
Semiconductor Modeling with Bondgraphs

by

Michael Schweisguth

A Thesis Submitted to the Faculty of the

Department of Electrical and Computer Engineering

In Partial Ful�llment of the Requirements
For the Degree of

Masters of Science

In the Graduate College

The University of Arizona

1 9 9 7

2

Statement by Author

This thesis has been submitted in partial ful�llment of requirements for an ad-
vanced degree at The University of Arizona and is deposited in the University Library
to be made available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission, pro-
vided that accurate acknowledgment of source is made. Requests for permission for
extended quotation from or reproduction of this manuscript in whole or in part may
be granted by the head of the major department or the Dean of the Graduate College
when in his or her judgment the proposed use of the material is in the interests of
scholarship. In all other instances, however, permission must be obtained from the
author.

Signed:

Approval by Thesis Director

This thesis has been approved on the date shown below:

Dr. F.E. Cellier
Professor of Electrical and Computer

Engineering

Date

3

Acknowledgments

The most important acknowledgment that I thought I should make is to the Cannon-
dale bicycle company who makes such wonderful bicycles. I probably enjoyed more
hours of pleasure with my bicycle, the Catalina mountains, and the Tucson sun-shine
than a man deserves.

Of all the things that I have encountered during my tenure at the University of
Arizona, I remember Kant's Grounding with a perpetual fondness. I particularly
liked Immanuel Kant's observation that happiness is not a product of the rational
mind, but instead a product of the imaginative mind. For me, this concept provides
the uni�cation between art and science; Art encompasses our dreams, passions, and
instincts, while science provides us with the methods to realize, grasp, and appreciate
our art. Through the translation I read by James W. Ellington, I came to appreciate
the omnipresent subtlety of the yin and the yang which is seemingly so present in
man's perception of reality. I thank Mr. Sullivan, a homeless hop head, for helping
me appreciate these works. This man taught me so much for only one sour dough
Jumbo Jack, with cheese.

Besides Kant's Grounding, I have also come to cherish the Phantom of the

Opera, which I saw in NYC. While I don't think that I've experienced pure science,
I believe that this opportunity let me experience pure art.

Of course, this acknowledgment would not be complete if I did not mention my
friends: Yakov, Daniel, Robert, Ed, Tom, ChengLu, Klaus, Nanda, Je�, Doug, Len,
Asher, and Joe. Thanks for being there for me. I would also like to acknowledge
those folks who make the U of A possible. These souls include the custodial sta�, the
administrative sta�, the faculty, the professional sta�, and the tax payers. I would
imagine that quite a few of these people may never have the luxury to take classes at
the U of A, and so, I feel a deep obligation to thank them for making this sacri�ce for
me. I hope that they don't �nd it demeaning that I compare them to the plankton in
the ocean which produce the oxygen which the bigger animals breathe; And hence,
they are the fundamental building blocks of our society's future, not I.

While it's not nice to point �ngers, I must point out that I really enjoyed my
computer science classes with Greg Andrews, Sampath Cannon, Richard Schlichting,
and Larry Peterson. I must also point my �ngers at Hal Tharp whose vector space
lectures still seem to thrill my subconscious mind. To Chris Kosto� and Tom Milster,
I ash a nice big smile. Chris was my guitar instructor; He taught me a lot about
everything. Tom did too, and I appreciated the opportunity to work in his high
performance optical systems laboratory.

And �nally, I want to thank my advisor, Francois Cellier, for his patience, and for
just being there.

4

Dedication

Dedicated to My Grandmother, the Sonoran Desert, My Cannondale Bicycle, My

Guitar, Ghandi, and Mother Theresa.

5

Table of Contents

List of Figures . 8

Chapter 1. Introduction . 10

Chapter 2. Modeling in Dymola . 14

2.1. Introduction . 14
2.2. The Equation Sorter . 14
2.3. Models with State Variables . 17
2.4. Algebraic Loops . 18
2.5. The Dymola Object Model . 19
2.6. Object Communication . 20
2.7. Instantiation of Dymola Objects . 24
2.8. A Small Demonstration Model . 25
2.9. Simulating the Model . 27
2.10. Dymo Draw . 29
2.11. Debugging . 30
2.12. Additional Information on Dymola 31

Chapter 3. Bond graphs . 32

3.1. Introduction . 32
3.2. Bond Graph Basics . 32
3.3. Bond Graph Components . 34
3.4. The Diamond Theorem . 36
3.5. The Simplectic Gyrator . 38
3.6. A Smarter Simplectic Gyrator . 41
3.7. A Replacement for the Simplectic Gyrator 44
3.8. Thermodynamic bond graphs . 46
3.9. The Thermal Capacitor . 48
3.10. A Small Thermal Circuit . 50
3.11. Things to be Careful About . 50

Chapter 4. The BJT Bond Graph Model 52

4.1. Introduction . 52
4.2. Corrections to the BJT model . 52
4.3. Creating a BJT Bond Graph Model 56
4.4. Some of the Dymola Code for the BJT 56
4.5. The BJT Object Hierarchy . 63
4.6. Simulation of a BJT Inverter . 66

Table of Contents|Continued

6

4.7. A Revised BJT Bond Graph Model 67
4.8. Thermodynamic Results . 70

Chapter 5. Results . 72

5.1. Introduction . 72
5.2. The NPN Inverter . 72
5.3. The PNP Test Circuit . 75
5.4. The OpAmp Circuit . 76
5.5. The Second OpAmp Circuit . 77

Chapter 6. Conclusion . 82

References . 84

7

List of Figures

Figure 1.1. Transistor Circuit for New Hire 10
Figure 1.2. Transistor Circuit Model . 11
Figure 1.3. Transistor Bond Graph Model 12

Figure 2.1. Circuit with Algebraic Loop . 19
Figure 2.2. Simple Electric Circuit . 22
Figure 2.3. Simple RLC Circuit . 25
Figure 2.4. Plot of RLC Input Voltage . 28
Figure 2.5. Plot of Capacitor Voltage vs. Time 29
Figure 2.6. Plot of Capacitor Voltage vs. Frequency 30

Figure 3.1. Bonds with Causality Strokes 33
Figure 3.2. Graphical Representation of a Zero Junction 33
Figure 3.3. Graphical Representation of a One Junction 34
Figure 3.4. Causality of Flow and E�ort Sources 35
Figure 3.5. Causality of Resistors . 35
Figure 3.6. Non-Linear/Arbitrary Resistor 36
Figure 3.7. Derivative Causality of Capacitors and Inductors 37
Figure 3.8. Parallel Resistors Bond Graph 37
Figure 3.9. Parallel Resistors Bond Graph Using the Diamond Theorem . . 37
Figure 3.10. RLC Bond Graph Circuit . 39
Figure 3.11. Cascading Zero Junctions . 46
Figure 3.12. Small Thermal Circuit . 50

Figure 4.1. Vertical and Lateral NPN Transistors 52
Figure 4.2. Electric Circuit Model of NPN Transistor 53
Figure 4.3. IV Curve for NPN Transistor [14] 55
Figure 4.4. Modi�ed Hild BJT Model . 55
Figure 4.5. Modi�ed Hild BJT Model As a Bond Graph 57
Figure 4.6. Simple Diode Circuit Model . 58
Figure 4.7. Ideal Quasi-Saturation BJT Model 62
Figure 4.8. BJT Inheritance Diagram . 64
Figure 4.9. NPN Inverter . 66
Figure 4.10. Transient Response of Inverter Circuit 4.9 67
Figure 4.11. Plot of the Power Generated by injEmitter 68
Figure 4.12. A Second BJT Bond Graph Model 69
Figure 4.13. Power Dissipated by RCE . 70
Figure 4.14. Thermodynamic Bond Graph 70
Figure 4.15. Temperature Rise of Semiconductor (BJT) 71

List of Figures|Continued

8

Figure 5.1. NPN Inverter Test Circuit . 73
Figure 5.2. NPN Inverter Circuit Output (collector voltage) 74
Figure 5.3. PNP Test Circuit . 76
Figure 5.4. PNP Test Circuit Output (emitter voltage) 77
Figure 5.5. The Opamp Model Using Classical Standard Electronic Symbols 78
Figure 5.6. The Opamp Model Using Bond Graph Notation 79
Figure 5.7. The Opamp Model Using Bond Graph Notation 79
Figure 5.8. The Opamp Model Using Only One Modulated Capacitor . . . 80
Figure 5.9. The Opamp Model Using Many Modulated Capacitors 81

9

Chapter 1

Introduction

Jim Williams is an editor of a rather interesting series of books which are �lled with

a bunch of marvelous stories about the history of analog circuit design. Each story is

fable like{ giving the reader a good dose of wisdom. One of my favorite stories revolves

around the Wein Bridge Oscillator Circuits which Hewlett and Packard developed and

then used to build HP's �rst line of waveform synthesizers. These stories, from this

author's perspective, get the reader all pumped up and fantasizing about being an

Analog Circuit Designer. That is, until the reader �nds the list of questions which

the industry asks its new-hires.

VCC

I0

Figure 1.1. Transistor Circuit for New Hire

One of these questions concerns the operation of a transistor. In particular, the

question states: "What happens to Vout as the temperature of the transistor in �gure

1.1 increases?" The interviewer expects that a good analog engineer would give the

answer that the transistor is con�gured as a diode, and that the voltage across the

diode would decrease two millivolts per degree C. Hence, because the current remains

constant, and the voltage decreases, the transistor would dissipate less power. While

this answer apparently satis�es an interviewer, it does not ask the followup question:

"what part of the circuit must now dissipate more power, since the voltage source

10

and current source are constant?" The classical response to this question would be

that the sources are not really ideal, and therefore, they contain a small amount of

resistance; This small resistance must therefore dissipate this power. However, if the

thermodynamic behavior of the circuit is also considered, then electrical power can

also be transformed into heat.

cbcx

dbe

dbc

rbb

dbs

dbs

ibx

injCollector

injEmitter

intCollector

intBase

intEmitter

BASE

COLLECTOR

EMITTER SUBSTRATE

IC

IE

IB

RCInt

REInt

(VERTICAL BJT)

SUBSTRATE
(LATERAL BJT)

IBExt IDBC

IDBE

IDBS

IDBS

Figure 1.2. Transistor Circuit Model

The work contained in this thesis is the conversion of a standard "electronic circuit

based" transistor model into a "bond graph based" model. This bond graph model

not only allows the modeler to determine the model's voltage and current trajectories,

but also its power ow trajectories. While power ow can be derived from the voltage

and current ows in an electrical circuit, a bond graph model uses power ow as a �rst

principle. This �rst principle states that power ow is simply the rate at which energy

ows between localized points in space which have di�erent energy levels; And, energy

in a closed system always remains constant. Because of these principles, a transformer

can be used to allow power to ow between di�erent types of systems such as electrical

11

and thermal. Given these properties of a "bond graph based" transistor model, all of

the questions which were raised in the preceding paragraph can be answered.

1

1

0

0

0

RCE

dbe

dbc

1
T

sdot

idbc Vbc

idbe Vbe

Tsdot

T sdot

IbcVc

Vb Ibc

Ib

Vb

VbIbe

Ibe Ve

Vbe

Vbe

Vbc

Vbc

Vbe
IDBE

IDBC

(recombination losses)

(recombination losses)

Vce

ICLoss

IELoss

Vbc

(idbe − idbc)

(idbe − idbc)

(idbe − idbc)

Figure 1.3. Transistor Bond Graph Model

The major references for this work can be found in [7], [1], and [4]. These sources

develop the Gummel-Poon Transistor model which is described in [9] . The result of

these works is an "electronic circuit based" model of a transistor which is nearly the

same model as the one shown in �gure 1.2. The Gummel-Poon model is used because

it is a very popular model and it is used to predict the trajectories of real transistor

operation in circuit simulation packages such as: SPICE, PSpice, and BBSpice.

While these circuit simulation programs allow the modeler to specify the initial

temperature of the environment, they do not adjust the temperature of the environ-

ment during the simulation. That is, these simulation programs do not modify the

simulation temperature to reect the fact that the circuit's resistors are heating up

and adding heat to the environment. The bond graph model which is developed in

this thesis, on the other hand, lets the environment heat up. Section 5.5 shows the

12

feedback e�ect of the "heated up environment" on the opamp circuit's output.

The bond graph models are developed using the Dymola modeling environment.

This environment is the subject of chapter 2. Chapter number 3 provides a back-

ground of bond graph models. The process of translating the BJT circuit model in

�gure 1.2 to the bond graph model shown in �gure 1.3 is discussed in chapter 4. The

�nal chapter provides a demonstration of the bjt bond graph through the simulation

of a simple inverter circuit, a simple bu�er circuit, and a more complex opamp circuit.

13

Chapter 2

Modeling in Dymola

2.1 Introduction

Computer simulation is an important step in verifying an engineering design. To

this end, all areas of engineering have computer based simulation programs which are

designed to solve domain speci�c problems in an e�cient way.

The design tool that was chosen to create a bond graph model of a BJT, with a

thermal interface, was Dymola. The Dymola environment consists of: the Dymola

Compiler which creates a simulation executable from a model described in the Dymola

modeling language; the Dymo Draw editor which allows the modeler to create and

maintain Dymola models using graphical tools; and Dymo V iew which allows the

modeler to view the results of his or her simulation. These three tools, together, are

collectively referred to as the Dymola modeling environment.

2.2 The Equation Sorter

The Dymola language is not a procedural language. Instead, the Dymola language is

a-causal. Hence, the modeler is relieved from having to directly assign causality to

each variable. As an example, consider the equation for Ohm's Law:

V = I �R (2.1)

Because the Dymola compiler treats this equation as an a-causal statement, the Dy-

mola compiler can symbolically derive a solution for the variable V, I, or R. This

means that the modeler does not have to generate and work with three di�erent

forms of the equation. Instead, the modeler can use a single form of a given funda-

mental relationship and let the Dymola compiler handle the algebraic manipulation

14

if it is required. If Dymola's solution is non-linear, then a non-linear equation solver

will be employed automatically.

The Dymola compiler also uses an equation sorter which means that the modeler

does not have to collate the model's equations by hand. Instead, the Dymola compiler

will read in any random permutation of the model's equations and then sort them

into an ordered sequence of equations. This ordered sequence of equations is then

used by the compiler to generate a list of causal statements that calculates a solution

trajectory for each of the model's unknown variables.

Because the Dymola compiler treats each equation as being an algebraic state-

ment, the modeler must be careful when using equations which have the following

form:

sampletime = sampletime + dt (2.2)

If such a statement was encountered by a C compiler, the C compiler would interpret

it as:

sampletime(t + 1) = sampletime(t) + dt (2.3)

Intuitively, one might think that the Dymola compiler would interpret the proposed

equation as:

dt = 0 (2.4)

because the variable sampletime can be subtracted from each side of the equation.

However, the Dymola compiler derives a di�erent result:

sampletime = sampletime + dt (2.5)

sampletime � (1� 1) = dt

sampletime =
dt

0

The solution which the Dymola compiler obtains, for the variable sampletime, shows

just how disastrous the proposed equation can be if it is used in a model. A simulation

15

of this equation was performed and the simulation resulted in �nding a value of 10300

for the variable sampletime. Hence, the underlying oating point representation had

no problem of storing the dubious result predicted by Dymola's equation. While this

may seem like a trivial example, it demonstrates just how di�cult it may be to debug

a large scale model which has many automatically derived formulas.

If the modeler wants the Dymola compiler to treat the variable sampletime like

a C compiler does, then the following notation must be used:

new(sampletime) = sampletime + dt (2.6)

By formulating the equation with this syntax, the Dymola compiler is informed that

the equation needs to be treated in a special way. In particular, the compiler will

modify equation 2.6 so that it has the form:

newsampletime = sampletime + dt (2.7)

By using an auxiliary variable, the equation sorter is then able to sort this equation

along with the model's other equations.

The variable sampletime is called a discrete state variable because it's new value

is calculated at discrete time intervals. The simulation of this equation found that

sampltime had a value of zero. This is because sampletime had an initial state

of zero. In order for the proposed equation to get reevaluated, the modeler must

use discrete events. The Dymola modeling language supports the concept of discrete

events in a few di�erent ways. The most explicit form is through the use of the when

statement. The following Dymola code fragment shows one way of implementing the

proposed equation in Dymola:

when sampletime < Time then
new(sampletime) = sampletime + dt

endwhen

The body of the when statement is executed when sampletime becomes less than

16

T ime. Hence, the value of sampletime is recalculated every dt seconds. The above

when statement is called a rescheduling event because the event reschedules itself.

Another type of discrete event formulation found in Dymola is:

outputvoltage = if (voltage > 1.0) then 1.0 else voltage

In order to handle this statement properly, the Dymola compiler generates code

which determines when the value for voltage becomes greater than 1:0 and when

the value for voltage becomes less than or equal to 1:0. This type of event is unlike a

scheduled event because it can occur at an arbitrary time. In order to detect this sort

of event, the simulation engine must either use interpolation, or modify the step size

which it is using. The extent to which the simulation engine employs these methods

is based upon the desired accuracy of the simulation.

2.3 Models with State Variables

The Dymola compiler allows the modeler to use di�erential equations to describe

his/her model's dynamic trajectories. Di�erential equations are used in many di�erent

types of models such as: electrical models, chemical models, and thermal models. In

order to use di�erential equations, the modeler must use the following syntax:

i = C � der(v) (2.8)

Equation 2.8 models the ideal electrical Capacitor. The syntax der(v) implicitly

declares v to be a state variable. When the Dymola compiler �nds a state variable, it

will try to calculate the trajectory of the state variable by applying integration. This

is because numerical di�erentiation is inherently unstable [13]. Hence, the Dymola

compiler always tries to solve for the variable v (equation 2.8) by integrating i
C
.

A problem that can be encountered when a model contains state variables is that

the model might have too many state variables. That is, some of the state variables

are linearly dependent on the others. If this situation occurs, the Dymola compiler

17

will issue an error message that the model has too many state variables. The Dymola

compiler has a special command which allows the modeler to simulate a model with

this problem. This problem was not encountered with the models considered in this

thesis. Hence, the solution to this problem is not discussed here.

The integration algorithm which the Dymola simulation engine uses to perform

the integration is not �xed. Therefore, the modeler has the freedom to choose which

integration algorithm is actually used to do the integration. The integration algorithm

library contains the most popular standard integration algorithms. The program's

default integration algorithm was used.

The discrete events, discussed previously, have an e�ect on the way these contin-

uous integration algorithms work. In particular, when a discrete event occurs, the

Dymola simulation engine sees this situation as signaling a new set of initial condi-

tions for the model being simulated. If this procedure is not followed, then the step

size control algorithm must try to capture the discontinuity caused by the discrete

event. Depending on the type of discontinuity introduced by the discrete event, the

process of reducing the step size might not converge on a result that meets a speci�ed

accuracy requirement. Hence, the simulator would be forced to stop the simulation

on these grounds.

2.4 Algebraic Loops

Figure 2.1 shows a simple electrical circuit which has an algebraic loop. That is, a

system of equations (2.9) is needed to determine the values of the variables I1 and

I2 if they are the unknown variables in the system.

�
V 1

�V 2

�
=

�
(R1 +R3) �R3
�R3 (R2 +R3)

� �
I1
I2

�
(2.9)

The Dymola compiler is fully capable of detecting algebraic loops and has two dif-

ferent ways that it can deal with them. If the system of equations is small, then the

18

I2
R3

V2V1
V3

R1 R2

I1

Figure 2.1. Circuit with Algebraic Loop

Dymola compiler can generate a symbolic solution which does not require the system

matrix to be inverted. However, as the number of unknowns increase, the number

of symbolic equations becomes very large. Hence, the Dymola compiler will need to

build a system matrix and then invert it to calculate the necessary unknowns. This

technique is very general, and it even allows the Dymola simulation engine to work

with a system of non-linear equations.

2.5 The Dymola Object Model

The most basic building block in Dymola is the model class and it has the following

syntax in a at text �le:

model class ComponentName

end

The Dymola language allows the modeler to use inheritance when creating model

classes. The following example shows the basic form of inheritance:

model class BaseClass

cut pin1(vin, current)
cut pin2(vout, -current)

end

model class (BaseClass) DerivedClass

end

19

In this example, model class DerivedClass inherits the cuts from themodel class

BaseClass. Every variable declared in the base class is publicly accessible to the

derived class.

2.6 Object Communication

There are 3 di�erent ways that Dymola objects can communicate. The �rst is through

the concept of cuts, the second is through the concept of terminals, and the third is

by using global variables.

The basic declaration for a cut in Dymola is:

model class ComponentName

cut connector(A1,A2, ..An/ T1,T2, ..Tn)
end

Objects with connectors can be connected together with the syntax:

connect object1:connector at object2:connector

so they can communicate through their cuts.

The cut parameters labeled A1 through An are called across variables, while the

cut parameters labeled T1 through Tn are called through variables. When the Dy-

mola compiler encounters a connect statement, it generates the following equations

using the cut's across variables:

object1:A1 = object2:A1 = ::: = objectN:A1 (2.10)

object1:A2 = object2:A2 = ::: = objectN:A2

::: = :::

object1:AN = object2:AN = :: = objectn:AN

20

while it generates the following equations using the cut's through variables:

object1:T1 + object2:T1 + ::: + objectN:T1 = 0 (2.11)

object1:T2 + object2:T2 + ::: + objectN:T2 = 0

::: + :::

object1:Tn + object2:Tn + ::: + objectN:Tn = 0

Figure 2.2 shows a very simple electrical circuit. The across variables for this circuit

are the potentials V 1 and V 2 while the through variables are the currents iR1, iR2,

iR3, iin, and iout. If the resistors in �gure 2.2 have the following Dymola interface:

model class Resistor
cut pin1(vin/ i)
cut pin2(vout/ -i)

end

and the following connection equations were used:

cut InputPin (v1, -iIn)
cut OutputPin (v2, iOut)

connect InputPin at R1:pin1
connect R1:pin1 at R2:pin1
connect R2:pin1 at R3:pin1

connect OutputPin at R1:pin2
connect R1:pin2 at R2:pin2
connect R2:pin2 at R3:pin2

then the Dymola compiler would generate the following Across Equations:

R1:vin = R2:vin = R3:vin = InputP in:V 1 (2.12)

R2:vout = R2:vout = R3:vout = OutputP in:V 2

and the following Through Equations:

�InputP in:iIn +R1:i+R2:i +R3:i = 0 (2.13)

OutputP in:iOut� R1:i� R2:i� R3:i = 0

21

The equations shown in 2.12 and 2.13 are produced automatically by the Dymola

compiler because of the connect statements. Hence, equations 2.12 and 2.13 are

called the model's connection equations.

R1 R2 R3

iR1 iR2 iR3

i out

i in(V1,)

(V2,)

i in

Figure 2.2. Simple Electric Circuit

The modeler may not want to generate all these equations. Hence, there is a special

syntax which can be used to inform the Dymola compiler that it should not generate

certain equations automatically. The following Dymola code fragment illustrates this

concept.

model class component
cut connector(v/.)

end

By using a period in place of a variable name, the Dymola compiler will have one less

variable to solve for. It may be necessary to use the period when you declare a cut to

make that cut compatible with another cut. In Dymola, cuts can only be connected

together if they have the same number of across variables and through variables.

Hence, in the example shown, the period keeps the cut speci�cation compatible with

other cuts that have exactly one across variable and one through variable. If the

cut declaration has many across or through variables, then periods may be used as

place holders.

Another form of communication between Dymola objects is through the use of

terminals. The Dymola language o�ers three ways to specify a terminal:

22

terminal inout
input in
output out

The way a terminal is declared e�ects its causality. If a terminal is declared

with the keyword terminal, then the Dymola compiler can calculate the value of

the terminal variable inside of the object or outside of the object. If a terminal

is declared with the keyword output, then the value of the terminal variable is

calculated within the object. Finally, if a terminal is declared with the keyword

input, then the value of the terminal is calculated outside of the object.

An object's terminals are accessed using dot notation. If the following Dymola

code is used to model a resistor:

model class Resistor
cut(vin,current)
cut(vout, -current)
output voltagedrop
voltagedrop = vin - vout

end

then the output terminal would be accessed using:

Resistor.voltagedrop

The last method of communication between objects is through the use of global

variables. If an object wishes to use a global variable, then it uses the syntax:

external variablename

If an object wishes to provide the value for a global variable, then it uses the

following notation:

internal variablename

23

2.7 Instantiation of Dymola Objects

Each Dymola object can have a set of instantiation parameters. These parameters

are used by the object to customize itself in some way. A typical parameter would

be the speci�c resistance for a speci�c resistor. Parameters are declared using the

following Dymola syntax:

model class Resistor
parameter R = 1

end

When a parameter is declared, it can be given a default value. When an object is

instantiated, with the keyword submodel, the modeler may choose to override the

object's default parameters. The following Dymola code shows how this is done:

submodel Resistor Rload(R=1997)

The modeler may wish to customize existing objects using the object oriented

concept of HAS � A. The following Dymola code shows an implementation of the

HAS � A relationship.

model class OneK
cut pin1(vin/ current)
cut pin2(vout/ -current)
parameter R = 1000
submodel Resistor R(R=R) fOneK HASA Resistorg
R.vin = vin fmake connections between classesg
R.vout = vout
R.current = current

end

In this example, themodel class structure is used to provide a di�erent default value

for the parameter R. This design style is used extensively to create various avors

of NPN and PNP transistors which only di�er in the instantiation parameters.

24

2.8 A Small Demonstration Model

This section presents a small Dymola model using some of the syntax that was

presented in the previous sections.

The circuit that is constructed in this section is shown in �gure 2.3. The circuit

is a simple RLC circuit which consists of a frequency generator, two resistors, a

capacitor, and an inductor. During the simulation, the frequency generator increases

the frequency of its output. Hence, the voltage across the capacitor will identify the

circuit's resonance frequency.

vout

R2:10

C1:633E-9

R1:50,000U0:1

+

-

L1:160E-3

Figure 2.3. Simple RLC Circuit

The base class of the Resistor, Capacitor, Inductor is a class called Component.

The idea is that the input to the component is pin1, while the output of the component

is pin2.

model class Component

cut pin1(voltageIn/current)
cut pin2(voltageOut/-current)
local voltagedrop f local means local variable g
voltagedrop = (voltageIn - voltageOut)

end

The Resistor class is derived from the model class Component. The equation

used for the ideal resistor model is Ohm's law. The Capacitor is also derived from

the model class Component. The equation used for the ideal capacitor is C*der(V)

= i. Finally, the Inductor is also derived from the model class Component. The

equation used for the ideal inductor is L*der(i) = V.

25

model class (Component) Resistor
parameter R

voltagedrop = R*current
end

model class (Component) Capacitor
parameter C
current = C*der(voltagedrop)

end

model class (Component) Inductor
parameter L
voltagedrop = L*der(current)

end

The last model class is called FrequencySweep. The output of this component

is a sinusoid. The frequency of the sinusoid is increased every dt seconds. (see �gure

2.4)

model class FrequencySweep

parameter f0initial = 200
parameter deltaf0 = 100
parameter amplitude = 0.707
parameter updateinterval = 0.1
local nexttime = updateinterval
local sinf0 = f0initial
cut pin1 (voltageIn/.)
cut pin2 (voltageOut/-current)
voltageIn = 0
voltageOut = amplitude*sin(2*3.1459*sinf0*Time)
when (nexttime < Time) then

new(sinf0) = sinf0 + deltaf0
endwhen

end

After the model classes are declared, a model can be created. The Dymola

compiler can only construct one model. The model, however, can use many model

classes. The following Dymola model uses the Resistor, Capacitor, Inductor, and

FrequencySweep model classes to build the desired high pass RCL �lter shown in

�gure 2.3.

model RLCFilter
submodel (FrequencySweep) SRC � >

26

(f0initial=200, deltaf0=100, amplitude=1, updateinterval=0.1)
submodel (L) L1(L=160E-3)
submodel (R) R1(R=50000) R2(R=50)
submodel (C) C1(C=633E-9)
connect R2:pin2 at L1:pin1
connect L1:pin2 at C1:pin1
connect L1:pin2 at R1:pin1
connect R2:pin1 at SRC:pin1
connect SRC:pin2 at C1:pin2
connect C1:pin2 at R1:pin2

end

2.9 Simulating the Model

The Dymola compiler provides the user with a command line interface that allows

the user to control the Dymola compiler. The following is the list of commands that

were used to simulate the RLCFilter model.

enter model rcl�lter.dym
partition
output model
compile
set variable value RLCFilter::C1.e=0.0 finitial state valueg
set variable value RLCFIlter::L1.e=0.0 finitial state valueg
experiment StopTime = 1.0
output experiment
simulate

The command enter model reads in the model. The model is coded in the

Dymola modeling language. The command partition sorts the model's equations

and assigns causality to each of the model's variables. The command output model

outputs a model. The default output language is "C." The compile command causes

Dymola to invoke the gcc compiler to compile the model and link it with its simulation

libraries. The command output experiment creates an experiment �le. This �le

contains information such as: how many communication points are desired, what

integration algorithm should be used, the initial values of the systems variables, etc...

The �nal command, simulate, causes the simulation's executable to be executed.

The products of these commands are:

27

� dsmodel.c - This is the C code which implements the model coded in the Dymola

modeling language. This �le is produced when the output model command

is issued.

� dymosim - This is the simulation executable produced by compiling dsmodel.c

and then linking dsmodel.o with Dymola's simulation library. Dymosim is cre-

ated by the compile command.

� dsres.mat - This �le contains the results of the simulation. This �le is created

by the running the dymosim executable with the simulate command.

� dsin.txt - This �le contains things like the parameter values for the model's

objects, the desired simulation time, the number of data points that should be

saved, the initial values of the model's state variables, etc. The �le is created

with the output experiment command. It is used by the dymosim executable.

Because dsin.txt is a text �le, the modeler may modify it with a text editor.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
RLC Input Voltage vs. Time

Time

Fr
eq

ue
nc

yS
we

ep
 V

olt
ag

e

Figure 2.4. Plot of RLC Input Voltage

After the simulation was �nished, MATLAB was used to analyze the trajectory of

the capacitor voltage as a function of frequency (�gure 2.6).

28

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−2

0

2

4

6

8

10
Time vs. Capacitor Voltage

Time

Ca
pa

cit
or

Vo
lta

ge

Figure 2.5. Plot of Capacitor Voltage vs. Time

2.10 Dymo Draw

Although the above model and model classes can be entered into a text editor

by hand, the Dymola modeling environment o�ers a graphical editor called Dymo

Draw. Dymo Draw allows the modeler to create and maintain large scale models

with a GUI. Each model class can have a custom icon associated with it. This

makes it easier for other modelers to reuse and maintain various parts of a simulation

code. The following Dymola code shows an RC�lter model with graphical layout

information:

model RCFilter f* (-100, -100) (100, 100)g
f* window 0.33 0.22 0.6 0.6 g
submodel (FrequencySweep) FS f* at (-120, -20) (-48, 62) rotation=-90 g
submodel (Resistor) Resistor f* at (-54, 90) (18, 42)g (R=1000)
submodel (Capacitor) C f* at (6, -24) (90, 58) rotation=-90 g
connect FS:pin2 at C:pin2 f* via (-81, -19.7) (52, -19.8)g
connect Resistor:pin2 at C:pin1 f* via (14, 68) (48, 68) (48, 54)g
connect FS:pin1 at Resistor:pin1 f* via (-84, 60) (-84, 68) (-50, 68)g
f* text "V" (82, 36) (122, 8)g
f* line (46, -20) (92, -20)g
f* ellipse (92, -14) (104, -26)g
f* ellipse (92, 74) (104, 62)g
f* line (46, 68) (92, 68)g

end

29

200 300 400 500 600 700 800 900 1000 1100
0

1

2

3

4

5

6

7

8

9

10
Frequency Reponse

Frequency

Ca
pa

cito
r V

olta
ge

Figure 2.6. Plot of Capacitor Voltage vs. Frequency

While the Dymo Draw environment was used to design the BJT model, the

graphical layout information will be striped from the listed source code in this thesis.

2.11 Debugging

The Dymola compiler o�ers a few ways to help debug the model. The hardest way is

to look at the C code. The more useful debugging aid is to ask the Dymola compiler

to print a list of the model's equations. The following options are available:

� output equations

� output sorted equations

� output solved equations

The process of debugging a Dymola model includes both run time errors and compile

time errors. A run time error, such as taking the square root of a negative number,

is handled while the simulation is running.

Compile time errors can be hard to �nd. In particular, a model might not specify

enough equations to uniquely determine a trajectory for each of the model's variables.

If the Dymola compiler encounters this problem, it is capable of telling the modeler

30

which variables it could not derive an equation for. However, the Dymola compiler

is not able to highlight the lines of source code that contain the missing equations

that it needs. The process of correcting this problem begins with the equation list

generated by the Dymola compiler. By reading this list of equations, the modeler is

likely to determine that an equation is missing from amodel class or that a connect

statement is needed to generate missing connection equations.

The opposite problem may also occur. In particular, a model may provide too

many solutions for a given unknown variable. When the Dymola compiler detects

this, it will issue an error message that the system of equations is over determined.

2.12 Additional Information on Dymola

Additional information on the Dymola modeling environment can be found in the

book Continuous System Modeling [4] or the Dymola Homepage [8].

31

Chapter 3

Bond graphs

3.1 Introduction

Bond graphs were introduced by H.M. Paynter in 1960 as a more general way to

graphically represent a system [3, 4]. As an alternative to signal ow graphs and block

diagrams, the bond graph allows the modeler to simultaneously show the topology

and the computational structure of his or her model. The notation is general enough

so that it can be used to represent many di�erent kinds of models. These include

chemical, electrical, thermal, mechanical, and others. [4, 13]

The two primary variables used in bond graph modeling are effort and flow.

Voltage, temperature, force, torque, and pressure are examples of e�ort variables,

while current, entropy ow, velocity, angular velocity, and uid ow are examples of

ow variables [2]. The primary sets of effort and flow variables which are discussed

in this thesis are voltage and current, which are used to model electrical systems, and

temperature and entropy ow which are used to model thermal systems.

The topics found in this chapter include basic bond graph theory and exactly how

bond graph models can be practically implemented on top of the Dymola modeling

language. Additionally, the topic of creating bond graph models which include both

electrical and thermodynamic equations will be discussed.

3.2 Bond Graph Basics

A bond graph is made up of, primarily, four di�erent entities: bonds, 0-junctions,

1-junctions, components, and transformers.

Figure 3.1 shows what a bond looks like. The barb shows the direction of power

ow. Each bond is associated with two variables. Mainly, one effort variable (e) and

32

e

f

e

f

(A) (B)

Figure 3.1. Bonds with Causality Strokes

0

f1 − f2 − f3 = 0

e

f1

f2

f3

ee

e

f1

f2

f3

Figure 3.2. Graphical Representation of a Zero Junction

one flow variable (f). In �gure 3.1, the vertical bars show where the flow variable is

calculated. In �gure 3.1.(A), the flow is calculated at the input to the bond while in

�gure 3.1.(B) the flow is calculated at the output of the bond. These vertical bars

are called causality strokes. By adding a causality stroke to a bond, the bond is able

to communicate the computational structure of the model.

In �gure 3.2, a 0-junction is shown and in �gure 3.3 a 1-junction is shown. Each

of these junctions have three bonds attached to them. The 0-junction sums the ows

that are associated with the attached bonds:

f1 + f2 + f3 + f4 + f5 + ::: + fn = 0 (3.1)

From inspection, equation 3.1 allows for the solution of exactly one flow variable.

Hence, the values of the other ow variables must be known. Therefore, only one

causality stroke is shown at the 0-junction in �gure 3.2.

Unlike the 0-junction, the 1-junction (�gure 3.3) sums the e�orts:

e1 + e2 + e3 + e4 + e5 + :::+ en = 0 (3.2)

Again, by inspection, it can be determined that equation 3.2 allows for the solution

33

1

f

e1 − e2 − e3 = 0

e1

e2

e3

f

e1

e2

e3

f f

Figure 3.3. Graphical Representation of a One Junction

of only one e�ort variable. Hence, the values of the other e�ort variables must be

calculated elsewhere.

Because effort (e) is constant at a 0-junction and flow (f) is constant at a 1-

junction, it can be shown that the presented equations, for both the 0 and the 1

junction, conserve power:

e � (f1 + f2 + f3 + f4 + f5 + ::: + fn) =
nX
i=0

e � fi =
nX
i=0

pi = 0 (3.3)

f � (e1 + e2 + e3 + e4 + e5 + :::+ en =
nX
i=0

f � ei =
nX
i=0

pi = 0

In equation 3.3, pi is simply a partial power.

3.3 Bond Graph Components

A bond graph component is said to provide the model's constitutive equations. There

are several main classes of bond graph components. They include, but are not limited

to: sources, resistors, and energy storage components.

There are two types of sources that are used in bond graph modeling. The �rst

is called an effort source. The effort source is modeled as:

model class SE
cut (e/.)
e = e(t)

end

where e(t) is an arbitrary function of time. The second type of source that is used is

a flow source. The flow source is modeled as:

34

SE
e e

f f

(A) (B)

SF

Figure 3.4. Causality of Flow and E�ort Sources

e e

f f

(A) (B)

R R

Figure 3.5. Causality of Resistors

model class SF
cut (./-f)
f = f(t)

end

To an electrical engineer, a well known e�ort source (SE) is a voltage source

(battery), while a well known ow source (SF) is a direct current source.

A source only o�ers a single equation for either effort or flow. Hence, there is

no choice during causality assignment. The causality strokes for the effort source

and the flow source are shown in �gure 3.4.

The next type of bond graph component is called the resistor. Resistors do not

store energy. Instead, they only dissipate energy. The sample Dymola code, below,

shows a typical linear resistor.

model class R
cut (e/f)
parameter R
e = R*f

end

The causality of a resistor is exible. That is, algebraic manipulation may be

applied to solve for either e or f. Hence, the causality strokes for a resistor are not

�xed. (see �gure 3.5)

35

flow rate(q)

pressure(p)

p=r(q)

Figure 3.6. Non-Linear/Arbitrary Resistor

An important property of a resistor is that the algebraic signs of effort (e) and

flow (f) are identical. That is, the product of e and f is always positive. This is

because resistors always dissipate energy. Figure 3.6 shows an arbitrary non-linear

resistor. In [4], a resistor is de�ned as a device that operates in the �rst and third

quadrants. The plot in �gure 3.6, for example, has this property.

The �nal type of bond graph component is the energy storage element. The two

sub-components found in this class are the capacitor and the inductor. These devices

are modeled as follows:

model class C
cut (e/f)
parameter C
C*der(e) = f

end

model class L
cut (e/f)
parameter L
L*der(f) = e

end

The capacitor and inductor are said to have derivate causality. That is, the

solution trajectories for effort and flow are found through integration. The causality

strokes for a capacitor and an inductor are shown in �gure 3.7.

3.4 The Diamond Theorem

There are several methods to convert circuit diagrams to bond graphs. Two examples

are shown in �gures 3.2 and 3.3. The �rst example shows how Kircho�'s law (KCL)

36

e e

f f

(A) (B)

C L

Figure 3.7. Derivative Causality of Capacitors and Inductors

0

1

1

1

0
V1

iIn iOut

V2

V1

VR1 iR1

iR1iR1

V2

V1

V1

iR3 iR3 iR3
V2

V2
iR2 iR2

iR2VR2

VR3

R1

R2

R3

Figure 3.8. Parallel Resistors Bond Graph

is implemented with a 0-junction. The second example shows how a voltage drop

across a resistor is modeled with a 1-junction.

As an additional example, the circuit shown in �gure 2.2 is shown as a bond graph

in �gure 3.8. By applying the technique shown in �gure 3.3, it can be determined

that three one junctions are needed. Additionally, by applying the technique shown in

�gure 3.2, it can be determined that two 0-junctions are needed (two KCL equations).

This bond graph representation is quite verbose and it can be simpli�ed. Figure 3.9

shows the simpli�ed bond graph.

1

0

iR1 iR3

R1
R2

R3

VI

V V

V1 V2

I I

ViR2

V = V1 − V2

I = iR1 + iR2 + iR3

Figure 3.9. Parallel Resistors Bond Graph Using the Diamond Theorem

37

The transformation process of going from a bond graph that looks like the one

in �gure 3.8 to one that looks like the bond graph shown in 3.9 is formalized by the

Diamond Theorem. This theorem basically recognizes that the voltage drop across

each resistor is the same, so only one 1-junction is needed. The second part of the

theorem is based on equation 3.3. Mainly:

e � (f1 + f2 + f3) = 0 (3.4)

3.5 The Simplectic Gyrator

Before Dymola had a graphical modeling environment (Dymo Draw), Cellier used

the concept of the simpletic gyrator to implement bonds in Dymola. The simpletic

gyrator has a trivial implementation and it is shown below:

model class Bond
cut Bin(e/f)
cut Bout(f/-e)
f This class swaps the roles of e and f so that e can become a through variable
and f can become an across variable. By using two bonds in series, the second bond
undoes the swapping introduced by the �rst bond. Hence, e and f are again across
and through variables at the output of the second bond. g

end

The bond graph component also has a simple implementation:

model class BGComponent
cut B(e/f)
f Components are implicitly zero junctions g

end

To implement a new bond graph component, a new component only needs to inherit

the bond graph interface provided by themodel class BGComponent. The following

Dymola code illustrates this component design technique by showing how an ideal

resistor would be declared:

model class (BGComponent) R
parameter R
e = R*f

end

38

1 0

R1:R=50E3

SE

R2:R=10

C1:C=633E-9

L1:L=160E-3

(A) (B)

0 C1:C=633E-9SE 1 1

L1:L=160E-3

iL1

R2:R=10 1 iR1

R1:R=50E3

eC1 iC1

Figure 3.10. RLC Bond Graph Circuit

Finally, the non-graphical version of Dymola o�ered the modeler the ability to declare

nodes. Nodes could be used like cuts and they acted primarily as private connection

points within a model class or model. In Cellier's work, Cellier used nodes to

implement 0 and 1 junctions. Because the Dymo Draw modeling environment does

not include support for nodes, the following two model classes were designed to

implement 0 and 1 junctions:

model class Zero
cut B(./f)
f = 0

end

model class One
cut B(./e)
e = 0

end

The model classes Zero and One are identical. They are duplicated to make debug-

ging easier. In particular, One junctions are used when you want an equation which

is homogeneous in e and Zero junctions are used when you want an equation which

is homogeneous in f .

With these model class declarations, it is possible to implement the simple RLC

circuit shown in 2.3. This circuit is modeled and shown using bond graph notation in

39

�gure 3.10.(A). It should be noted that the bond graph version of this circuit contains

two additional 1-junctions. These 1-junctions are labeled iC1 and iR1. When the

simpletic gyrator connects a component (an implicit 0-junction) to a 1-junction, it

reverses the roles of the across (e) and through (f) variables. Because of this swap-

ping, the Dymola compiler quietly generates the proper connection equations which

will sum the efforts at the 1-junction instead of the flows. Therefore, a simpletic

gyrator should not be used to connect a component to a 0-junction. Instead, a

component should be attached directly to an adjacent 0-junction so that any swap-

ping is avoided. This is because the Dymola compiler should generate connection

equations which sum the flows at 0-junctions. While the Dymo Draw modeling

environment certainly supports making a direct connection between objects, the re-

sulting bond graph model would not have schematically pure bond graph notation.

Thus, the technique of placing additional 1-junctions between the pairs of adjacent

0-junctions can be used to create a bond graph model which has a canonical form

that conforms to the stipulation that 0 and 1 junctions have to alternate. This tech-

nique should also be applied to adjacent 1-junctions. In particular, a 0-junction

should be inserted so that the junction types alternate properly. The Dymola source

code, below, shows an implementation for all of the circuit parts which are needed to

implement the RLC circuit.

model class (BGComponent) R
parameter R=1.0
e=R*f

end

model class (BGComponent) L
parameter L=0.001
L*der(f) = e

end

model class (BGComponent) C
parameter C=0.001
fracdedt = fracfC

end

40

model class SE
parameter f0initial = 200
parameter deltaf0 = 100
parameter amplitude = 0.707
parameter updateinterval = 0.1
local nexttime = updateinterval
local sinf0 = f0initial
cut B (e/.)
e = amplitude*sin(2*3.14159*sinf0*Time)
when (nexttime < Time) then

new(nexttime) = nexttime + updateinterval
new(sinf0) = sinf0 + deltaf0

endwhen

end

model RLC
submodel (SE) SE � >

(f0initial=200, deltaf0=100, amplitude=1, updateinterval=0.1)
submodel (L) L1 (L=160E-3)
submodel (Bond) b1 b2 b3 b4 b5 b6 b7 b8
submodel (R) R1(R=50000) R2(R=50)
submodel (C) C1 (C=633E-9)
submodel (Zero) uC
submodel (One) iC iR iL
connect SE:B at b1:Bin
connect iL:B at b1:Bout
connect b3:Bin at iL:B
connect L1:B at b3:Bout
connect R2:B at b4:Bout
connect b4:Bin at iL:B
connect iL:B at b2:Bin
connect uC:B at b6:Bin
connect b5:Bout at C1:B
connect iR:B at b8:Bin
connect b8:Bout at R1:B
connect b7:Bout at iR:B
connect iC:B at b5:Bin
connect b6:Bout at iC:B
connect b2:Bout at uC:B
connect uC:B at b7:Bin

end

3.6 A Smarter Simplectic Gyrator

There are several shortcomings to the technique described in section 3.5. The biggest

inadequacy is that the component does not encapsulate the fact that it is a 0-junction.

41

Hence, the modeler is forced to remember this. If the modeler does not alternate

the 0 and 1 junctions correctly, then the modeler has created a model that will

compile ok, but it may not simulate properly. Hence, the design tool did not help the

modeler create a correct model. From experience, the modeler will probably have to

read the generated equation list to �nd out why the simulation produced incorrect

results. An attempt was made to resolve these problems by redesigning the Bond,

BGComponent, Zero, and One model classes. The new implementations for these

model classes are shown below.

model class Bond
cut Bin(ein, jtypein /�n)
cut Bout(eout, jtypeout/-fout)
local jnotsame
jnotsame = (jtypein - jtypeout)**2
eout = �n*jnotsame + ein*(1 - jnotsame)
fout = ein*jnotsame + �n*(1 - jnotsame)

end

model class BGComponent
cut B(e, jtype/ f)
jtype = 0 f jtype = 0 for zero junction g

end

model class ZeroJunction
cut B(., jtype/ f)
jtype = 0 f jtype = 0 for zero junction g
f = 0

end

model class OneJunction
cut B(., jtype/ e)
jtype = 1 f jtype = 1 for one junction g
e = 0

end

The redesigned bond model class had this new feature: the bond was designed to

be aware of the junction types that it was connecting together. This awareness is

accomplished with the following equation in the bond:

jchange = (jtypein� jtypeout) � �2 (3.5)

42

Because the values for jtypein and jtypeout are restricted to having a boolean value

of 0 or 1, the variable jchange can only have the following values:

jtypein jtypeout jchange

0 0 0
0 1 1
1 0 1
1 1 0

Hence, it is easy to see that the variable jchange is also a boolean value which is 1 if

the bond connects together di�erent junction types or 0 if the bond connects together

similar junction types. Therefore, the equation:

�
eout

fout

�
=

�
(1� jnotsame) jnotsame

jnotsame (1� jnotsame)

� �
ein

fin

�
(3.6)

should reduce to either:

eout = ein

fout = fin

if jchange = 0 or,

eout = fin

fout = ein

if jchange = 1.

Unfortunately, this implementation does not work very well. The RLC circuit that

was constructed with the redesigned bond, BGComponent, Zero, and One model

classes is shown in �gure 3.10.(B). Notice that this bond graph model does not have

the property that 0 and 1 junctions alternate. If the Dymola compiler needed to

generate a few additional run-time equations to support this new implementation,

then an engineering trade o� could be made between ease of graphical design versus

a small run time penalty. Instead, this turned out not to be the case. In fact, the

43

Dymola compiler needed to generate a matrix solution to solve an algebraic loop

which consisted of 14 unknown variables. Hence, the second technique of modeling

bond graph models turned out to be a lot more expensive than the �rst technique

(section 3.5) which only produced a series of 15 equations. According to Cellier, this

occurs because the constants are combined after the causality is determined.

3.7 A Replacement for the Simplectic Gyrator

The last attempt at building a bond graph modeling toolbox for Dymola did not use

the simpletic gyrator as a starting point. Instead, a di�erent approach was used.

The simpletic gyrator used both across and through variables. This let Dymola

generate the proper connection equations at each junction. In this last attempt,

no through variables are used. Instead, the redesigned model classes implement

the summations needed explicitly. The new Bond, BGComponent, One, and Zero

classes are shown below:

model class Bond
cut Bin(e,f, signIn)
cut Bout(e,f, signOut)
signIn = -1.0
signOut = 1.0

end

model class BGComponent
cut B(e,f,signf)

end

model class One4Junctions
cut T1(e1, f, signe1)
cut T2(e2, f, signe2)
cut T3(e3, f, signe3)
cut T4(e4, f, signe4)
f sum the e�ort at a one junction g
signe1*e1+signe2*e2+signe3*e3+signe4*e4=0.0

end

model class Zero3Junctions
cut T1 (e, f1, signf1)
cut T2 (e, f2, signf2)

44

cut T3 (e, f3, signf3)
f sum the ows at the zero junction g
signf1*f1 + signf2*f2 + signf3*f3 = 0.0

end

In the new bond model class, the interface is:

cut bin(e,f,signIn)
cut bout(e,f,signOut)

This interface simply directly connects, or shorts, the signals e and f at its two

connecting points. Hence, the bond model class performs no processing on these

signals and leaves them unaltered. However the bond class does set the connection

variables signIn and signOut to �1 and 1 respectively. This is so that the junctions,

which the bond connects, are able to determine the proper polarities of the e�ort and

ow signals. This same polarity information was previously encoded into the cut's

through variable.

This method of implementing bond graph models works well. Because of the

signIn and signOut connection variables, the number of equations generated by the

Dymola compiler was 25. This is only slightly higher than the 15 equations generated

for the solution technique used in section 3.5. Because the 0 and 1 junctions were not

alternated, precious screen real estate was spared. This can be especially important

as themodel ormodel class becomes more complex. However, it is often convenient

to alternate junction types anyway so that ow meters and e�ort meters can be used

to measure ow and e�ort values. A flow meter can be encoded as:

model class (BGComponent) FM
output ow
e = 0
ow = f

end

while an effort meter can be encoded as:

model class (BGComponent) EM
output e�ort
f = 0
e�ort = e

end

45

0
ee

e

f1

f2

f3
0

e

e f4

f5

Figure 3.11. Cascading Zero Junctions

Flow meters are connected to 1-junctions while effort meters are connected to

0-junctions. In the BJT model, both flow meters and effort meters are used

everywhere.

In this section, the goal of encapsulating the 0 and 1 junction information into

both the BGComponent and junction model classes was achieved. Additionally,

because the effort and flow variables are never reversed, the equations that the Dy-

mola compiler generates (for debugging purposes) are homogeneous in either effort

or flow. This makes debugging a lot easier than when using the simpletic gyrator

model to implement bond graph models. The down side to this approach is that you

need to have many di�erent types of 0 and 1 junctions. That is, instead of having a

single 0 or 1 junction which can have an in�nite number of connections, the 0 or 1

junction presented in this section only allows for a discrete number of connections.

However, junctions may be connected together to form larger ones. This is illustrated

in �gure 3.11.

3.8 Thermodynamic bond graphs

Modeling programs like BBSPICE have the ability to predict semiconductor device

operation at di�erent temperatures. In order to do this, the model's equations must

be functions of temperature as well as for voltage and current. The equation for a

resistor, for example, follows Matthiessen's rule [11]:

� = �r + �T (3.7)

46

where the term �r is the resistance that is independent of temperature. This equation

is further written as:

� = �RT [1:0 + �R(T � TR) + :::] (3.8)

In this equation, �RT is the reference resistivity with respect to room temperature

while �R is known as the temperature coe�cient of resistivity. For pure metals, �R

is approximately 0:004
�C

[11]. From this formula, a temperature sensitive resistor model

can be implemented as:

model class (BGComponent) Resistor
bf cut (e,f)
parameter R = 1.0
parameter AREA = 1.0
parameter TR1 = 0.005
parameter TR2 = 0.0005
parameter TNOM = 298.15
e = f*R*(1.0 + TR1*(T-TNOM) + TR2*(T-TNOM)*(T-TNOM))/AREA

end

where the variable T is the temperature of the resistor.

In the SPICE BJT model, the ohmic losses �� which occur in the collector and

the emitter bulk regions�� are modeled with this resistance model.

By making each resistance and capacitance sensitive to the simulation's temper-

ature, a more accurate simulation may be accomplished.

The one thing that this model ignores is the power that the resistor dissipates.

Hence, the temperature during the simulation remains constant since the dissipated

power does not turn into heat which causes the resistor's temperature to increase.

In order to actually allow the device being simulated to heat up, the model must

keep track of the entropy flow which is generated. The resistor model can be adapted

easily:

model class (Resistor) RS
cut (T,sdot)
e*f = sdot*T

end

47

In the modi�ed resistor model (RS), an additional cut was added to the resistor.

Hence, there is one connection for the electrical side and one connection for the

thermal side of the model. The equation:

e � f = sdot � T (3.9)

is used to state that all of the power that is dissipated by the resistor is turned

into thermal energy. The variable T represents temperature while the variable sdot

represents entropy ow. It is important to note that T has the units of Kelvin.

Hence, T is always positive. This makes the entropy ow (sdot) positive too because

the product e � f is always non-negative in resistive elements. The units for entropy

ow are: Joules
�K

. Therefore, the product of T and sdot is power and this is what is

required.

Once the electrical energy is converted into thermal energy, several processes can

occur in the thermal domain. The references [4, 13] show thermal convection, thermal

radiation, and thermal conduction. In this paper, a thermal capacitor is used to store

heat. If multiple thermal capacitors were used along with thermal resistors, then

thermal conduction could be modeled. This was not done.

3.9 The Thermal Capacitor

The thermal capacitor has the following model:

model class (BGComponent) mC
parameter gamma = 1.0
local C
C = gamma/e
C � de

dt
= f

end

The parameter gamma is called the thermal capacitance, and it is calculated using

the following formula:

 = c � � � V (3.10)

48

In equation 3.10, c is the speci�c thermal capacitance for a given material while the

product � � V is the mass of the material since � is the density of the material and

V is the volume of the material.

In [4], Cellier notes that the modulation of the capacitance, in the thermal capac-

itor, is "rather dubious". That is, how can one be sure that the thermal capacitor

always stores energy and never dissipates it? The proof starts with the following

equation:

E(t) =

Z t

0

P (�)d� =

Z t

0

e(�) � f(�)d� (3.11)

By integrating the ow, sdot, the charge can be calculated as:

q(t) =

Z t

0

f(�)d� (3.12)

Hence, equation 3.11 can be rewritten using 3.12 as:

E(t) =

Z t

0

e(�) � _q(�)d� (3.13)

q = C � v (3.14)

E(t) =

Z q

0

q

C
dq =

Z q

0

e(q)dq (3.15)

The modulated capacitor can be shown to always store energy because

dq

dt
= fC(t) = C �

dv

dt
= C � _eC(t) =

eC(t)
� _eC(t) (3.16)

If equation 3.16 is used to �nd the flow of current through the capacitor, then the

capacitors charge can be calculated as:

qC(t) =

Z t

0

fC(�)d� =

Z t

0

_eC
eC(�)

d� = � log(eC) (3.17)

Hence, equation 3.17 shows that the capacitive charge is indeed a nonlinear function

of the e�ort eC , and the capacitive nature of the modulated capacitor has thus been

veri�ed because equation 3.15 remains valid when equation 3.17 is substituted into

it.

49

RS mCSE:1 Amp T
sdot

e

f

Electrical Side Thermal Side

Figure 3.12. Small Thermal Circuit

3.10 A Small Thermal Circuit

Figure 3.12 shows an example of a bond graph model which includes both electrical

and thermal parts.

3.11 Things to be Careful About

There are some important things to remember when the modeler creates model

classes that use inheritance. When a model is entered in by hand, it is the re-

sponsibility of the modeler to handle the name� space of the model's variables. The

models that were shown in this chapter have had lots of bonds and the name-space of

the bonds was simply b1, b2, b3, etc... In the Dymo Draw environment, the manage-

ment of these names is done automatically. The most obvious case of this automatic

management is when the modeler duplicates an object. The name of the new object

is based o� the name of the old object. If there is no inheritance used, then the

management is trivial since a numbering scheme can be used to create unique names

for each object. However, once inheritance is introduced, the task becomes quite

complex. When a model class is read into Dymo Draw, it is possible for Dymo

Draw to �gure out what objects make up that particular model class as well as

what objects make up its base classes. However, the Dymo Draw environment does

not know what objects are declared in model classes which use the current model

class as its own base class. That is, inheritance can be modeled by a singularly

linked list and not a double linked list. Hence, the problem of having a non-unique

50

name space for objects within an inheritance hierarchy can occur because the names

of the objects which are contained in more derived classes may not be accounted for.

If there is not a unique name for each object, then the Dymola compiler will �nd

that certain variables are over-determined because the objects with the same names

generate variables of the same name.

Another important thing to consider when designing model classes with inher-

itance is that the Dymola compiler only allows the modeler to make connections to

a connector at one level in an inheritance hierarchy. Hence, if the simpletic gyrator

implementation is used to implement a bond graph model, then the modeler can

only make connections to any given 0 or 1-junction in one layer of the inheritance

hierarchy. By using the 0 and 1 junction model classes that have multiple distinct

connection points (section 3.7), the modeler may then make connections in multiple

layers of the inheritance hierarchy.

51

Chapter 4

The BJT Bond Graph Model

4.1 Introduction

The objective of this chapter is to convert the transistor model found in [4, 7] into

a bond graph. Additionally, by using the techniques outlined in [7], this bond graph

was specialized to create both vertical, �gure 4.1a, and lateral, �gure 4.1b, NPN and

PNP transistor models.

n+
n−p+

p−

p+ n+ p− n−

n−

Substrate

Emitter Base Collector

Substrate

Emitter Base Collector

Figure 4.1. Vertical and Lateral NPN Transistors

4.2 Corrections to the BJT model

The primary source for the BJT model was [7]. Figure 4.2 shows the circuit model

that is found in [7]. This model includes three resistors, three diodes, and two cur-

rent sources. The resistors, labeled RCInt and REInt, account for the ohmic losses

which occur in the bulk regions of a transistor. The base resistance, rbb, models the

resistance in the base. The diodes, labeled dbc and dbe, model the transistor action

(equation 4.8) of the transistor.

By examining �gure 4.2 and using the equations provided by [7], a small error was

discovered in the model's equations. This error can be found by applying Kircho�'s

52

cbcx

IC0

IB0

dbe

dbc

rbb

dbs

dbs

ibx

intBase

intCollector

intEmitter

BASE

COLLECTOR

EMITTER SUBSTRATESUBSTRATE

RCInt

REint

(LATERAL BJT) (VERTICAL BJT)

IDBC

IDBE

IC

IE

IBExt IB

IDBS

IDBS

Figure 4.2. Electric Circuit Model of NPN Transistor

current law at the base. The summation of the currents at intBase produces the

following result:

�ibase + idbc + idbe + IB0 = 0 (4.1)

In equation 4.1, ibase represents the current contribution from the substrate diode

(dbs) and the base resistance (rbb). Additionally, iDBC is the current JS � exp(
qVBC
kT

)

and iDBE is the current JS �exp(
qVBE
kT

). In order to simplify this equation, the current

IB0 [7] :

IB0 =
iDBC

BFv
+
iDBE

BRv
+ ien + icn � iDBE (4.2)

can be used to obtain the result:

�ibase + iDBC +

�
iDBE

BFv
+
iDBC

BRv
+ ien + icn

�
= 0 (4.3)

Therefore, the value of ibase can be further written as:

ibase = iDBC +

�
iDBE

BFv
+
iDBC

BRv
+ ien + icn

�
(4.4)

53

If iloss is de�ned as:

iloss =

�
iDBE

BFv
+
iDBC

BRv
+ ien + icn

�
(4.5)

then equation 4.4 can be written concisely as:

ibase = iDBC + iloss (4.6)

where iloss is the main current component in the active region (�gure 4.3).

As a sanity check, equation 4.6 can be used to calculate the current gain �0 [5] :

�0 =
IC

ibase
=

IC

iDBC + iloss
(4.7)

where IC has the de�nition found in [9] :

Jn = Js

�
exp

�
qVBC

kT

�
� exp

�
qVBE

kT

��
(4.8)

where the term JS is:

JS =
q2n2iDn

Qn

(4.9)

and ni is the intrinsic concentration of electronics, Dn is the di�usion constant, and

Qn is the space charge.

By inspection, equation 4.7 predicts that a lossless transistor operating in the

reverse-active region (�gure 4.3) would have a current gain of 1.0. However, the

theoretical gain should be �R.

As noted in [12], the transistor model is not simply two diodes, dbc and dbe,

in series. If this were true, then the current predicted by equation 4.8 would only

ow through a transistor operating in the forward-active region (�gure 4.3) if the

reversed-biased diode, dbc, had a large reverse bias voltage applied across it. However,

the base-collector diode (dbc) in a transistor is usually not subjected to such a voltage.

Instead, the base layer is made thin enough so that it allows a large current to

ow through it without the requirement that the base-collector diode operate in its

54

Figure 4.3. IV Curve for NPN Transistor [14]

breakdown region. Hence, the base-collector diode only causes a small leakage current

to ow. The results presented in [7] used a transistor biased in the forward-active

and forward-saturation regions. Hence, this explains why the error discussed in this

section was not detected in [7] since the error was not signi�cant in these regions.

This error is �xed in the bond graph model of the BJT

cbcx

dbe

dbc

rbb

dbs

dbs

ibx

injCollector

injEmitter

intCollector

intBase

intEmitter

BASE

COLLECTOR

EMITTER SUBSTRATE

IC

IE

IB

RCInt

REInt

(VERTICAL BJT)

SUBSTRATE
(LATERAL BJT)

IBExt IDBC

IDBE

IDBS

IDBS

Figure 4.4. Modi�ed Hild BJT Model

While making this correction, the circuit model in �gure 4.2 was slightly modi�ed.

This new circuit model is shown in �gure 4.4. In the revised model, the losses shown

55

in equation 4.5 are included in the dbc and dbe diode models themselves. Finally,

the two current sources are di�erent. The current sources in �gure 4.4 are associated

with the injection currents described by [9]. These currents are:

injCollector = Jsexp

�
qVBE

kT

�
= iDBE (4.10)

which represents the base-emitter diode current that is injected into the collector,

and:

injEmitter = Jsexp

�
qVBC

kT

�
= iDBC (4.11)

which represents the collector-base diode current that is injected into the emitter. If

Kircho�'s law is now applied at intBase in �gure 4.4, the value for ibase is now equal to

iloss, which is expected. Additionally, if Kircho�'s law is applied at either intCollector

or intEmitter, the current calculated is the current predicted by equation 4.8.

4.3 Creating a BJT Bond Graph Model

The bond graph model of the BJT circuit is shown in �gure 4.5. The conversion is

straight forward using the principles outlined in 3.2, 3.3, and 3.8.

4.4 Some of the Dymola Code for the BJT

This section presents some of the Dymola code which was used to model the BJT bond

graph in �gure 4.5. Because of the size of the source code that was needed to glue

these parts together into NPN and PNP transistors, only a high level description of

how these model classes were constructed is given. The full source code, however,

is available on the world wide web at http://www.ece.arizona.edu/~cellier/ms.html.

In [4, 7], the authors use a Dymola coding style which uses a more complex mod-

eling notation than the Dymo Draw modeling tool likes to use. This is because

DymoDraw does not have to worry about carnal tunnel syndrome, and hence, the

56

rbb

dbs

dbs

dbc

dbe

injE

injC

FM:iree

E

S

S

B

C

Lateral

Diffusion

Vertical
Diffusion

0

1

1

1

1

1

1

1

0

00

0

0

REInt

RCInt

IDBC

IDBE

VCInt

VBInt

VEInt

IC

IE

IB

Figure 4.5. Modi�ed Hild BJT Model As a Bond Graph

program uses a verbose, but simple, modeling notation that is easier for the computer

to manipulate.

The most important parts of the transistor model are the diodes. The base class,

which was used by the three di�erent diode model classes is:

model class BGJDiode

output Ic f Capacitor Current g
output Ir f Recombination Current g
output Id f Diode Current g
output I1 f Recombination Current g
output cdep f Depletion Capacitance g
output cdif f Di�usion Capacitance g
output pdiode f Power Dissipation = e*Id g

local power

cut B(e,f,.) fCut for Electrical Side g
cut B1(T,sdot,.) f Cut for Thermal Side g

f the diode and the losses are dissipated as heat g

power = (Id + Ir + I1)*e

f electrical-thermal power balance equation g

57

power = T*sdot

f the current owing through the diode is: g

f = (Ic + Ir + Id + I1)

f The current owing through the capacitors is: g

Ic = der(e)*(cdep + cdif)

pdiode = Id*e
end

The model class BGJDiode is considered to be abstract since it is not usable by

itself. The BGJDiode class accounts for three di�erent current components: Ic is the

current that ows through the di�usion (cdif) and depletion region (cdep) capacitors;

Ir and I1 are the currents which model the loss due to recombination e�ects, and Id

is the non-linear diode current JS � exp(q �
V
kT
) which ows through a forward biased

diode. The diode is modeled with the following circuit model:

p+

n−

D

C
R

Figure 4.6. Simple Diode Circuit Model

The three diode model classes which use this base class are: The substrate

diode BondDBS, the base-collector diode BondDBC, and the base-emitter diode

BondDBE:

model class (BGJDiode) BondDBS
parameter AREA = 1.0
parameter NS = 1.0

local vtns

58

local ise
local denom

terminal idiode

f cut B2 is used to calculate the listed across variables g

cut B2 (T, Vt, GMINDCv, CJSv, MJSv, VJSv, dummy3, dummy4, ISSv, dummy5)

vtns = Vt*NS

ise = ISSv*exp(e/vtns)

idiode = (ise - ISSv)*AREA + GMINDCv*e

Id = idiode
Ir = 0.0 fno lossesg
I1 = 0.0 fno lossesg

cdep = AREA*CJSv/denom
cdif = 0.0

denom = (1.0 - e/VJSv)**MJSv
end

model class (BGJDiode) BondDBC

parameter AREA = 1.0
parameter NR = 1.0
parameter NC = 1.0
parameter XCJC = 1.0

terminal idiode f ideal diode current g

local ise
local vtnr vtnc
local denom
local XCJCv

external qb f base charge citation:?? g

cut B2 (T, Vt, GMINDCv, CJCv, MJCv, VJCv, TRv, BRv, ISv, ISCv)

idiode = (ise - ISv)*AREA + GMINDCv*e

vtnr = Vt*NR
vtnc = Vt*NC

ise = ISv*exp(e/vtnr)

59

Ir = AREA*ISCv*(exp(e/vtnc) - 1.0)
Id = idiode/qb
I1 = idiode/BRv

XCJCv = XCJC

denom = (1.0 - (e - 0.5*Vt*exp((e-VJCv)/Vt))/VJCv)**MJCv
cdep = XCJCv*AREA*CJCv/denom
cdif = TRv* (ise/vtnr + GMINDCv)

end

model class (BGJDiode) BondDBE
parameter AREA = 1.0
parameter NF = 1.0
parameter NE = 1.0

local vtnf vtne
local ise
local denom

external qb dqb

terminal idiode

cut B2(T, Vt, GMINDCv, CJEv, MJEv, VJEv, TFv, BFv, ISv, ISEv)

vtnf = Vt*NF
vtne = Vt*NE

ise = ISv*exp(e/vtnf)

idiode = (ise - ISv)*AREA + GMINDCv*e

Ir = AREA*ISEv*(exp(e/vtne) - 1.0)
Id = idiode/qb
I1 = idiode/BFv

denom = (1.0 - (e - 0.5*Vt*exp((e-VJEv)/Vt))/VJEv)**MJEv

cdep = AREA*CJEv/denom
cdif = TFv*((ise/vtnf + GMINDCv)/qb - Id*dqb)/(qb*qb)

end

The base-collector (dbc) and base-emitter (dbe) diodes act as a non-linear resistor

pair [14]. Figure 4.7 shows the two ideal BJT models which are used to explain this

high level e�ect [14]. Figure 4.7.(A) shows the BJT when the base-emitter diode is

forward-biased and the base-collector diode is reverse-biased. If Ohm's law is used to

60

think about the resistance of a diode, then:

Rdiode =
VDiode

JS � exp(
q�VDiode

k _T
)

(4.12)

and equation 4.12 can be used to imply that the resistance of the base-collector

diode is very large (since the denominator is very small) while the resistance of the

base-emitter diode is much closer to 0 since the denominator of 4.12 becomes larger

due to the application of a forward-bias voltage. In �gure 4.7, this is represented

by labeling the emitter region with an N� and labeling the collector region with

N+. The N+ region indicates that the collector region has characteristics closer to

wire, while the N� indicates that the emitter region has characteristics which are

closer to a resistor. As the voltage across the base-emitter diode is increased, a

high-level e�ect called quasi-saturation becomes dominant. Quasi-saturation is the

condition whereby the base-collector diode becomes forward-biased even though the

external biasing circuitry is applying a reverse-bias. Figure 4.7.(B) represents quasi-

saturation by indicating that the emitter region attains a minimum resistance value

(the denominator of 4.12 is at a maximum) and that the collector region is starting

to look more like a resistor. From a power standpoint, quasi-saturation occurs when

the BJT is operated in the forward-saturation or the reverse-saturation regions of

�gure 4.3. In these regions, the current owing through the transistor is no longer

controlled by the bias voltages VBC and VBE but instead by the power supply and

the external circuitry.

The collector and the emitter ohmic losses (RCInt and REInt) are modeled with the

RS model class BondV R:

model class BGComponentRS

cut B(e,f,.) f Electrical Side g
cut B1(T,sdot,.) f Thermal Side g

parameter TNOM = 298.15

output power

61

N−N+ P N− N+PN+

(A) (B)

Collector CollectorEmitter Emitter

Base Base

Figure 4.7. Ideal Quasi-Saturation BJT Model

local DTemp DTempSq

DTemp = (T - TNOM)
DTempSq = DTemp*DTemp

power = e*f
T*sdot = power

end

model class (BGComponentRS) BondVR

parameter AREA = 1.0
parameter R
parameter TR1
parameter TR2

e = R*(1.0 + TR1*DTemp + TR2*DTempSq)*f/AREA
end

The base resistance (rbb) has a more complex model than either of the ohmic losses

which occur in the collector or the emitter bulk regions:

model class (BGComponentRS) BondRBB

parameter AREA=1.0
parameter RB RBM
parameter TRB1 TRB2
parameter TRM1 TRM2

local RBv RBMv
local r

external qb

62

RBv = RB*(1.0 + TRB1*DTemp + TRB2*DTempSq)
RBMv = RBM*(1.0 + TRM1*DTemp + TRM2*DTempSq)

r = (RBMv + (RBv - RBMv)/qb)/AREA
e = r*f

end

Some of the model classes use an external variable called qb. The variable qb

represents the charge stored in the base and it is used, in part, to model the atness

of the foward-active and reverse-active IV curve shown in �gure 4.3. Qb is also used

to predict the fall o� of this IV curve in the forward-saturation and the reverse-

saturation regions of transistor operation.

The last model class that is needed is the current source which is used for the

injection currents shown in equations 4.11 and 4.10 :

model class (BGComponent) BondMFSource
output power
input ix
f = -ix
power = e*f

end

4.5 The BJT Object Hierarchy

Figure 4.5 shows the inheritance model that was used for the construction of the

BJT bond graphs. The hierarchy contains 3 abstractmodel classes. The BJTBase

model class constructs the bond graph model shown in �gure 4.5. However, this

model class does not include the bonds which connect the 1-junction labeled IDBC to

the 0-junctions labeled VBInt and VCInt. It also does not include the bonds which con-

nect the substrate diode from the substrate material to the 0-junctions labeled V CInt

or V BInt. It should be noted that �gure 4.5 shows two substrate diodes. Only one

diode is needed. The other one is represented by a current source (BondMFSource).

This current source generates no current ow, and hence, it does not contribute to

the model's power ows.

63

NPNBase

NPN

PNPBase

NPN PNP PNP
Vertical Vertical LateralLateral

BJTBase

Figure 4.8. BJT Inheritance Diagram

The second level of the inheritance hierarchy contains theNPNBase and PNPBase

model classes. The NPNBase model class instantiates two sets of bonds. The

�rst set connects the 0-junction V BInt to the 1-junction IDBC and the 1-junction

IDBC to the 0-junction V CInt. Likewise, the second set connects the 0-junction

V BInt to the 1-junction IDBE and the 1-junction IDBE to the 0-junction V EInt.

The end result is that the base-collector diode (dbc) is connected from the base to

collector and the base-emitter diode (dbe) is connected from the base to the emitter.

The PNPBase model, on the other hand, does just the opposite. These classes are

also considered to be abstract since the substrate diode is still not connected.

The last level of the hierarchy constructs four concrete classes. The NPN Vertical

and the PNP Verticalmodel classes connect the substrate diode from the substrate

material to the collector while the NPN Lateral and the PNP Lateralmodel classes

connect the substrate diode from the base to the substrate material.

The �nal step is to create transistor models that have the desired parameters.

Using the Has�A design technique, an NPN Vertical transistor can be created as:

model class (NPNCuts) NPNV2
parameter ISC = 0.1E-6 ISE = 0.0
parameter NC = 2.0 NE = 1.5
parameter BF = 100 BR = 1
parameter VAF = 1.0E+30 VAR = 1.0E+30
parameter IKF = 1.0E+30 IKR = 1.0E+30
parameter NR = 1.0 NF = 1.0 NS = 1.0
parameter IS = 0.11E-9 ISS = 0.11E-9
parameter TR = 1.0E-12 TF = 1.0E-12

64

parameter VJC = 0.75 CJC = 3.6E-12 MJC = 0.33
parameter VJE = 0.75 CJE = 5.7E-12 MJE = 0.33
parameter VJS = 0.75 CJS = 11.0E-12 MJS = 0.33
parameter XCJC = 1.0
parameter RB = 200.0 TRB1 = 0.00 TRB2 = 0.000
parameter RBM = 100.0 TRM1 = 0.00 TRM2 = 0.000
parameter IRB = 0.0
parameter RC = 750.0 TRC1 = 0.00 TRC2 = 0.000
parameter RE = 123.3 TRE1 = 0.00 TRE2 = 0.000
parameter XTI = 3.0 XTB = 0.0
parameter GMINDC= 1.0E-12
parameter TNOM = 298.15
parameter EG = 1.16
parameter AREA = 1.0

submodel (NPNV) NPN
(ISC=ISC, ISE=ISE, NC=NC, NE=NE, BF=BF, BR=BR,
VAF=VAF, VAR=VAR, IKF=IKF, IKR=IKR,
NR=NR, NF=NF, NS=NS,
IS=IS, ISS=ISS, TR=TR, TF=TF,
VJC=VJC, CJC=CJC, MJC=MJC,
VJE=VJE, CJE=CJE, MJE=MJE,
VJS=VJS, CJS=CJS, MJS=MJS,
XCJC=XCJC,
TRB1=TRB1, TRB2=TRB2, RB=RB, RBM=RBM,
TRM1=TRM1, TRM2=TRM2, IRB=IRB,
TRC1=TRC1, TRC2=TRC2, RC=RC,
TRE1=TRE1, TRE2=TRE2, RE=RE,
XTI=XTI, XTB=XTB,
GMINDC=GMINDC, TNOM=TNOM, EG=EG, AREA=AREA)

fmake connections to the actual Vertical BJT :g

connect NPN:S at S
connect NPN:B at B
connect NPN:E at E
connect NPN:C at C
connect NPN:T at T

end

Thismodel class (NPNV 2) provides similar functionality to the SPICE .MODEL

command which allows the modeler to create a library of NPN or PNP transistors

which use the parameter values that the modeler prefers.

65

VIN

Vout

+

−

C

B T

E S

1 0

SE:6

mC

1

1

(A) (B)

RCExt:1000

Rin:5600

Rin:5600

VC:6 Volts

VC:6 Volts

RCExt:1000

VE:0 Volts

VBias:−6 Volts

VBias:−6 Volts

VIn:6.0

RBias:10000
RBias:10000

Figure 4.9. NPN Inverter

4.6 Simulation of a BJT Inverter

The same NPN Inverter circuit that was used in [7] was also used in this thesis.

This was done to take advantage of an established benchmark. The NPN inverter

circuit diagram is shown in �gure 4.9.(A) while the NPN inverter bond graph model

is shown in �gure 4.9.(B). The input to the circuit was a 0 to 6 to 0 volt pulse. A

presentation of the simulation's results are shown in �gures 4.10 and 4.11. The results

of the simulation show that the BJT bond graph model does not provide an intuitive

interpretation of the power ow since the emitter current source generates power.

The amount of power that is generated is shown in �gure 4.11. The formula used to

generate this plot is:

Pdiode = VBC � JS � exp(
qVBC

kT
)� VBE � injEmitter (4.13)

Pdiode = JS � exp(
qVBC

kT
) � (VBC � VBE) (4.14)

Pdiode = �JS � exp(
qVBC

kT
) � (VCB + VBE) (4.15)

By de�ning the collector-emitter voltage as:

VCE = VCB + VBE (4.16)

66

equation 4.15 can be simpli�ed to:

Pdiode = �JS � VCE � exp(
qVBC

kT
) (4.17)

The interpretation of this formula, with reference to �gure 4.11, is that the current

source dissipates more power than the base-collector diode (dbc) supplies to it. Hence,

the straight forward conversion of the circuit shown in 4.9.(A) to the bond graph

model shown in �gure 4.9.(B) is not very bene�cial since it does not provide a bond

graph model which interprets the power ow through a transistor well.

0 100 200 300
2.5

3

3.5

4

4.5

5

5.5

6

6.5
Vc vs Time

Time (nano−seconds)

Vc
 (V

olt
s)

0 100 200 300
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Ic vs Time

Time (nano−seconds)

Ic
(m

illi−
am

ps
)

Figure 4.10. Transient Response of Inverter Circuit 4.9

4.7 A Revised BJT Bond Graph Model

The bond graph model shown in �gure 4.12 uses the fact that the power dissipated

across the transistor is:

Pdiode = (VBE � VBC)(idbe � idbc) (4.18)

where the quantity (idbe � idbc) is the current predicted by equation 4.8. Equation

4.18 can be further simpli�ed by considering the fact that:

VCE = VCB + VBE = VBE � VBC (4.19)

67

0 50 100 150 200 250 300
−100

−80

−60

−40

−20

0

20
Power Supplied by Emitter Source vs Time

Time (nano−seconds)

Po
we

r (
mi

cro
−w

att
s)

Figure 4.11. Plot of the Power Generated by injEmitter

since

VCB = �VBC (4.20)

By using substituting these equations into equation 4.18, the power dissipated by a

transistor can be calculated as:

Pdiode = VCE � (idbe � idbc) (4.21)

The �nal result (equation 4.21) shows that the current that ows through VCE is the

superposition of the currents that ow through a forward-active and a reverse-active

biased NPN transistor circuit.

This result was applied to create the bond graph model shown in �gure 4.12. The

current sources, injCollect and injEmitter, are gone and they are no longer part of

the bond graph BJT model. Instead, a new component was created and it is shown

with the label RCE. RCE is called a word bond graph element because the balance

of power has the form:

Pdiode =
nX
i=0

ei � fi =
nX
i=0

pi = 0 (4.22)

This formulation of power conservation is di�erent than the equations which are used

for 0 or 1-junctions (equation 3.3) since neither effort (e) nor flow (f) is constant.

68

1

1

0

0

0

RCE

dbe

dbc

1
T

sdot

idbc Vbc

idbe Vbe

Tsdot

T sdot

IbcVc

Vb Ibc

Ib

Vb

VbIbe

Ibe Ve

Vbe

Vbe

Vbc

Vbc

Vbe
IDBE

IDBC

(recombination losses)

(recombination losses)

Vce

ICLoss

IELoss

Vbc

(idbe − idbc)

(idbe − idbc)

(idbe − idbc)

Figure 4.12. A Second BJT Bond Graph Model

Hence, equation 4.18 simply represents the sum of four partial powers which are:

Pdiode = VBE � idbe � VBE � idbc � VBC � idbe + VBC � idbc (4.23)

By using the result of the derivation (equation 4.21), equation 4.23 can be interpreted

as the resistance of the transistor (RCE):

RCE =
VCE

idbe � idbc
=
VCE

ICE
(4.24)

Figure 4.13 shows the power which is dissipated by the RCE resistor when the

circuit shown in �gure 4.9.(B) is simulated. Unlike the results that were presented

in �gure 4.11, the power which is dissipated across the transistor is now positive.

Hence, the modi�cation to the bond graph model provided a better way to represent

the power dissipated across the transistor.

69

0 100 200 300
2.5

3

3.5

4

4.5

5

5.5

6

6.5
Vc vs Time

Time (nano−seconds)

Vc
 (V

olts
)

0 100 200 300
0

1

2

3

4

5

6
Power Dissipated by RCE vs Time

Time (nano−seconds)

Po
we

r (m
ill−

wa
tts)

Figure 4.13. Power Dissipated by RCE

4.8 Thermodynamic Results

So far, only the electrical model has been discussed while the thermodynamic model

was not. The thermodynamic part of the model is shown in �gure 4.14. The model is

very simple because all the entropy ows that are generated by the resistive elements

are added up by a 0-junction. The T in �gure 4.14 is the same T that is show in

4.9.(B).

RCE rbb RCInt REIntdbs dbc dbe

0

T

0

T

0

T

0

T

0

T

0

T

0

T

T

sdot1 sdot2 sdot3 sdot4 sdot5 sdot6 sdot7

T

sdot

Figure 4.14. Thermodynamic Bond Graph

In �gure 4.9.(B), the thermodynamic power is connected to a thermodynamic

capacitor (mC).

The value of (section 3.10) can be found through the calculation: c � � � V . A

70

set of values which can be plugged into this equation are found in [15] :

Parameter V alue Description

c 0:714 W�s
g��C

Specific Heat of Silicon

� 2:33 g

cm3 Density of Silicon Material

V (10�m)3 V olume of the Silicon Mass

With these values, � 1:664e�9. The plot of the temperature is shown in �gure

4.15.

0 50 100 150 200 250 300 350 400 450
298.1

298.2

298.3

298.4

298.5

298.6

298.7

298.8

298.9

299
Temperature of BJT vs Time

Time (nano−seconds)

Te
m

pe
ra

tu
re

 (i
n

Ke
lv

in
)

Figure 4.15. Temperature Rise of Semiconductor (BJT)

71

Chapter 5

Results

5.1 Introduction

This section presents the simulation results for the bond graph model of the NPN and

PNP transistors. Three di�erent circuits are presented. The �rst is an NPN inverter

circuit, the second is a PNP bu�er circuit, and the third is an opamp circuit. These

circuits were also used as benchmarks in [7].

The BBSPICE simulation program, which is a circuit modeling program that

was developed from HSPICE by the Burr Brown Corporation, is used to provide a

comparison for the data produced by the bond graph BJT circuits. The BBSPICE

program is able to determine, and then output, the initial values for each state variable

in the model. These initial values were then used to specify the initial values for each

state variable in the Dymola simulation.

All the models in this chapter are simulated for 400 nano-seconds. The input

for all the models is a 180 nano-second pulse which begins 20 nano-seconds into the

simulation. The input has a minimum amplitude of 0 volts and a maximum amplitude

of 6 volts.

5.2 The NPN Inverter

The NPN test circuit which is simulated in this section uses a lateral NPN transistor.

The particular type of circuit which is simulated is an NPN inverter circuit. The

circuit is shown in �gure 5.1.

The output of this circuit's simulation is shown in �gure 5.2. The sub-�gure on

the right shows the power which is dissipated by the resistor RCE in the transistor

72

VIN

Vout

+

−

C

B T

E S

1 0

SE:6

mC

1

1

(A) (B)

RCExt:1000

Rin:5600

Rin:5600

VC:6 Volts

VC:6 Volts

RCExt:1000

VE:0 Volts

VBias:−6 Volts

VBias:−6 Volts

VIn:6.0

RBias:10000
RBias:10000

NPN:Q1

Figure 5.1. NPN Inverter Test Circuit

model. This �gure shows that lobes are produced when the circuit is turned on and

then o�. At these points, the power which is dissipated across the resistance is at a

maximum. The power dissipation between the lobes is zero because the circuit goes

into quasi-saturation and both of the transistor's diodes are conducting currents.

These currents are nearly equal and of opposite sign. Therefore, they cancel each

other out.

Chapter 2 discussed how Dymola uses an equation sorter to produce a set of

equations which determines the values of a set of unknown variables. The Dymola

model for the NPN inverter produces the following set of equations:

Sequence of 60 equations
Sequence of 8 simultaneous equations
Sequence of 37 equations
Sequence of 5 simultaneous equations
Sequence of 127 equations

When Dymola needs to use simultaneous equations, it usually uses matrix inversion to

determine a solution. Therefore, the more simultaneous equations which are needed,

the slower the calculations will be.

73

0 100 200 300
2.5

3

3.5

4

4.5

5

5.5

6

6.5
Vc vs Time

Time (nano−seconds)

Vc
 (V

olt
s)

BondGraph
BBSpice

0 100 200 300
0

1

2

3

4

5

6
Power Dissipated by RCE vs Time

Time (nano−seconds)

Po
we

r (
m

ill−
wa

tts
)

Figure 5.2. NPN Inverter Circuit Output (collector voltage)

Dymola allows the modeler to create Dymola scripts so that he/she can compile

and simulate Dymola models with ease. The following Dymola script was used to

compile and simulate the NPN inverter:

{ don`t make any default connections }

set defaultconnect off

{ read in the model }

enter model npntst.dym

{ set the initial value of each state variable }

variable value NPNL1::NPN::dbc.e=-6.1538

variable value NPNL1::NPN::dbe.e=-0.1538

variable value NPNL1::NPN::dbs.e=-6.1538

variable value bondmc.T=298.15

{ configure the Dymola Compiler as desired }

set eliminate on { eliminate common expressions }

set Evaluate on { evaluate constants }

74

set RemoveAuxiliary on { remove auxiliary equations }

set SolveSymbolic on { solve small systems of equations }

{ symbolically }

set RemoveAuxiliary on

{ generate the model's equations }

partition

{ specify simulation parameters for end time, communication }

{ interval, and the integration algorithm which should be }

{ used }

experiment StopTime = 400.0E-9

experiment OutputInterval = 5.0E-9

experiment Algorithm = Lsodar

output experiment

{ write the C code that implements the model }

output model

{ compile the model }

compile

{ simulate the model }

simulate

This simulation takes approximately 0.22 seconds to execute and this measurement

does not include the time needed to compile the Dymola model.

5.3 The PNP Test Circuit

The second circuit use a vertical PNP transistor. This circuit is similar to the one

simulated in the previous section. The circuit is shown in �gure 5.3.

The PNP circuit always conducts current because the base voltage is below the

collector voltage. Therefore, current ows from the collector into the base because

75

VIN

Vout

+

−

C

B T

E S

1 0

SE:6

mC

1

1

(A) (B)

Rin:5600

Rin:5600

VC:6 Volts

VC:6 Volts

VE:0 Volts

VBias:−6 Volts

VBias:−6 Volts

VIn:6.0

RBias:10000
RBias:10000

PNP:Q1

RCExt:4000

RCExt:4000

Figure 5.3. PNP Test Circuit

the base acts like a ground.

The Dymola model for the PNP circuit produces the following number of equa-

tions:

Sequence of 64 equations
Sequence of 8 simultaneous equations
Sequence of 69 equations
Sequence of 5 simultaneous equations
Sequence of 91 equations

and the simulation executes in approximately 0.15 seconds. This measurement does

not include the time needed to compile the Dymola model.

5.4 The OpAmp Circuit

The opamp model, which is shown in �gures 5.5 and 5.6, has 12 transistors, four

capacitors, and one resistor. Six of these transistors are vertical NPN transistors,

while the other six are lateral PNP transistors.

The simulation of the opamp produces the output shown in �gure 5.7.

76

0 100 200 300
0.5

1

1.5

2

2.5

3

3.5

4

4.5
Vc vs Time

Time (nano−seconds)

Vc
 (V

olt
s)

BondGraph
BBSpice

0 100 200 300
0

0.05

0.1

0.15

0.2

0.25
Power Dissipated by RCE vs Time

Time (nano−seconds)
Po

we
r (

m
ill−

wa
tts

)

Figure 5.4. PNP Test Circuit Output (emitter voltage)

The Dymola model for the opamp produces the following number of equations:

Sequence of 367 equations
Sequence of 10 simultaneous equations
Sequence of 259 equations
Sequence of 14 simultaneous equations
Sequence of 730 equations
Sequence of 10 simultaneous equations
Sequence of 504 equations
Sequence of 10 simultaneous equations
Sequence of 684 equations

The opamp model takes approximately 19.4 seconds to simulate. This measure-

ment does not include the time which is needed to compile the model.

5.5 The Second OpAmp Circuit

The opamp circuit found in section 5.4 is reused here to do a second experiment. In

section 5.4, only one modulated capacitor was used to store the entropy ow produced

by the twelve transistors found in the opamp model. Figure 5.8 shows the output

77

−VI +VI

2

8

6

7

4

12

1

5

3

10 11

9 Vout

VCC

VEE

C2
1p

Q2
AREA=1

1p
Q3
AREA=4

C4

Q4
AREA=1

AREA=1
Q9

Q5
AREA=1

Q8
AREA=1

AREA=2

1p

5p

C3

Q12

AREA=1

AREA=1

AREA=1

Q1
AREA=2

Q11

Q7

Q6

Q10

C1

AREA=1

R1
350

Figure 5.5. The Opamp Model Using Classical Standard Electronic Symbols

of this opamp circuit when the input voltage is �xed at two volts. When compared

to the next plot (�gure 5.9), the opamp's output falls slowly as a function of time.

Figure 5.8 also shows the temperature of the opamp as a function of time.

Figure 5.9 shows what happens when each of the 12 transistors in the opamp

is connected to a unique modulated capacitor. This con�guration allows each of

the transistors to have an independent temperature. The plot for this con�guration

predicts that the output voltage of the opamp rises when compared to �gure 5.8.

The point of �gures 5.8 and 5.9 is that the temperature has a feedback e�ect on

the electrical circuit. This e�ect is currently not modeled by the BBSPICE or SPICE

simulators. Typically, circuit designers try to put transistors as close together as

possible so that they operate at the same temperature.

78

C

E
B

C

E
B

C

E
B

1

0
C

E
B

C

E
B

C

E
B

0

0

C

E
B

0

C

E
B

C

E
B

1

C

E
B0

0

1

0

0

C

E
B

C

E
B

0

0

0

1

0

0

0

0

C

0 0000 0

00000 0

R:350

C4:1p

C2:1p

Q1:A=2
Q2:A=1 Q3:A=4

Q4:A=1

Q5:A=1

Q8:A=1

Q7:A=1Q6:A=1

Q11:A=1

Q12:A=1

Q9:A=1
PNP

NPN

NPN

NPN

PNP PNP

PNPPNP

+VI

+I

−VI

−I
Vout

Iout

NPN

NPN

NPN

PNP

Q10:A=2

VCC

VEE

C3:1p

Figure 5.6. The Opamp Model Using Bond Graph Notation

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Vout Versus Time

Time (nanoseconds)

Vo
ut

 (v
olt

s)

Bondgraph
Dymola

Figure 5.7. The Opamp Model Using Bond Graph Notation

79

0 50 100 150 200 250 300 350 400 450
0.508

0.509

0.51

0.511

0.512

0.513

0.514

Time (nano−seconds)

O
pa

m
p

O
ut

pu
t (

vo
lts

)

Opamp Output vs. Time for One Modulated Capacitor

0 50 100 150 200 250 300 350 400 450
298

300

302

304

306

308

Time (nano−seconds)

O
pa

m
p

T
em

pe
ra

tu
re

Opamp Temperature vs. Time for One Modulated Capacitor

Figure 5.8. The Opamp Model Using Only One Modulated Capacitor

80

0 1 2 3 4 5 6 7 8 9

x 10
−7

295

300

305

310

315

320
Temperature of Each Transistor vs. Time

Time in nano−seconds

T
em

pe
ra

tu
re

0 1 2 3 4 5 6 7 8 9

x 10
−7

0.51

0.5105

0.511

0.5115

0.512

0.5125

0.513

0.5135
Opamp Output vs Time for Multiple Modulated Capacitors

Time in nano−seconds

O
pa

m
p

O
ut

pu
t (

vo
lts

)

Figure 5.9. The Opamp Model Using Many Modulated Capacitors

81

Chapter 6

Conclusion

The goal of this thesis was to look at the analog circuit model of the BJT transistor

from a bond graph perspective. The speci�c circuit model which was presented in

this thesis was taken from Hild [7], Cellier [4], and Antognetti [1]. The bond graph

perspective mandated that this analog circuit had to always dissipate power. This

is because the energy in a closed system has to be constant and because the power

that a circuit dissipates cannot simply disappear. Instead, it has to be transformed

into thermal energy. The mathematical formulation for this concept was provided in

chapter 3, and it is provided here again:

e � f = sdot � T (6.1)

The simulation results of the bond graph BJT model were presented in chapter 5.

These plots showed that the simulated BJT model did indeed always dissipate power

since the power vs. time trajectories were positive semi-de�nite. Additionally, the

plot of Temperature vs. T ime, as shown in chapter 4, is semi-monotonically increas-

ing. Therefore, the plot shows that the power which is represented by T � sdot is

not transformed back into electrical power. Additionally, section 5.5 showed that the

thermal performance of the model a�ects the electrical performance of the model via

feedback.

In order to achieve these results, several things were developed in this thesis. The

�rst was to correct and transform the models found in [4] and [7] into a model which

was suitable for a bond graph. The Dymola modeling language was then used to

create the components which were necessary to support the creation of bond graph

models using the Dymo Draw modeling environment. Using this library, the bond

graph model of a BJT was implemented and then simulated. Using the BJT models

82

which were developed, an Opamp model was created and simulated to see how well

Dymola could handle larger models.

The results of the simulations show that the transient responses which are pre-

dicted by [7] were duplicated, and in some cases, the small corrections that were

made to the BJT model caused the resulting trajectories to match those which are

predicted by BBSPICE.

Finally, because the BJT circuit model was shown to balance power, the models

were shown to be physically justi�able.

While the BBSPICE simulator can perform all of the simulations presented in this

thesis at many times the speed at which Dymola can currently do them, BBSPICE

does not o�er the exibility, nor the extendibility that Dymola does. With a slight

amount of overhead, the bond graph model was extended to not only model the

electrical trajectories of the BJT, but also the thermal trajectories. Unlike BBSPICE,

temperature was a variable of the Dymola model instead of a constant of the model.

Hence, the thermal performance of the model could be fed back into the electrical side

of the model. Finally, the physical soundness of the analog BJT model was veri�ed

by using bond graphs to show that the model does indeed conserve energy.

83

References

[1] Antognetti, Paolo, Massobrio, Giuseppe (1987), Semiconductor Device Modeling

with Spice McGraw-Hill Book Company, New York.

[2] Blundell, Alan (1982), Bond Graphs for Modelling Engineering Systems, Ellis
Horwood Limited, Chichester.

[3] Breedveld, P.C. (1984), Physical Systems Theory In Terms of Bond Graphs,
Doctoral Thesis

[4] Cellier, F. (1991), Continuous System Modeling, Springer-Verlag New York Inc.,
New York, New York.

[5] Ghausi, Mohammed S. (1985), Electronic Devices and Circuits: Discrete and

Integrated, Holt, Rinehart and Winston, New York.

[6] Greeneich, Edwin W. (1997), Analog Integrated Circuits, Chapman & Hall, New
York.

[7] Hild, D.R. (1993), Circuit Modeling in Dymola, Dept. of Electr. & Comp. Engr.,
University of Arizona, Tucson, AZ.

[8] Homepage for Dymola, Dynasim AB Coorporation, http://www.dynasim.se.

[9] Muller, Richard S., Kamins, Theodore I. (1986), Device Electronics for Integrated
Circuits, John Wiley & Sons, New York.

[10] Navon, David H. (1986), Semiconductor Microdevices and Materials, Holt, Rine-
hart, and Winston, New York.

[11] Neelakanta, Perambur S. (1995), Electromagnetic Materials, CRC Press, Boca
Raton.

[12] The Bureau of Naval Personnel (1973), Basic Electronics Dover Publications
New York, Inc., New York.

[13] Thoma, Jean U. (1990), Simulation by Bondgraphs, Introduction to a Graphical

Method, Springer-Verlag, New York.

[14] Warner, R.M. Jr., Grung, B.L. (1983), Transistors John Wiley & Sons, New
York.

[15] Whitaker, Jerry C., Editor-in-Chief (1996), The Electronics Handbook, Technical
Press, Beaverton, Oregon.

