
Deciding Safety and Liveness in TPTL

David Basina, Carlos Cotrini Jiméneza,∗, Felix Klaedtkeb,1, Eugen Zălinescua

aInstitute of Information Security, ETH Zurich, Switzerland
bNEC Europe Ltd., Heidelberg, Germany

Abstract

We show that deciding whether a TPTL formula describes a safety property is EXPSPACE-complete. Moreover, deciding
whether a TPTL formula describes a liveness property is in 2-EXPSPACE. Our algorithms for deciding these problems
extend those presented by Sistla [1] to decide the corresponding problems for LTL.

Keywords: temporal logic, safety and liveness, verification, complexity

1. Introduction

Safety and liveness [2, 3] are two important classes of
system properties. A safety property claims that something
“bad” never happens and a liveness property claims that
something “good” can eventually happen. Identifying a sys-
tem property as a safety or liveness property helps in finding
a suitable method for its verification. For example, model
checking can be improved when the system specification is
known to be a safety property [4]. Also, when a property is
safety, runtime-verification techniques are applicable [5].

Propositional linear-time temporal logic (LTL) [6] is
one of the most popular logics used to specify properties
of concurrent programs, but it has a limitation: its mod-
els abstract away from the actual times when the system
events occur, retaining only their temporal order. To over-
come this limitation, there have been different approaches
extending LTL with explicit time (see [7] for a survey) for
reasoning about hard real-time requirements like “every
request must be processed within 5 time units.” Among
them, timed propositional temporal logic (TPTL) [8] in
discrete-timed models achieves a good balance between
decidability and expressiveness.

Sistla [1] proved that deciding whether an LTL formula
describes a safety property is PSPACE-complete and that
for liveness properties the problem is in EXPSPACE. How-
ever, analogous results for TPTL have not, until now, been
given. In this article, we build upon Sistla’s ideas to decide
the corresponding problems for TPTL. We prove that de-
ciding whether a TPTL formula describes a safety property
is EXPSPACE-complete and that for liveness properties
the problem is in 2-EXPSPACE. To the best of our knowl-
edge, establishing tight lower bounds for deciding liveness
in TPTL and LTL are open problems.

The remainder of this article is organized as follows. In
Section 2, we give background and, in particular, we recall

∗Corresponding author.
1This work was partly done when the author was at ETH Zurich.

TPTL’s syntax and semantics. In Section 3, we introduce
quasimodels and quasicounterexamples for TPTL. These
notions, suitably adapted from [8, 9], facilitate the proof of
correctness of our decision algorithms. In Sections 4 and 5,
we prove our complexity results and in Section 6 we draw
conclusions.

2. Preliminaries

An infinite sequence over a set S is a function from N
to S and a finite sequence over S of length ` is a function
from {0, 1, . . . , `− 1} to S. For a finite sequence α and a
sequence β, let αβ denote their concatenation and let |α| de-
note α’s length. The prefix of length i ∈ N of a sequence α
is the sequence α<i := α(0)α(1) . . . α(i− 1), where we as-
sume that |α| > i. The sequences α≤i, α>i, and α≥i are
defined similarly. For a finite nonempty sequence α, let αω

be the infinite sequence αα For a sequence α over N,
let ᾱ be the sequence defined by ᾱ(i) :=

∑
0≤k≤i α(k) and

ᾱ(i, j) :=
∑
i<k≤j α(k), for i, j ∈ N with i ≤ j.

2.1. TPTL

Syntax. Let P be a finite set of atomic propositions and V
a countable set of variables, with V ∩ P = ∅. The terms π
and formulas ϕ of TPTL are defined by the grammar

π ::= x+ c | c
ϕ ::= false | p | π1 ≤ π2 | π1 ≡m π2 | ϕ1 → ϕ2 |

#ϕ | ϕ1 U ϕ2 | x.ϕ ,

where x, c, p, and m range over V , N, P , and N \ {0},
respectively. We abbreviate x+ 0 by x. For a formula ϕ,
we write ¬ϕ for ϕ→ false and true for ¬false. The syntactic
sugar for the Boolean connectives ∧ and ∨ is as expected.
We let �ψ := trueUψ and �ψ := ¬ �¬ψ. All occurrences
of a variable x in a formula of the form x.ψ are said to
be bound by x.ψ. An occurrence of x in ϕ that is not
bound by any subformula x.ψ of ϕ is free. We denote with

Preprint submitted to Elsevier June 24, 2014

ϕ[x 7→ z] the formula obtained from ϕ by replacing all free
occurrences of x ∈ V with z ∈ V . Finally, we write π1 ∼ π2

to denote any formula of the form π1 ≤ π2 or π1 ≡m π2,
with π1 and π2 terms and m ≥ 1. We call π1 ∼ π2 a time
constraint.

Let nϕ be the number of connectives in ϕ. Also, let

kϕ := 2 ·
(∏

c(1 + c)
)
·
(∏

mm
)
,

where c ranges over the constants occurring in formulas
of the form π1 ≤ π2 in ϕ, with π1 and π2 terms, and m
ranges over the constants such that ≡m occurs in ϕ. When
there are no constants in ϕ, we define kϕ := 2. We define
the length of a formula as the number of symbols needed to
write the formula, assuming that a binary encoding is used
to represent constants and to enumerate variables. Note
that the length of a formula ϕ is linear in nϕ log nϕ+log kϕ.

Semantics. Let Σ = 2P ×N and let Σ∗ and Σω be the sets
of all finite and infinite sequences over Σ respectively. We
usually write a sequence(

σ(0), δ(0)
) (
σ(1), δ(1)

)
. . . ∈ Σ∗ ∪ Σω

as σ ⊗ δ, where σ and δ are sequences over 2P and N,
respectively. TPTL formulas are interpreted over timed
words. A timed word is an infinite sequence σ ⊗ δ ∈ Σω

such that δ(i) > 0, for infinitely many i. A timed word
σ ⊗ δ is k-bounded, for k ∈ N, if δ(i) ≤ k, for all i ∈ N.

Note that Alur and Henzinger [8] define timed words
differently. There, a timed word is an infinite sequence
σ ⊗ τ ∈ Σω such that τ is non-decreasing and for all i ∈ N,
there is j > i such that τ(j) > τ(i). However, the sets of
timed words of both definitions are essentially the same:
We can map a timed word σ ⊗ δ under our definition to
the timed word σ⊗ δ̄ under their definition. Intuitively, for
i > 0, δ(i) indicates the time elapsed between the events
σ(i−1) and σ(i) and δ̄(i) indicates the time when the event
σ(i) takes place.

A valuation is a mapping from V to N. We extend
valuations to terms in the usual way. For a timed word
σ ⊗ δ, a formula ψ, a valuation v, and i ∈ N, we define
satisfaction, written σ ⊗ δ, v, i � ψ, by induction on the
structure of ψ.

σ ⊗ δ, v, i 2 false

σ ⊗ δ, v, i � p iff p ∈ σ(i)

σ ⊗ δ, v, i � π1 ≤ π2 iff v(π1) ≤ v(π2)

σ ⊗ δ, v, i � π1 ≡m π2 iff v(π1) ≡m v(π2)

σ ⊗ δ, v, i � ψ1 → ψ2 iff σ ⊗ δ, v, i 2 ψ1 or σ ⊗ δ, v, i � ψ2

σ ⊗ δ, v, i � #ψ iff σ ⊗ δ, v, i+ 1 � ψ

σ ⊗ δ, v, i � ψ1 U ψ2 iff there is j ≥ i with σ ⊗ δ, v, j � ψ2

and σ ⊗ δ, v, k � ψ1, for all k
with i ≤ k < j

σ ⊗ δ, v, i � x.ψ iff σ ⊗ δ, v[x 7→ δ̄(i)], i � ψ

Here v[x 7→ δ̄(i)] is the valuation obtained from v by setting
v(x) to δ̄(i). We say that σ ⊗ δ satisfies a sentence ϕ (i.e.

a formula without free variables) if σ ⊗ δ, v, 0 � ϕ, for any
valuation v.

2.2. Safety and liveness

A timed word τ refutes the safety of a sentence ϕ if τ
does not satisfy ϕ and for every i ∈ N, there is a sequence
τ ′ ∈ Σω such that τ<iτ ′ satisfies ϕ. The sentence ϕ is
safe—or describes a safety property—if there is no timed
word refuting ϕ’s safety [2, 3].

A sequence τ in Σ∗ is a good prefix for ϕ if there is
τ ′ ∈ Σω such that ττ ′ is a timed word that satisfies ϕ. The
sentence ϕ describes a liveness property if every sequence
in Σ∗ is a good prefix for ϕ [2, 3].

2.3. Additional notions and machinery

Time-constraint normal form. Following [8], we show that
we can restrict our attention to sentences of a certain form.
Let ϕ be a sentence and z a variable not occurring in ϕ. The
sentence ϕ̃ is obtained from ϕ by replacing every variable-
free term c with z + c and then performing the necessary
arithmetic manipulations to leave any time constraint in
the form x+ c ∼ y or x ∼ y + c with x, y ∈ V and c ∈ N.

The following lemma follows from the observation that
a timed word σ ⊗ δ satisfies ϕ iff ∅σ ⊗ 0δ satisfies z.# ϕ̃.

Lemma 1. A sentence ϕ describes a safety property iff
z.# ϕ̃ does and ϕ describes a liveness property iff z.# ϕ̃ does.

For the rest of the article, we assume without loss of
generality that z.ϕ is a sentence where every time constraint
in ϕ is of the form x + c ∼ y or x ∼ y + c, with x, y ∈ V
and c ∈ N.

Updating time constraints. A key observation underlying
the algorithm for deciding satisfiability in TPTL presented
by Alur and Henzinger [8] is that every formula can be
split into a present and a future condition. Note that
σ ⊗ δ, v, i � � q iff σ ⊗ δ, v, i � q or σ ⊗ δ, v, i + 1 � � q.
One must be careful when time constraints occur in the
formula. For example, consider the expression σ ⊗ δ, v, i �
z. � y. (y ≤ z + 5 ∧ q). Note that z refers to the current
time. This expression can be satisfied by having σ⊗δ, v, i �
z. (z ≤ z + 5 ∧ q) in the current state or σ ⊗ δ, v, i + 1 �
z. � y. (y ≤ (z − δ(i+ 1)) + 5 ∧ q) in the next state. Note
that we updated the time constraint as the current time
has changed by δ(i+ 1).

We recall some notation from [8] for updating time
constraints. For a formula of the form z.ψ and d ∈ N, let
z.ψd be the formula obtained by replacing every occurrence
of z in ψ with z − d. Formally, z.ψd is defined inductively
as follows.

– z.ψ0 is z.ψ.

– z.ψd+1 results from z.ψd by replacing every term of the
form z + (c+ 1) with z + c, and every subformula of the
form z ≤ y + c, y + c ≤ z, and z ≡m y + c with true,
false, and z ≡m y + ((c+ 1) modm), respectively.

2

For example, let z.ϕ = z. � y. (y ≤ z + 5 ∧ q). Then z.ϕ2,
z.ϕ5 and z.ϕ6 are z. � y. (y ≤ z + 3 ∧ q), z. � y. (y ≤ z ∧ q),
and z. � y. (false ∧ q), respectively.

The next lemma, from [8], shows that z.ψd correctly de-
notes the formula z.ψ after replacing every free occurrence
of z with z − d. It is proved by induction on ψ’s structure.

Lemma 2. For every formula z.ψ and every d ≤ δ̄(i), we
have σ ⊗ δ, v, i � z.ψd iff σ ⊗ δ, v[z 7→ δ̄(i)− d], i � ψ.

The closure of a formula. The algorithm of Alur and Hen-
zinger follows the tableau method. A tableau for a formula
z.ϕ is built from a set Cl(z.ϕ) of sentences called the clo-
sure of z.ϕ [8]. The closure of z.ϕ is the smallest set that
contains z.ϕ and is closed under the operation Sub, which
is defined as:

– Sub(z.ψ) := {z.ψ}, if ψ is an atomic formula,

– Sub(z.(ψ1 → ψ2)) := {z.ψ1, z.ψ2},

– Sub(z.#ψ) := {z.ψd | d ∈ N},

– Sub(z. (ψ1 U ψ2)) := {z.ψ1, z.ψ2, z.#(ψ1 U ψ2)}, and

– Sub(z.x.ψ) := {z.ψ[x 7→ z]}.

For example, for z.ϕ = z. (p U y. (y ≤ z + 5)), Cl(z.ϕ) con-
tains: z. false, z. y. false, z. (p U y.false), z.# (p U y. false),
z.p, z. (z ≤ z + i), z. y. (y ≤ z + i), z. (p U y. (y ≤ z + i)),
and z.# (p U y. (y ≤ z + i)), for i ≤ 5.

Note that for any z.ϕ, Cl(z.ϕ) only contains sentences.
In particular, z is the only variable that occurs in any
formula of the form z. (π1 ∼ π2) ∈ Cl(z.ϕ).

Avoiding valuations. The following lemma shows that when
evaluating a sentence z.ψ in Cl(z.ϕ) at a position in a timed
word, one need not consider valuations.

Lemma 3. Let z.ψ be a sentence in Cl(z.ϕ). For a timed
word σ ⊗ δ, valuation v, and i ∈ N, we have the following
according to the form of z.ψ:

1. σ ⊗ δ, v, i 2 z.false,

2. σ ⊗ δ, v, i � z.p iff p ∈ σ(i), for p ∈ P ,

3. σ ⊗ δ, v, i � z. z ∼ z + c iff 0 ∼ c and σ ⊗ δ, v, i �
z. z + c ∼ z iff c ∼ 0, for c ∈ N,

4. σ⊗δ, v, i � z.(ψ1 → ψ2) iff σ⊗δ, v, i 2 z.ψ1 or σ⊗δ, v, i �
z.ψ2,

5. σ ⊗ δ, v, i � z.#ψ iff σ ⊗ δ, v, i+ 1 � z.ψδ(i+1),

6. σ ⊗ δ, v, i � z. (ψ1 U ψ2) iff (a) σ ⊗ δ, v, i � z.ψ2 or
(b) σ⊗ δ, v, i � z.ψ1 and σ⊗ δ, v, i � z.# (ψ1 U ψ2), and

7. σ ⊗ δ, v, i � z.x.ψ iff σ ⊗ δ, v, i � z.ψ[x 7→ z].

Proof. Use the following well-founded induction schema.
First, prove the claim for all sentences in Cl(z.ϕ) of the form
z.z ≤ z + c, z.z + c ≤ z, z.false, and z.p, for p ∈ P and
c ∈ N. Then prove the claim for a sentence z.ψ ∈ Cl(z.ϕ),
assuming it holds for all the formulas in Sub(z.ψ). For
item 5, use Lemma 2.

From Lemma 3 we immediately obtain the following.

Lemma 4. For a timed word σ ⊗ δ, i ∈ N and two
valuations v1 and v2, we have that σ ⊗ δ, v1, i � z.ϕ iff
σ ⊗ δ, v2, i � z.ϕ.

Valuations are therefore no longer necessary. Consider,
for example, the formula z.ϕ = z. � y. (y ≤ z + 5 ∧ q) and
the timed word σ ⊗ δ with σ = (∅, ∅, {q}, . . .) and δ =
(0, 2, 7, . . .). Using Lemma 3, checking whether σ⊗ δ, v, 0 �
z.ϕ reduces to checking if any of the following holds:

1. σ ⊗ δ, v, 0 � z. (z ≤ z + 5) and σ ⊗ δ, v, 0 � q,

2. σ ⊗ δ, v, 1 � z. (z ≤ z + 3) and σ ⊗ δ, v, 1 � q, or

3. σ ⊗ δ, v, i � z.false and σ ⊗ δ, v, i � q, for any i ≥ 2.

Note that we do not need to store any time differences
in v. We can therefore drop v and, from now on, we write
σ ⊗ δ, i � z.ψ instead of σ ⊗ δ, v, i � z.ψ.

Finite character of time. In the remainder of this section,
we recall some other results from [8]. TPTL cannot distin-
guish between too large changes in time: for d ≥ kϕ, we

have z.ϕd = z.ϕd
′
, for some d′ < kϕ, where kϕ is the value

defined in Section 2.1. This observation is used to prove
Lemma 7, which states that if z.ϕ is satisfiable, then there
is a kϕ-bounded timed word satisfying z.ϕ.

Let cϕ be 1 plus the largest constant that occurs in
a formula of the form π1 ≤ π2 in z.ϕ, with π1 and π2

terms, and let mϕ be the least common multiple of all
constants m such that ≡m appears in z.ϕ. When there
are no such constants in z.ϕ, we let cϕ := 1 and mϕ := 1,
respectively. For d ∈ N, we define

d̂ :=

{
cϕ ·mϕ + (dmodmϕ) if d ≥ cϕ ·mϕ,

d otherwise.

Note that d̂ < kϕ, for any d ∈ N.

Lemma 5. For a subformula z.ψ ∈ Cl(z.ϕ) and d ∈ N,

we have z.ψd = z.ψd̂.

Proof. The claim obviously holds if d < cϕ ·mϕ. Suppose
that d ≥ cϕ ·mϕ. By the definition of z.ψd, the only parts
of z.ψ affected are the subformulas of the form π1 ∼ π2,
with π1, π2 terms, and z occurring in the subformula. We
distinguish the following cases based on the form of these
subformulas, where y ∈ V and c ∈ N.

– z + c ≤ y or z ≤ y + c. Both formulas become true in
z.ψe, for any e ≥ c+1 for the first one, and for any e ≥ 1
for the second one. Note that d > c and d̂ > c.

3

– y + c ≤ z or y ≤ z + c. Here both formulas become false.

– z + c ≡m y or z ≡m y + c. The two cases are similar, so
we consider only the second one. Here ψd equals

z ≡m y + ((d+ c) modm)

and ψd̂ is

z ≡m y + [(cϕ ·mϕ + (dmodmϕ) + c) modm] .

If we simplify the last expression, we obtain

(cϕ ·mϕ+(dmodmϕ) + c) modm

= ((dmodmϕ) + c) modm = (d+ c) modm,

where the last equality follows from (dmodmϕ) modm =
dmodm.

Lemma 6. Let di ∈ N, for 1 ≤ i ≤ k. Let ∆k and ∆̂k be
d1 +d2 + . . .+dk and d̂1 + d̂2 + . . .+ d̂k, respectively. Then

z.ψ∆k = z.ψ∆̂k , for any subformula z.ψ ∈ Cl (z.ϕ).

Proof. By induction on k. Note that z.ψ∆̂k+d̂k+1 can

be obtained by first computing z.ψ∆̂k and then comput-

ing from that
(
z.ψ∆̂k

)d̂k+1 . By the induction hypothesis,(
z.ψ∆̂k

)d̂k+1 =
(
z.ψ∆k

)d̂k+1 and by Lemma 5,
(
z.ψ∆k

)d̂k+1 =(
z.ψ∆k

)dk+1 . Finally,
(
z.ψ∆k

)dk+1 = z.ψ∆k+dk+1 . There-

fore, z.ψ∆̂k+d̂k = z.ψ∆k+dk .

Lemma 7. Let σ ⊗ δ be a timed word and let δ̂ be the
sequence defined by δ̂(i) := δ̂(i), for i ∈ N. Then σ ⊗ δ̂
is a kϕ-bounded timed word that satisfies z.ϕ iff σ ⊗ δ
satisfies z.ϕ.

Proof. Prove that σ ⊗ δ̂, 0 � z.ψ iff σ ⊗ δ, 0 � z.ψ, for all
z.ψ ∈ Cl(z.ϕ). For this, use the well-founded induction
schema presented in the proof of Lemma 3.

3. Quasimodels and quasicounterexamples

Our algorithm for deciding whether a TPTL sentence
is safe is inspired by the algorithm presented in [1] for
LTL, which, in turn, is based on an algorithm for deciding
satisfiability in LTL [10]. We recall briefly how they work.

LTL models are infinite sequences over the alphabet 2P .
A model is regular if it has the form αβω, for some finite
nonempty sequences α and β over 2P . An LTL formula
ψ is satisfiable iff there is a regular model that satisfies ψ.
To decide whether an LTL formula ψ is satisfiable, the
algorithm non-deterministically guesses two finite sequences
f1 and f2 of sets of subformulas of ψ. The formula ψ is
satisfiable iff there is a regular model αβω such that the
sequences f1 and f2 satisfy the following: for i < |f1|,
the set f1(i) contains exactly all the subformulas of ψ
satisfied by α≥iβω and for j < |f2|, the set f2(j) contains
exactly all the subformulas of ψ satisfied by β≥jβω. In
particular, f1(i) contains α(i) and f2(j) contains β(j), for

all i < |f1| and j < |f2|. The sequence f1f
ω
2 provides all

the information needed to build α and β. Moreover, it
contains evidence that αβω satisfies ψ. The sequence f1f

ω
2

is called a quasimodel for ψ. In general, a quasimodel for
an LTL formula ψ is a sequence f of sets of subformulas
of ψ for which there is a model γ that satisfies ψ and such
that f(i) contains all the subformulas of ψ satisfied by γ≥i.
The elements of a quasimodel are called quasistates for ψ,
which are maximal consistent sets of subformulas of ψ.

The algorithm for checking whether an LTL formula
describes a safety property is similar but more involved. It
non-deterministically guesses a representation of a quasi-
counterexample, which consist of quasimodels f, g0, g1, . . .,
witnessing that the formula ϕ is not safe. In particular, f
is a quasimodel for ¬ϕ and f<igi is a quasimodel for ϕ, for
every i ∈ N.

These observations carry over from LTL to TPTL, with
some modifications. The algorithms for satisfiability and
safety work in the same way and analogous regularity prop-
erties hold for TPTL. We adapt the notions of quasistate,
quasimodel, and quasicounterexample for TPTL in the
Sections 3.1, 3.2, and 3.3, respectively. Quasistates and
quasimodels were already adapted to TPTL in [8]—with
different names though—and we recall them for the sake of
completeness. Note that these notions are implicit in [10, 1]
for LTL. Quasistates and quasimodels were introduced in [9]
to simplify the correctness proofs for decision algorithms
of some fragments of first-order temporal logic.

3.1. Quasistates

Definition 1. A quasistate for z.ϕ is a pair (Φ, d), where
d ∈ N and Φ is a maximally consistent subset of Cl(z.ϕ),
that is, Φ must satisfy the following conditions.

– z.false /∈ Φ.

– z. (z ∼ z + c) ∈ Φ iff 0 ∼ c, for every z. (z ∼ z + c) ∈
Cl(z.ϕ), and z. (z + c ∼ z) ∈ Φ iff c ∼ 0, for every
z. (z + c ∼ z) ∈ Cl(z.ϕ).

– z.(ψ1 → ψ2) ∈ Φ iff z.ψ1 /∈ Φ or z.ψ2 ∈ Φ, for every
z.(ψ1 → ψ2) ∈ Cl(z.ϕ).

– z.(ψ1 U ψ2) ∈ Φ iff (i) z.ψ2 ∈ Φ or (ii) z.ψ1 ∈ Φ and
z.# (ψ1 U ψ2) ∈ Φ, for every z.(ψ1 U ψ2) ∈ Cl(z.ϕ).

– z.x.ψ ∈ Φ iff z.ψ[x 7→ z] ∈ Φ, for every z.x.ψ ∈ Cl(z.ϕ).

For k ∈ N, we say a quasistate (Φ, d) is k-bounded if d ≤ k
and we denote with](z.ϕ) the number of kϕ-bounded
quasistates for z.ϕ.

By Lemma 5, the set Sub(z.#ψ) is finite, which implies
that Cl(z.ϕ) is finite. In particular, the size of Cl(z.ϕ) is
at most nϕkϕ [8]. Hence we have that

](z.ϕ) ≤ 2nϕkϕ · kϕ < 2(nϕ+1)kϕ .

In the following, we abuse notation and write ψ ∈ (Φ, d)
to indicate that ψ ∈ Φ, for a quasistate (Φ, d).

4

3.2. Quasimodels

Let f be a sequence of quasistates for z.ϕ with f(i) =
(Φi, di), for i ∈ N, and let δ be the sequence defined by
δ(i) := di, for i ∈ N. Recall that δ̄ (i, j) :=

∑
i<k≤j δ(k).

Suppose that z. (ψ1 U ψ2) occurs in Φi. Then we say that f
realizes the occurrence of z. (ψ1 U ψ2) in Φi if there is j ≥ i
such that z.ψ

δ̄(i,j)
2 ∈ Φj . When the set Φi is clear from the

context, we say instead that f realizes z. (ψ1 U ψ2).
For (Φ, d) and (Φ′, d′) two quasistates for z.ϕ, we say

that (Φ′, d′) is a successor of (Φ, d) if, for any z.#ψ ∈
Cl(z.ϕ), it holds that z.#ψ ∈ Φ iff z.ψd

′ ∈ Φ′.

Definition 2. A quasimodel for z.ϕ is an infinite sequence f
of quasistates for z.ϕ with f(i) = (Φi, di) such that:

(QM-1) di > 0, for infinitely many i,

(QM-2) z.ϕ ∈ f(0),

(QM-3) f(i+ 1) is a successor of f(i), for all i ∈ N, and

(QM-4) any occurrence of the form z. (ψ1 U ψ2) in f is
realized by f .

The quasimodel is k-bounded if di ≤ k, for all i ∈ N.

The proofs of the following two results are simple exten-
sions of those presented in [11, 8]. They show a one-to-one
correspondence between timed words satisfying z.ϕ and
quasimodels for z.ϕ.

Theorem 1.

1. Let σ⊗δ be a timed word that satisfies z.ϕ and let fσ⊗δ
be the sequence defined by fσ⊗δ(i) := (Φi, δ(i)) with

Φi := {z.ψ ∈ Cl(z.ϕ) | σ ⊗ δ, i � z.ψ}.

The sequence fσ⊗δ is a quasimodel for z.ϕ.

2. Let f be a quasimodel for z.ϕ with f(i) = (Φi, di) and
let σf ⊗ δf be the pair of sequences defined by

σf (i) := {p ∈ P | z.p ∈ Φi}

and δf (i) := di, for any i ∈ N. The pair σf ⊗ δf is a
timed word that satisfies z.ϕ.

Recall that for d ∈ N, d̂ is defined as cϕ·mϕ+(dmodmϕ)

if d ≥ cϕ ·mϕ and d̂ = d, otherwise.

Theorem 2. Let f be an infinite sequence of quasistates for
z.ϕ with f(i) = (Φi, di) and let f̂ be the infinite sequence

defined as f̂(i) = (Φi, d̂i). Then f is a quasimodel for z.ϕ

iff f̂ is a kϕ-bounded quasimodel for z.ϕ.

Proof. We prove just the “only if” direction. The “if” direc-
tion is proved similarly. Requirements (QM-1) and (QM-2)
are clear. For (QM-3) and (QM-4), use Lemmas 5 and 6.

Finally, recall that d̂i < kϕ. Hence f̂ is a kϕ-bounded
quasimodel for z.ϕ.

Lemma 8. Let f be a quasimodel for z.ϕ. If there are
i, j ∈ N such that i ≤ j and f(i) = f(j), then f ′ = f≤if>j

is also a quasimodel for z.ϕ.

Proof. We adapt the proof in [9] to TPTL. Let f(i) =
(Φi, di), for i ∈ N and let δ be the sequence δ(i) := di,
for i ∈ N. (QM-1) and (QM-2) clearly hold for f ′. To
check (QM-3), note that z.#ψ ∈ f(i) iff z.#ψ ∈ f(j)
iff z.ψδj+1 ∈ f(j + 1). We check (QM-4) as follows. Let
z. (ψ1 U ψ2) ∈ f(m) for some m. If m > j then clearly
z. (ψ1 U ψ2) is realized by f ′. Suppose then m ≤ i. If

z.ψ
δ̄(m,`)
2 ∈ f(`) for some ` ≤ i, then we are done; other-

wise, z. (ψ1 U ψ2)
δ̄(m,i)

must occur in f(i). It follows that

z. (ψ1 U ψ2)
δ̄(m,i) ∈ f(j), and since f is a quasimodel for

z.ϕ, the occurrence of z. (ψ1 U ψ2)
δ̄(m,i)

in f(j) is realized
by f≥j . Hence z. (ψ1 U ψ2) is realized by f ′.

To decide whether there is a quasimodel for z.ϕ, the
following lemma from [8] shows that we only need to find
two particular finite sequences of quasistates.

Lemma 9. There is a quasimodel for z.ϕ iff there are
sequences f1 and f2 of kϕ-bounded quasistates for z.ϕ
such that:

1. |f1| ≤](z.ϕ) and |f2| ≤ (|Cl(z.ϕ) + 2|) ·](z.ϕ),

2. z.ϕ ∈ f1(0),

3. d > 0 for some (Φ, d) in f2,

4. fj(i + 1) is a successor of fj(i) for i < |fj | − 1 and
j ∈ {1, 2},

5. f2(0) is a successor of the last quasistates of f1 and f2,
and

6. every occurrence of a formula of the form z. (ψ1 U ψ2)
in f2(0) is realized by f2.

Proof. The proof of an analogous lemma in [9] applies
here as well. For the “if” direction, note that f1f

ω
2 is

a quasimodel for z.ϕ. We prove the “only if” direction,
where we assume that f is a quasimodel for z.ϕ with
f(i) = (Φi, di). By Theorem 2, we assume f is kϕ-bounded.

Take s such that f(s) = f(i), for infinitely many i > s.
Apply Lemma 8 whenever i1 < i2 < s and f(i1) = f(i2).
This yields a quasimodel f1f

≥s with |f1| ≤](z.ϕ).
We now explain how to get f2. Suppose there is a

formula of the form z. (ψ1 U ψ2) in f≥s(0). Take k ≥ 0

such that z.ψ
δ̄(s,s+k)
2 ∈ f≥s(k), where δ is the sequence

defined by δ(i) := di, for i ∈ N. Apply Lemma 8 when-
ever i1 < i2 ≤ k and f≥s(i1) = f≥s(i2). This yields the
quasimodel f1f

≥s(0)f ′f>s
′
, where s′ := s+ k. Note that

f≥s(0)f ′ has length at most](z.ϕ) and realizes the occur-
rence of z. (ψ1 U ψ2) ∈ f≥s(0). Suppose there is another
formula in f≥s(0) of the form z. (ψ′1 U ψ

′
2). If f ′ realizes

z. (ψ′1 U ψ
′
2) then do nothing; otherwise, take k′ such that

5

z.ψ
′∆
2 ∈ f>s

′
(k′). Here ∆ is the sum of all values of d such

that (Φ, d) is a quasistate in f ′ f>s
′
(0) f>s

′
(1) . . . f>s

′
(k′).

Then apply Lemma 8 to remove repeated quasistates in
f>s

′
(0) f>s

′
(1) . . . f>s

′
(k′). As a result, we get a quasi-

model f1 f
≥s(0) f ′′ f>s

′′
, where s′′ := s′ + k′. Note that

f≥s(0) f ′′ realizes both occurrences of z. (ψ1 U ψ2) and
z. (ψ′1 U ψ

′
2) in f≥s(0) and has length at most 2 ·](z.ϕ).

Continue in this way for any other formula in f≥s(0) of
the form z. (ψ′′1 U ψ′′2). After this, we obtain a quasimodel
f1 f

≥s(0) f◦ f>k
◦
, where f≥s(0)f◦ realizes any occurrence

in f≥s(0) of the form z. (ψ1 U ψ2) and has length at most
|Cl(z.ϕ)| ·](z.ϕ).

Now, take t such that f>k
◦
(t) has the form (Φ, d) with

d > 0 and use Lemma 8 to remove repeated quasistates
in f>k

◦
(0)f>k

◦
(1) . . . f>k

◦
(t). This yields a quasimodel

f1 f
≥s(0) f◦◦ f>k

◦◦
where k◦◦ := k◦ + t and f≥s(0) f◦◦

not only realizes all occurrences of the form z. (ψ1 U ψ2)
in f≥s(0), but also contains a quasistate (Φ, d) with d > 0.
Finally, take t′ such that f>k

◦◦
(t′) = f≥s(0). Such a

quasistate f>k
◦◦

(t′) exists because we chose f≥s(0) = f(s)
as a quasistate that occurs infinitely often in f . Use
Lemma 8 to obtain a quasimodel f1 f

≥s(0) f◦◦◦ f≥k
◦◦◦

,
where k◦◦◦ := k◦◦ + t′. We define f2 as the sequence
f≥s(0)f◦◦◦. It is easy to check that f1 and f2 meet all the
requirements.

3.3. Quasicounterexamples

We now define quasicounterexamples for TPTL. Sup-
pose z.ϕ is not safe. Then there is a timed word τ that
does not satisfy z.ϕ and is such that for every i ∈ N the
sequence τ<i can be extended to a timed word τi that
satisfies z.ϕ. We can see the family τ , τ0, τ1, . . . as a tree.
The main branch is τ and for every i ≥ 1, the sequence
τi(i) τi(i+ 1) . . . branches from τ(i− 1). A quasicounterex-
ample for z.ϕ contains all the necessary information to
build such a family of timed words when z.ϕ is not safe.

Two quasistates (Φ1, d1) and (Φ2, d2) are compatible
if d1 = d2 and z.p ∈ Φ1 iff z.p ∈ Φ2 for every p ∈ P .
Two sequences of quasistates are compatible if they are
element-wise compatible.

We now give the definition of quasicounterexample.

Definition 3. Let f be an infinite sequence of quasistates
and g a mapping from N×N to quasistates. The pair (f, g)
is a quasicounterexample for z.ϕ if

– f is a quasimodel for z.¬ϕ,

– g�i is a quasimodel for z.ϕ, for all i ∈ N, where g�i is the
sequence g(0, 0)g(1, 0) . . . g(i− 1, 0)g(i, 1)g(i, 2) . . ., and

– f and g(0, 0)g(1, 0) . . . are compatible.

A quasicounterexample is k-bounded if f and g�i, for all
i ∈ N, are all k-bounded.

Lemma 10. The sentence z.ϕ is not safe iff it has a kϕ-
bounded quasicounterexample.

Proof. (⇐) Let (f, g) be a kϕ-bounded quasicounterexam-
ple for z.ϕ. According to Theorem 1, let σf ⊗ δf and
σg�j ⊗ δg�j be the timed words defined by f and g�j, for
each j ∈ N, respectively. Note that σf ⊗ δf satisfies z.¬ϕ
and σg�j ⊗ δg�j satisfies z.ϕ for all j. Now, since f and
g(0, 0)g(1, 0) . . . are compatible, the finite prefix of σf ⊗ δf
of length ` ∈ N is the same finite prefix of σg�` ⊗ δg�` of
length `. Hence, every finite prefix of σf ⊗ δf can be ex-
tended to a timed word that satisfies z.ϕ. Therefore, z.ϕ
is not safe.

(⇒) Suppose z.ϕ is not safe. Then there is a timed
word τ satisfying z.¬ϕ such that for any j ∈ N the pre-
fix τ<j can be extended to a timed word τj satisfying z.ϕ.
For j ∈ N, let f and hj be the quasimodels for z.¬ϕ and z.ϕ
defined by τ and τj according to Theorem 1, respectively.
By Theorem 2, assume f and hj are kϕ-bounded, for j ∈ N.

Let H = {h0, h1, . . .}. We may regard H as a set
of infinite words from the alphabet consisting of all kϕ-
bounded quasistates for z.ϕ, which is finite. We build
inductively a sequence α of quasistates as follows. Let α(0)
be the kϕ-bounded quasistate such that α(0) = h(0) for
infinitely many h ∈ H. For the inductive step, suppose
we have already built the first i + 1 quasistates α≤i =
α(0)α(1) . . . α(i), and that α≤i = h≤i for infinitely many
h ∈ H. Let α(i + 1) be a kϕ-bounded quasistate such
that α≤iα(i+ 1) = h≤ih(i+ 1) for infinitely many h ∈ H.
Such a quasistate exists because h(i+ 1) can take at most
] (z.ϕ) possible values and there are infinitely many h ∈ H
with α≤i = h≤i. By construction, the sequence α has the
following property: for each i ≥ 0, there are infinitely many
h ∈ H such that h<i is a prefix of α.

For each i ≥ 0, let gi be some h ∈ H such that h<i

is a prefix of α. Note that g<i1i1
is a prefix of g<i2i2

, for
i1 < i2. We define the mapping g by g(i, 0) = gi+1(i) and
g(i, j) = gi(i + j − 1), for all i ≥ 0 and j ≥ 1. Note that
g�i = gi, for any i ∈ N, and g(0, 0)g(1, 0) . . . = α. It is easy
to see that (f, g) is a quasicounterexample for z.ϕ.

For a function g mapping N × N into quasistates, we
define g≤i as the restriction of g over {0, 1, . . . , i}×N. Other
functions such as g<i, g≥i, g>i are defined analogously.

Suppose g1 and g2 are mappings from {0, 1, . . . , k} ×N
and N×N into quasistates respectively. Let g1g2 be the map-
ping obtained by concatenating both grids {0, 1, . . . , k}×N
and N× N along the first dimension.

Lemma 11. Let (f, g) be a quasicounterexample for z.ϕ
such that f(i) = f(j) and g(i, 0) = g(j, 0) for some i < j.
Then (f≤if>j , g≤ig>j) is a quasicounterexample for z.ϕ.

Proof. Let g′ = g≤ig>j . Note f≤if>j is a quasimodel for
z.ϕ and each g′�i is a quasimodel for z.ϕ, by Lemma 8.
Clearly, f≤if>j and g′(0, 0)g′(1, 0) . . . are compatible.

4. Deciding safety in TPTL

The following theorem gives a computable criterion for
deciding whether a TPTL sentence is safe. This theorem

6

naturally extends the criterion for deciding whether an
LTL formula is safe [1].

Theorem 3. The sentence z.ϕ is not safe iff there are
finite sequences f1, f2, h1, h2, h3, h4 meeting the following
requirements.

1. f1f
ω
2 is a quasimodel for z.¬ϕ and h1h2h3h

ω
4 is a quasi-

model for z.ϕ.

2. |f1| = |h1| ≤](z.ϕ)2, |f2| = |h2| ≤ (|Cl(z.ϕ)|+ 2) ·
](z.ϕ)2, |h3| ≤](z.ϕ), and |h4| ≤ (|Cl(z.ϕ)|+ 2) ·](z.ϕ).

3. f1f2 and h1h2 are compatible.

4. The first quasistate of h2 is a successor of the last quasi-
state of h2.

Proof. (⇒) Suppose z.ϕ is not safe. Then z.ϕ has a
kϕ-bounded quasicounterexample (f, g). Suppose f(i) =
(Φi, di), for i ∈ N and let δ be the sequence defined by
δ(i) := di, for i ∈ N. We construct f1, f2, h1, h2, h3,
and h4 using ideas similar to those used in Lemma 9.

We start with f1 and h1. Take s such that g(s, 0) =
g(i, 0) and f(s) = f(i), for infinitely many i > s. Apply
Lemma 11 whenever i1 < i2 < s, g(i1, 0) = g(i2, 0), and
f(i1) = f(i2). This yields the quasicounterexample

(f1f
≥s, g1g

≥s)

with |f1| ≤](z.ϕ)2. Take h1 as the sequence

g1(0, 0)g1(1, 0) . . . g1(|f1| − 1, 0).

We now explain how to get f2 and h2. Suppose there is
a formula in f≥s(0) of the form z. (ψ1 U ψ2). Take any k

such that z.ψ
δ̄(s,s+k)
2 ∈ f≥s(k). Apply Lemma 11 whenever

i1 < i2 ≤ k, f≥s(i1) = f≥s(i2), and g≥s(i1, 0) = g≥s(i2, 0).
This yields the quasicounterexample(

f1 f
≥s(0) f ′ f>s+k, g1 g

≥s(0, ·) g′ g>s+k
)
,

where g≥s(0, ·) is the restriction of g≥s to {0} × N. Note
that f≥s(0)f ′ realizes the occurrence z. (ψ1 U ψ2) ∈ f≥s(0)
and has length at most](z.ϕ)2. Repeat this procedure for
all other formulas of the form z. (ψ1 U ψ2) in f≥s(0). After
this, we get a quasicounterexample(

f1 f
≥s(0) f◦ f>k

◦
, g1 g

≥s(0, ·) g◦ g>k
◦)
,

where f≥s(0)f◦ realizes all formulas of the form z. (ψ1 U ψ2)
in f≥s(0) and has length at most |Cl(z.ϕ)| ·](z.ϕ)2. Fol-
lowing the ideas of Lemma 9, we can reshape this quasi-
counterexample into one of the form(

f1 f
≥s(0) f◦◦ f≥k

◦◦
, g1 g

≥s(0, ·) g◦◦ g≥k
◦◦)
,

where f≥k
◦◦

(0) = f≥s(0), g≥k
◦◦

(0, 0) = g≥s(0, 0), and
f≥s(0)f◦◦ realizes all the formulas of the form z. (ψ1 U ψ2)
in f≥s(0), has a quasistate (Φ, d) with d > 0, and has
length (|Cl(z.ϕ)|+ 2) ·](z.ϕ)2. Finally, let f2 = f≥s(0)f◦◦

and let h2 be the sequence of all quasistates in g≥s(0, ·)g◦◦
whose second coordinate is 0. Note that:

1. f1 and f2 satisfy the requirements of Lemma 9, hence
f1f

ω
2 is a quasimodel for z.¬ϕ,

2. |f2| = |h2| ≤ (|Cl(z.ϕ)|+ 2) ·](z.ϕ)2,

3. f1f2 and h1h2 are compatible, and

4. the first quasistate of h2 is a successor of the last quasi-
state of h2.

It remains to build h3 and h4. Let

γ = g>k
◦◦

(0, 1) g>k
◦◦

(0, 2) . . .

Note that h1h2γ is a quasimodel for z.ϕ. We build h3

and h4 from γ such that h1h2h3h
ω
4 is a quasimodel for z.ϕ

in a similar way as in the proof of Lemma 9.
(⇐) First, we show that any finite prefix of h1h

ω
2 can

be extended to a quasimodel for z.ϕ. For this, it suffices
to show that for any i ≥ 1, the sequence h1h

i
2h3h

ω
4 is a

quasimodel for z.ϕ. Requirements (QM-1) and (QM-2)
follow from h1h2h3h

ω
4 being a quasimodel for z.ϕ. (QM-3)

follows from condition 4 in the theorem. For (QM-4), let
z.ψ1 U ψ2 be a formula occurring somewhere in h1h

i
2h3h

ω
4 .

If z. (ψ1 U ψ2) occurs in h3 or h4 then this is trivial. Sup-
pose it occurs in the first quasistate of a copy of h2. If
z. (ψ1 U ψ2) is not realized by that copy h2, then either

z. (ψ1 U ψ2)
∆

for suitable ∆ occurs in the first quasistate
of the next copy of h2 or in the first quasistate of h3. In
the latter case, we are done; in the former, just repeat the
argument until z. (ψ1 U ψ2) is realized or it occurs in the
first quasistate of h3. The case when z. (ψ1 U ψ2) occurs
in h1 is similar.

To build a quasicounterexample for z.ϕ use the facts
that (i) any finite prefix of h1h

ω
2 can be extended to a

quasimodel for z.ϕ and (ii) the sequences f1f
ω
2 and h1h

ω
2

are compatible.

The following example illustrates how the sequences
f1, f2, h1, h2, h3, and h4 work together. Consider the
formula ϕ = p ∧ � (¬p ∧#� p), which is not safe. The
timed word ({p}, 1)

ω
does not satisfy it, but any finite

prefix ({p}, 1)
i
, with i ∈ N, can be extended to the timed

word ({p}, 1)
i
(∅, 1) ({p}, 1)

ω
, which satisfies ϕ. This infor-

mation is represented by letting f1 and h1 be the empty
sequence, f2 = h2 = ({p}, 1), h3 = (∅, 1), and h4 =
({p}, 1). These sequences satisfy the requirements of Theo-
rem 3 and encode the timed words ({p}, 1)

ω
= f1f

ω
2 and

({p}, 1)
i
(∅, 1) ({p}, 1)

ω
= h1h

i
2h3h

ω
4 , for i ∈ N.

Theorem 4. Deciding whether a TPTL sentence is safe
is EXPSPACE-complete.

Proof. EXPSPACE-hardness follows from the fact that
deciding whether a TPTL formula is valid is EXPSPACE-
complete [8]. The sentence z.ϕ is valid iff z.ϕ ∨ � q is safe,
where q is an atomic proposition not occurring in z.ϕ.

We now present a non-deterministic algorithm that
decides whether a TPTL sentence is safe by guessing finite

7

sequences f1, f2, h1, h2, h3, h4 of quasistates that satisfy the
requirements of Theorem 3. This algorithm uses an amount
of memory exponential in the length of z.ϕ. By Savitch’s
theorem, it follows that deciding whether a TPTL sentence
is safe is in EXPSPACE.

First, guess a number `1 ≤](z.ϕ)2. Now guess two
compatible kϕ-bounded quasistates (Φ0, d0) and (Ψ0, e0),
with z.ϕ /∈ Φ0 and z.ϕ ∈ Ψ0. They are the first quasistates
for f1 and h1 respectively. Next, for i from 1 to `1 − 1,
guess two compatible kϕ-bounded quasistates (Φi, di) and
(Ψi, ei) that are successors of (Φi−1, di−1) and (Ψi−1, ei−1)
respectively. This gives rise to the two sequences f1 and h1.
Similarly, guess the sequences f2 and h2. Guess a number
`2 ≤ (|Cl(z.ϕ)|+ 2) ·](z.ϕ)2 and guess two compatible
kϕ-bounded quasistates (Φ′0, d

′
0) and (Ψ′0, e

′
0). These qua-

sistates must be successors of (Φ`−1, d`−1) and (Ψ`−1, e`−1).
To check conditions 1 and 4 of Theorem 3, set a variable
b = 0 and create a table T with all the formulas of the form
z. (ψ1 U ψ2) that occur in Φ′0. Next, guess the rest of the
two sequences f2 and h2, checking that the new pair is a suc-
cessor of the previous one. Every time the next quasistate
(Φ′i, d

′
i) for f2 is guessed, set b = 1 if d′i > 0 and remove

from T all the formulas that are realized by Φ′i. That
is, remove from T all occurrences of the form z. (ψ1 U ψ2)

such that z.ψ
d′1+...+d′i
2 appears in Φ′i. After guessing f2

and h2, check that (i) b = 1, (ii) the first quasistate of h2

is a successor of the last quasistate of h2, and (iii) T is
empty to ensure that f2 realizes all occurrences of the form
z. (ψ1 U ψ2) ∈ f2(0). We guess h3 and h4 in a similar way.
The space used for h1 and h2 can be reused for h3 and h4.

For this algorithm we need space for `1, `2, T , and four
quasistates. Note that `i is at most(

|Cl(z.ϕ)|+ 2
)
·](z.ϕ)2 ≤ (nϕkϕ + 2) 22(nϕ+1)kϕ ,

for i ∈ {1, 2}. Thus for each `i we need O (nϕkϕ) space.
For each quasistate we need O (|Cl(z.ϕ)| kϕ) = O

(
nϕk

2
ϕ

)
space, and for T we also need O(|Cl(z.ϕ)|) space. Since
nϕ and kϕ are linear and exponential in the length of z.ϕ
respectively, the algorithm takes space exponential in the
length of z.ϕ.

5. Deciding liveness in TPTL

In this section, we extend the algorithm presented in [1]
to decide whether a given TPTL sentence z.ϕ describes a
liveness property.

Recall that Σ = 2P ×N. Let Σ̂ϕ be the restriction of Σ
to those pairs (a, d) ∈ 2P × N with d ≤ kϕ. Let τ = σ ⊗ δ
be a sequence in Σ∗ of length `. The sequence τ is a k-good
prefix for z.ϕ if δ(i) ≤ k, for every i < `, and there is a
τ ′ ∈ Σω such that ττ ′ is a k-bounded timed word that
satisfies z.ϕ.

Lemma 12. The sentence z.ϕ describes a liveness property
iff every σ ∈ Σ̂∗ϕ is a kϕ-good prefix for z.ϕ.

Proof. (⇒) Let σ = (a0, d0)(a1, d1) . . . (ak, dk) be a se-
quence in Σ̂∗ϕ ⊆ Σ∗. By assumption, there is σ′ ∈ Σω

of the form σ′ = (ak+1, dk+1)(ak+2, dk+2) . . . such that σσ′

is a timed word that satisfies z.ϕ. Let

σ̂′ := (ak+1, d̂k+1)(ak+2, d̂k+2)

By Lemma 7, σσ̂′ satisfies z.ϕ. So σ is a kϕ-good prefix
for z.ϕ.

(⇐) For σ = (a0, d0)(a1, d1) . . . (ak, dk) ∈ Σ∗, let σ̂ :=

(a0, d̂0)(a1, d̂1) . . . (ak, d̂k), which is in Σ̂∗ϕ. By assumption,
σ̂ is a kϕ-good prefix for z.ϕ. So, there is σ′ ∈ Σω such
that σ̂σ′ is a kϕ-bounded timed word that satisfies z.ϕ. By
Lemma 7, σσ′ satisfies z.ϕ, so σ is a good prefix for z.ϕ.

Definition 4. An infinite sequence of quasistates for a
formula z.ϕ is called a fulfilling path for z.ϕ if it meets the
conditions (QM-1), (QM-3), and (QM-4) from Definition 2.

The following lemma is proved similarly to Lemma 9.

Lemma 13. There is a fulfilling path for z.ϕ iff there are
sequences f1 and f2 of kϕ-bounded quasistates for z.ϕ such
that:

1. |f1| ≤](z.ϕ) and |f2| ≤ (|Cl(z.ϕ) + 2|) ·](z.ϕ),

2. d > 0 for some (Φ, d) in f2,

3. fj(i + 1) is a successor of fj(i) for i < |fj | − 1 and
j ∈ {1, 2},

4. f2(0) is a successor of the last quasistates of f1 and f2,
and

5. every occurrence of the form z. (ψ1 U ψ2) in f2(0) is
realized by f2.

Lemma 14. There is an algorithm that, given a quasi-
state (Φ0, d0) for a formula z.ϕ, decides whether there is
a fulfilling path f for z.ϕ such that f(0) = (Φ0, d0). The
algorithm uses space exponential in the length of z.ϕ.

Proof. By Savitch’s theorem, it suffices to give a non-
deterministic algorithm that uses space exponential in nϕ.
The algorithm guesses a fulfilling path of the form described
in Lemma 13. First, guess the lengths of f1 and f2, namely
`1 and `2 with `1 ≤](z.ϕ) and `2 ≤ (|Cl(z.ϕ)|+ 2) ·](z.ϕ).
Then for i from 1 to `1 − 1, guess a kϕ-bounded quasistate
(Φi, di) that is a successor of (Φi−1, di−1). After guess-
ing f1, let b = 0 and let T be the set of all formulas of
the form z. (ψ1 U ψ2) ∈ Φ`1−1. Guess f2 as follows. First,
guess a kϕ-bounded quasistate (Φ′0, d

′
0) that is a succes-

sor of (Φ`1−1, d`1−1). Then for i from 1 to `2 − 1, guess
a kϕ-bounded quasistate (Φ′i, d

′
i) that is a successor of

(Φ′i−1, d
′
i−1). Every time the next quasistate (Φ′i, d

′
i) for f2

is guessed, set b to 1 if d′i > 0 and remove from T all formu-

las z. (ψ1 U ψ2) such that z.ψ
d′1+...+d′i
2 ∈ Φ′i. After guessing

(Φ′`2−1, d
′
`2−1), check that b = 1, T is empty, and (Φ′0, d

′
0)

8

is a successor of (Φ′`2−1, d
′
`2−1). If these checks succeed,

then by Lemma 13 there is a fulfilling path for z.ϕ. The
complexity result follows from the proof of Theorem 4.

Recall that an automaton is a tuple 〈Q,Γ, δ, q0, F 〉,
where Q is a finite nonempty set of states, Γ is a finite
nonempty alphabet, q0 ∈ Q is the initial state, δ ⊆ Q×Γ×Q
is the transition relation, and F ⊆ Q is the set of accepting
states. We can see δ as a set of directed edges between
states that are labeled with elements of Γ.

Theorem 5. There is an algorithm that decides whether
a formula z.ϕ describes a liveness property. The algorithm
uses space doubly exponential in the length of z.ϕ.

Proof. The algorithm has two parts. First, build an au-
tomaton A over the alphabet Σ̂ϕ that accepts σ ∈ Σ̂∗ϕ iff σ
is a kϕ-good prefix for z.ϕ. Second, check if A accepts all

the words in Σ̂∗ϕ. By Lemma 12, A accepts all the words

in Σ̂∗ϕ iff z.ϕ describes a liveness property.
First, we define A. A’s set of states is the set of all kϕ-

bounded quasistates for z.ϕ together with a distinguished
initial state called init . For two states s1, s2 and (a, d) ∈
Σ̂ϕ, there is an edge from s1 to s2 labeled with (a, d) iff

1. s2 = (Φ, d′) with d′ = d,

2. p ∈ a iff p ∈ Φ for all p ∈ P ,

3. if s1 = init then z.ϕ ∈ Φ, and

4. if s1 6= init then s2 is a successor of s1.

Finally, for every state s different from init , apply Lemma 14
and make s accepting iff there is a fulfilling path f for z.ϕ
such that f(0) = s.

Next, we prove that A accepts σ ∈ Σ̂∗ϕ iff σ is a kϕ-
good prefix for z.ϕ. If σ is accepted by A, then there is
a path init, s0, s1, . . . , s` in A such that s` is an accepting
state and the concatenation of the labels of the edges in
the path reads σ. Let f be a fulfilling path for z.ϕ such
that f(0) = s`. It is easy to prove that s0s1 . . . s`−1f is a
kϕ-bounded quasimodel for z.ϕ and that the timed word
defined by this quasimodel according to Theorem 1 is an
extension of σ. Therefore, σ is a kϕ-good prefix for z.ϕ.
Suppose now that σ = (a0, d0)(a1, d1) . . . (a`−1, d`−1) is a
kϕ-good prefix for z.ϕ. Let σ′ = (a`, d`)(a`+1, d`+1) . . . ∈
Σ̂ωϕ be such that σσ′ is a kϕ-bounded timed word that
satisfies z.ϕ. Let f1 = (Φ0, d0)(Φ1, d1) . . . (Φ`−1, d`−1) and
f2 = (Φ`, d`)(Φ`+1, d`+1) . . . be the sequences of quasistates
for z.ϕ, where Φi := {z.ψ ∈ Cl(z.ϕ) | σσ′, i � z.ψ}, for
i ∈ N. By Theorem 1, f1f2 is a quasimodel for z.ϕ. It
follows that f2 is a fulfilling path for z.ϕ and hence f2(0)
is an accepting state in A. Also, init f1f2(0) is a path in
A such that the concatenation of the edges in the path
reads σ. Therefore, A accepts σ.

We now analyze the complexity of building A and check-
ing if A accepts all the words in Σ̂∗ϕ. The number of states

of A is 1 +](z.ϕ) ≤ 2(nϕ+1)kϕ = 2O(nϕkϕ). The size of the

alphabet Σ̂ϕ is
∣∣2P ∣∣ · kϕ = O (kϕ). Therefore, building

A takes 2O(nϕkϕ) space. Checking if A accepts Σ̂∗ϕ takes
space polynomial in the number of A’s states, which is
2O(nϕkϕ) space. The values of nϕ and kϕ are respectively
linear and exponential in the length of z.ϕ, and therefore
our algorithm uses space doubly exponential in the length
of z.ϕ.

6. Conclusion

Sistla [1] proved that deciding safety and liveness for
LTL are PSPACE-complete and in EXPSPACE, respec-
tively. We have carried over his proofs to TPTL and proved
that the corresponding problems for TPTL are EXPSPACE-
complete and in 2-EXPSPACE, respectively. Concerning
liveness, we have the following lower bounds. Checking
liveness is PSPACE-hard for LTL and EXPSPACE-hard
for TPTL. This is because ϕ is satisfiable iff �ϕ describes
a liveness property. Tighter lower bounds for deciding live-
ness remain unknown for both LTL and TPTL. Note that
we considered a discrete time domain for TPTL. In the case
of dense time, satisfiability for TPTL is undecidable [8],
and thus checking safety and liveness are both undecidable.

References

[1] A. P. Sistla, Safety, liveness and fairness in temporal logic,
Formal Asp. Comput. 6 (5) (1994) 495–511.

[2] L. Lamport, Proving the correctness of multiprocess programs,
IEEE Trans. Software Eng. 3 (2) (1977) 125–143.

[3] B. Alpern, F. B. Schneider, Defining liveness, Inform. Process.
Lett. 21 (4) (1985) 181–185.

[4] O. Kupferman, M. Y. Vardi, Model checking of safety properties,
Form. Method. Syst. Des. 19 (3) (2001) 291–314.

[5] M. Leucker, C. Schallhart, A brief account of runtime verification,
J. Log. Algebr. Program. 78 (5) (2009) 293–303.

[6] A. Pnueli, The temporal logic of programs, in: Proceedings
of the 18th Annual Symposium on Foundations of Computer
Science (FOCS’77), IEEE Computer Society, 1977, pp. 46–57.

[7] R. Alur, T. A. Henzinger, Logics and models of real time: A
survey, in: Proceedings of the 1991 REX Workshop on Real-
Time: Theory in Practice, Vol. 600 of Lect. Notes Comput. Sci.,
Springer, 1992, pp. 74–106.

[8] R. Alur, T. A. Henzinger, A really temporal logic, J. ACM 41 (1)
(1994) 181–203.

[9] I. Hodkinson, F. Wolter, M. Zakharyaschev, Decidable fragments
of first-order temporal logics, Ann. Pure Appl. Logic 106 (1)
(2000) 85–134.

[10] A. P. Sistla, E. M. Clarke, The complexity of propositional linear
temporal logics, J. ACM 32 (3) (1985) 733–749.

[11] R. Alur, T. A. Henzinger, Real-time logics: Complexity and
expressiveness, in: Proceedings of the 5th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS’90), IEEE Computer
Society, 1990, pp. 390–401.

9

	Introduction
	Preliminaries
	TPTL
	Safety and liveness
	Additional notions and machinery

	Quasimodels and quasicounterexamples
	Quasistates
	Quasimodels
	Quasicounterexamples

	Deciding safety in TPTL
	Deciding liveness in TPTL
	Conclusion

