
Inducing Authentication Failures to Bypass Credit Card PINs

David Basin, Patrick Schaller, and Jorge Toro-Pozo
Department of Computer Science

ETH Zurich

Abstract
For credit card transactions using the EMV standard, the in-
tegrity of transaction information is protected cryptograph-
ically by the credit card. Integrity checks by the payment
terminal use RSA signatures and are part of EMV’s offline
data authentication mechanism. Online integrity checks by
the card issuer use a keyed MAC. One would expect that fail-
ures in either mechanism would always result in transaction
failure, but this is not the case as offline authentication failures
do not always result in declined transactions. Consequently,
the integrity of transaction data that is not protected by the
keyed MAC (online) cannot be guaranteed.

We show how this missing integrity protection can be ex-
ploited to bypass PIN verification for high-value Mastercard
transactions. As a proof-of-concept, we have built an Android
app that modifies unprotected card-sourced data, including
the data relevant for cardholder verification. Using our app,
we have tricked real-world terminals into downgrading from
PIN verification to either no cardholder verification or (pa-
per) signature verification, for transactions of up to 500 Swiss
Francs. Our findings have been disclosed to the vendor with
the recommendation to decline any transaction where offline
data authentication fails.

1 Introduction

EMV (Europay, Mastercard, VISA) is the standard protocol
for modern smartcard payments, with more than 9 billion
EMV cards in circulation globally. Due to its significance,
it is not surprising that the protocol has been subjected to
deep and continued scrutiny, including recent work where the
contactless version of the standard was shown to be vulnerable
to various critical attacks [5, 6, 19, 24].

The security of EMV transactions relies on both offline
and online verification of cryptographic data computed by
the payment device (e.g. the credit/debit card, smartphone,
or smartwatch) on the transaction data. In the online case,
the terminal requests the card issuer’s authorization of the

transaction through a MAC produced by the card on critical
transaction data using a session key, which is derived from
a symmetric key shared with the issuer. In the offline case,
the terminal validates a card’s RSA signature using a PKI,
where the root CA certificate is retrieved from the terminal’s
internal database.

If either of these two authentication mechanisms fails, one
would expect the terminal to abort the transaction. However,
this is not always the case. For example, the Mastercard spec-
ification [15] allows for valid executions where a premature
failure of offline authentication does not require the terminal
to abort or decline the transaction but instead the terminal
ignores all subsequent offline authentication failures during
the transaction. This design decision is critical as it allows for
data to be modified unnoticed when it is only authenticated
offline.

In this paper, we describe a novel attack on Mastercard and
Maestro cards that exploits such executions without Offline
Data Authentication (ODA) guarantees. In particular, using
our attack one can modify all data that is not included in
the MAC generation for online authorization. This includes
data that determines the cardholder verification process, such
as the Cardholder Verification Method (CVM) List, which
informs the terminal of the CVMs that the card supports.

We explore two modifications of this list that compromise
the cardholder verification process:

M1 Suppress all cardholder verification capabilities from the
card (i.e. delete the list).

M2 Replace the PIN-based methods with the paper signature
method.

Either modification makes the terminal wrongfully believe
that the card does not support PIN verification. As a result,
a criminal making either modification can use a stolen card
to make purchases for large amounts without being asked to
enter the card’s secret PIN.

Our attack is implemented as a man-in-the-middle (MITM)
on top of a relay architecture using two smartphones, as shown

1

Attacker’s equipment

WiFi/mobile

WiFi/mobileNFC NFC

Figure 1: Architecture of a relay attack on contactless pay-
ments. From left to right: the payment terminal, card emulator
device, Point-Of-Sale (POS) emulator device, and the vicitm’s
card. The adversary controls the two emulator devices.

in Figure 1. In practice, the attacker holds one of the phones
near the victim’s card. This could be, for example, because
the victim has lost his card, the attacker has stolen it, or the
attacker can simply get sufficiently close to the victim. The
attacker presents the second phone to the terminal and possi-
bly the cashier. This phone pretends to be running a mobile
payment app as depicted in Figure 2. The two phones forward
the data exchanged between the victim’s card and the termi-
nal and modify it so that the terminal accepts the payment
without asking for a PIN, even though the payment amount
would require it.

In addition to exploiting authentication weaknesses via a
man-in-the-middle, our attack resulting from the modification
M2 also exploits user interface weaknesses (UI) associated
with the Paper Signature method. In this method, after a suc-
cessful card-terminal interaction, the cardholder is requested
to sign the purchase receipt, which could be either a physi-
cal receipt or digitally displayed on a touch screen that can
be signed with an electronic pen. The cashier then verifies
this against the signature on the payment device, which can
either be (a) a physical card, in which case the signature is
on its backside, or, if applicable, (b) an electronic device, in
which case the signature is displayed on its screen as shown
in Figure 2. This distinction is highly relevant for our attack,
as explained next.

Whereas a criminal in possession of a lost or stolen
card cannot forge the (handwritten) signature on it, for a
smartphone-based payment they can forge the signature by
simply displaying a made-up payment screen with a card-
holder name and signature of the criminal’s choice. Clearly
this will pass the cashier’s verification, regardless of the sig-
nature method used (pen&paper versus digital pen&pad) and
whether the cardholder’s ID is required or not. Our attack thus
not only exploits improperly designed failure modes in the
EMV protocol, but also user interface weaknesses in digital
payment methods.

In summary, our attack resulting from the modification
M2 demonstrates how exploits can arise when mechanisms
designed in one context, such as a physical signature on the
back of a plastic card, are transported into another context,
such as an image of a signature lacking a physical context,

Figure 2: The Samsung Pay screen displaying the cardholder’s
signature.

that is much simpler to exploit.

Contributions This paper makes the following contribu-
tions. First, we identify a novel attack that renders the PIN use-
less for Mastercard-branded cards. Concretely, our attack de-
ceives the terminal into believing that the payment source does
not support any PIN-based Cardholder Verification Method
(CVM). As a result, the security offered by these CVMs is
not guaranteed, even for high-value transactions.

Second, we demonstrate that this attack is feasible in prac-
tice by developing and successfully using live an Android
app that implements our man-in-the-middle attack. We have
conducted numerous PIN-less transactions for amounts above
the CVM-required limit on multiple real-world payment ter-
minals with different cards. We also present countermeasures
that can be deployed on the different components involved
in the transaction and do not alter the existing execution flow
for Mastercard transactions.

Organization We provide technical background on the
EMV contactless payment protocol in Section 2, focusing on
the Mastercard version. In Section 3, we describe our novel
attack in detail, report on our proof-of-concept implementa-
tion and experiments, and describe countermeasures. We also
show how our attack can be found using an slight modifi-
cation of our previous formal model of the EMV protocol
and we formally prove the security of our countermeasures.
Afterwards, in Section 4, we elaborate on previously discov-
ered weaknesses in the EMV standard and make comparisons.
Finally, we draw conclusions in Section 5.

2

Ethics and Disclosure We initiated a responsible disclo-
sure process with Mastercard on January 10th, 2022. In a
follow-up meeting with them, we described our findings in
detail and recommended countermeasures to prevent our at-
tack. As requested by Mastercard, we have also shared this
draft with them. In all the tests we performed, we only used
our own cards. No cardholders, merchants, or issuers have
been defrauded.

2 Background

The EMV ecosystem involves multiple stakeholders. At its
core are payment networks (e.g. Mastercard and VISA),
which provide the infrastructure for payment transactions
from cardholders’ accounts to merchants’ accounts. A finan-
cial institute (typically a bank) can become part of this ecosys-
tem by issuing cards that comply with the EMV standards.
Merchants, selling goods and services, can run payment termi-
nals that implement the EMV standard and that are connected
to the payment networks.

In order to secure transactions and ensure that only legit-
imate ones are accepted by the networks, various security
measures are in place. In this work, we focus on the secu-
rity properties of the EMV communication protocols and its
elements. To secure communication between the card, the
payment network, and the card-issuing bank, there is a global,
hierarchical Public Key Infrastructure (based on RSA keys)
in place. A set of root Certificate Authorities accepted by the
payment networks provide certificates for card issuers who
in turn provide certificates stored on the cards they issue. By
possessing the root Certificate Authorities’ public keys, ter-
minals can verify the correctness of the cards’ certificates and
authenticate them as legitimate cards. In addition to asymmet-
ric keys, which are mainly used for offline verification, the
cards hold symmetric keys that are shared only with the issu-
ing bank. Last but not least, the legitimate use of each card is
ensured by cardholder verification using a PIN, a handwritten
signature, or a smartphone.

Another security element of card payment systems is fraud
detection. This may, for example, involve the behavioral anal-
ysis of customers and anomaly detection. Such fraud detection
mechanisms build an additional layer of defence and can in-
validate technically legitimate transactions. These types of
security measures are, however, not in the focus of this work.

The EMV protocol for contactless transactions extends the
card-reader based protocols and is specified in over 1,200
pages of documentation. In this section we summarize this
protocol, focusing on those elements relevant to our attack. A
glossary of EMV acronyms is given at the end of this article.

2.1 The Protocol
EMV supports six provider-specific contactless protocols that
define the data elements employed and how data is exchanged

between the issuer, the terminal, and the Integrated Circuit
Card (ICC, commonly known as the card). In addition to the
six different payment networks that must be supported, there
are issuer-specific data elements that are required, depending
on the ICC’s issuer.

The Integrated Circuit Card and the terminal communicate
using a sequence of command-response pairs. Commands are
sent by the terminal, processed on the ICC, and they result in
a specific response by the ICC. Commands and responses are
sent as Application Protocol Data Units (APDUs).

Data on the ICC is stored in information items that are
called files and are ordered in a tree structure on the ICC.
The card issuer is responsible for ensuring that the data on
the ICC has the correct format. Files can be accessed by the
terminal using a SELECT command in combination with the
corresponding file name. Records in a file are read using the
READ RECORD command.

From an abstract point of view, a transaction involves the
following steps:

1. Application Selection: The terminal and the ICC agree
on an EMV contactless protocol that is implemented as
a so-called kernel on the terminal.

2. Synchronisation: The terminal and the ICC negotiate
options, e.g. the Cardholder Verification Method (CVM)
to be used, and they exchange information required to
successfully complete the transaction, such as the data
elements requested by the card issuer.

3. Cardholder Verification: The terminal verifies that the
person making the purchase is the owner of the card.

4. Authentication and Authorization: The terminal and
card take actions to decide if the transaction should be de-
clined at this point, or whether further verification meth-
ods are required, such as (i) offline data authentication
or (ii) online authorization.

In the following sections, we describe in more details those
transaction processing steps that are relevant for our attack.

2.1.1 Application Selection

A terminal starts a transaction by sending a SELECT
2PAY.SYS.DDF01 command for the Dictionary Definition
File (DDF), an element in the tree-structured hierarchy of
files on the ICC. The response of a legitimate ICC contains
the list of supported applications, identified by their AIDs
(Application Identifiers).

On the terminal side, the received AID (or list of AIDs)
results in what is called the Kernel Activation. This step could
also be understood as selecting the protocol to be used for the
current transaction between the ICC and the terminal.

The EMV contactless specification for payment systems,
Book A [14], lists the following kernels:

3

• Kernel 2 for Mastercard AIDs,

• Kernel 3 for VISA AIDs,

• Kernel 4 for American Express AIDs,

• Kernel 5 for JCB AIDs,

• Kernel 6 for Discover AIDs, and

• Kernel 7 for UnionPay AIDs.

In this paper, we focus on the Mastercard kernel (Kernel
2, specified in [15]) and depict the communication between
the terminal and the card as a message sequence diagram
in Figure 3. For an extension of our attack to Maestro debit
cards, note that, on the terminal side, Maestro cards are pro-
cessed with the same kernel, using different initialization of
parameters.

2.1.2 Synchronisation between Terminal and ICC

As a result of application selection, the terminal knows where
to find the information on the ICC necessary to successfully
complete the transaction. In the following messages, the ter-
minal learns the data elements required by the issuer and
provides required information to the card. Furthermore, the
ICC provides information about the admissible Cardholder
Verification Method and provides public keys and certificates
used in a later step by the terminal to authenticate the card in
a process called Offline Data Authentication (ODA).

As a first step after application selection, the terminal issues
a SELECT command to select the corresponding Application
Definition File (ADF) on the ICC. The card responds with
a File Control Information (FCI) message that includes, for
example, the card’s language preference and the Processing
Data Object List (PDOL), a list of terminal-resident data ob-
jects required by the ICC for processing the subsequent GET
PROCESSING OPTIONS command. The AID identifies the
application on the terminal side, whereas the ADF denotes
the corresponding filename for the application on the ICC.

The terminal starts the transaction processing by send-
ing the aforementioned GET PROCESSING OPTIONS com-
mand, which includes the data elements requested by the card
in the PDOL. The ICC’s response includes the Application
Interchange Profile (AIP). This specifies the card’s available
functionality and the Application File Locator (AFL), which
identifies the files and records on the card to be used for the
transaction.

Given the ICC’s capabilities, the terminal accesses the re-
quired information on the ICC by using READ RECORD
commands for the data elements on the card identified by a
corresponding Short File Identifier (SFI) and a record num-
ber. There is some flexibility regarding the sequence of these
records in the ICCs.

The records read by the terminal include the following data
elements (note that for some records we implicitly assume the
availability of the corresponding functionality on the ICC):

• Primary Account Number (PAN).

• Card Risk Management Data Object Lists (CDOL1 and
CDOL2): Two lists of transaction-related data objects
that the terminal will send in a later step for the ICC to
sign (offline and online verification).

• The Cardholder Verification Method (CVM) List.

• PKI-related information: the card’s and the issuer’s PK
certificate, and the index of the issuing Certificate Au-
thority (CA).

At this point, the terminal and the ICC have bootstrapped
the necessary parameter configuration and fixed their structure
as required by the issuer. Also, the terminal has received the
certificates and keys to authenticate the ICC offline. Because
the hash of the security critical records is contained in the
ICC’s certificate, the terminal can verify the integrity of these
records.

For contactless EMV payments, we have not observed the
authentication of static data by the terminal at this stage of
the protocol. However, the integrity of static data is verified
later in the more general procedure of Offline Dynamic Data
Authentication, which also covers dynamic data related to
the transaction, such as the payment amount. Details of the
Offline Data Authentication (ODA) process are provided later
in Section 2.1.4.

2.1.3 Cardholder Verification

The purpose of a Cardholder Verification Method (CVM) is to
ensure that the person presenting the ICC is indeed the person
to whom the card was issued. The Mastercard specification
for contactless payments [15] requires that the ICC provides
a CVM List. This list defines the CVMs and the conditions
under which the CVM should be applied as defined by the
issuer. The CVMs are:

Online PIN: The terminal sends the encrypted PIN that has
been entered on the terminal’s pad for verification to the
issuer.

On Device CVM: Mobile payment apps such as Google Pay,
Samsung Pay, or Apple Pay provide the possibility of
authenticating the cardholder on the device. Typically,
they use a fingerprint reader or face recognition for this
purpose.

Paper Signature: The cardholder signs the purchase receipt
(digital or printed on paper) and the cashier checks the
signature against the signature on the back of the card.
Modern payment terminals often provide touch screens

4

Terminal Card

UN := random() DI := I||pubI DC := PAN||pubC
CertI := signprivCA(DI||h(DI))
CertC = signprivI(DC||h(DC||Protected Records||AIP))

SELECT, 2PAY.SYS.DDF01

AIDMastercard, AIDMaestro, . . .

SELECT, AIDx

tags & lengths of PDOL

GET PROCESSING OPTIONS, PDOL

AIP, AFL

READ RECORD, AFL

PAN, expDate, tags & lengths of CDOLs, CA PK Index,
CVM List, IAC–Denial, CertI, CertC, . . .

bCDA := AIPB1b1 AND valid(CA PK Index) AND · · ·

GENERATE AC, bCDA, CDOL1

S := KDF(MK,ATC)
X := construct_AC_input (PDOL,CDOL1)
AC := MACS(X ||AIP||ATC||IAD)
if bCDA = 1 then

NC := random()
TDHC := h(PDOL||CDOL1||CID||ATC||IAD)
Y := NC||CID||AC||TDHC
M := signprivC(Y ||h(Y ||UN))

else
M := AC

CID,ATC,M, IAD

if bCDA = 1 then
if verify(CertI) and verify(CertC) and verify(M) then

AC := extract_AC_from_SDAD(M)
accept_offline_or_request_online_authz(X ,CID,AC, . . .)

else
decline_offline()

else if (IAC-Denial OR TAC-Denial) AND TVR = 0 then
accept_offline_or_request_online_authz(X ,CID,AC, . . .)

else
decline_offline()

Figure 3: Overview of the card-terminal interaction during a Mastercard contactless transaction, where the PDOL and the
CDOL1 typically include transaction data, such as the Unpredictable Number (UN), the amount, and the Terminal Verification
Results (TVR). Notation: || is the concatenation operator; h is the SHA-1 hash function; KDF is a key derivation function;
(privC,pubC), (privI,pubI), and (privCA,pubCA) are the private/public key pairs of the card, the issuer, and the Certificate
Authority, respectively; bCDA is a flag that indicates whether the terminal requests Combined Dynamic Data Authentication
(CDA); signk(m) is the signature on m with the key k; MACk(m) is a keyed MAC on m with the key k; and AND and OR are the
corresponding bitwise operators. Here we have highlighted in red the data objects that the attacker modifies.

5

for cardholders to sign transactions using their finger or
digital pens.

If the transaction amount exceeds a predefined threshold
(called the CVM-required limit), the terminal will request
verification of the cardholder. The method(s) chosen by the
terminal depends on the CVM List, which is supplied by the
ICC in one of the records read from the application file.

Clearly, the different CVMs impose different levels of diffi-
culty for the illegal use of a card. It is much easier to convince
the cashier of the legitimacy of a forged signature than to
guess a PIN correctly, especially when the card is locked after
three failed attempts. Things get even worse when the signa-
ture is entered on a terminal’s touch screen, where it often
seems impossible to determine the signature’s authenticity.

In this paper, we show that it is possible to modify the
CVM List provided by the card in a way that the terminal
requests either no CVM at all, or a signature instead of a PIN.
Even worse, the modification of the CVM List does not seem
to be detected by the issuer in the transaction authorization
phase and thus results in a valid transaction.

2.1.4 Authentication and Authorization

There are two central security mechanisms used to prevent
misuse of an ICC: Offline Data Authentication (ODA) and
Online Transaction Authorization (OTA). Irregularities in
either of these mechanisms can lead to a transaction being
declined.

Whereas Offline Data Authentication only involves the ter-
minal and the card, Online Transaction Authorization also in-
volves the card issuer. Both mechanisms implement integrity
protection for critical data objects (static and transaction spe-
cific). While these mechanisms overlap in that they both pro-
tect the integrity of some data, there are other data objects that
are only protected by the offline mechanism. This is crucial
for our attack.

Offline dynamic data authentication (i.e. a type of ODA) is
performed by the terminal using digital signatures to identify
the ICC and to prove the integrity of critical data elements ex-
changed between the terminal and the ICC. This step requires
the Public Key Infrastructure (PKI) that issues certificates for
the public keys of the involved entities.

For EMV, there is a list of Certificate Authorities (CAs) ac-
cepted by the terminals that issue certificates for card issuers,
who in turn issue certificates for each ICC. The card issuer’s
certificate, as well as the ICC’s certificate, have been read as
data elements from the card earlier (see Section 2.1.2). They
are verified using the CA Public Key Index, a data element
provided by the ICC, which points the terminal to the CA in
its list of legitimate CAs.

The EMV standard specifies two forms of offline dynamic
data authentication: Dynamic Data Authentication (DDA)
and Combined Dynamic Data Authentication (CDA). The
ICC announces, in the AIP, its supported forms of offline

authentication. As it is the most common method currently
in use, we focus on CDA here, where the ICC proceeds as
follows:

• Create a random nonce NC.

• Concatenate the data elements PDOL, CDOL1, Cryp-
togram Information Data (CID), Application Transaction
Counter (ATC), and Issuer Application Data (IAD) and
hash them (using SHA-1) to build the Transaction Data
Hash Code:

TDHC = h(PDOL||CDOL1||CID||ATC||IAD).

• The TDHC is then further combined with the Applica-
tion Cryptogram (AC, described later), the CID, and the
nonce NC to build Y = AC||CID||NC||TDHC.

• Finally, Y is concatenated with the hash of the concatena-
tion of Y and the terminal’s Unpredictable Number (UN),
and then signed with the ICC’s private key to produce
the Signed Dynamic Authentication Data:

SDAD = signprivC(Y ||h(Y ||UN)).

Note that this signature protects the integrity of all relevant
transaction specific data, as well as some static data elements.
In addition to the integrity of the data elements protected by
this signature, the ICC’s certificate not only contains the PAN
the card is issued to and the card’s public key, but also static
data elements of the ICC, such as the CVM List.

In contrast to offline data authentication, which involves
the terminal and the ICC, online authorization involves the
issuer and the ICC. The security of online authorization relies
on a secret key MK, shared between the issuer and the ICC.

For each transaction, the ICC and the issuer derive a session
key S based on the Application Transaction Counter (ATC)
and MK. The ICC then proceeds as follows:

• Extract the transaction relevant data elements from
PDOL and CDOL1 and concatenate the resulting el-
ements together as X .

• Compute the Application Cryptogram

AC = MACS(X ||AIP||ATC||IAD),

where MAC is a block-cipher-based CBC-MAC using
the key S.

Note that the signed message in the offline dynamic data
authentication case contains the application cryptogram for
the online authorization. However, based on the terminal’s
decision to perform offline authentication or online authoriza-
tion only, the terminal sends a GENERATE AC command in
which the reference control parameter tells the ICC if CDA is
required or online authorization only.

6

3 The Attack and Countermeasures

In this section we describe how to attack contactless cards
running the Mastercard protocol by inducing authentication
failures. We first present the threat model considered and then
describe our attack. Afterwards we report on our proof-of-
concept implementation and practical experiments that we
conducted with different cards and readers. Finally, we briefly
discuss countermeasures.

3.1 Threat Model
For our attack, we consider the following threat model:

1. The attacker is within the NFC range of the victim’s
contactless card.

2. The attacker is an active attacker on the NFC channel. In
particular, the attacker can read, block, and inject mes-
sages on this channel.

3. The channel between the payment terminal and the card
issuer is secure in that it provides authenticity and confi-
dentiality.

4. The attacker can reproduce the images associated with
the graphical user interface of a digital payment app
showing the attacker’s own (handwritten) signature and
name, if necessary.

This threat model is realistic. The attacker may access a
victim’s card if, for example, it is lost or stolen. In addition,
as shown in previous work [5, 6, 24] and later in Section 3.3,
it is possible to carry out active man-in-the-middle attacks on
the NFC channel using regular smartphones.

The fourth capability of the considered attacker results, in
practice, from user interface weaknesses in digital payment
apps. Namely, anyone can easily reproduce images of the UI
associated with these apps with any signature and name on
it, which makes Paper Signature an insecure Cardholder Veri-
fication Method (CVM). Note that this CVM was originally
intended for plastic cards, where the cardholder’s name and
signature cannot be so easily forged.

3.2 Exploiting Authentication Failures
As explained in Section 2, during an EMV transaction the
payment terminal performs the validation of the card and
transaction data using the Offline Data Authentication (ODA)
mechanism. This mechanism employs a PKI where the root
CA certificate is looked up from the terminal’s database. The
entry in this database is determined from the following data
supplied by the card in the responses to the READ RECORD
commands:

• the Registered Application Provider Identifier, which is
derived from the Application Identifier (AID), and

• the CA Public Key Index.

The Mastercard kernel specification [15] (p. 255) states
that if the supplied CA Public Key Index is not present in the
terminal’s CA Public Key database, then the terminal shall
set the ‘CDA Failed’ bit of the Terminal Verification Results
(TVR). Recall that the TVR is a data object maintained by the
terminal throughout the transaction that holds information on
the outcome of verification processes, including Offline Data
Authentication (ODA). Note that this TVR update occurrs be-
fore the terminal issues the GENERATE AC command. This
is critical, and is indeed the fundamental design flaw that
our attack exploits together with user interface weaknesses in
digital payments.

According to the kernel specification (p. 435), if the TVR
indicates that CDA has failed and the AIP indicates that the
payment source does not support On Device CVM, then the
terminal shall not request the Signed Dynamic Authentication
Data (SDAD) in the GENERATE AC command. This means
that no ODA is to be performed and therefore all transaction
data whose integrity is only protected by the ODA mechanism
is vulnerable to adversarial modification.

Our man-in-the-middle attack induces this premature ODA
failure mode to modify such unprotected data. It thereby ex-
ploits the fact that in this mode the terminal will ignore all
(offline) cryptographic verification failures during the transac-
tion. More technically, the attack is composed of the following
three steps:

S1 Modify the card’s response to the first SELECT com-
mand by replacing the Application Identifier (AID,
object with tag 4F or 84) with the Mastercard AID
A0000000041010.

S2 Modify the terminal’s second SELECT command pay-
load by replacing the Mastercard AID with the card’s
legitimate AID.

S3 Modify the card’s responses to the READ RECORD com-
mands as follows:

(a) Replace the CA Public Key Index (object with tag
8F) with an invalid one1, in our case we use DD.

(b) Delete the CVM List (object with tag 8E) or modify
it by replacing all PIN-based CVMs with the Paper
Signature method.

(c) Clear the Issuer Action Code (IAC)-Denial (object
with tag 9F0E) by replacing it with all zeroes.

The steps S1 and S2 are relevant only for Maestro cards
and are intended to deceive the terminal into executing the
default Mastercard transaction flow. These two steps over-
ride alternative flows, potentially available for Maestro cards,

1CA Public Key data is available at https://www.eftlab.com/
knowledge-base/243-ca-public-keys.

7

https://www.eftlab.com/knowledge-base/243-ca-public-keys
https://www.eftlab.com/knowledge-base/243-ca-public-keys

which are proprietary and thus unavailable to us. The lack of
integrity protection for the AID, which makes the Steps S1
and S2 possible, was first reported in our work [5].

Step S3(b) removes all PIN-based CVMs from the available
choices for the terminal to perform the cardholder verification.
Note that this step can make either modification M1 or M2,
as discussed in Section 1. Finally, the effect of Step S3(c) is
to replace the value computed by the formula:

(IAC-Denial OR TAC-Denial) AND TVR, (1)

with the value zero, i.e., having zeros in all bit positions,
otherwise the transaction is declined offline (recall this from
Figure 3). This step is obviously only necessary when the card
does not have the IAC-Denial object already cleared. Note
that if the terminal has the ‘CDA Failed’ bit of the TAC-Denial
set at the time of reception of the GENERATE AC response,
the Terminal Action Analysis would decline the transaction
offline (see [15], p. 460) since the formula in (1) would not
equal to zero.

3.3 Carrying Out the Attack in Practice
We developed a proof-of-concept Android application to
demonstrate the real-world exploitation of the flaws we iden-
tified in the Mastercard kernel [15]. Our app implements a
man-in-the-middle using two Android phones as previously
shown in Figure 1. The two phones communicate with each
other using a TCP/IP-based relay channel over WiFi. Our app
supports two operation modes: Point-Of-Sale (POS) emulator
and card emulator. The POS emulator mode is responsible
for the actual modification of messages. The card emulator
mode runs our custom host-based card emulation service for
Android [3]. Screenshots of our app are displayed in Figure 4.

Our proof-of-concept app requires minimal setup. Namely
the relay channel must be configured and the Near Field Com-
munication (NFC) channel between the POS emulator device
and the (victim’s) credit/debit card must be activated. The at-
tack then works as follows. Once the card emulator is within
the NFC range of the payment terminal, it captures the termi-
nal’s command, relays it to the POS emulator device, which
then modifies it as appropriate and sends it to the card through
the previously activated NFC channel. Once the card replies
to the command, the POS emulator modifies the response as
appropriate, relays it to the card emulator, which then deliv-
ers the (possibly modified) response to the payment terminal.
This process is repeated for each of the terminal’s commands.

Table 1 summarizes the transactions that we have per-
formed using our app. These are all real-world, accepted
transactions where Offline Data Authentication (ODA) failed
and each of the cards used has Online PIN as the preferred
CVM. We successfully circumvented the PIN verification in
9 transactions, using 5 different cards issued by 2 banks from
2 countries. A demo video of the attack being performed for
one of these transactions (500 CHF) is available at [1].

(a) Card emulator (b) POS emulator

Figure 4: Screenshots of our app. The log (partially) displayed
in the POS emulator screen corresponds to a transaction of
500 Swiss Francs (CHF) where we downgraded the CVM
from Online PIN to Paper Signature. Note that the card emu-
lator screen could have been that of Figure 2.

We also observe that the Mastercard kernel execution flow
is very similar to that of the American Express and JCB ker-
nels. This means that our attack should also work for cards of
these brands. We did not, however, test this hypothesis due to
our limited access to these cards. In the case of VISA cards,
we tested our attack (with some minor adaptations specific
to this kernel) and the transaction was successful. However,
it is unclear whether the induced ODA failures were ignored
due to the modified CA PK Index or the terminal simply ig-
nored the card’s unverified Signed Dynamic Authentication
Data (SDAD). This ignore decision by the terminal has been
reported before, e.g. in [6,24]. We did not test with the rest of
the EMV cards (i.e. Discover and UnionPay), as we did not
have access to any of them.

3.4 Discussion

The root cause of the vulnerability we describe is that the
protocol specification allows for the successful completion
of contactless transactions even when the terminal cannot
validate the card’s Public Key certificate. The protocol’s vul-
nerable execution flow requires pointing the terminal to an
invalid index in the root certificate list and the TAC-Denial, a
bit-vector internal to the terminal, being zero (see Section 3.2
for details).

The EMV specification [13] (p. 115) recommends not set-
ting the TAC-Denial to zero. However, even in cases where

8

No. Card Merchant Amount PIN CVM
(CHF) bypassed downgraded to

1 Mastercard Debit A 83.95 Yes Paper Signature2 B 125.00
3 Mastercard Debit A 133.75 Yes No CVM
4 Mastercard Credit C 1.60 N/A N/A5 2.10
6 Maestro A 75.35 N/A N/A
7 Maestro D 100 Yes Paper Signature8 500
9 Maestro E 120 No N/A
10 Mastercard Debit E 120 Yes No CVM
11

Maestro
F 150

Yes
No CVM

12 G 100 Paper Signature
13 G 100 No CVM

Table 1: Thirteen transactions performed using our app. All of these transactions were accepted and subsequently debited from
the cardholder’s account. The eight cards listed here are all different. Here we have highlighted in bold the amounts above the
local CVM-required limit (80 CHF) for which we bypassed the PIN. N/A stands for not applicable (e.g. the PIN is not required
for amounts below the CVM-required limit and thus no bypass applies).

our attack failed, the terminal implementations seem not to fol-
low this recommendation. Settings following the recommen-
dations would have exhibited a different protocol behavior
by the terminal, even for unsuccessful attempts. As a conse-
quence, every terminal implemented according to the specifi-
cation and not following the recommendation is vulnerable to
our attack. We suspect that terminal manufacturers do not fol-
low the recommendation to avoid false negatives that would
lead to the rejection of valid transactions.

In all of our experiments, we encountered only one pay-
ment terminal type (used exclusively in public transit) where
inducing our early CDA failure resulted in an offline decline
of the transaction. When inspecting the logs for transactions
with this terminal type (not included in Table 1), we noticed
that even after being supplied with an invalid CA PK index,
the terminal still requests Combined Dynamic Data Authen-
tication (CDA) but aborts the contactless transaction with
an error message on the terminal saying that the card is not
valid. A possible explanation for this behavior is that the Pub-
lic Key operations are postponed for efficiency reasons, i.e.
the terminal lets the card proceed with the CDA flow before
checking the correctness of the certificates. This is, however,
not specified in the available documentation.

Our attack did not succeed for the Maestro card used in
Transaction 9 of Table 1. We tried both variants of our at-
tack: the downgrade of CVM from PIN to signature and the
complete removal of the CVM list (the signature is a valid
CVM for this card). In both cases, the contactless transaction
was refused by the terminal. The terminal requested the pay-
ment to be processed using the regular card reader and then
requested the PIN. The logs for these transactions show no
major differences when compared with the logs of the transac-

tions where the PIN was successfully bypassed. In particular,
neither of the two CVM-relavant data objects supplied by
the terminal, i.e. the Cardholder Verification Method Results
(CVMR) with value 3F0000 and the Terminal Verification
Results (TVR) with value 2400008001, indicate a cardholder
verification failure. Namely, bit 8 of the TVR’s third byte was
not set, implying that cardholder verification was successful,
and the CVMR’s third byte was not set to 01, which would
indicate a failed cardholder verification from the terminal.
This therefore suggests that the fraud detection system on the
issuer’s side instructed the terminal in the Online Transaction
Authorization (OTA) response to use the contact chip reader.

Discussions with security engineers and architects from the
card’s issuer confirmed our suspicions. After recent publica-
tions of PIN bypass attacks, this issuer has fine-tuned its fraud
detection system accordingly and now requests to switch to
the contact chip method if irregularities are detected in the
contactless transaction. The issuer did not reveal though what
finally triggered their fraud detection system to reject our
attempted transactions. However, an obvious irregularity is
that the ‘CDA Failed’ bit is set in the Terminal Verification
Results (TVR).

We have conducted our experiments with terminals from
multiple manufacturers. Except for the case where the termi-
nal insisted on CDA completion and aborted the transaction
as explained above, for each issuer, the attacks either worked
successfully for all of the issuer’s cards (that we had access
to), or they did not work for any of the issuer’s cards, most
probably due to the issuer’s fraud detection system.

We close with some observations about the difficulties of
live testing. Given the number of parties involved and the
opacity of their systems, the only compelling evidence that

9

attacks, similar to the ones described in this paper, really work
are live tests. Live tests, however, may raise legal question,
even for experiments like the ones we conducted where no-
body was defrauded. Except for our open discussion with
Mastercard and inofficial exchanges with a major card issuer,
the stakeholders in the payment ecosystem seem rather inac-
cessible. We have suffered from three locked-down accounts
at a global terminal provider, most probably due to the un-
successful transactions associated with our accounts when
we experimented with their terminals (when we were tuning
our app). Furthermore, this terminal provider seems to have
locked some of our cards, since they do not work on this type
of terminal even for regular payments, but work instead on
the terminals of other manufacturers.

3.5 Countermeasures
The attack described in this paper follows from a combination
of flaws that include the improper design of authentication
failure modes and user interface weaknesses present in smart-
phone payments. In this section, we discuss why the fixes
proposed in previous work do not defend against the attack
presented here. Afterwards, we present our own fixes and
comment on deployment efforts.

In our recent work [5], we reported a PIN bypass on Mas-
tercard and related kernels and proposed countermeasures,
which we verified using the Tamarin verification tool [22].
These countermeasures require extending the inputs of crypto-
graphic functions, do not affect the EMV execution flow, and
rely on offline cryptographic checks. While offering strong
cryptographic guarantees, these countermeasures do not pre-
vent the attack we presented here because our attack precisely
exploits those executions where the offline cryptographic
checks are not performed.

Defending against our attack is nevertheless straightfor-
ward, at least conceptually: transactions where Offline Data
Authentication (ODA) has failed must not be accepted. This
can be achieved by at least four different actors that partake
in the transaction. Next we list four concrete countermeasures
that these actors can implement, where any single counter-
measure is alone sufficient to prevent our attack:

C1 The card must always check for consistency between
its CVM List and the Cardholder Verification Method
Results (CVMR) supplied by the terminal. Namely, the
CVMR’s first two bytes must be equal to a pair (CVM,
condition) in the card’s CVM List (the encoding of this
list is described in Section 10.5 of [13]).

C2 The terminal must always have the ‘CDA Failed’ bit of
the Terminal Action Code (TAC)-Denial set.

C3 The card issuer (or bank) must always decline transac-
tions where the ‘CDA Failed’ bit is set in the Terminal
Verification Results (TVR).

C4 The payment network (e.g. Mastercard) must always de-
cline transactions where the ‘CDA Failed’ bit is set in
the Terminal Verification Results (TVR).

This list is given in descending order, ordered by the num-
ber of worldwide instances of the underlined party. For ex-
ample, there are billions of cards, but only thousands of card
issuers, thus C3 is ordered after C1. It seems reasonable to
assume that the implementation costs and deployment efforts
for the respective countermeasures are also decreasing with
respect to the list above. In line with this, we note that Master-
card has deployed countermeasures, at their network level, to
the attack we reported last year [5], which would have taken
several months, if not years, if fixes were instead deployed at
the protocol level (i.e. on cards and terminals).

Countermeasure C1 would (likely) not work if the card
legitimately supports the Paper Signature method, regardless
of whether it is the preferred method or not. For example,
the card used for transactions 4 and 5 of Table 1 has a CVM
List that indicates Paper Signature as a fallback option to
Online PIN. Thus, C1 would not prevent our attack for this
card. Hence, the countermeasures C2-C4 are preferred.

Countermeasure C2 corresponds to the recommendation in
the EMV specification [13] (p. 115) that we discussed in Sec-
tion 3.4. If CDA has failed, the countermeasure would make
the formula in (1) equal to a non-zero value, which conse-
quently would trigger an (offline) decline. As we have already
pointed out, according to our observations, TAC-Denial was
zero for every terminal we tested with, including those for the
transactions in Table 1.

Note that countermeasures C2-C4 require that the card and
terminal are both capable of performing Combined Dynamic
Data Authentication (CDA). C1 is thus the only countermea-
sure applicable in cases where neither party (card or terminal)
supports CDA.

3.6 Formal Analysis

In our previous work [6], we developed a formal model of
the Mastercard contactless protocol and analyzed it using the
Tamarin prover [22]. In this model, the rule formalizing the
terminal’s behaviour, upon receipt of the records sent by the
card, requires a valid signature over the received records. The
formalization thus models a terminal that would decline any
transaction where ODA fails.

The execution trace for the attack that we present in this
paper is therefore not contained in the execution space of our
previous model [6]. In the following, we therefore explain
how this model can be adopted such that Tamarin finds our
current attack. Moreover, we discuss how the correctness
of the countermeasures just presented can be proven in this
model using Tamarin.

10

Finding Our Attack Using a Formal Model

To account for the corner case in the execution flow where
the terminal does not validate the card’s certificate and skips
integrity checks of the card records, we slightly modify our
previous model [6]. Our most significant modification is to
add a rule that allows the terminal, after having received the
card records, to transition into a state where it is ready to
proceed with the GENERATE AC command and afterwards
cardholder verification. Our additional rule models exactly
the flow described in the specification, where ODA is skipped
in cases where the terminal cannot find the CA’s certificate
indicated by the card.

Additionally, we have implemented several minor modifi-
cations to make the new model operational. These include
removing the hard-coded restriction that high-value transac-
tions cannot be processed without any CVM.

With our modifications in place, Tamarin finds a valid exe-
cution trace for a high-value, PIN-less transaction between a
card whose records include Online PIN as a supported CVM
and a terminal that does not perform Offline Data Authentica-
tion (ODA). The modified model as well as the attack trace
found by the tool are available at [2].

Security Proof for Our Countermeasures

Our attack results from an unsafe fallback of a certificate
validation error in the Mastercard protocol specification. The
fallback tolerates transaction flows with missing integrity
protection of critical data exchanged between the card and
the terminal. The effects of our four countermeasures are
conceptually equivalent: transactions where ODA failed must
not be accepted.

The proofs derived from our original model [6] thus di-
rectly verify the correctness of our countermeasures. Namely,
if the protocol runs without ODA failures, the security prop-
erties proven in [6] hold. For our purposes, the most relevant
property (see [6], Table II, p. 11) is:

The Mastercard protocol with CDA guarantees
card and transaction data authentication to pay-
ment terminals and card issuers.

This property guarantees the integrity of critical card and
transaction data including the (strongest) CVM supported by
the card. This makes our attack infeasible since the card’s
CVM support cannot be downgraded or removed.

4 Related Work

The widespread use of the EMV payment standard and the
devastating impact of vulnerabilities in the standard itself or
implementations thereof has attracted the interest of security
researchers since its launch. In this section, we review some
of the related work on attacks against EMV and comment on

their relation to our work. Table 2 summarizes these attacks
and their underlying security flaws.

The earliest PIN bypass attack against the EMV payment
standard was reported by Murdoch et al. [23]. The authors
showed that, for transactions with offline PIN verification
(i.e. the correctness of the entered PIN is verified by the
card), a man-in-the-middle attacker can send a “PIN verified”
response for any entered PIN, thereby tricking the terminal
into accepting any input as correct.

The underlying flaw that leads to Murdoch et al.’s attack is
the lack of integrity protection of critical card data. In [16],
Ferradi et al. analysed about 7,000 fraudulent transactions
and concluded that Murdoch et al.’s PIN bypass was likely
used to defraud 600,000 Euros. In our previous work [6], we
observed that Murdoch et al.’s attack might still work for
some (old) cards that neither support online PIN verification
nor have integrity protection for the CVM List (e.g. through
the card’s PK certificate).

Barisani et al. [4] used a card skimmer to attack the EMV
protocol for contact cards. Similarly to our own attack pre-
sented here, the authors showed that the CVM List could be
imperceptibly modified by setting the IAC-Denial to zero to
make the terminal accept transactions where ODA failed. In
contrast to our attack, Barisani et al.’s attack does not induce
ODA failures and thus their attack fails for contactless trans-
actions, according to our experiments and our report in [6].

Barisani et al.’s attack downgrades the CVM List to Plain-
text PIN-only, which then allowed the skimmer device to
intercept the PIN sent for verification in plain-text to the ICC.
Even if ODA failures are tolerated, this attack can still be
prevented by setting the Terminal Action Code (TAC)-Denial
object to a specific, non-zero value as recommended in the
EMV specification [13] (p. 115). Indeed, the IAC and the
TAC are used to decide whether to decline transactions with
ODA failures (recall this from Figure 3). Note that this is one
of our own countermeasures, as described in Section 3.5.

For VISA contactless cards, Emms et al. reported in [12]
that cards issued in the UK do not require PIN verification for
foreign-currency transactions. The authors built an Android
app that performs VISA transactions with cards in NFC range
and stores the data, which the authors claim can later be used
to request the funds by a rogue merchant terminal. We observe
that the now-deprecated Mag-stripe mode is used during these
artificial transactions and so this attack no longer works.

Although the NFC range is normally limited to a few cen-
timeters, it can be extended to a much larger range. Namely,
an attacker can use a pair of devices to interconnect a victim’s
card with a distant terminal. Numerous attacks of this type,
called relay attacks, have previously been reported.

The relay attacks reported employ Android devices [17, 20,
27], or customized hardware and software [10, 26], or com-
binations thereof [7, 9]. Apparently, this type of attack is not
lucrative for criminals since it only allows purchases with low
amounts; large-value purchases are (presumably) protected

11

Reported in Attack Main flaw(s) exploited Demo’ed
in practice

Murdoch et al. [23]∗ PIN bypass No auth. of the card’s response to offline Yesfor contact transactions PIN verification requests

Barisani et al. [4]∗ PIN harvest Weak auth. of the CVM List Nofor contact transactions

Roland & Langer [25]∗ Card cloning Magstripe mode’s small pool Yesvia legacy modes of random numbers
[7, 9, 10, 17, 20, 26, 27] (Passive) Relay No relay protection Yes

Emms et al. [12]∗ Harvest of large PIN-less No PIN required for foreign-currency NoVISA transactions contactless transactions
Bond et al. [8]∗ Card cloning via pre-play Weak random generators No

Galloway & Yunusov [19] PIN bypass for VISA cards No auth. of CVM-related data sent Yesvia relay + MITM by terminal and card

Basin et al. [6] PIN bypass for VISA cards No auth. of CVM-related data sent Yesvia relay + MITM by card

Basin et al. [5]∗ PIN bypass for Mastercard No auth. of AIDs + ambiguity in payment Yescards via relay + MITM network selection + flaws exposed in [6]

Radu et al. [24] Apple Pay lock bypass Express transit mode + no auth. of Yesvia relay + MITM CVM-related data sent by terminal and card

This paper PIN bypass for Mastercard Improperly designed ODA failure modes Yescards via relay + MITM + UI weaknesses in digital wallets
∗ attack patched or affected protocol version no longer in use

Table 2: Summary of reported attacks for the EMV payment system

by the card’s secret PIN. However, in combination with a PIN
bypass attack, as presented in this paper, relay attacks may
become worthwhile for criminals. For example, one might
imagine a malicious merchant who runs a modified terminal
that actually implements a relay in combination with a PIN
bypass attack to issue a high-value payment at a different
terminal.

In [19], Galloway and Yunusov showed how to use a
Rasperry Pi device as an NFC proxy to explore the EMV
protocol. In addition, by modifying the ‘CVM Required’ bit
of the terminal’s Terminal Transaction Qualifiers (TTQ) and
the ‘ODCVM Performed’ bit of the corresponding card’s re-
sponse, the authors demonstrated the first PIN bypass attack
for modern EMV contactless cards.

Another type of attack on EMV is card cloning. For ex-
ample, back in 2008, Drimer et al. [11] showed that the data
necessary to clone an EMV card’s magnetic stripe can be
extracted from an EMV chip using the contact interface. Sim-
ilarly, Galloway provided a proof-of-concept implementa-
tion [18] that proves that this issue still persisted in 2020.
Galloway managed to extract all the magnetic stripe data
from the card using an NFC reader.

In our previous work [6], we presented a formal model of
the EMV protocol. Using our model and the Tamarin veri-
fier [22], we identified a number of weaknesses in the protocol
that lead to various attacks, including a PIN bypass attack for
VISA contactless cards. This attack is similar but subtly dif-

ferent to the one reported by Galloway et al. in [19]: our
attack does not modify terminal-sourced data (e.g. the TTQ)
to avoid potential declines as a result of online integrity check
failures. The execution representing the attack that we cur-
rently present in this paper is not included in the execution
space of our formal model [6] because this model assumes that
cryptographic failures result in the execution being aborted,
as it is typically the case for formal verification approaches.

In our follow-up paper [5], we presented our card brand
mixup attack, which allows an attacker to masquerade non-
VISA cards as VISA cards. As a result, a payment initiated
with a Mastercard-branded card is processed using the VISA
kernel in the terminal such that the attack we reported in [6]
also applies to Mastercard cards. Our brand mixup attack was
patched by Mastercard quickly after disclosure.

In our attack reported here, we use a weaker form of our
brand mixup attack on Maestro cards. Concretely, we mas-
querade Maestro cards as Mastercard cards (see the Steps S1
and S2 in Section 3.2). The terminal-card interaction is the
same for all Mastercard-branded cards (including Maestro),
but masquerading allows for our CVM downgrade attack,
which otherwise is not possible when the payment source is
a Maestro card as we observed in our early experiments. We
did not find any documentation that would explain differences
in CVM processing between Mastercard and Maestro cards.

The most recent attack on EMV is that of Radu et al. [24].
The authors have shown that it is possible to unlock Apple

12

Pay on a (stolen) locked iPhone to make a large purchase.
Their attack relies on the works [6, 19], with some adapta-
tions that are specific to the communication protocol layer
for smartphone-based payments. This work also analyses the
impact of relay-resistance protocols (also known as distance
bounding protocols) to prevent man-in-the-middle attacks
that relay messages. Their analysis is conducted using an
extension of our formal model presented in [21].

5 Conclusions

We have reported on a novel, critical design flaw in the
EMV protocol for Mastercard contactless transactions. When
analysing the Mastercard execution flow, we noted that the
online transaction authorization serves as a fallback to offline
data authentication failures. We have consequently identified
an execution where an early offline data authentication fail-
ure makes the terminal ignore all subsequent failures on the
PKI-based RSA verification of the card’s static and dynamic
data during the transaction. Hence we conclude that all card-
sourced data that is not authenticated online by the card issuer
can be subjected to adversarial modification.

We have developed a proof-of-concept Android app that
implements a man-in-the-middle attack that modifies such
unprotected data. The modified data includes PKI-related
data, to induce the actual offline authentication failures, and
cardholder verification-related data, to suppress the card’s
supported CVMs or to downgrade them to one that criminals
can easily reproduce, such as Paper Signature. Using our app,
we bypassed the PIN for various transactions with different
Mastercard and Maestro cards on different real-world pay-
ment terminals. Our experiments clearly demonstrate that the
identified flaws substantially degrade the cardholders’ secu-
rity.

We have recommended concrete actions that can be taken
to prevent our attack in the short term and we have disclosed
them to Mastercard. In the long term, we recommend thor-
oughly reviewing the input data to all cryptographic construc-
tions of the EMV protocol. We also note that the protocol
does not specify terminal authentication mechanisms to cards,
which makes the latter communicate with any NFC-enabled
device that activates them. This is a shortcoming that under-
mines the security of the entire EMV system and should also
be revised.

EMV Acronyms

AC Application Cryptogram. 6

ADF Application Definition File. 4

AFL Application File Locator. 4

AID Application Identifier. 3, 4, 7, 8, 12

AIP Application Interchange Profile. 4, 6, 7

APDUs Application Protocol Data Units. 3

ATC Application Transaction Counter. 6

CDA Combined Dynamic Data Authentication. 5–11

CDOL Card Risk Management Data Object List. 4, 6

CID Cryptogram Information Data. 6

CVM Cardholder Verification Method. 1–4, 6–13

CVMR Cardholder Verification Method Results. 9, 10

DDA Dynamic Data Authentication. 6

DDF Dictionary Definition File. 3

FCI File Control Information. 4

IAC Issuer Action Code. 7, 8, 11

IAD Issuer Application Data. 6

ICC Integrated Circuit Card. 3, 4, 6, 11

ODA Offline Data Authentication. 1, 4, 6–8, 10–12

ODCVM On Device CVM. 4, 7, 12

OTA Online Transaction Authorization. 6, 9

PAN Primary Account Number. 4, 6

PDOL Processing Data Object List. 4, 6

RID Registered Application Provider Identifier. 7

SDAD Signed Dynamic Authentication Data. 6–8

SFI Short File Identifier. 4

TAC Terminal Action Code. 8, 10, 11

TDHC Transaction Data Hash Code. 6

TTQ Terminal Transaction Qualifiers. 12

TVR Terminal Verification Results. 5, 7, 9, 10

UN Unpredictable Number. 5, 6

13

References

[1] https://emvrace.github.io.

[2] https://github.com/EMVrace/
auth-failure-attack.

[3] Host-based card emulation overview. https:
//developer.android.com/guide/topics/
connectivity/nfc/hce. Accessed: August 2020.

[4] Andrea Barisani, Daniele Bianco, Adam Laurie, and Zac
Franken. Chip & PIN is definitely broken: Credit Card
skimming and PIN harvesting in an EMV world. In
Defcon, volume 19, 2011.

[5] David A. Basin, Ralf Sasse, and Jorge Toro-Pozo. Card
brand mixup attack: Bypassing the PIN in non-Visa
cards by using them for Visa transactions. In Michael
Bailey and Rachel Greenstadt, editors, 30th USENIX
Security Symposium, USENIX Security 2021, August 11-
13, 2021, pages 179–194. USENIX Association, 2021.

[6] David A. Basin, Ralf Sasse, and Jorge Toro-Pozo. The
EMV Standard: Break, Fix, Verify. In 42nd IEEE Sympo-
sium on Security and Privacy, SP 2021, San Francisco,
CA, USA, 24-27 May 2021, pages 1766–1781. IEEE,
2021.

[7] Thomas Bocek, Christian Killer, Christos Tsiaras, and
Burkhard Stiller. An NFC relay attack with off-the-shelf
hardware and software. In Rémi Badonnel, Robert Koch,
Aiko Pras, Martin Drasar, and Burkhard Stiller, editors,
Management and Security in the Age of Hyperconnec-
tivity - 10th IFIP WG 6.6 International Conference on
Autonomous Infrastructure, Management, and Security,
AIMS 2016, Munich, Germany, June 20-23, 2016, Pro-
ceedings, volume 9701 of Lecture Notes in Computer
Science, pages 71–83. Springer, 2016.

[8] Mike Bond, Omar Choudary, Steven J. Murdoch,
Sergei P. Skorobogatov, and Ross J. Anderson. Chip
and skim: Cloning EMV cards with the pre-play attack.
In 2014 IEEE Symposium on Security and Privacy, SP
2014, Berkeley, CA, USA, May 18-21, 2014, pages 49–
64, 2014.

[9] Tom Chothia, Flavio D. Garcia, Joeri de Ruiter, Jordi
van den Breekel, and Matthew Thompson. Relay cost
bounding for contactless EMV payments. In Financial
Cryptography and Data Security - 19th International
Conference, FC 2015, San Juan, Puerto Rico, January
26-30, 2015, Revised Selected Papers, pages 189–206,
2015.

[10] Saar Drimer and Steven J. Murdoch. Keep your enemies
close: Distance bounding against smartcard relay attacks.

In Proceedings of the 16th USENIX Security Symposium,
Boston, MA, USA, August 6-10, 2007, 2007.

[11] Saar Drimer, Steven J. Murdoch, and Ross J. Anderson.
Thinking inside the box: System-level failures of tamper
proofing. In 2008 IEEE Symposium on Security and
Privacy (S&P 2008), 18-21 May 2008, Oakland, Cali-
fornia, USA, pages 281–295. IEEE Computer Society,
2008.

[12] Martin Emms, Budi Arief, Leo Freitas, Joseph Hannon,
and Aad P. A. van Moorsel. Harvesting high value for-
eign currency transactions from EMV contactless credit
cards without the PIN. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Commu-
nications Security, Scottsdale, AZ, USA, November 3-7,
2014, pages 716–726, 2014.

[13] EMVCo. EMV Integrated Circuit Card
Specifications for Payment Systems, Book
3, Application Specification, Version 4.3.
https://www.emvco.com/wp-content/uploads/
documents/EMV_v4.3_Book_3_Application_
Specification_20120607062110791.pdf, Novem-
ber 2011.

[14] EMVCo. EMV Contactless Specifications for Payment
Systems, Book A, Architecture and General Require-
ments, Version 2.10. Link, March 2021.

[15] EMVCo. EMV Contactless Specifications for Payment
Systems, Book C-2, Kernel 2 Specification, Version
2.10. https://www.emvco.com/wp-content/
uploads/documents/C-2-Kernel-2-v2.10.pdf,
March 2021.

[16] Houda Ferradi, Rémi Géraud, David Naccache, and As-
sia Tria. When organized crime applies academic re-
sults: a forensic analysis of an in-card listening device.
J. Cryptographic Engineering, 6(1):49–59, 2016.

[17] Lishoy Francis, Gerhard P. Hancke, Keith Mayes, and
Konstantinos Markantonakis. Practical relay attack on
contactless transactions by using NFC mobile phones.
IACR Cryptology ePrint Archive, 2011:618, 2011.

[18] Leigh-Anne Galloway. It only takes a minute to clone
a credit card, thanks to a 50-year-old problem. Link,
2020.

[19] Leigh-Anne Galloway and Tim Yunusov. First contact:
New vulnerabilities in contactless payments. In Black
Hat Europe 2019, 2019.

[20] Eddie Lee. NFC hacking: The easy way. In Defcon,
volume 20, pages 63–74, 2012.

14

https://emvrace.github.io
https://github.com/EMVrace/auth-failure-attack
https://github.com/EMVrace/auth-failure-attack
https://developer.android.com/guide/topics/connectivity/nfc/hce
https://developer.android.com/guide/topics/connectivity/nfc/hce
https://developer.android.com/guide/topics/connectivity/nfc/hce
https://www.emvco.com/wp-content/uploads/documents/EMV_v4.3_Book_3_Application_Specification_20120607062110791.pdf
https://www.emvco.com/wp-content/uploads/documents/EMV_v4.3_Book_3_Application_Specification_20120607062110791.pdf
https://www.emvco.com/wp-content/uploads/documents/EMV_v4.3_Book_3_Application_Specification_20120607062110791.pdf
https://www.emvco.com/terms-of-use/?u=wp-content/uploads/documents/EMV-Contactless-Book-A-Architecture-and-General-Rqmts-v2.10.pdf
https://www.emvco.com/wp-content/uploads/documents/C-2-Kernel-2-v2.10.pdf
https://www.emvco.com/wp-content/uploads/documents/C-2-Kernel-2-v2.10.pdf
https://www.cyberdlab.com/insights/it-only-takes-a-minute-to-clone-a-credit-card-thanks-to-a-50-year-old-problem

[21] Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and
Rolando Trujillo-Rasua. Distance-bounding protocols:
Verification without time and location. In 2018 IEEE
Symposium on Security and Privacy, SP 2018, Proceed-
ings, 21-23 May 2018, San Francisco, California, USA,
pages 549–566, 2018.

[22] Simon Meier, Benedikt Schmidt, Cas Cremers, and
David A. Basin. The TAMARIN prover for the sym-
bolic analysis of security protocols. In Computer Aided
Verification - 25th International Conference, CAV 2013,
Saint Petersburg, Russia, July 13-19, 2013. Proceedings,
pages 696–701, 2013.

[23] Steven J. Murdoch, Saar Drimer, Ross J. Anderson, and
Mike Bond. Chip and PIN is broken. In 31st IEEE
Symposium on Security and Privacy, S&P 2010, 16-19
May 2010, Berleley/Oakland, California, USA, pages
433–446, 2010.

[24] Andreea-Ina Radu, Tom Chothia, Christopher J.P. New-
ton, Ioana Boureanu, and Liqun Chen. Practical EMV
relay protection. In 43rd IEEE Symposium on Security
and Privacy (S&P), 2022.

[25] Michael Roland and Josef Langer. Cloning credit cards:
A combined pre-play and downgrade attack on EMV
contactless. In 7th USENIX Workshop on Offensive Tech-
nologies, WOOT ’13, Washington, D.C., USA, August
13, 2013, 2013.

[26] Haoqi Shan and Jian Yuan. Man in the NFC. In Defcon,
volume 25, 2017.

[27] Jordi van den Breekel. Relaying EMV contactless trans-
actions using off-the-shelf Android devices. In BlackHat
Asia, Singapore, 2015.

15

	Introduction
	Background
	The Protocol
	Application Selection
	Synchronisation between Terminal and ICC
	Cardholder Verification
	Authentication and Authorization

	The Attack and Countermeasures
	Threat Model
	Exploiting Authentication Failures
	Carrying Out the Attack in Practice
	Discussion
	Countermeasures
	Formal Analysis

	Related Work
	Conclusions

