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choose the positive root, ẋ will also be positive, and x will keep growing.
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Let us look at the DAE:
x − ẋ2 = 0

Converting to ODE form, we obtain:

ẋ = ±√
x

� We notice that the ODE has only a real-valued solution as long as the initial
value of x is positive. This constraint exists implicitly also in the DAE
formulation, but it is not directly visible.

� Yet, the problem is worse, because we don’t know which root to choose. If we
choose the positive root, ẋ will also be positive, and x will keep growing.
However, if we choose the negative root, ẋ is negative, and x will decrease.

� Even worse, it could be that we should choose the positive root during some
period of time, and the negative root during another. Thus, at any moment in
time, we obtain a potential bifurcation in the solution depending on whether we
choose the positive or the negative root.
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Does the solvability issue cause a real dilemma?

� Physics does not provide us with unsolvable riddles.

� Saying that a DAE is unsolvable is equivalent to saying that the phenomenon
described by it is “defying causality” in the sense that the outcome of an
experiment is non-deterministic, which in turn is almost equivalent to saying
that the phenomenon is non-physical.

� Thus, if a DAE model contains solvability issues, this simply means that the
DAE does not capture the physical phenomenon that it is supposed to describe
in its full complexity. Some information is missing.

� Unfortunately, solvability issues are encountered frequently in DAE models
derived from object-oriented descriptions of physical systems, and consequently,
we need to deal with the consequences.
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describable by the following set of
DAEs:

m · dvx

dt
= −F · x

�

m · dvy

dt
= m · g − F · y

�
dx

dt
= vx

dy

dt
= vy

x2 + y2 = �2

� Since x , y , vx , and vy are known state variables, the last equation in the set is a
constraint equation.
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this leaves Eq.(3) as a new constraint
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We apply the Pantelides algorithm once:

m · dvx

dt
= −F · x

�

m · dvy

dt
= m · g − F · y

�

dx = vx

dy

dt
= vy

x2 + y2 = �2

2 · x · dx + 2 · y · dy

dt
= 0

� We decided to let go of the integrator for x,

thus the six unknowns are dvx
dt

,
dvy

dt
, dx , dy

dt
,

F , and x.

� Eq.(5) is no longer a constraint equation, as
it can be solved for the new unknown x.
Eq.(6) can be solved for the unknown dx , but
this leaves Eq.(3) as a new constraint
equation.

� Evidently, the original problem was an
index-3 problem, and the Pantelides
algorithm needs to be applied a second time.
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introduced in the differentiation,
more equations needed to be
differentiated.
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�
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= 0

dx2 + x · d2x +
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+ y · d2y = 0

� As additional variables were
introduced in the differentiation,
more equations needed to be
differentiated.

� We now ended up with nine
equations in the nine unknowns dvx ,

x , F ,
dvy

dt
, dx , vx , d2x , dy

dt
, and d2y .

� Finally, another integrator had to be
eliminated. We let go of the one
defining the variable vx .

� This set of equations represents an
index-1 DAE problem that can be
causalized using the tearing method.
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Eq.( )
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� After causalizing all of the equations that we could using the Tarjan algorithm,
we ended up with an algebraic loop in five equations and five unknowns.

� Since we have a choice, we decided to select a tearing variable that appears
linearly in the residual equation.

� We chose d2x as our tearing variable, and the last equation as the residual
equation.

� This selection allowed us to causalize all of the remaining equations.
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Causalizing the remaining equations:

Eq.(5)

Eq.(6)

Eq.(9)

Eq.(4)

Eq.(1)

Eq.(7)

Eq.(2)

Eq.(3)

Res.Eq.

dvx
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Causalizing the remaining equations:

Eq.(5)

Eq.(6)

Eq.(9)

Eq.(4)

Eq.(1)

Eq.(7)

Eq.(2)

Eq.(3)

Res.Eq.

dvx

dvy/dt

dx

d2x

dy/dt

vx

F

x

d2y

dy

dt
= vy

x = ±
√

�2 − y2

dx = − y

x
· dy

dt

dvx = d2x

F = −m · � · dvx

x
dvy

dt
= g − F · y

m · �
d2y =

dvy

dt

d2x = −
dx2 +

(
dy
dt

)2
+ y · d2y

x

vx = dx
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� The solution is formally correct. Our remaining state variables are y and vy , and
the resulting equations are thus perfectly causal except for the algebraic loop in
the single tearing variable d2x that needs to be solved by Newton iteration.

� Yet, we are encountering new problems.

� First, the simulation will blow up with a division by zero, as soon as x = 0.

� Second, we seem to have a solvability issue, as we don’t know which of the two
roots to choose.
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in time, making the pendulum jump instantaneously from one side to the other.



Numerical Simulation of Dynamic Systems XVII

Differential Algebraic Equations IV

The Solvability Issue

The Solvability Issue X

� Physics doesn’t have a “solvability issue” with the pendulum. The problem is
purely mathematical. Somehow, our model does not contain full information.

� Full information had not even been available in the original DAE model, but the
conversion to ODE form using the Pantelides and Tarjan algorithms has made
the problem worse.

� In the DAE formulation, x had been a state variable, and consequently, the DAE
model “knew” that the pendulum cannot jump. From the ODE model, that
knowledge is no longer evident. The variable x could change its sign at any point
in time, making the pendulum jump instantaneously from one side to the other.

� From our physical understanding, we know that we must choose the positive
root for x > 0 and the negative root for x < 0. We also know that the pendulum
will swing through x = 0, i.e., as we pass through zero, we need to switch to the
other root. Yet, our mathematical description doesn’t contain that information.
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� One way to get around the solvability issue in
the case of the pendulum system is to select
another set of state variables.

� A far better choice of state variables would
have been the angle ϕ and the angular
velocity ϕ̇.

� Unfortunately, these variables don’t appear in
our previous model at all.

� For this reason, it may be best to reformulate
the original DAE model.

m · dvx

dt
= −F · x

�

m · dvy

dt
= m · g − F · y

�
dx

dt
= vx

dy

dt
= vy

x = � · sin(ϕ)

y = � · cos(ϕ)
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Let us apply the Pantelides algorithm to our modified DAE system:

m · dvx

dt
= −F · x

�

m · dvy

dt
= m · g − F · y

�
dx

dt
= vx

dy = vy

x = � · sin(ϕ)

dx

dt
= � · cos(ϕ) · dϕ

y = � · cos(ϕ)

dy = −� · sin(ϕ) · dϕ
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Let us apply the Pantelides algorithm to our modified DAE system:

m · dvx

dt
= −F · x

�

m · dvy

dt
= m · g − F · y

�
dx

dt
= vx

dy = vy

x = � · sin(ϕ)

dx

dt
= � · cos(ϕ) · dϕ

y = � · cos(ϕ)

dy = −� · sin(ϕ) · dϕ

� The Pantelides algorithm solves Eq.(5) in the
new set for ϕ. Consequently, Eq.(7) becomes
our constraint equation that needs to be
differentiated. It lets go of the integrator
defining variable y in the process, i.e., dy

dt
is

renamed into dy , and y is now an additional
unknown.
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Let us apply the Pantelides algorithm to our modified DAE system:

m · dvx

dt
= −F · x

�

m · dvy

dt
= m · g − F · y

�
dx

dt
= vx

dy = vy

x = � · sin(ϕ)

dx

dt
= � · cos(ϕ) · dϕ

y = � · cos(ϕ)

dy = −� · sin(ϕ) · dϕ

� The Pantelides algorithm solves Eq.(5) in the
new set for ϕ. Consequently, Eq.(7) becomes
our constraint equation that needs to be
differentiated. It lets go of the integrator
defining variable y in the process, i.e., dy

dt
is

renamed into dy , and y is now an additional
unknown.

� A new variable dϕ is introduced in the
differentiation. Consequently, the equation
defining ϕ, i.e., Eq.(5), needs to be
differentiated as well.
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� The Pantelides algorithm has no reason to
select ϕ as a state variable on its own. It
needs help.

� In Dymola, we can offer a choice of preferred
state variables to the Pantelides algorithm.

� If we tell the algorithm that we wish to have
ϕ as a state variable, a true state derivative,
dϕ
dt

, will be generated in the process of
differentiation in place of the algebraic
variable, dϕ.

� Consequently, another integrator needs to be
removed, which will be the one defining
variable x.

m · dvx

dt
= −F · x

�

m · dvy

dt
= m · g − F · y

�

dx = vx

dy = vy

x = � · sin(ϕ)

dx = � · cos(ϕ) · dϕ

dt

y = � · cos(ϕ)

dy = −� · sin(ϕ) · dϕ

dt
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� The resulting DAE system is still of
index 2.

� Thus, the Pantelides algorithm must
be applied once more.

� This time around, we shall tell
Dymola to treat ϕ̇ as an additional
preferred state.

� We end up with 12 equations in 12
unknowns.

m · dvx = − F · x

�

m · dvy = m · g − F · y

�

dx = vx

d2x = dvx

dy = vy

d2y = dvy

x = � · sin(ϕ)

dx = � · cos(ϕ) · dϕ

dt

d2x = � · cos(ϕ) · d2ϕ

dt2
− � · sin(ϕ) ·

(
dϕ

dt

)2

y = � · cos(ϕ)

dy = −� · sin(ϕ) · dϕ

dt

d2y = −� · sin(ϕ) · d2ϕ

dt2
− � · cos(ϕ) ·

(
dϕ

dt

)2
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Dymola performs one more type of symbolic preprocessing. It eliminates all trivial
equations of the type a = b. Thus, we end up with eight equations in eight unknowns:

m · dvx = −F · x
�

m · dvy = m · g − F · y
�

x = � · sin(ϕ)

vx = � · cos(ϕ) · dϕ

dt

dvx = � · cos(ϕ) · d2ϕ

dt2
− � · sin(ϕ) ·

(
dϕ

dt

)2

y = � · cos(ϕ)

vy = −� · sin(ϕ) · dϕ

dt

dvy = −� · sin(ϕ) · d2ϕ

dt2
− � · cos(ϕ) ·

(
dϕ

dt

)2
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Dymola performs one more type of symbolic preprocessing. It eliminates all trivial
equations of the type a = b. Thus, we end up with eight equations in eight unknowns:

m · dvx = −F · x
�

m · dvy = m · g − F · y
�

x = � · sin(ϕ)

vx = � · cos(ϕ) · dϕ

dt

dvx = � · cos(ϕ) · d2ϕ

dt2
− � · sin(ϕ) ·

(
dϕ

dt

)2

y = � · cos(ϕ)

vy = −� · sin(ϕ) · dϕ

dt

dvy = −� · sin(ϕ) · d2ϕ

dt2
− � · cos(ϕ) ·

(
dϕ

dt

)2

vy

dvx

d2phi/dt2

y

vx

F

x

dvy

Eq.( )

Eq.( )

Eq.(1)

Eq.(2)

Eq.( )

Eq.(3)

Eq.(4)

Eq.( )
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We choose a tearing variable and a residual equation and finish causalization:

vy

dvx

d2phi/dt2

y

vx

F

x

dvy

Res.Eq.

Eq.(7)

Eq.(1)

Eq.(2)

Eq.(5)

Eq.(3)

Eq.(4)

Eq.(6)
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We choose a tearing variable and a residual equation and finish causalization:

vy

dvx

d2phi/dt2

y

vx

F

x

dvy

Res.Eq.

Eq.(7)

Eq.(1)

Eq.(2)

Eq.(5)

Eq.(3)

Eq.(4)

Eq.(6)

x = � · sin(ϕ)

vx = � · cos(ϕ) · dϕ

dt

y = � · cos(ϕ)

vy = −� · sin(ϕ) · dϕ

dt

d2ϕ

dt2
=

dvx

� · cos(ϕ)
+

sin(ϕ)

cos(ϕ)
·
(

dϕ

dt

)2

dvy = −� · sin(ϕ) · d2ϕ

dt2
− � · cos(ϕ) ·

(
dϕ

dt

)2

F =
m · g · �

y
− m · � · dvy

y

dvx = −F · x
m · �
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� Our remaining state variables are ϕ and dϕ
dt

, as desired, and the resulting
equations are causal except for one algebraic loop in the single tearing variable
dvx that needs to be solved by Newton iteration.

� The former solvability issue is gone. We no longer have to choose between a
positive and a negative root.

� Unfortunately, we are still facing a singularity issue. This is not a structural
singularity, but rather a dynamic singularity.

� The simulation will work fine, as long as we don’t let the pendulum swing
beyond the horizontal position.

� Unfortunately, as y = 0, the simulation will once again blow up with a division
by zero.
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� Many non-linear mechanical multi-body systems exhibit dynamic singularity
issues when their dynamics are described in an object-oriented fashion by a set
of DAEs.

� Dymola recognizes potential singularity issues during compilation. In such cases,
Dymola will keep additional state variables in the set of equations and perform a
dynamic state selection, i.e., Dymola will switch dynamically to another set of
state variables on the fly as the current set approaches one of its singular points.
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Conclusions

� In the previous three presentations on converting sets of DAEs to equivalent sets
of ODEs, we concentrated for simplicity on linear electric circuits as examples,
as these models are easily understandable.

� However, some issues don’t show up in linear systems. In this final presentation
on the symbolic preprocessing of DAE systems, we focused on precisely those
remaining issues that can occur only in non-linear systems: the solvability issue
and the dynamic singularity issue.

� Dymola recognizes solvability issues during compilation. To this end, Dymola
avoids whenever possible to make use of state variables whose derivatives are to
be solved from an equation, in which they appear in a non-linear form. Similarly,
Dymola avoids to select tearing variables that appear in their residual equations
in a non-linear form.
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� Dymola also recognizes dynamic singularity issues during compilation. To this
end, Dymola avoids whenever possible to make use of state variables whose
derivatives are multiplied by other variables in the equations from which they
need to be solved, as these other variables would invariably turn up in the
denominator after the symbolic manipulation. Similarly, Dymola avoids to select
tearing variables that are multiplied by other variables in their residual
equations. When this cannot be avoided, Dymola keeps additional state
variables and/or additional tearing variables in the set of iteration variables.
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