
Policy Monitoring in
First-order Temporal Logic

David Basin
ETH Zurich

Joint work with Felix Klaedtke and Samuel Müller

Modern problems

What do these topics have to do with each other?
Are they theoretically interesting?

2

Modern problems

What do these topics have to do with each other?

Are they theoretically interesting?

2

Modern problems

What do these topics have to do with each other?
Are they theoretically interesting?

2

Technical issues
Processes to monitor and control proceses

� Controlling access
My medical data should only be accessible to my care givers.

� Controlling usage
... and then used for intended purpose, e.g., improving healthcare

� Corporate governance and regulatory compliance
Implement controls to reduce risks.

Core problems are theoretically interesting!

3

Technical issues
Processes to monitor and control proceses

� Controlling access
My medical data should only be accessible to my care givers.

� Controlling usage
... and then used for intended purpose, e.g., improving healthcare

� Corporate governance and regulatory compliance
Implement controls to reduce risks.

Core problems are theoretically interesting!

3

Focus

policies

-

?

during runtime
or audit

events Compliance
Checker

� Setting: security and compliance
• Business processes
• Policies regulating data and processes

� Monitoring (6= enforcement)

� General solution using metric first-order temporal logic and an
associated monitoring algorithm

� Practical experience across a wide range of application areas

4

Focus

policies

-

?

during runtime
or audit

events Compliance
Checker

� Setting: security and compliance
• Business processes
• Policies regulating data and processes

� Monitoring (6= enforcement)

� General solution using metric first-order temporal logic and an
associated monitoring algorithm

� Practical experience across a wide range of application areas

4

Focus

policies

-

?

during runtime
or audit

events Compliance
Checker

� Setting: security and compliance
• Business processes
• Policies regulating data and processes

� Monitoring (6= enforcement)

� General solution using metric first-order temporal logic and an
associated monitoring algorithm

� Practical experience across a wide range of application areas

4

Focus

policies

-

?

during runtime
or audit

events Compliance
Checker

� Setting: security and compliance
• Business processes
• Policies regulating data and processes

� Monitoring (6= enforcement)

� General solution using metric first-order temporal logic and an
associated monitoring algorithm

� Practical experience across a wide range of application areas

4

Road map

1. An example

2. Metric First-order Temporal Logic

3. Formalization examples

4. Monitoring

5. Performance

6. Conclusion

5

Road map

1. An example

2. Metric First-order Temporal Logic

3. Formalization examples

4. Monitoring

5. Performance

6. Conclusion

5

Example

� Consider a financial or research institute:
• Employees write and publish reports
• Reports may contain confidential data

� Report approval policy

1. Reports must be approved before they are published.
2. Approvals must happen at most 10 days before publication.
3. The employees’ managers must approve the reports.

� IT system logs events

2010-03-03 publish report (Charlie, #234)

2010-03-04 archive report (Alice, #104)
...
...
...

...

...

...
2010-03-09 approve report (Alice, #248)

2010-03-13 publish report (Bob, #248)
...
...
...

...

...

...

� Are executions policy conform?

6

Policy elements

1. Reports must be approved before they are published.

2. Approvals must happen at most 10 days before publication.

3. The employees’ managers must approve the reports.

7

Policy elements

1. Reports must be approved before they are published.

2. Approvals must happen at most 10 days before publication.

3. The employees’ managers must approve the reports.

Subjects
� reports and employees

� unbounded over time

qqqqqqq qqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqqq qqqqqqqqqqq qqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqq qqqqqq qqq
qqqqqqq qqqqqqq qqqqqqqq

r rrrrrrrrrrr rrrrrrrrrrr rrrrrrrrrrr rrrrrrrrrrr
r rrrrrrrrrr rrrrrrrrrr rrrrrrrrr rrrrrrrrr rrrrrrrr rrrrrrrr

7

Policy elements

1. Reports must be approved before they are published.

2. Approvals must happen at most 10 days before publication.

3. The employees’ managers must approve the reports.

Subjects
� reports and employees

� unbounded over time

Temporal aspects
� qualitative: before and always

� quantitative: at most 10 days

qqqqqq qqqqqqq qqqqqqqq qqqqqqqqq qqqqqqqqqq qqqqqqqqqqq qqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqq qqqqqqq qqqqqq qqqqqq qq
qqqqqq qqqqqqq qqqqqqq

rrrrrrrrr rrrr rrrrr rrrrr rrrrrr rrrrrrr
r rrrrrrrrrrrr rrrrrrrrrrrr rrrrrrrrrrrrr rrrrrrrrrrrrr rrrrrrrrrrrrrr rrrrrrrrrrrrrrr

7

Policy elements

1. Reports must be approved before they are published.

2. Approvals must happen at most 10 days before publication.

3. The employees’ managers must approve the reports.

Subjects
� reports and employees

� unbounded over time

Event predicates
� approving and publishing a report

� happen at a time point

� logged with time stamps

qqqqqqqq qqqqqqqq qqqqqqqqq qqqqqqqqqq qqqqqqqqqqq qqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqq qqqqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqq qqqqqqq qqqqqq qqqqq qqq
qqqqqqq qqqqqqq qqqqqqqq qqqqqqqq qqqqqqqqq qqqqqqqqqq

r rrrrrrrrrrr rrrrrrrrrr rrrrrrrr rrrrrrr rrrrrr rrrrrr r rrrrrrrrrrrrr rrrrrrrrrrrr rrrrrrrrrrrr rrrrrrrrrrrrr

Temporal aspects
� qualitative: before and always

� quantitative: at most 10 days

7

Policy elements

1. Reports must be approved before they are published.

2. Approvals must happen at most 10 days before publication.

3. The employees’ managers must approve the reports.

Subjects
� reports and employees

� unbounded over time

Event predicates
� approving and publishing a report

� happen at a time point

� logged with time stamps

Temporal aspects
� qualitative: before and always

� quantitative: at most 10 days

State predicates
� being someone’s manager

� have a duration

qqqqqq qqqqqqq qqqqqqqqq qqqqqqqqqq qqqqqqqqqqq qqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqq qqqqqqqqqqq qqqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqq qqqqqqq qqqqqq qqqqqqq qqq
qqqqqq qqqqqq qqqqqq qqqqqqq

r rrrrrrrr rrrrrrrrr rrrrrrrrrr rrrrrrrrrrr rrrrrrrrrrrr rrrrrrrrrrrrr rrrrrrrrrrrrrr rrrrrrrrrrrrrrr rrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrr

7

These aspects can be formalized using MFOTL

���∀e.∀r . publish report(e, r)→
�[0,11) ∃m.manager(m, e) ∧ approve report(m, r)

� First-order for expressing relations on system data.

� Metric temporal operators for expressing qualitative and
quantitative timing information.

� Can represent both event and state predicates.

Let’s look at this, starting with the temporal operators.

8

Standard linear temporal operators

� Primitive temporal operators

###φ -
φ

φU ψ
-

φ φ φ ψ

 φ -
φ

φ S ψ
-

ψ φ φ φ

� Derived temporal operators

♦♦♦ψ
true U ψ

-
ψ

���ψ
¬♦♦♦¬ψ

-
ψ ψ ψ ψ . . .

�ψ
true S ψ

-
ψ

�ψ
¬�¬ψ

-
ψ ψ ψ ψ ψ

� Metric operators add timing constraints

�[3,17) ψ
-τ0 τ1 τ2 τ3 τ4 τ5

ψ︸ ︷︷ ︸
3≤τ4−τ1<17

9

Metric temporal operators

� Primitive temporal operators

###φ -
φ

φU ψ
-

φ φ φ ψ

 φ -
φ

φ S ψ
-

ψ φ φ φ

� Derived temporal operators

♦♦♦ψ
true U ψ

-
ψ

���ψ
¬♦♦♦¬ψ

-
ψ ψ ψ ψ . . .

�ψ
true S ψ

-
ψ

�ψ
¬�¬ψ

-
ψ ψ ψ ψ ψ

� Metric operators add timing constraints

�[3,17) ψ
-τ0 τ1 τ2 τ3 τ4 τ5

ψ︸ ︷︷ ︸
3≤τ4−τ1<17 9

Policy revisited and simplified

1. Reports must be approved before they are published.
2. Approvals must happen at most 10 days before publication.
3. The employees’ managers must approve the reports.

� Publishing and approving events are logged with time stamps

2010-03-04 archive report (Alice, #104)
...
...
...

...

...

...
2010-03-09 approve report (Alice, #248)

...

...

...
...
...
...

2010-03-13 approve report (Alice, #234)

2010-03-13 publish report (Bob, #248)
...
...
...

...

...

...

- time
.2010–03–04

archive report(Alice,#104)

2010–03–09

approve report(Alice,#248)

2010–03–13

approve report(Alice,#234)

publish report(Bob,#248)

� Simplified policy in MFOTL:

���∀e.∀r . publish report(e, r)→ �[0,11) ∃m. approve report(m, r)

10

Policy revisited

1. Reports must be approved before they are published.
2. Approvals must happen at most 10 days before publication.
3. The employees’ managers must approve the reports.

� Being someone’s manager is a state property, with a duration
• Also log events that mark start and end points

- time
.2010–01–01

managerstart(Alice,Charlie)

managerstart(Alice,Bob)

2010–15–01

managerend(Alice,Charlie)

• State predicate as syntactic sugar

manager(m, e) := ¬managerend(m, e) S managerstart(m, e)

� Policy in MFOTL
���∀e.∀r . publish report(e, r)→

�[0,11) ∃m.manager(m, e) ∧ approve report(m, r)

11

Road map

1. An example

2. Metric First-order Temporal Logic

First-order variant of [Koymans 1990], [Alur/Henzinger 1990], ...

3. Formalization examples

4. Monitoring

5. Performance

6. Conclusion

12

Syntax

� Let I be the set of nonempty intervals over N. Notation:

[b, b′) := {a ∈ N | b ≤ a < b′}, for b ∈ N, b′ ∈ N ∪ {∞}, and b < b′

� A signature S is a tuple (C ,R).

C is a finite set of constant symbols and R is a finite set of
predicates, each with an associated arity.

� (MFOTL) formulas over a signature S and set of variables V

φ ::= t1≈ t2 | t1≺ t2 | r(t1, . . . , tn) | ¬φ | φ∧φ | ∃x .φ |
 Iφ |###Iφ | φ SI φ | φUI φ ,

where ti range over V ∪ C and r , x , I range over R, V , I.

� Sugar like �I φ :=¬(true SI ¬φ) and �I φ :=¬(true UI ¬φ).
Non-metric operators like �φ := �[0,∞) φ

13

Semantics (I)

-
τ0

D0

τ1

D1

τ2

D2

τ3

D3 . . .

. . .

� A temporal (first-order) structure (over S) is a pair (D̄, τ̄).

• Sequence of first-order structures D̄ = (D0,D1, . . .).

Constant domains and rigid interpretation of constant symbols.

• Sequence τ̄ = (τ0, τ1, . . .) of time stamps, τi ∈ N
Monotonically increasing and progresses.

� (D̄, τ̄ , v , i) |= φ denotes MFOTL satisfaction

(D̄, τ̄) is a temporal structure, v a valuation, i ∈ N, and φ a formula.

� Standard semantics for first-order fragment.

14

Semantics (II)
Metric temporal operators

A temporal formula is only satisfied at time point i if it is satisfied
within the bounds given by interval I , relative to time stamp τi .

(D̄, τ̄ , v , i) |=###I φ iff τi+1 − τi ∈ I and (D̄, τ̄ , v , i + 1) |= φ

(D̄, τ̄ , v , i) |= I φ iff i > 0, τi − τi−1 ∈ I , and (D̄, τ̄ , v , i − 1) |= φ

(D̄, τ̄ , v , i) |= φUI ψ iff for some j ≥ i , τj − τi ∈ I , (D̄, τ̄ , v , j) |= ψ,
and (D̄, τ̄ , v , k) |= φ, for all k ∈ [i , j)

(D̄, τ̄ , v , i) |= φ SI ψ iff for some j ≤ i , τi − τj ∈ I , (D̄, τ̄ , v , j) |= ψ,
and (D̄, τ̄ , v , k) |= φ, for all k ∈ [j + 1, i + 1)

Example

φ S[3,17) ψ -τ0 τ1 τ2 τ3 τ4 τ5

ψ φ φ φ︸ ︷︷ ︸
3≤ τ4−τ1 < 17

15

Road map

1. An example

2. Metric First-order Temporal Logic

3. Formalization examples

Examples illustrate typical compliance policies and their
formalization in MFOTL.

4. Monitoring

5. Performance

6. Conclusion

16

Transaction requirements (I)
Banking compliance à la Bank Secrecy or USA Patriot Act

� Requirements for monitoring, authorizing, and reporting large or
suspicious transactions.

� Signature
• Constant th: a threshold “large” amount.

• trans(c , t, a): customer c carries out transaction t involving fund
amount a.

• auth(e, t): employee e authorizes t.

• report(t): t is reported.

� In general, signature determined by monitoring requirements and
events that system actually provides.

17

Transaction requirements (II)

� Transactions t of any customers c must be reported within 5 days
when the transferred amount a exceeds a given threshold th:

�∀c . ∀t.∀a. trans(c , t, a) ∧ th ≺ a→ ♦[0,6) report(t)

� Transactions exceeding the threshold must be authorized by an
employee (e.g., 2-20 days) before execution:

�∀c . ∀t.∀a. trans(c , t, a) ∧ th ≺ a→ �[2,21) ∃e. auth(e, t)

� Each transaction t of a customer c , who has within the last 30 days
been involved in a suspicious transaction t ′, must be reported as
suspicious within 2 days:

�∀t. ∀c . ∀a. trans(c , t, a)∧(
�[0,31) ∃t ′.∃a′. trans(c, t ′, a′) ∧ ♦[0,6) report(t ′)

)
→

♦[0,3) report(t)

18

Data retention requirements (I)
Health Insurance Portability and Accountability Act (HIPAA)

� Regulations address storage of health records.
• Limited storage of sensitive records in the hospital’s central database.

• However, archiving is required for auditing and liability reasons.

� Signature
• Constants db and archive: hospital’s central and archive databases.

• hospitalize(p) and release(p): patient p is hospitalized and released.

• delete(d , p): patient p’s health record is deleted from the database d .

• copy(d , d ′, p): patient p’s health record is copied from database d to d ′.

19

Data retention requirements (II)

� A patient’s health record must be deleted from hospital’s database
within 14 days after the patient is released from the hospital, unless
the patient is readmitted to the hospital within this time window:

�∀p. release(p)→ ♦[0,15) delete(db, p) ∨ hospitalize(p) .

� A health record is archived at most 7 days before it is deleted from
the central database:

�∀p. delete(db, p)→ �[0,8) copy(db, archive, p)

� Archived data must be stored for at least 8 years:

�∀p. copy(db, archive, p)→ �[0,9) ¬delete(archive, p)

N.B. timestamps must distinguish time units, e.g., days versus years

20

Separation of duty requirements
Principle for preventing fraud and errors

� Requires involvement of multiple users in critical processes.

� Usually formulated on top of Role-Based Access Control.
• Users are assigned to roles, which have associated permissions.

• SoD constraints specified in terms of mutually exclusive roles.

� Signature (formalizing both RBAC and SoD)
• U, R, A, O, and S represent the sets of users, roles, actions, objects,

and sessions associated with a (RBAC) system

• UA(u, r): user u assigned role r

• PA(r , a, o): role r can carry out action a on object o

• roles(s, r): role r is active in session s

• X (r , r ′): roles r and r ′ are mutually exclusive

• exec(s, a, o): action a is executed on object o in session s

21

Separation of duty requirements
Principle for preventing fraud and errors

� Requires involvement of multiple users in critical processes.

� Usually formulated on top of Role-Based Access Control.
• Users are assigned to roles, which have associated permissions.

• SoD constraints specified in terms of mutually exclusive roles.

� Signature (formalizing both RBAC and SoD)
• U, R, A, O, and S represent the sets of users, roles, actions, objects,

and sessions associated with a (RBAC) system

• UA(u, r): user u assigned role r

• PA(r , a, o): role r can carry out action a on object o

• roles(s, r): role r is active in session s

• X (r , r ′): roles r and r ′ are mutually exclusive

• exec(s, a, o): action a is executed on object o in session s

21

Formalizing SoD requirements

� Static SoD: no user may be assigned to two mutually exlusive roles

�∀r . ∀r ′.X (r , r ′)→ ¬∃u.UA(u, r) ∧ UA(u, r ′)

� Simple dynamic SoD: a user may be assigned to two exclusive roles
provided he does not activate them both in the same session.

�∀r .∀r ′.X (r , r ′) →
¬∃s. roles(s, r) ∧

(
¬Send(s) S roles(s, r ′)

)
.

(Assumptions: session always associated with one user who remains
constant over the session’s lifetime, X is symmetric, ...)

22

SoD requirements (cont.)

� Object-based SoD: a user may be assigned to two exclusive roles
and also activate them both in the same session, but he must not
carry out actions on the same object through both.

�∀r . ∀r ′.X (r , r ′) →
¬∃s. ∃o.

(
∃a. exec(s, a, o)∧

roles(s, r) ∧ PA(r , a, o)
)
∧(

¬Send(s) S ∃a′. exec(s, a′, o)∧
roles(s, r ′) ∧ PA(r ′, a′, o)

)

23

Experience with formalization in practice
Limitations and problems

� Precision must precede formalization.
• “... must be securely stored.”

� Not all requirements can be enforced by monitoring system traces.
• “Information systems must be protected from intrusion.”

• “A contingency plan should be in place for responding to emergencies.”

� Large gap between high-level policies and system information.
• “Data should be use for statistical purposes only.”

• “... must be deleted ...”

Overcoming these problems is nontrivial.
MFOTL is a good fit afterwards.

24

Road map

1. An example

2. Metric First-order Temporal Logic

3. Formalization examples

4. Monitoring

5. Performance

6. Conclusion

25

Monitoring objective

� Given a policy φ (example from transaction processing)

�∀t.∀c .∀a. trans(c , t, a) ∧
(
�[0,31) ∃t ′.∃a′. trans(c , t ′, a′) ∧ ♦[0,6) report(t ′)

)
→ ♦[0,3) report(t)

and a timed temporal structure prefix given by system events or logs

- time
τ0

D0

transD0 tID cID
t34 Bob
t23 Bob

reportD0 tID cID
t13 Alice

τ1

D1

transD1 tID cID
t22 Eve

reportD1 tID cID
t34 Bob
t18 Joe

. . .

. . . τi

Di

transDi tID cID
t11 Bob
t41 Mallory

reportDi tID cID

. . .

. . .

� monitor should report all policy violations

Main ideas sketched here. Definitions and proofs in proceedings and
FSTTCS 2008 paper and technical report.

26

Restrictions
Not all policies and log files can be effectively monitored

-
τ0

D0

τ1

D1

τ2

D2

τ3

D3 . . .

. . .
|= φ

� MFOTL formula φ of form �φ′, where φ′ is bounded.
• For all occurrences of operator U[c,d) in φ′, d 6=∞
• So φ describes a safety property

� Structures D̄ = D0,D1, . . . Options:

1. Each structure Di is automatic

Roughly, each Di representable by a collection of finite automata.

See, e.g. [Khoussainov & Nerode 1995] and [Blumensath & Grädel 2004]

2. or all relations in Di are finite (Special case of 1.)

27

Preprocessing: negation and rewriting

� Input formula φ

�∀t.∀c .∀a. trans(c , t, a) ∧
(
�[0,31) ∃t ′.∃a′. trans(c , t ′, a′) ∧ ♦[0,6) report(t ′)

)
→ ♦[0,3) report(t)

� Negate, rewrite, and drop outermost ♦ and ∃ quantifiers, yielding ψ

♦∃t.∃c .∃a. trans(c , t, a) ∧
(
�[0,31) ∃t ′.∃a′. trans(c , t ′, a′) ∧ ♦[0,6) report(t ′)

)
∧ ���[0,3) ¬report(t)

� To monitor: for each i ∈ N, determine elements satisfying ψ:{
ā | (D̄, τ̄ , v [x̄/ā], i) |= ψ

}
These are suspicious transactions that were not reported.

28

Preprocessing: negation and rewriting

� Input formula φ

�∀t.∀c .∀a. trans(c , t, a) ∧
(
�[0,31) ∃t ′.∃a′. trans(c , t ′, a′) ∧ ♦[0,6) report(t ′)

)
→ ♦[0,3) report(t)

� Negate, rewrite, and drop outermost ♦ and ∃ quantifiers, yielding ψ

♦∃t.∃c .∃a. trans(c , t, a) ∧
(
�[0,31) ∃t ′.∃a′. trans(c , t ′, a′) ∧ ♦[0,6) report(t ′)

)
∧ ���[0,3) ¬report(t)

� To monitor: for each i ∈ N, determine elements satisfying ψ:{
ā | (D̄, τ̄ , v [x̄/ā], i) |= ψ

}
These are suspicious transactions that were not reported.

28

Preprocessing: negation and rewriting

� Input formula φ

�∀t.∀c .∀a. trans(c , t, a) ∧
(
�[0,31) ∃t ′.∃a′. trans(c , t ′, a′) ∧ ♦[0,6) report(t ′)

)
→ ♦[0,3) report(t)

� Negate, rewrite, and drop outermost ♦ and ∃ quantifiers, yielding ψ

♦∃t.∃c .∃a. trans(c , t, a) ∧
(
�[0,31) ∃t ′.∃a′. trans(c , t ′, a′) ∧ ♦[0,6) report(t ′)

)
∧ ���[0,3) ¬report(t)

� To monitor: for each i ∈ N, determine elements satisfying ψ:{
ā | (D̄, τ̄ , v [x̄/ā], i) |= ψ

}
These are suspicious transactions that were not reported.

28

Preprocessing: reduction to first-order queries

� For each temporal subformula α in ψ, introduce an auxiliary predicate pα

trans(c , t, a) ∧
(
�[0,31) ∃t ′.∃a′. trans(c , t ′, a′) ∧ ♦[0,6) report(t ′)︸ ︷︷ ︸

pα1︸ ︷︷ ︸
pα3

)
∧���[0,3) ¬report(t)︸ ︷︷ ︸

pα2

� Replace each α by a corresponding pα, yielding first-order formula ψ̂

trans(c , t, a) ∧ pα3(c) ∧ pα2(t)

� Monitoring: for each i ∈ N
• Extend Di to D̂i , where for each temporal subformula α

pD̂i
α ={ā | (D̄, τ̄ , v [x̄/ā], i) |= α}

• Query extended first-order structure D̂i{
ā | (D̂i , v [x̄/ā]) |= ψ̂

}
Next: how to incrementally build the auxiliary relations pD̂i

α for each D̂i

29

Preprocessing: reduction to first-order queries

� For each temporal subformula α in ψ, introduce an auxiliary predicate pα

trans(c , t, a) ∧
(
�[0,31) ∃t ′.∃a′. trans(c , t ′, a′) ∧ ♦[0,6) report(t ′)︸ ︷︷ ︸

pα1︸ ︷︷ ︸
pα3

)
∧���[0,3) ¬report(t)︸ ︷︷ ︸

pα2

� Replace each α by a corresponding pα, yielding first-order formula ψ̂

trans(c , t, a) ∧ pα3(c) ∧ pα2(t)

� Monitoring: for each i ∈ N
• Extend Di to D̂i , where for each temporal subformula α

pD̂i
α ={ā | (D̄, τ̄ , v [x̄/ā], i) |= α}

• Query extended first-order structure D̂i{
ā | (D̂i , v [x̄/ā]) |= ψ̂

}
Next: how to incrementally build the auxiliary relations pD̂i

α for each D̂i

29

Preprocessing: reduction to first-order queries

� For each temporal subformula α in ψ, introduce an auxiliary predicate pα

trans(c , t, a) ∧
(
�[0,31) ∃t ′.∃a′. trans(c , t ′, a′) ∧ ♦[0,6) report(t ′)︸ ︷︷ ︸

pα1︸ ︷︷ ︸
pα3

)
∧���[0,3) ¬report(t)︸ ︷︷ ︸

pα2

� Replace each α by a corresponding pα, yielding first-order formula ψ̂

trans(c , t, a) ∧ pα3(c) ∧ pα2(t)

� Monitoring: for each i ∈ N
• Extend Di to D̂i , where for each temporal subformula α

pD̂i
α ={ā | (D̄, τ̄ , v [x̄/ā], i) |= α}

• Query extended first-order structure D̂i{
ā | (D̂i , v [x̄/ā]) |= ψ̂

}

Next: how to incrementally build the auxiliary relations pD̂i
α for each D̂i

29

Preprocessing: reduction to first-order queries

� For each temporal subformula α in ψ, introduce an auxiliary predicate pα

trans(c , t, a) ∧
(
�[0,31) ∃t ′.∃a′. trans(c , t ′, a′) ∧ ♦[0,6) report(t ′)︸ ︷︷ ︸

pα1︸ ︷︷ ︸
pα3

)
∧���[0,3) ¬report(t)︸ ︷︷ ︸

pα2

� Replace each α by a corresponding pα, yielding first-order formula ψ̂

trans(c , t, a) ∧ pα3(c) ∧ pα2(t)

� Monitoring: for each i ∈ N
• Extend Di to D̂i , where for each temporal subformula α

pD̂i
α ={ā | (D̄, τ̄ , v [x̄/ā], i) |= α}

• Query extended first-order structure D̂i{
ā | (D̂i , v [x̄/ā]) |= ψ̂

}
Next: how to incrementally build the auxiliary relations pD̂i

α for each D̂i
29

Building the auxiliary relations

- time
τ0

D0 . . .

. . . τi−1

Di−1

τi

Di

D̂i

τi+1

Di+1 . . .

. . .

� Build auxiliary relations pD̂i
α in D̂i inductively over α’s formula structure

and using relations from both previous and subsequent structures.

� Example for α := I β

pD̂i
α :=

{
β̂D̂i−1 if i > 0 and τi − τi−1 ∈ I

∅ otherwise

� Example for α :=###I β

pD̂i
α :=

{
β̂D̂i+1 if τi+1 − τi ∈ I

∅ otherwise

Depends on the relations in Di+1 and auxiliary relations in D̂i+1.

Hence monitor instantiates pD̂i
α with a delay of at least one time step.

30

Construction for S[b,b′)
First consider the non-metric case α := β S γ

� For α := β S γ, construction reflects logical equivalence

α↔ γ ∨ (β ∧ α)

� Let i ≥ 0 and assume that β and γ have the same free variables.
Then

pD̂i
α := γ̂D̂i ∪

{
∅ if i = 0

β̂D̂i ∩ p
D̂i−1
α if i > 0

� Uses relations just for subformulas and (here) past time points.

31

Construction for S[b,b′)
Metric case for α := β S[b,b′) γ

pD̂i
α := γ̂D̂i ∪

{
∅ if i = 0

β̂D̂i ∩ p
D̂i−1
α if i > 0

Recall (non-metric):

� Define additional auxiliary relation rα for each Di by

r D̂i
α := (γ̂D̂i × {0}) ∪

(
∅ if i = 0˘

(ā, y)
˛̨
ā ∈ β̂D̂i , y < b′, and (ā, y + τi−1 − τi) ∈ r

D̂i−1
α

¯
if i > 0

� If (ā, y) ∈ r D̂i
α , the age y expresses how long ago ā satisfies α, independent

of lower bound b

• If ā satisfies γ at i : add ā to r D̂i
α with age 0.

• If i > 0, y < b′ (not too old), and ā satisfies β at i : add updated tuples

by increasing the age of (ā, y) ∈ r
D̂i−1
α by τi − τi−1.

� Obtain pD̂i
α from r D̂i

α by checking if age y of a tuple in r D̂i
α is old enough:

pD̂i
α :=

{
ā
∣∣ (ā, y) ∈ r D̂i

α , for some y ≥ b
}

32

Monitor M(ψ)

1: i ← 0 % lookahead index in sequence (D0, τ0), (D1, τ1), . . .
2: q ← 0 % index of next query evaluation in sequence (D0, τ0), (D1, τ1), . . .
3: Q ←

˘`
α, 0,waitfor(α)

´ ˛̨
α temporal subformula of ψ

¯
4: loop
5: Carry over constants and relations of Di to D̂i .
6: for all (α, j , ∅) ∈ Q do % can build relation for α in D̂j

7: Build auxiliary relations for α in D̂j .
8: Discard auxiliary relations for α in D̂j−1 if j − 1 ≥ 0.

9: Discard relations p
D̂j

δ , where δ is a temporal subformula of α.

10: while all relations p
D̂q
α are built for α ∈ tsub(ψ) do

11: Output violations ψ̂D̂q and time stamp τq.
12: Discard structure D̂q−1 if q > 0.
13: q ← q + 1
14: Q ←

˘`
α, i + 1,waitfor(α)

´ ˛̨
α temporal subformula of ψ

¯
∪˘`

α, j ,
S
α′∈update(S,τi+1−τi)

waitfor(α′)
´ ˛̨

(α, j , S) ∈ Q and S 6= ∅
¯

15: i ← i + 1 % process next element in input sequence (Di+1, τi+1)
16: end loop

Counters q (query) and i (lookahead) into input sequence

33

Monitor M(ψ)

1: i ← 0 % lookahead index in sequence (D0, τ0), (D1, τ1), . . .
2: q ← 0 % index of next query evaluation in sequence (D0, τ0), (D1, τ1), . . .
3: Q ←

˘`
α, 0,waitfor(α)

´ ˛̨
α temporal subformula of ψ

¯
4: loop
5: Carry over constants and relations of Di to D̂i .
6: for all (α, j , ∅) ∈ Q do % can build relation for α in D̂j

7: Build auxiliary relations for α in D̂j .
8: Discard auxiliary relations for α in D̂j−1 if j − 1 ≥ 0.

9: Discard relations p
D̂j

δ , where δ is a temporal subformula of α.

10: while all relations p
D̂q
α are built for α ∈ tsub(ψ) do

11: Output violations ψ̂D̂q and time stamp τq.
12: Discard structure D̂q−1 if q > 0.
13: q ← q + 1
14: Q ←

˘`
α, i + 1,waitfor(α)

´ ˛̨
α temporal subformula of ψ

¯
∪˘`

α, j ,
S
α′∈update(S,τi+1−τi)

waitfor(α′)
´ ˛̨

(α, j , S) ∈ Q and S 6= ∅
¯

15: i ← i + 1 % process next element in input sequence (Di+1, τi+1)
16: end loop

Q maintains list of unevaluated subformula (α, j , S) for past time points

33

Monitor M(ψ)

1: i ← 0 % lookahead index in sequence (D0, τ0), (D1, τ1), . . .
2: q ← 0 % index of next query evaluation in sequence (D0, τ0), (D1, τ1), . . .
3: Q ←

˘`
α, 0,waitfor(α)

´ ˛̨
α temporal subformula of ψ

¯
4: loop
5: Carry over constants and relations of Di to D̂i .
6: for all (α, j , ∅) ∈ Q do % can build relation for α in D̂j

7: Build auxiliary relations for α in D̂j .
8: Discard auxiliary relations for α in D̂j−1 if j − 1 ≥ 0.

9: Discard relations p
D̂j

δ , where δ is a temporal subformula of α.

10: while all relations p
D̂q
α are built for α ∈ tsub(ψ) do

11: Output violations ψ̂D̂q and time stamp τq.
12: Discard structure D̂q−1 if q > 0.
13: q ← q + 1
14: Q ←

˘`
α, i + 1,waitfor(α)

´ ˛̨
α temporal subformula of ψ

¯
∪˘`

α, j ,
S
α′∈update(S,τi+1−τi)

waitfor(α′)
´ ˛̨

(α, j , S) ∈ Q and S 6= ∅
¯

15: i ← i + 1 % process next element in input sequence (Di+1, τi+1)
16: end loop

Given relations for all temporal subformulas, output policy violations

33

Recall restriction on structures

1. Each structure is automatic.

2. or all relations in every structure are finite. (Special case of 1)

Let’s look briefly at each case.

34

Monitoring with automatic structures

� For simplicity, fix structure’s domain as N. Encode tuples in Nk as words,
using a binary representation and convolution.

(5, 3) ; (101, 11) ; (1, 1)(0, 1)(1,#)

Thus each relation corresponds to languages.

� An automatic structure is one where the structure’s domain, equality, and
all relations are representable as regular languages.

� Theorem: If the structures Di are automatic then so are the D̂i , i.e. all
auxiliary relations can be represented by automata. So can ψ̂D̂i .

Proof uses closure properties of regular languages and that basic arithmetic
relations are first-order definable in (N, <) and thus regular. E.g.

{(x , y) ∈ N2 | y = x + 1} and {(x , y) ∈ N2 | x + d ≤ y} for any d ∈ N

35

Monitoring with finite relations

� If all relations are finite, databases are an efficient alternative to
automata for implementing monitoring algorithm.

� Problem: must restrict negation and quantification. Consider:

r(x) ∧###¬q(x)

At each i ∈ N, monitor stores pDi

###¬q(x), which is infinite.

� Solution: rewrite to equivalent formula where stored relations finite.

r(x) ∧###
(
¬q(x) ∧ r(x)

)
� Solution is a heuristic: rewrite into a syntactically defined form.

N.B.: related to problem of (temporal subformula) domain independence.

[Fagin 1982], [Chomicki 1995], [Chomicki, Toman, Böhlen, 2001]

36

Monitoring with finite relations

� If all relations are finite, databases are an efficient alternative to
automata for implementing monitoring algorithm.

� Problem: must restrict negation and quantification. Consider:

r(x) ∧###¬q(x)

At each i ∈ N, monitor stores pDi

###¬q(x), which is infinite.

� Solution: rewrite to equivalent formula where stored relations finite.

r(x) ∧###
(
¬q(x) ∧ r(x)

)
� Solution is a heuristic: rewrite into a syntactically defined form.

N.B.: related to problem of (temporal subformula) domain independence.

[Fagin 1982], [Chomicki 1995], [Chomicki, Toman, Böhlen, 2001]

36

Road map

1. An example

2. Metric First-order Temporal Logic

3. Formalization examples

4. Monitoring

5. Performance
When monitoring with finite relations

6. Conclusion

37

Analysis of space consumption of M(ψ)

� Assumptions
• Relations are finite and ψ is monitorable

• Number of equal time stamps is bounded

� Let the active domain be the set of data elements occurring in the
relations in a prefix of a timed temporal structure.

� Theorem: At each time point, space M(ψ) needs to store auxiliary
relations is polynomially bounded by cardinality of the active domain.

� In practice, space requirements often modest.

Only a relevant part of history is required (and must be saved) at
any time, with an associated, smaller relevant active domain.

38

Experimental evaluation

� Prototype implementations in Java (evaluated here) and OCAML

� Evaluated using polices from different domains on synthetically
generated event streams

� Measured monitor’s space consumption and event processing time

� Where meaningful, we conducted a steady-state analysis
(estimated average performance in the long run)

39

Profiling the monitor

Monitor’s space consumption (sum of cardinalities of stored relations at each time point)

�∀t.∀c. ∀a. trans(c , t, a)∧(
�[0,31) ∃t ′. ∃a′. trans(c , t ′, a′) ∧ ♦[0,6) report(t ′)

)
→

♦[0,3) report(t)

40

Profiling the monitor

Monitor’s space consumption (sum of cardinalities of stored relations at each time point)

Performance depends on data items occurring in processed event stream

The size of the relevant active domains stabilizes after a warm-up phase

Space consumption typically fluctuates around size of the relevant active domains

40

Experimental evaluation results

event frequency

formula aspect 110 220 330 440 550 sample space
...
...
...

...

...

...

Transact.
policy

ipt 2.2 3.5 4.7 6.0 7.6

Ω1000×25000×2×200
sc 140±2.8 405±9.0 801±19.1 1,334±32.2 1,994±47.8

omax 723 1,270 2,242 3,302 4,360
radom 404 762 1,098 1,422 1,726

...

...

...
...
...
...

ipt — estimated mean incremental processing time (in milliseconds)
sc — estimated mean space consumption (# of elements stored in relations, 95% within interval)

omax — observed maximal space consumption
radom — size of relevant active domain

� Moderate space consumption and running times

� Growth rates linear in the event frequency (approximate number of
events in formula’s time window)

� Past operators are handled more efficiently than future operators

� State predicates increase space consumption

41

Road map

1. An example

2. Metric First-order Temporal Logic

3. Formalization examples

4. Monitoring

5. Performance

6. Conclusion

42

Conclusion

� MFOTL good for formalizing and
monitoring a wide variety of policies.

q

qqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq6

?

expressivity
vs.

complexity

• Arbitrary nesting of operators and quantifiers, although restrictions on
negation in finite relation case

• No such restrictions necessary when using automatic structures

• Incremental constructions with “bounded history” encoding

• Studies indicate practical feasibility.

� No silver bullet
• Not every policy can be formalized in MFOTL

• Efficiency depends on policy formalization

E.g., past-time formulations better than equivalent future-time ones

43

Current and future work

� Case study: Nokia data collection campaign.
• Complex requirements on how mobile-phone data is shared and used

• Complex architecture: mobile phones, various servers, etc.

• Must scale ultimately to > 106 users. Data-structures critical.

� Implementation using automatic structures

� Enforcement rather than audit
• Central monitoring easier than distributed control

• Enforcing constraints on the future (obligations) is nontrivial
• Logically, e.g., disjunctive conditions

• Initiating actions more difficult than supressing them

44

Bibliography

� Monitoring foundations
• D.B., Felix Klaedtke, Samuel Müller: Policy Monitoring in First-order

Temporal Logic, CAV 2010.

• D.B., Felix Klaedtke, Samuel Müller, Birgit Pfitzmann: Runtime
Monitoring of Metric First-order Temporal Properties. FSTTCS 2008.

� Applications and enforcement
• D.B., Felix Klaedtke, Samuel Müller: Monitoring security policies with

metric first-order temporal logic. SACMAT 2010.

• Alex Pretschner, Manuel Hilty, D.B., Christian Schaefer, Thomas
Walter: Mechanisms for usage control. ASIACCS 2008.

• Alex Pretschner, Manuel Hilty, D.B., Distributed usage control.
Commun. ACM 49(9), 2006.

• Manuel Hilty, D.B., Alex Pretschner: On Obligations. ESORICS 2005.

45

