about variables is being obtained; note that variables x3, x4, x5, x9, x10, x11,
x17, and x18 have only been used 3 times each in a total of 1060 considered models. This
suggests that those variables are not of big importance in modelling the output of the
system. In the light of the obtained results, a new candidate mask of depth 8 is proposed:
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This mask has a total of 47 -1 elements. Results for this simulation are shown in Table
II-VIII.
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Complex. 4 (Qbest= 0.6331)
Q>0.975Qbest masks

Complex. 5 (Qbest= 0.6264)
Q>0.975Qbest masks

Delay 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
x1 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 90 86
x2 3 3 3 3 3 3 3 3 90 92 95 94 94 95 94 93
x3 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4
x4 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4
x5 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4
x6 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 70
x7 ¾ 3 3 3 3 3 ¾ 3 ¾ 92 92 92 91 91 ¾ 89
x8 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 48
x9 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 3
x10 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 3
x11 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4
x12 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 89 ¾ ¾ ¾ 70
x13 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 81 89 ¾ 88 82 79
x14 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 6
x15 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 34
x16 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 6
x17 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4
x18 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 6
x19 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 95 1 94 84 94 94
y 52 52 ¾ 4 4 18 18 18 1478 1478 ¾ 122 320 415 410 460

Table II-VIII Good masks obtained by a depth-8 model search.

The discriminator value has again been set to 6%. As the depth is increased, more and
more discrimination about variables is obtained; note that variables x3, x4, x5, x9, x10, x11,
x14, x16, x17, and x18 have only been used between 3 and 6 times each in a total of 1478
considered models. This suggests that those variables are not of big importance in
modelling the output of the system. In the light of the obtained results, a new candidate
mask of depth 9 is proposed:
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In this new candidate mask, there are 48 elements set to ‘–1’ out of 179. The achieved
simplification is considerable. Results from this simulation run are given in Table II-IX.
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Complex. 4 (Qbest= 0.6340)
Q>0.975Qbest masks

Complex. 5 (Qbest= 0.6276)
Q>0.975Qbest masks

Delay 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
x1 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 109 ¾ 108
x2 4 3 2 2 6 4 6 2 6 99 110 94 93 114 111 116 95 116
x3 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 10
x4 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 10
x5 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 9
x6 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 73
x7 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 102 102 103 102 101 ¾ 99 98
x8 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 10
x9 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 8
x10 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 9
x11 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 10
x12 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 107 ¾ ¾ ¾ ¾ 51
x13 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 111 ¾ 121 ¾ ¾ 107
x14 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 10
x15 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 10
x16 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 10
x17 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 10
x18 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 10
x19 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 127 ¾ 121 ¾ 120 120 120
y 50 50 ¾ 2 17 1 2 22 21 1636 1636 ¾ 95 368 94 96 520 569

Table II-IX Good masks obtained by a depth-9 model search.

The adopted criterion for the discriminator parameter of the algorithm is the same as in
the last simulations, i.e., those variables appearing in more than 6% of the total of
considered masks are taken into account to form the next depth-10 candidate mask.
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This new candidate mask contains 48 ‘-1’ elements out of 199 possible. Results of this
new simulation are given in Table II-X.

Note that in this simulation the overall quality of the complexity-4 masks is not
increased any more with respect to the qualities obtained in previous simulations. Yet for
the complexity-5 models, a slight increase in the quality of the masks is still obtained. This
suggests performing another iteration, proposing a new depth-11 candidate mask (using
again a discriminator value of 6%). When doing so, no increase in the quality of either the
complexity-4 models or the complexity-5 models is obtained, so the iteration can be
terminated. At this point, the FIR qualitative models that may best describe, in terms of
quality, the system at hand are those models represented by a depth-10 mask.
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Complex. 4 (Qbest= 0.6340)
Q>0.975Qbest

Complex. 5 (Qmax= 0.6312)
Q>0.975Qbest

Delay 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
x1 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 33 ¾ 4 4
x2 2 2 ¾ ¾ 2 2 2 ¾ 2 2 39 42 ¾ ¾ 48 47 48 ¾ 53 45
x3 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4
x4 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4
x5 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4
x6 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4
x7 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 37 37 40 39 37 ¾ 38 36 36
x8 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4
x9 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 3
x10 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4
x11 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4
x12 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4 ¾ ¾ ¾ ¾ ¾ 4
x13 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 32 ¾ 33 ¾ ¾ 34 33
x14 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4
x15 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4
x16 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4
x17 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4
x18 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 4
x19 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 33 ¾ 33 ¾ 7 8 47 34
y 20 20 ¾ ¾ 3 ¾ ¾ 10 10 3 535 535 ¾ ¾ 147 ¾ ¾ 137 151 148

Table II-X Good masks obtained by a depth-10 model search.

This would tell the modeller to use a depth-10 FIR model (the depth-11 model being
exactly the same), in which input variables x3, x4, x5, x6, x8, x9, x10, x11, x14, x15, x16, x17, and
x18 have been discarded. Only variables x1, x2, x7, x12, x13, and x19, and evidently past values
of the output, are used to model the output variable. From those variables, the reader may
notice that variable x12 only appears in 4 out of 535 possible models, and that, in fact, if
another iteration were performed it would be eliminated from the depth-11 models. The
new depth-11 candidate mask is reported below, in which there are only 49 ‘–1’ elements
out of 119 possible. The results obtained with this simulation are given in Table II-XI. For
this simulation, the qualities of the masks no longer increased.

With the presented procedure, not only is a FIR model found, but with it, also the
optimal depth of the model is being determined. It is interesting to analyse how large the
computation alleviation is that has been achieved with this method. The achieved model
search space simplification is computed by comparing the numbers of models visited when
using the presented algorithm to construct depth-10 models, with the numbers of depth-10
models to be computed using the classical FIR search method1. Table II-XII provides the
number of models that have been visited in order to construct the depth-10 models
presented in Table II-X, the number of theoretical models that should be computed for a
full candidate mask of depth 10, and finally, column three shows the percentage of
computation alleviation. The first column is calculated by adding the number of models
computed, for all the allowed complexities, from depth 1 to 10 as presented in this section.
How to obtain the number of models that have to be computed for each number of ‘-1’
elements of the candidate mask is reported in Chapter 6.

                                                          
1 This implies a prior knowledge, or a heuristic decision, of the mask depth value to be used.
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Complex. 4 (Qmax= 0.6377)
Q>0.975Qmax -- 15 masks

Complex. 5 (Qmax= 0.6319)
Q>0.995Qmax -- 46 masks

Delay 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
x1 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 1 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾
x2 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 1 ¾ ¾ 2 ¾ ¾ ¾ 2 2 ¾ ¾ 2 2 2
x7 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
x13 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 1 2 1 1
x19 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 1 1 1 ¾ ¾ ¾ ¾ 1 1
y ¾ 15 ¾ ¾ 14 ¾ ¾ ¾ 2 ¾ 2 ¾ 46 ¾ ¾ 46 ¾ ¾ ¾ 28 ¾ 19

Table II-XI Mask depth 11. Simulation results.

Number of visited models

�
=

10

1depth
depthmasksvisited

Number of models to
visit using a depth 10
full candidate mask

Percent of
computation
alleviation

1.362.501 64.704.850 97.89%

Table II-XII Computation alleviation achieved when using the proposed algorithm

Of course when giving the computation alleviation one must take into account the time
required to study the computed FIR models, to construct the table of variables/delays used,
and from it, propose a new candidate mask2. These operations have been made by means
of a function code programmed in Matlab, which, from the output text file of FIR
containing all computed models, generates one table for each complexity that contains the
primarily used variables/delays. The computation time of this function is orders of
magnitude lower than that of the FIR model computation.

II.1.2 Qualitative simulation re sults

In order to assess whether the sub-optimal models found with the proposed algorithm
are suitable to properly model the system under consideration, two simulations have been
performed. The first simulation uses one model of complexity 4 from those found with
depth 9 in Table II-IX. The quality of the best model in this class was 0.6340. The model is
used to simulate the last 500 points of the garbage incinerator output variable (NOx gas
                                                          
2 As was outlined in Chapter 6, the required time to analyse one FIR simulation is about 0.5 hours, so 30
minutes should be added to the CPU time required to solve each of the proposed candidate masks.
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emission).  Figures II-1 and II-2 show in continuous line the real NOx data and in dotted
line the simulated trajectory for this variable.

Figure II-1 Real and simulated NOx. Last 500 points. Figure II-2 First 100 NOx FIR simulated points.

In this first simulation, the used model has been:

y(t) = f{y(t-1),y(t-4),x2(t-8)}

For the second simulation, a complexity-5 model has been used. In this case, the depth
of the model is 10, and it is one of the models found in Table II-X. The maximum quality
achieved in this case was 0.6312. The model used in this simulation is:

y(t) = f{y(t-1),y(t-7),x7(t-3),x2(t-8)}

Results of this simulation are presented in Figures II-3 and II-4, where again the
continuous line represents the real data, whereas the dotted line depicts the simulated
trajectory.

Figure II-3 Real and simulated NOx. Last 500 points. Figure II-4 First 100 NOx FIR simulated points.

As can be seen from the figures, both simulations give quite good results.  They follow
well the original NOx trajectory. In the first performed simulation, the average error is
1.25%; in the second case, the average error is 3.64%, whereby the averages were
computed with all 500 simulated data points.
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In order to assess the results obtained with the given algorithm even better, some
additional simulations were performed using the best models up to depth 16. No increase
in the mask qualities was obtained in any of those simulations, only a small fluctuation of
the complexity-5 model quality was observed for the depth-14 models. Figure II-5 shows
the mask quality plotted versus the depth of the mask. The continuous line is obtained for
complexity-4 masks, and the dotted line represents complexity-5 masks. The qualities of
the depth-1 static models are not presented, in order to avoid an unnecessary compression
of the y-axis.

Figure II-5 Quality versus depth of the mask

II.2 Application of the accep tability interval to fault detection in a commercial
aircraft

When modelling a system, it is possible to use a mixed quantitative/qualitative
knowledge representation [Cellier et al., 1992] that may combine the advantages of both
types of approaches and may help to solve problems that neither a purely quantitative nor a
strictly qualitative model may be able to solve on its own. Modern approaches to fault
diagnosis include the so-called model based approach [Chen and Patton, 1998]. This kind
of fault detection approach makes explicit use of a quantitative mathematical model of the
system. The implementation of on-board digital computers allows the development of fault
detection, fault isolation, and fault identification exploiting the use of analytical rather than
hardware redundancy.

One of the objectives of the present application is to combine the quantitative
simulation of a continuous process with a qualitative simulation technique to perform fault
detection; fault isolation and fault identification are beyond the scope of this experiment. A
new methodological aspect in the mark of the Fuzzy Inductive Reasoning methodology is
applied to improve fault detection in large-scale systems.  An example already employed in
previous publications [Vesanterä, 1988; de Albornoz and Cellier, 1994; de Albornoz,
1996], namely the numerical model of a B747 aircraft, is used to compare the obtained
results.
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In this appendix, a brief review of the research work already done in previous
publications as well as the used aircraft model is done, so as to be able to compare the
previously obtained results with the ones obtained with the newly proposed method.

II.2.1 Previous research and the aircraft model

In a previous research effort at the University of Arizona, qualitative simulation was
applied to reason inductively about the behaviour of a quantitatively simulated B-747
aircraft model, to determine on-line when a malfunction occurs in the quantitative model.
A crisp inductive reasoner (using a qualitative model computed only on the basis of class
values, i.e., without membership and/or side information) was used to recognise that the
aircraft had qualitatively changed its behaviour within a few seconds after a simulated
malfunction had taken place. Crisp inductive reasoning and crisp detection were used to
perform fault detection. The results of this study were reported in [Vesanterä, 1988;
Vesanterä and Cellier, 1989].

Later on, continuing with the research in this area at the Polytechnic University of
Catalonia, the former crisp inductive reasoner was replaced by a fuzzy inductive reasoner.
This modified reasoning scheme had an enhanced discriminatory power and an improved
forecasting capability. The new fuzzy inductive reasoner allows the prediction of a real-
valued variable, whereas the crisp inductive reasoner was able to predict class values only.
In this research effort, fuzzy inductive reasoning (FIR) and crisp detection (only using
information given by the class values) were used to perform fault detection. The results of
this study were reported in [de Albornoz, 1996; de Albornoz and Cellier, 1993a;1994].

An improved method based on fuzzy inductive reasoning is used here with the aim of
fault detection. Fuzzy inductive reasoning and what is now called envelope detection,
previously explained in Section 2.5.1 within Chapter 2 of the dissertation are used. As will
be shown, using envelopes improves the fault detection approach, allowing the detection of
faults at an earlier stage, and even the detection of faults that are not detected using either
of the previous two approaches.

A numerical model of the B-747 aircraft has been used to generate episodes of the five
variables shown in Figure II-6. Two input variables, the variation in the elevator deflexion
��trim and the variation in the thrust �Ttrim, and three output variables, the lift L, drag D,
and the flight path angle GA, are considered. The mathematical model used is exactly the
same that was reported in [Vesanterä, 1988; Vesanterä and Cellier, 1989]. This model,
named B4, is valid for a B-747 at high altitude horizontal flight.

Figure II-6 Input and output variables of the aircraft model

Ddetrim

DTtrim

L

D

GA
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The mathematical model described in the given references reflects an essentially
longitudinal flight restricted to longitudinal deviations from a trimmed reference flight
condition. The main characteristic of this reference flight is the requirement that the
resultant force and moment acting on the aircraft's centre of mass are zero.

The original aerodynamic parameters of this model were modified to artificially
generate faults to test the fault detection methodology (the generated faults do not
necessary correspond to real fault situations). Hence different models are found that
represent structural changes of the original plane. The main characteristics of these models
are:

� Model B4 is the original model representing a B-747 in cruise flight at 20’000 feet
altitude. Its aerodynamic parameters are used as reference for the other models.

� Model B13 is characterised by a much more damped step response to the same step
inputs. The effect of the angle of attack on the lift coefficient L has been slightly
increased. A significant change in the effect of the angle of attack on the drag
coefficient D occurred. The effect of the elevator deflection, ��trim, on the pitching
moment has also changed.

� Model B5 represents a change of the original B4 model, which completely alters
the influence that the angle of attack has on the aerodynamic response of the
aircraft.

� Model 747 represents an enlarged B-747 in cruise flight. In this case, the values of
the lift L, the aerodynamic momentum, the drag D, and the pitch angle are changed.

Only two among the aforementioned aircraft models are being used in the concrete
application, namely the B4 model, corresponding to the aircraft under normal operation,
and the B13 model, representing a fault. Other malfunction situations described in the
referenced literature can be tackled in the same way.

The simulation of the quantitative model is performed using ACSL (Advanced
Continuous Simulation Language, [Mitchell & Gauthier, 1991]). Once the quantitative
model has been implemented in ACSL, trajectories for the five named variables are
generated. FIR is then applied, and a qualitative model of the aircraft is obtained. Details
about the process of obtaining the qualitative aircraft model can be found in [Mirats, 1998].
As FIR works with MISO systems only, it is necessary to find one model for every output.
After performing the optimal (exhaustive) mask search, the following masks are found:
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These three masks, together with the behaviour matrices and the fuzzification
landmarks, constitute the qualitative model of the B4 aircraft. This model was obtained
using SAPS in its present Matlab toolbox version.
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Now, with the qualitative model, it is possible to compare trajectories from variables of
the real system (ACSL simulation) with forecast episodes from the qualitative model.
When a structural change has taken place, the model can no longer predict the system. It is
at this point that fault detection is achieved. Results obtained with the new methodology
are to be compared with those obtained in the previous publications.

II.2.2 Smooth changes in the a ircraft parameters.

In order to generate trajectories with accidents, the flight starts out with the B4 model
(normal situation), and at a given time, a malfunction is numerically simulated by changing
some of the structural parameters of the aircraft. In the previous research studies
[Vesanterä and Cellier, 1989; de Albornoz and Cellier, 1994], the change of parameters
occurs abruptly, i.e., a step perturbation is performed so that the change on the parameters
of the aircraft is immediate. Such a sudden change is relatively easy to detect, as it results
in a violent transient behaviour of the aircraft, whereby the qualitative classes of the
considered outputs change, making it possible to detect the fault by looking at the class
values only. Precisely this technique, looking for discrepancies between the observed and
the predicted class values of the output variable, has been employed to perform fault
detection in the aircraft model in [Vesanterä and Cellier, 1989] and [de Albornoz and
Cellier, 1994]. Although the former technique used a crisp inductive reasoner whereas the
latter used an improved fuzzy inductive reasoner, the fault was, in both cases, detected
using information about the class values only.

The performed instantaneous parameter change implies a sharp transient in the variables
taken into account. This transient was used to detect the aeroplane malfunction, so in some
way, the methodology did not really detect the model change, but rather the highly
dramatic transition phase between the two models. For instance, Figure II-7 shows the
transient in the output variable D resulting from an abrupt B4-B13 model transition.

 

Figure II-7 Drag (D): trajectory with a sudden change in the parameters
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Although some real malfunctions may indeed involve a sudden change in the
parameters, quite often this is not the case, and it may therefore be more realistic to
consider gradual rather than sudden changes. To model this situation, a smooth change in
the aeroplane parameters has been simulated. The total range of parameter changes is the
same as used previously, but now, the parameters change gradually by ramping them from
their initial to their final values over a period of 10 seconds. Figure II-8 shows the change
in the output variable D when the parameter values change smoothly.

Figure II-8 Drag (D): trajectory with a smooth change in the parameters.

II.2.3 Crisp detection using smoothed data.

In order to compare the effectiveness of the new fault detection scheme, based on the
so-called envelopes, with previous results, the fault detection method presented in
[Vesanterä and Cellier, 1989; de Albornoz and Cellier, 1994] is now summarised and
applied to the smooth parameter change explained in the previous section.

By using the numerical ACSL aircraft model, quantitative data representing the real
system in a fault situation are gathered. The considered fault is the one named B13 in
section II.2.1. The real-valued data obtained by means of a quantitative (ACSL) fault
simulation is then converted to qualitative triplets of class, membership, and side values
using the fuzzification module of FIR. Afterwards, the qualitative model previously
obtained from the normal aircraft operation data (reported in section II.2.3) is used to
predict the future behaviour of the aeroplane using the new situation fault data. Therefore,
for each new data point coming from the real system (in the given experiment, the ACSL
simulation), a prediction of the considered output variables is computed. The idea behind is
that when a structural change occurs, the qualitative model will receive inputs that have
never been seen before. Hence it will no longer be able to correctly predict the behaviour
of the system, thereby triggering an alarm vector indicating that a system fault has
occurred.
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 At each sampling interval, an instantaneous error for each system output is computed
by subtracting the real-system (fuzzified) class values and the predicted class values using
the qualitative model. As long as the prediction is correct, the subtraction results in a value
of zero. Hence values different from zero indicate a false prediction that may be interpreted
as a potential indicator of a fault having occurred. These errors are stored in a matrix.
Then, a moving average error filter is shifted down this matrix, computing, for each output,
the sum of instantaneous errors it covers. These cumulative errors are in turn stored in
another matrix. If any of these values, at a given point of time, passes the threshold (m) of
the alarm module, an alarm is immediately triggered, i.e., a fault has been detected. Figure
II-9 may illustrate the process:

L  D   GA
t 0 0 0

t+dt 1 0 0 Error Filter
t+2dt 0 1 0
t+3dt 1 1 1 L D GA
t+4dt 0 1 0 2 3 1
t+5dt 0 1 1 2 4 2 Threshold alarm
t+6dt 0 1 0 1 5 2
t+7dt 1 1 0 2 5 2 Cumulative error >= m ?
t+8dt 1 1 1 2 5 2 Yes       No
t+9dt 1 1 0 3 5 2

Instantaneous Errors Cumulative Errors

Figure II-9 Fault detection scheme

Table II-XIII summarises the results obtained when applying the described fault
detection method to the new data set, i.e., a gradual change of parameters. The resulting
alarm vectors using two different threshold values, m = 5 and m = 2, in conjunction with a
filter depth of 5, are shown.

The change in the parameters starts at time instant t = 2500, and lasts 10 seconds. The
alarm vectors in the table below show that within the next 18 seconds the malfunction is
not detected when using a threshold in the alarm module of m = 5, and some abnormal
situation is reported for time span (2505, 2515) when using m = 2. The latter would have
been interpreted by the fault monitoring system as a false alarm, because from t = 2516
onward, the alarm vector is switched off again. Moreover, using low threshold values
implies a higher probability of false alarms. It is interesting to detect faults as early as
possible, but only real faults should be reported.

As presented in next section, this problem can be tackled using the so-called 'envelopes'.
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Time Alarm vector, m=5 Alarm vector, m=2
2500 0 0
2501 0 0
2502 0 0
2503 0 0
2504 0 0
2505 0 1
2506 0 1
2507 0 1
2508 0 1
2509 0 1
2510 0 1
2511 0 1
2512 0 1
2513 0 1
2514 0 1
2515 0 1
2516 0 0
2517 0 0
2518 0 0

Table II-XIII Alarm vectors using the detection approach proposed in [6,9] with smooth change

II.2.4 Detection with envelopes

The concept of ‘envelopes’, in the context of the FIR methodology, has been properly
detailed in Section 2.5.1 of Chapter 2. In this appendix, the given method will be used to
detect structural changes in an aircraft model.

When using a FIR qualitative model to predict a system, a measure of the model error
can be obtained comparing the forecast value with the real (fuzzified) value of the
concerned variable. Using the B4 aircraft qualitative model presented in Section II.2.1,
new values of the outputs can be forecast and compared with the B4 validation data set
(values of the variable trajectories not used in the FIR modelling process). If the mean
square error is used, mse = 0.1702 is the obtained value for the forecasting average error
of the FIR qualitative model. Although there is a separate forecasting average error for
every output variable, in this study, the largest of these mse values has been used to
characterise the envelopes of all three of the output variables.

The idea behind the envelopes approach is to compute, for each forecast value, an
interval of acceptability of the real trajectory value. Up to now, a single (defuzzified)
prediction was made at each point in time, which had been computed as an average of the
output values of the five nearest neighbours in the training data base. Yet, it is perfectly
defendable to make predictions in different ways. For example, it may make sense to
consider the range of predictions made by the five nearest neighbours as an envelope of
acceptable predictions. The closer the five nearest neighbours are to each other, i.e., the
smaller the dispersion among them, the more narrow that envelope will be. On the other
hand, the larger the dispersion among the five nearest neighbours, the wider the envelope
will become. Let � and � be the minimum and maximum predictions made by any of the
five neighbours, the envelope will then be defined by the range [�,�], a time-varying
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interval of forecasting acceptability associated with the predicted output variable. This
information can be exploited for fault monitoring.

Two experiments have been carried out using this new approach. First, the envelopes
have been used to monitor a sudden change in the aircraft parameters, as proposed in the
previous publications [Vesanterä and Cellier, 1989; de Albornoz and Cellier, 1994], and
subsequently, they were employed to monitor a smooth change in the aircraft parameters as
explained in Section II.2.2.

II.2.4.1 Sudden change detection

 The method of the acceptability envelope of the variables has been applied to the case
of an instantaneous change in the aeroplane parameters. Figure II-10 shows the trajectory
of the real output variable D together with the interval of acceptable forecast values (the
so-called envelope) obtained by the qualitative FIR model of the B4 aircraft. The figure
covers a much shorter time interval than that provided in Figure II-7 and Figure II-8,
because the envelope is narrow, indicating that the found qualitative model is of high
quality. A wider time window would have made the figure less easily interpretable.

Figure II-10 Variable D: real system values and forecast acceptability envelope

In order to perform fault detection using the envelopes, the method explained in Chapter
2 is used. An instantaneous error matrix is constructed, where every column is associated
with an output variable, and every row corresponds to a sampling instant. A zero value
denotes no error (i.e. the value of the real system variable lies within the interval of
variable acceptability), and a value of one means an instantaneous prediction error has
been registered (i.e. the quantitative real value is outside the range of variable
acceptability). Then the error matrix is filtered using a moving average filter, and when the
output passes the specified error threshold, an alarm is triggered. Table II-XIV summarises
the results obtained with this method when applied to the situation of a sudden change in
aircraft parameter values.
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The fault alarm vector has been obtained using a threshold of m = 5 and an error
window of depth 5. Notice that the accident is detected at time instant 2503, only three
seconds after it took place, and the fault remains flagged ever after. The new method of the
envelopes is hence reported to detect the malfunction at an earlier time than the approach
proposed in [Vesanterä and Cellier, 1989; de Albornoz and Cellier, 1994]. Moreover, the
obtained alarm vector is more stable in the sense that it does not return to a zero value after
the transient has taken place, thereby decreasing the probability of a true emergency being
mistaken for a false alarm.

time alarm
2500 0
2501 0
2502 0
2503 1
2504 1
2505 1
2506 1
2507 1
2508 1
2509 1
2510 1
2511 1
2512 1
2513 1
2514 1
2515 1
2516 1
2517 1
2518 1

Table II-XIV Alarm vector obtained when performing fault detection with the envelopes approach in a
sudden parameter change situation.
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II.2.4.2 Smooth change detection

In this simulation, a smooth parameter change is applied as explained previously, but
now, the envelopes approach is applied to fault detection. Figure II-11, Figure II-12 and
Figure II-13 show the trajectories of the three output variables together with the forecast
envelopes obtained for the qualitative B4 model.

Figure II-11 Envelopes with smooth change in variable L.

Figure II-12 Envelopes with smooth change in variable D.

Table II-XV summarises the results that have been obtained using the method of the
envelopes when using two different alarm thresholds: m = 5 and m = 2 and an error
window of depth 5.

In order to make it easy to compare the results with those obtained using fuzzy
inductive reasoning together with crisp fault detection, as presented in [de Albornoz and
Cellier, 1994], the two left-most columns of Table II-XV show the results obtained with
the method of envelopes, whereas the two right-most columns reproduce the results
discussed in Section II.2.3.
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Using m = 5, the smooth fault is detected four seconds after initiating the change of the
B4 parameters. If m = 2 is applied, an earlier detection is achieved (three seconds instead
of four), and conversely to the results obtained in Section II.2.3, the fault alarm remains
flagged after time instant 2515.

Figure II-13 Envelopes with smooth change in variable GA.

Envelope method Crisp detection method
Time m = 5 m = 2 m = 5 m = 2
2500 0 0 0 0
2501 0 0 0 0
2502 0 0 0 0
2503 0 1 0 0
2504 1 1 0 0
2505 1 1 0 1
2506 1 1 0 1
2507 1 1 0 1
2508 1 1 0 1
2509 1 1 0 1
2510 1 1 0 1
2511 1 1 0 1
2512 1 1 0 1
2513 1 1 0 1
2514 1 1 0 1
2515 1 1 0 1
2516 1 1 0 0
2517 1 1 0 0
2518 1 1 0 0

Table II-XV Comparing envelopes and crisp detection results for a smooth change situation
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II.2.5 Discussion

When a malfunction occurs in a system, it is desirable to detect the malfunction as early
as possible, but also in a reliable and robust manner, minimising the number of false
alarms that are being interpreted as true emergencies, but also minimising the number of
true emergencies that are being interpreted as false alarms. The application of the envelope
method developed in chapter 2 concentrates on both aspects of fault monitoring, using a
Boeing 747 aircraft model as a benchmark.

Two Fuzzy Inductive Reasoning (FIR) based approaches are compared. Both of them
use FIR as qualitative modelling technique, but the former uses a crisp fault detection
approach, whereas the latter makes use of a newly proposed envelope detection method.
Crisp fault detection had successfully been used in previous research efforts [Vesanterä
and Cellier, 1989; de Albornoz and Cellier, 1994] to detect sudden changes in system
parameters, such as an engine falling off the aircraft, but is not well suited when
confronted with smooth parameter changes that lead to a slow deterioration of the plant,
such as ice building up on the wings of the aircraft.

The concepts of interval of forecast acceptability and interval of variable acceptability
introduced in Chapter 2, and are used to propose a fault monitoring method based on these
intervals. In the case of a sudden change of the aircraft parameters, the new proposed
method detects the fault earlier. When the parameters of the aircraft are varied smoothly,
the malfunction is detected using error threshold values that do not permit a fault detection
using the crisp detection method. Moreover, the detection is more robust, since for a given
threshold, the existing fault remains flagged, whereas using the crisp method, the alarm
disappears again, making it likely that the true emergency would be interpreted by the
flight engineer as a false alarm.
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