
Distributed Temporal Logic for the Analysis of Security

Protocol Models

David Basin
Department of Computer Science

ETH Zurich, Switzerland

Carlos Caleiro Jaime Ramos
SQIG - Instituto de Telecomunicações and Department of Mathematics

IST, TU Lisbon, Portugal

Luca Viganò
Department of Computer Science

University of Verona, Italy

August 25, 2011

Abstract

The distributed temporal logic DTL is an expressive logic, well-suited for formalizing prop-
erties of concurrent, communicating agents. We show how DTL can be used as a metalogic
to reason about and relate different security-protocol models. This includes reasoning about
model simplifications, where models are transformed to have fewer agents or behaviors, and
verifying model reductions, where to establish the validity of a property it suffices to consider
its satisfaction on only a subset of models.

We illustrate how DTL can be used to formalize security models, protocols, and properties,
and then present three concrete examples of metareasoning. First, we prove a general theorem
about sufficient conditions for data to remain secret during communication. Second, we prove
the equivalence of two models for guaranteeing message-origin authentication. Finally, we
relate channel-based and intruder-centric models, showing that it is sufficient to consider
models in which the intruder completely controls the network. While some of these results
belong to the folklore or have been shown, mutatis mutandis, using other formalisms, DTL
provides a uniform means to prove them within the same formalism. It also allows us to
clarify subtle aspects of these model transformations that are often neglected or cannot be
specified in the first place.

1 Introduction

Security protocols are distributed programs that employ cryptography in order to achieve their
objectives in possibly hostile environments. They have been widely studied within the formal
methods community as they are difficult to design and notoriously prone to error: it is difficult to
predict all the possible ways that distributed computation may proceed and thereby foresee all the
ways that an intruder can overcome cryptography by exploiting the willingness of honest agents
to communicate. The research in this area is extensive and a number of logics and formalisms
exist for specifying and verifying security protocols.

Our contribution in this paper is not another method or tool for protocol analysis. Rather,
we present a logical foundation for formalizing and reasoning about models of security protocols,
which are at the heart of other methods and tools. The foundation is based on DTL, a distributed
temporal logic [34]. DTL is an expressive, general-purpose logic that is well-suited for formalizing

1

both local, agent-specific properties and global properties of distributed communicating processes.
Within DTL, we formalize different theories for security protocol analysis, capturing different
ways that agents can interact with the network in the presence of an active intruder. We use these
theories to show how DTL can be used in two, quite distinct ways:

• as an object logic for formalizing specific protocol models and proving properties of protocols
with respect to these models, and

• as a metalogic for relating different models and proving metatheorems about the models
themselves.

To show how DTL can be used as an object logic, we consider the well-known NSPK proto-
col [54] and its corrected version NSL [42]. We use these to illustrate DTL’s application to both
protocol falsification and verification. As mentioned above, there are many existing formalisms for
reasoning about protocols. However, unlike existing formalisms for object-level protocol analysis,
DTL is additionally suitable as a metalogic, and the possibility of using DTL effectively as an
object logic is a necessary prerequisite for more advanced metalogical applications. Conversely, an
effective metalogic aids object logic applications in that we can derive general metatheorems useful
for protocol verification. We will illustrate this by establishing a general result about sufficient
conditions for data to remain secret during communication.

To further show how DTL can be used as a metalogic, we present applications to formalizing
and verifying properties of security protocol models and translations between models. Our moti-
vations here are both theoretical and practical. Within the security community, a wide variety of
different models have been proposed, often with slightly differing assumptions, concerning com-
munication, the powers of the intruder, and the abstractions used in describing security protocols.
Theoretically, we would like to understand, and have a formal foundation for establishing, the
relationship between these different models. Practically, when building security protocol analysis
tools, we would like to reduce the number of different scenarios that must be searched (model re-
duction) as well as to simplify the scenarios considered (model simplification). Such optimizations
can substantially improve the efficiency of algorithmic verification tools and should be employed
whenever possible, provided they preserve the properties of interest. The challenge, of course, is
to formalize and prove this. Our contribution is to show how DTL can be used to give a simple,
rigorous, and uniform account of different model reduction and simplification techniques as well
as other kinds of metatheoretic properties of security protocol models. We do this by studying
concrete models, showing how they can be formalized naturally and reasoned about using DTL.

First, we formalize and prove the equivalence of two models for guaranteeing message-origin
authentication. The first model is an abstract model where principals may use a special channel,
controlled by a trusted third party, that logs all incoming messages and issues evidence of their
origin to the recipients. The second model is more concrete and uses digital signatures to imple-
ment an authentic channel. We present two different transformations of the corresponding DTL
models and corresponding notions of equivalence based on preserving translations of properties.
This example is not aimed at justifying a model simplification, but rather at showing how DTL
can be used to relate models at different levels of abstraction. The equivalences we prove can
be used to justify that concrete (signature-based) designs achieve the more abstract notion of
message-origin authentication defined in terms of a trusted third party.

Afterwards, we use DTL as a metalogic to explore the exact meaning of different modeling
assumptions that are common in security protocol analysis. Namely, even when working with an
intruder who controls the network, one must make numerous modeling decisions. For example, is
the intruder identified with the network? That is, does he coexist with the network and intercept
messages sent to the network versus is he identified with the network and all messages are sent
directly to him? Alternatively, does one consider all possible interleavings between intruder actions
and those of honest agents or only some subset? In particular, under suitable assumptions, we
establish the following results:

(1) the intruder can be identified with the network;

2

(2) the steps (actions) of honest agents can be “compressed” in the sense that the receipt of a
message can always be immediately followed by the agent sending a response; and

(3) all distribution in the model can be eliminated by considering all actions from the intruder’s
point of view.

The results (1) and (3) constitute model simplifications as they involve a translation between
models (and also properties), leading to models that are simpler in the sense that they involve
fewer agents or collapse behaviors. Result (2) exemplifies a model reduction, where to establish
the validity of a property it suffices to consider its satisfaction on only a subset of models, namely
just those models where steps are compressed.

While some of the results we prove belong to the folklore or have, mutatis mutandis, already
been shown using other formalisms, our logic provides a means to prove them in a general, uniform
way within the same formalism. It also allows us to clarify aspects of these properties that are
often neglected or cannot be specified in the first place. For example, the equivalences proved in
the message-origin example depend critically on the capabilities of the intruder using the trusted
channel, what exactly is signed, and that different keys are used for different purposes.

While other logics or formalisms could be used for these tasks, we believe that DTL offers a
number of advantages. Security protocols are carried out by distributed agents, with individual
state, who concurrently execute protocols, synchronizing over shared communication. DTL pro-
vides a rich language with a corresponding semantics that naturally captures all of these aspects.
It has a distributed dimension that captures the agents, their local state, and communication.
Concurrent execution, as well as the formalization of security properties, is captured by adding a
temporal dimension based on past and future time linear temporal operators. The logic is quite
flexible and avoids commitment to particular models and properties, which are formalized as DTL
theories. The semantics of DTL is based on interpretation structures, which are a model of con-
current, distributed systems that is well-suited for carrying out semantic reasoning about, and
transformation of, such systems.

A strength of our DTL formalization is that it allows us to spell out all the fine details of
the security proofs that we give in this paper. As is well known, this is particularly important
in the area of Information Security, where researchers often have well-developed intuitions, but
their models and proofs are prone to subtle errors. Although we have developed a tableau system
for DTL [7, 8], our proofs in this paper are semantic. We prefer semantic arguments because
they are shorter and far more intuitive than tableau proofs. In contrast, proofs with the tableau
system can be machine checked. We note, in this regard, that the validity of DTL formulas can
be decided by using a trace-consistent translation to LTL [8], which also makes DTL amenable to
model checking.

We proceed as follows. In Section 2 we introduce the distributed temporal logic DTL. In
Section 3, we define in DTL a protocol-independent distributed communication model, on top of
which protocols and security goals can be formalized and analyzed, as shown in Section 3.3. In
Section 4 we illustrate how DTL can be used as an object logic to either verify security protocols
or construct counter-examples to their claimed properties. However, the results are established
as a corollary of a metalevel result about secrecy that we state and prove. The core results of
the paper are in Section 5, where we present the metalevel results, mentioned above. We draw
conclusions and discuss related and future work in Section 6.

2 Distributed temporal logic

The distributed temporal logic DTL is a logic for reasoning about temporal properties of distributed
systems from the local point of view of the system’s agents, which are assumed to execute sequen-
tially and to interact by synchronous event sharing. In this paper, we use DTL theories given, in
latu sensu, by classes of models satisfying axioms and other defining conditions. Note that the
set of axioms may be infinite, resulting in validity being undecidable in the theory, despite the
decidability result mentioned above. This is the case for the theories that we later present.

3

2.1 Syntax

The logic is defined over a distributed signature

Σ = 〈Id, {Acti}i∈Id, {Propi}i∈Id〉 ,

where Id is a finite set of agent identifiers and, for each i ∈ Id, Acti is a set of local action
symbols and Propi is a set of local state propositions. In a nutshell, the actions Acti correspond
to true statements about an agent when they have just occurred and the state propositions Propi
characterize the current local states of the agents. Following standard protocol terminology, we
will also refer to the agents participating in a protocol execution as principals.

The global language L is defined by the grammar

L ::= @i1 [Li1] | · · · | @in [Lin] | ⊥ | L⇒ L ,

for Id = {i1, . . . , in}, where the local languages Li for each i ∈ Id are defined by

Li ::= Acti | Propi | ⊥ | Li⇒Li | Li U Li | Li S Li | c©j [Lj] ,

with j ∈ Id. As notation, we will use γ and δ for global formulas, and ϕ and ψ for local formulas.
A global formula @i[ϕ] means that the local formula ϕ holds for agent i. Local formulas,

as the name suggests, hold locally for the different agents. For instance, locally for an agent
i, the operators U and S are the usual (strong) until and since temporal operators, while the
communication formula c©j [ψ] means that agent i has just communicated (synchronized) with
agent j, for whom ψ held.1

As notation, we write L 6c©i to denote the set of all purely temporal formulas of Li, that is,

excluding communication formulas. We call ϕ ∈ L6c©i a private formula. Furthermore, if ϕ does
not contain the temporal operators U and S, then we call it a state formula. Finally, we write L6c©
to denote the set of all global formulas built from private formulas.

Other logical connectives (conjunction, disjunction, etc.) and temporal operators can be de-
fined as abbreviations, for example:

Xϕ ≡ ⊥ U ϕ tomorrow (next)
Fϕ ≡ > U ϕ sometime in the future
F◦ ϕ ≡ ϕ ∨ Fϕ now or sometime in the future
Gϕ ≡ ¬F¬ϕ always in the future
G◦ ϕ ≡ ϕ ∧ Gϕ now and always in the future
ϕW ψ ≡ (Gϕ) ∨ (ϕ U ψ) weak until (unless)
Yϕ ≡ ⊥ S ϕ yesterday (previous)
Pϕ ≡ > S ϕ sometime in the past
P◦ ϕ ≡ ϕ ∨ Pϕ now or sometime in the past
Hϕ ≡ ¬P¬ϕ always in the past
H◦ ϕ ≡ ϕ ∧ Hϕ now and always in the past
ϕ B ψ ≡ (Hϕ) ∨ (ϕ S ψ) weak since (back to)
∗ ≡ H⊥ in the beginning
ϕ�j ψ ≡ ϕ⇒ c©j [ψ] calling

Here we use the subscript ◦ to denote the reflexive versions of operators. Note also that calling is
specific to DTL as it involves communication: @i[ϕ�j ψ] means that if ϕ holds for agent i then
he calls (synchronizes with) agent j, for whom ψ must hold.

2.2 Semantics

The protocol models that we consider are based on partially-ordered sets of events with labeling
information. We employ sequences (of events or labels) to represent protocol executions and we

1Note that the DTL syntax here differs slightly from the original presentation in [34]. Previously, the operator
c©i was overloaded with @i and its interpretation was therefore context dependent.

4

A e1
// e4

// e5
// e8

// . . .

B e2
// e4

// e7
// e8

// . . .

C e3
// e4

// e6
// e7

// e9
// . . .

Figure 1: A distributed life-cycle for agents A, B, and C.

πA(∅)
αA(e1)// πA({e1})

αA(e4)// πA({e1, e4})
αA(e5)// πA({e1, e4, e5})

αA(e8) // . . .

Figure 2: The progress of agent A.

write w = 〈w1.w2.w3 . . . 〉 to denote a possibly infinite sequence whose elements are w1, w2, w3,
Furthermore, we write |w| to denote the length of the sequence w, where |〈〉| = 0 for the empty
sequence 〈〉 and |w| =∞ whenever w is infinite. Finally, we write w�w′ to denote the concatenation
of two sequences, provided that the first sequence is finite, and we write w|i to denote the prefix
of w of length i, i.e. w|i = 〈w1 . . . wi〉, provided that 0 ≤ i ≤ |w|. Clearly, w|0 = 〈〉.

The interpretation structures of L are labeled distributed life-cycles, built upon a simplified
form of Winskel’s event structures [66] (see also [67] for the relationship to other concurrency
models). A local life-cycle of an agent i ∈ Id is a countable (finite or infinite), discrete, and well-
founded total order λi = 〈Evi,≤i〉, where Evi is the set of local events and ≤i the local order of
causality. We define the corresponding local successor relation →i ⊆ Evi × Evi to be the relation
such that e→i e

′ if e <i e
′ and there is no e′′ such that e <i e

′′ <i e
′. As a consequence, ≤i =→∗i ,

i.e., ≤i is the reflexive, transitive closure of →i.
A distributed life-cycle is a family λ = {λi}i∈Id of local life-cycles such that ≤= (

⋃
i∈Id ≤i)∗

defines a partial order of global causality on the set of all events Ev =
⋃
i∈Id Evi. Note that

communication is modeled by event sharing, and thus for some event e we may have e ∈ Evi∩Evj ,
with i 6= j. In that case, requiring ≤ to be a partial order amounts to requiring that the local
orders are globally compatible, thus excluding the existence of another e′ ∈ Evi ∩ Evj such that
e <i e

′ but e′ <j e.
We can check the progress of an agent by collecting all the local events that have occurred up

to a given point. This yields the notion of the local state of agent i, which is a finite set ξi ⊆ Evi
down-closed for local causality, i.e., if e ≤i e′ and e′ ∈ ξi then also e ∈ ξi. The set Ξi of all local
states of an agent i is totally ordered by inclusion and has ∅ as the minimal element.

In general, each non-empty local state ξi is reached, by the occurrence of an event that we call
last(ξi), from the local state ξi \ {last(ξi)}.2 The local states of each agent are totally ordered, as
a consequence of the total order on local events. Since they are discrete and well-founded, we can
enumerate them as follows: ∅ is the 0th state; {e}, where e is the minimum of 〈Evi,≤i〉, is the 1st

state; and if ξi is the kth state of agent i and last(ξi) →i e, then ξi ∪ {e} is agent i’s (k + 1)th

state. We will denote by ξki the kth state of agent i, so ξ0
i = ∅ is the initial state and ξki is the state

reached from the initial state after the occurrence of the first k events. In fact, ξki is the only state
of agent i that contains k elements, i.e., where |ξki | = k. Given e ∈ Evi, (e↓ i) = {e′ ∈ Evi | e′ ≤i e}
is always a local state. Moreover, if ξi is non-empty, then (last(ξi) ↓ i) = ξi. Furthermore, for
every local state ξi 6= Evi there exists a unique next event next(ξi), corresponding to the minimum
event in Evi \ ξi, such that ξi ∪ {next(ξi)} is a local state.

We can also define the notion of a global state: a finite set ξ ⊆ Ev closed for global causality,
i.e. if e ≤ e′ and e′ ∈ ξ, then also e ∈ ξ. The set Ξ of all global states constitutes a lattice
under inclusion and has ∅ as the minimal element. Clearly, every global state ξ includes the

2This statement is only sensible with respect to a given distributed life-cycle. Similar comments also hold for
other notions considered below. However, to ease readability, we omit explicit reference to these dependencies
whenever they are clear from the context.

5

{e1}
III

{e1, e2}

JJJJJJJ
{e1, e2, e3, e4, e5}

NNNN

∅

EEEEEEE

yyyyyyy
{e2}

KKKKKKKK

ssssssss
{e1, e3} {e1e2, e3} {e1, e2, e3, e4}

QQQQQQQQQQ

mmmmmmmmmm
. . .

qqqq

{e3}
uuu

{e2, e3}

ttttttt
{e1, e2, e3, e4, e6}

Figure 3: The lattice of global states.

local state ξ|i = ξ ∩ Evi of each agent i. Note that we are overloading the notation ·|i, which
we previously used to denote sequence prefixing, and below we will often write ξi for ξ|i. Given
e ∈ Ev, e↓= {e′ ∈ Ev | e′ ≤ e} is always a global state.

An interpretation structure µ = 〈λ, α, π〉 consists of a distributed life-cycle λ and a family
α = {αi}i∈Id and π = {πi}i∈Id of local labeling functions, where, for each i ∈ Id,

• αi : Evi → Acti associates a local action to each local event, and

• πi : Ξi → ℘(Propi) associates a set of local state propositions to each local state.

We denote the tuple 〈λi, αi, πi〉 also by µi.
Fig. 1 depicts a distributed life-cycle, where each row comprises the local life-cycle of one agent.

In particular, EvA = {e1, e4, e5, e8, . . . } and →A corresponds to the arrows in A’s row. We can
think of the occurrence of the event e1 as leading agent A from its initial state ∅ to the state
{e1}, and then of the occurrence of the event e4 as leading to state {e1, e4}, and so on. The
state-transition sequence of agent A is displayed in Fig. 2. Shared events at communication points
are highlighted by the dotted vertical lines. Note that the numbers annotating the events are there
only for convenience since, in general, no global total order on events is imposed. Fig. 3 shows the
corresponding lattice of global states.

We can then define the global satisfaction relation by

• µ
 γ if µ, ξ
 γ for every ξ ∈ Ξ,

where the global satisfaction relation at a global state is defined by

• µ, ξ 6
 ⊥;

• µ, ξ
 γ⇒ δ if µ, ξ 6
 γ or µ, ξ
 δ;

• µ, ξ
 @i[ϕ] if µi, ξ|i
i ϕ;

and where the local satisfaction relations at local states are defined by

• µi, ξi
i act if ξi 6= ∅ and αi(last(ξi)) = act;

• µi, ξi
i p if p ∈ πi(ξi);

• µi, ξi 6
i ⊥;

• µi, ξi
i ϕ⇒ ψ if µi, ξi 6
i ϕ or µi, ξi
i ψ;

• µi, ξi
i ϕ U ψ if |ξi| = k and there exists ξni ∈ Ξi such that k < n with µi, ξ
n
i
i ψ, and

µi, ξ
m
i
i ϕ for every k < m < n;

• µi, ξi
i ϕ S ψ if |ξi| = k and there exists ξni ∈ Ξi such that n < k with µi, ξ
n
i
i ψ, and

µi, ξ
m
i
i ϕ for every n < m < k;

• µi, ξi
i c©j [ϕ] if |ξi| > 0, last(ξi) ∈ Evj , and µj , (last(ξi)↓j)
j ϕ.

6

∅
�
�
�
�
�
�
�
�
�

ξ

w
w

w
w

w
w

w
w

w
w

w
w

w
w

ξ′
�
�
�
�
�
�
�
�
�

A e1
ϕ

// e4
¬ϕ

// e5
ϕ

// e8
ϕ

// . . .

B e2
ψ

// e4
ψ

// e7
ψ

// e8
c©A[ϕ]

// . . .

Figure 4: Satisfaction of formulas.

If M is a set of interpretation structures, then we write M
 ϕ when µ
 ϕ for all µ ∈ M. We
will also use MΞ to denote the set of all pairs 〈µ, ξ〉 such that µ ∈ M and ξ is a global state of
the distributed life-cycle underlying µ. We say that µ is a model of Γ ⊆ L if µ globally satisfies
each of the formulas in Γ. We say that Γ entails γ ∈ L, written Γ � γ, if every global model of Γ
is also a model of γ. Given Φ ∪ {ψ} ⊆ Li, we will write Φ �i ψ to denote that every local model
of Φ is also a model of ψ, or equivalently, that {@i[ϕ] | ϕ ∈ Φ} � @i[ψ].

For instance, the formula @i[p ⇒ F c©j [X q]] holds in a model if whenever the proposition p
holds locally at a state of agent i then there must be a future state of agent i where he has just
synchronized with agent j, for whom q will hold in the next state.

Fig. 4 illustrates the satisfaction relation with respect to communication formulas of our run-
ning example. Clearly µ, ∅
 @B [ψ U c©A[ϕ]], because µ, ξ′
 @B [c©A[ϕ]]. Note however that
µ, ξ 6
 @B [c©A[ϕ]], although µ, ξ
 @A[ϕ].

We now establish general rules for reasoning about different classes of formulas.

Lemma 2.1 (Local properties) Let ϕ ∈ Li be a local formula and µ an interpretation structure.
Let ξ, ξ′ ∈ Ξ be such that ξi = ξ′i. Then µ, ξ
 @i[ϕ] if and only if µ, ξ′
 @i[ϕ].

Proof: Straightforward, using the definition of global satisfaction and the assumption ξi = ξ′i.
Namely, µ, ξ
 @i[ϕ] iff µi, ξi
i ϕ iff µi, ξ

′
i
i ϕ iff µ, ξ′
 @i[ϕ]. �

Note that when specifying a distributed system by specifying the local properties of each agent,
it makes sense to use local formulas that additionally do not have nested communication. This
is because at the specification level, it is not reasonable to require that an agent in a distributed
system can be aware of the communication between other agents. As shown in [34], every local
DTL formula, even with nested communication, can be expressed by a finite set of local formulas
without nested communication.

We now establish a result for local formulas without communication.

Lemma 2.2 (Private properties) Let ϕ ∈ L6c©i be a private formula and µ and µ′ interpretation
structures with µi = µ′i. Let ξ ∈ Ξ and ξ′ ∈ Ξ′ be such that ξi = ξ′i. Then µ, ξ
 @i[ϕ] if and only
if µ′, ξ′
 @i[ϕ].

Proof: We prove that µi, ξi
i ϕ if and only if µ′i, ξ
′
i
i ϕ, by induction on ϕ. If ϕ is act

then µi, ξi
i act iff ξi 6= ∅ and αi(last(ξi)) = act iff µ′i, ξ
′
i
i act. The last equivalence follows

from µi = µ′i and ξi = ξ′i, ξ
′
i 6= ∅, and α′i(last(ξ

′
i)) = act. The case of p ∈ Prop is similar and the

remaining cases follow by the induction hypothesis. Note that ϕ ∈ L6c©i and thus we do not consider
communication formulas. The main result follows then as expected: µ, ξ
 @i[ϕ] iff µi, ξi
i ϕ iff
(from what was just proved) µ′i, ξ

′
i
i ϕ iff µ′, ξ′
 @i[ϕ]. �

We also have the following invariance rule for global properties.

7

Proposition 2.3 (Global invariance rule) Let γ ∈ L be a global formula, µ an interpretation
structure, and ξ ∈ Ξ a global state. Suppose that (1) µ, ξ
 γ and (2) µ, ξ′
 γ implies µ, ξ′∪{e}
 γ
for every ξ′ ∈ Ξ and e ∈ Ev \ ξ′ such that ξ ⊆ ξ′ and ξ′ ∪{e} ∈ Ξ. Then µ, ξ′
 γ, for every ξ′ ∈ Ξ
such that ξ ⊆ ξ′.

Proof: Let ξ′ be in Ξ such that ξ ⊆ ξ′. The proof follows by induction on ξ′. If |ξ′| = |ξ|
then ξ′ = ξ and the result follows from the first assumption. Assume now that |ξ′| > |ξ|. Then,
ξ′ = ξ′′∪{e} for some e ∈ Ev\ξ′′. By the induction hypothesis, µ, ξ′′
 γ and so, using the second
assumption, it also follows that µ, ξ′′ ∪ {e}
 γ. �

For local state properties, the invariance rule can be stated in the following more familiar way.
Its proof is similar to the proof of Proposition 2.3, mutatis mutandis, and we thus omit it.

Proposition 2.4 (Local invariance rule) Let ϕ ∈ Li be a local state formula, µ an interpreta-
tion structure, and ξi ∈ Ξi a local state. Suppose that (1) µi, ξi
i ϕ and (2) µi, ξ

′
i
i ϕ implies

µi, ξ
′
i ∪ {next(ξ′i)}
 ϕ for every ξ′i ∈ Ξi such that ξi ⊆ ξ′i (Evi. Then µi, ξ

′
i
i ϕ, for every

ξ′i ∈ Ξi such that ξi ⊆ ξ′i, or equivalently, µi, ξi
i G◦ ϕ.

Hence, µ is a model of @i[ϕ] if and only if µ is a model of both @i[∗⇒ϕ] and @i[(ϕ∧X>)⇒Xϕ],
or equivalently, @i[(ϕ ∧ X act)⇒ Xϕ] for every act ∈ Acti.

3 Network and protocol modeling

As we remarked above, DTL supports formal specification and reasoning about models of agents
communicating in distributed systems. In this paper, we focus on security protocols where prin-
cipals interact by exchanging messages through an insecure public channel in an open network.
We will specify this network, and protocols on top of it, by defining DTL theories over suitable
signatures, which correspond to classes of models.

Security protocols describe how principals exchange messages, built using cryptographic prim-
itives, in order to obtain security guarantees. Our presentation is independent of both the specific
algebra of messages considered for the different security protocols and the actions that principals
can take during protocol execution. We will thus take both the algebra of messages and the actions
as parameters of our models, considering standard examples for concreteness.

More generally, protocol specifications are parametric in the sense that they prescribe a general
recipe for communication that can be used by different principals playing in the different protocols
roles (sender, responder, server, etc.). The messages transmitted are bit-strings, but, for our
purposes, they can also be taken from any other appropriate set of values and our results are
independent of such details. We just assume fixed a network signature.

Definition 3.1 A network signature is a pair 〈Princ,Num〉, where Princ is a finite set of principal
identifiers and Num = Nonces]SymK]PubK is a set of “number” symbols used to model atomic
data. Num is the union of three disjoint sets: Nonces is a set of nonce symbols, SymK is a set of
symmetric key symbols, and PubK is a set of public key symbols. 4

We will use upper-case letters likeA,B,C, . . . , possibly annotated with subscripts and superscripts,
to denote principals, N to denote nonces, and K to denote shared or public keys.

3.1 Messages

The algebra of messages tells us how messages are constructed. Numerous algebras have been
considered in the literature on security protocol analysis, e.g. [26, 50], ranging from the free
algebra to various formalizations of algebraic properties of the cryptographic operators employed.
The following is a standard example of a free algebra of messages. We will use K−1 to denote the
private key that is the inverse of a public key K ∈ PubK, and set PrivK = {K−1 | K ∈ PubK}.

8

Definition 3.2 Messages, which we denote by M , possibly with annotations, are built inductively
from atomic messages (identifiers and number symbols) and private keys, by pairing, encryption,
and hashing. For M1 and M2 messages, we write

• the pairing of M1 and M2 as M1;M2,

• the symmetric encryption of M1 by M2 as {|M1|}sM2
,

• the asymmetric encryption of M1 by K ∈ PubK (respectively, by K−1 ∈ PrivK) as {|M1|}aK
(respectively, {|M1|}aK−1), and

• the application of a hash function H to M1 as H(M1).

We write Msg to denote the set of messages. 4

Whenever the distinction between symmetric and asymmetric encryption is unimportant, we
simply write {|M1|}M2

. As usual, we call M2 the key and say that M1 is in the scope of the
encryption; similarly, for H(M), we say that M is in the scope of the hash function H. Note that
we will often annotate keys with principal names and we will use K both to denote the public
part of the private key K−1 or a symmetric key. Note also that we assume that from a private
key K−1 one can compute its public part K (see, e.g., [61]), which is equivalent to the notion
of public-private key pairs that is often also considered. For this reason, we do not consider the
inverse of a private key, namely (K−1)−1. Observe also that, as we will enforce below, the only
ways for a principal to obtain the inverse of a key are to initially know it, to receive it in a message,
or when it is a private key that he freshly generated.

As is often done in symbolic approaches to security protocol analysis, we follow the perfect
cryptography assumption, which postulates that the cryptographic primitives themselves cannot
be attacked and hence the only way to decrypt a message is to possess the appropriate key. We
can then define, as is standard, the sets of messages that principals can analyze (decompose)
and synthesize (compose), where we have two analysis rules for asymmetric encryption: one for
decrypting with a private key K−1 a message M that has been asymmetrically encrypted with the
corresponding public key K, and one for decrypting with the public key K a message M that has
been asymmetrically encrypted with a private key K−1 (as usual, this corresponds to verifying
with key K a message that has been signed with key K−1).

Definition 3.3 We write close(S) to denote the closure of a set S of messages under the rules:

M1;M2

M1
Aproj1

M1;M2

M2
Aproj2

{|M |}sK K

M
Asymm

{|M |}aK K−1

M
Apub

{|M |}aK−1 K

M
Apriv

K−1

K
ASprivpub

M1 M2

M1;M2
Spair

M

H(M)
Shash

M K

{|M |}sK
Ssymm

M K

{|M |}aK
Spub

M K−1

{|M |}aK−1

Spriv

4

With the exception of ASprivpub, all rules are standard and follow the naming convention
that rules that decompose messages are labeled with an A for “analysis” and rules that compose
messages with an S for “synthesis”. For instance, Apub and Apriv formalize the decryption of a
message encrypted with a public key K and the signature verification of a message signed with
a private key K−1. The rule ASprivpub is both an analysis and a synthesis rule, as it formalizes
the notion of a “publication function” in asymmetric cryptographic systems: given a private key
K−1, a publication function computes the corresponding public key K.

Based on these closure rules, we give the following definitions of the content and of the im-
mediate parts of a message, which essentially invert the analysis rules and the synthesis rules,
respectively. We then prove some useful properties about sets of secure messages.

9

Definition 3.4 The content of a message M is the set cont(M) of messages defined inductively
by

cont(M) =


{M} if M ∈ Num, or M = H(M1) for some M1,

{K−1} ∪ cont(K) if M = K−1 ∈ PrivK,

{M} ∪ cont(M1) ∪ cont(M2) if M = M1;M2,

{M} ∪ cont(M1) if M = {|M1|}K .

When M ′ ∈ cont(M), we will often say that M contains M ′ or that M ′ is contained in M . 4

Definition 3.5 The immediate parts of a message M is the set parts(M) of messages defined by

parts(M) =



∅ if M = N ∈ Nonces or M = K ∈ SymK or M = K−1 ∈ PrivK,

{K−1} if M = K ∈ PubK,

{M1,M2} if M = M1;M2,

{M1,K} if M = {|M1|}K ,
{M1} if M = H(M1).

4

Let S ⊆ Msg be a set of secret messages, i.e. messages that should not be disclosed. We can
then define S-secure messages as follows.

Definition 3.6 For S ⊆ Msg, an S-secure encryption is either a symmetric encryption {|M |}sK
with K ∈ S or an asymmetric encryption {|M |}aK with K−1 ∈ S. A message M is said to be
S-secure if each occurrence of an element of S in the content of M appears either under the scope
of an S-secure encryption or under the scope of hashing. A message is S-insecure if it is not
S-secure. We write S-Sec to denote the set of all S-secure messages. 4

The set S-Sec messages contains precisely all the messages that can be safely exchanged over
an insecure network without revealing the secrets in S. If a message M is S-insecure, then some
element of S must appear in the content of M outside the scope of any S-secure encryption or
hashing. In that case, we say that the element occurs in the clear (with respect to S). We can
then prove the two following properties.

Proposition 3.7 If S ⊆ Msg then S-Sec ∩ S = ∅.

This is straightforward: if M ∈ S then M is not S-secure because M itself occurs in the clear.
For reasonable sets of S of secrets, we expect that S-Sec is closed. For instance, it would not

make sense to require M1;M2 to be a secret if one allowed both M1 and M2 to be disclosed.

Definition 3.8 We call a set (of secrets) S ⊆ Msg rational if whenever S contains a message M
and parts(M) 6= ∅ then parts(M) ∩ S 6= ∅. 4

This covers the case when S consists only of atomic data and private keys.

Proposition 3.9 For every rational set S, we have that close(S-Sec) = S-Sec.

Proof: Clearly, it suffices to prove that close(S-Sec) ⊆ S-Sec. The proof builds on Proposition 3.7
and proceeds by induction on the closure rules. Many of the cases are simple and do not even rely
on the rationality of the set S. Below are three of the more interesting cases.
Spair: If M1;M2 /∈ S-Sec, then some element of S must occur in the clear in the content of

M1;M2. Then either it occurs in the clear in the content of M1 and therefore M1 /∈ S-Sec, or it
occurs in the clear in the content of M2 and therefore M2 /∈ S-Sec, or else M1;M2 is itself in S.
Since S is a rational set, M1 or M2 must also be in S, and thus not in S-Sec.
Spub: If {|M |}aK /∈ S-Sec, then some element of S must occur in the clear in the content of

{|M |}aK . Then either it occurs in the clear in the content of M (and the asymmetric encryption is

10

not S-secure, in which case K−1 /∈ S) and thus M /∈ S-Sec, or {|M |}aK is itself in S. Since S is a
rational set, M or K must also be in S, and thus not in S-Sec.
Spriv: If {|M |}aK−1 /∈ S-Sec, then some element of S must occur in the clear in the content of

{|M |}aK−1 . Then either it occurs in the clear in the content of M and thus M /∈ S-Sec, or {|M |}aK−1

is itself in S. Since S is a rational set, M or K−1 must also be in S, and thus not in S-Sec. �

3.2 A channel-based model

A channel-based signature ΣCB is a distributed signature obtained from a network signature
〈Princ,Num〉 by taking Id = Princ] {Ch}, where Ch is the communication channel (used to
model asynchronous communication), and defining the action symbols and state propositions of
each agent. As an example, consider the following signature of a principal A, whose actions ActA
are

• send(M,B): sending the message M to B,

• rec(M): receiving the message M ,

• spy(M): eavesdropping the message M , and

• fresh(X): generating a fresh X ∈ Nonces] SymK] PrivK.

A’s state propositions PropA are

• knows(M): A knows the message M .

For the channel, Ch, we do not require state propositions, i.e. PropCh = ∅, whereas the actions
ActCh include

• in(A,M,B): the message M , sent by A, arrives on the channel, addressed to B,

• out(A,M,B): the message M , sent by A, is delivered from the channel to B, and

• leak: leaking of a message.

These actions reflect that the underlying network may be hostile: sending actions name the
intended recipient but receiving actions do not name the message’s sender. In fact, we assume,
as is standard, that a principal may behave as a Dolev-Yao intruder [33] who can compose, send,
and intercept messages at will, but, following the perfect cryptography assumption, cannot break
cryptography. Our results, however, are independent of the particular intruder capabilities. We
use LCB to denote the DTL language over the channel-based signature ΣCB.

The network model we consider here suffices to abstractly formalize and reason about the
properties of communication between principals executing security protocols, as well as about
protocol models. This model could, of course, be extended in many ways. For example, we could
include additional message constructors, additional actions and state propositions, or variants of
the ones given, or we could even include servers and additional channels with distinct accessibility
and reliability properties (see Section 5 for some examples).

In the channel-based network model CB that we define, principals can send and receive mes-
sages at will, always through the channel. If the principal A sends a message to B, then the
message synchronously arrives at the channel, where it is stored for future delivery to B. If deliv-
ery ever happens, it must be synchronized with the corresponding receive action of B. However,
the principal A can only send M to B if A knows both the name B and how to produce the
message M . As usual, the knowledge of principals is not static. In addition to their initial knowl-
edge, principals gain knowledge from the messages they receive and the fresh data they generate
(nonces, symmetric keys, and private keys). Principals may also spy on messages leaked by the
channel and learn their content. We do not allow principals to explicitly divert messages, but we
also do not guarantee that messages delivered to the channel are ever received.

11

To ensure that principals only learn new information from the messages they receive and the
fresh data they generate, we require that the knows proposition only holds where necessary. We
restrict attention to those interpretation structures µ such that, for every principal A, the following
condition holds for all messages M and non-empty local states ξA:

(K) µ, ξA
A knows(M) iff M ∈ close({M ′ | µ, ξA
A (Y knows(M ′)) ∨ rec(M ′) ∨ spy(M ′) ∨
fresh(M ′)})

(K) implies that, in every model µ = 〈λ, α, π〉 of the specification, π is completely determined
by λ and α, given πA(∅) for each A ∈ Princ. This is equivalent to saying that the knowledge of
each principal only depends on its initial knowledge and on the actions that have occurred. A
number of other useful properties follow from (K), e.g., for each principal A ∈ Princ:

@A[knows(M1;M2)⇔ (knows(M1) ∧ knows(M2))] (K1)

@A[(knows(M) ∧ knows(K))⇒ knows({|M |}K)] (K2)

@A[(knows({|M |}sK) ∧ knows(K))⇒ knows(M)] (K3.1)

@A[(knows({|M |}aK) ∧ knows(K−1))⇒ knows(M)] (K3.2)

@A[knows(M)⇒ G◦ knows(M)] (K4)

@A[rec(M)⇒ knows(M)] (K5)

@A[spy(M)⇒ knows(M)] (K6)

@A[fresh(X)⇒ knows(X)] (K7)

To guarantee the freshness and uniqueness of the data generated by each principal, we also
require the following axioms, where M ranges over all messages such that cont(X)∩ cont(M) 6= ∅.

(F1) @A[fresh(X)⇒ Y¬ knows(M)]

(F2) @A[fresh(X)]⇒
∧
B∈Princ\{A} c©B [¬ knows(M)]

Together with (K7), (F1) and (F2) guarantee that every fresh data item is generated at most once,
if at all, in each model, and always freshly (also taking into account agents’ initial knowledge).
The specification of the network model also contains axioms that characterize the behavior of the
channel Ch and of each principal A ∈ Princ.

(C1) @Ch[in(A,M,B)�A send(M,B)]

(C2) @Ch[out(A,M,B)⇒ P in(A,M,B)]]

(C3) @Ch[out(A,M,B)�B rec(M)]

(C4) @Ch[leak⇒ (
∨
B∈Princ c©B [>])]

(P1) @A[send(M,B)⇒ Y(knows(M) ∧ knows(B))]

(P2) @A[send(M,B)�Ch in(A,M,B)]

(P3) @A[rec(M)�Ch (
∨
C∈Princ out(C,M,A))]

(P4) @A[spy(M)�Ch (leak ∧ P
∨
B,C∈Princ in(B,M,C))]

(P5) @A[
∧
B∈Princ\{A} ¬ c©B [>]]

(P6) @A[fresh(X)⇒¬ c©Ch[>]]

12

The channel axioms (C1)–(C3) are straightforward. They state that a message addressed to A
only arrives at the channel if it is sent to A by some principal B; the channel only delivers a
message to A if the message for A previously arrived; and if the channel delivers a message to A,
then A receives it. (C4) states that when the channel is leaking, some principal is listening.

The principal axioms are also simple. (P1) states a precondition for sending a message: the
sender must know both the message and the recipient beforehand. (P2)–(P3) are interaction
axioms. (P2) and (P3) state that the sending and receiving of messages must be shared with the
corresponding arrival and delivery actions of the channel. (P4) guarantees that a spied message
must have arrived at the channel, addressed to some recipient. The last two axioms limit the
possible interactions: (P5) guarantees that principals never communicate directly (only through
the channel) and (P6) states that actions that generate fresh data are not communication actions.

As our aim is to provide a foundation for modeling security protocols, we will further add,
for simplicity, a number of standard restrictions. To start with, we assume there exists a special
principal Z ∈ Princ, also known as the intruder. As is well-known, it suffices to consider one Dolev-
Yao intruder, instead of several ones. This can be formally proved using DTL, which we have done
in [16] by showing that one intruder is enough (along the lines of the “two (honest) agents are
sufficient” result of [24]). We define the set of honest principals to be Hon = Princ\{Z}.3 To make
sense of the terminology, we must of course ensure that honest principals do not act dishonestly,
namely by spying messages. Thus, for every A ∈ Hon, we require also that:

(Hon) @A[¬ spy(M)], for every message M .

We further assume that Z does not send a message to principal A if A will not receive it, or if
that same message has already been sent to A. Namely, we assume the following axioms:

(EZ1) @Z [send(M,A)⇒ c©Ch[F out(Z,M,A)]] and

(EZ2) @Z [send(M,A)⇒ c©Ch[¬P
∨
B∈Princ in(B,M,A)]].

This represents a common simplification, which can be made without loss of generality. As shown,
for instance in [16], such assumptions do not compromise the model with respect to its ability to
represent security-sensitive behaviors, as we will introduce below.

The CB models µ will be those interpretation structures over ΣCB satisfying all these properties.

3.3 Modeling security protocols

In this section, we show how to model protocols and properties on top of our channel-based
network model. In a typical situation, we will assume a network signature where each principal
A ∈ Princ is assigned a private key denoted by K−1

A , whose corresponding public key is the atom
KA. Whereas it is possible (even desirable) that other principals know A’s public key, we will
assume that, at least initially, K−1

A is known only by A. We formalize this as follows:

(aKey1) @A[∗⇒ knows(K−1
A)]

(aKey2) @B [∗⇒ ¬ knows(M)], for every B ∈ Princ \ {A} and every M containing K−1
A

Similarly, we may assume that there exist symmetric shared atomic keys KAB for each pair of
principals A,B ∈ Princ. As above, we require that KAB is initially known only by A and B:

(sKey1.1) @A[∗⇒ knows(KAB)]

(sKey1.2) @B [∗⇒ knows(KAB)]

(sKey2) @C [∗⇒ ¬ knows(M)], for every C ∈ Princ \ {A,B} and every M containing KAB

3Given this distinction between the intruder and the honest participants, we could rewrite several of the axioms
by distinguishing the nature of the principals involved, but we refrain from doing so for brevity.

13

We may also assume, for simplicity, that all principals A,B ∈ Princ know each other’s names
and public keys from the very beginning.

(N) @A[∗⇒ knows(B)]

(PK) @A[∗⇒ knows(KB)]

Such properties may influence the executability of the protocol by the participants, as we have
also discussed in [18]. Here, we will simply assume that the initial knowledge of the principals
guarantees that the protocols can be executed.

There are several approaches to extracting formal protocol specifications from a protocol de-
scription in Alice-and-Bob-style notation, i.e., as a sequence of message exchange steps. Rather
than going through the general case, we will illustrate the method by modeling the standard ex-
ample of the (flawed) simplified Needham-Schroeder Public Key Protocol NSPK [42]. The formal-
ization steps we take are straightforward and they would not be difficult to generate automatically
from such an Alice-and-Bob-style protocol description, as explained, for instance, in [18, 39, 44, 50].

The NSPK protocol can be described by the following sequence of message exchanges.

(msg1) a→ b : (n1). {|n1; a|}aKb

(msg2) b→ a : (n2). {|n1;n2|}aKa

(msg3) a→ b : {|n2|}aKb

In this notation, a and b are variables identifying the principals playing in the different protocol
roles (initiator and responder), n1 and n2 are variables representing the nonces created by these
principals, and the arrows represent communication from the sender to the receiver. The parenthe-
sized nonces prefixing the first two messages signify that these nonces are freshly generated before
the message is sent. Moreover, it is assumed that the principals’ public keys have been distributed
before the protocol starts (or else a and b would not be able to construct the messages). This can
be straightforwardly expressed by appropriate instances of the axioms (N) and (PK).

Formalizing a protocol like the above involves defining the sequences of actions (send, rec, and
fresh) taken by agents executing each protocol role. Specifically, given concrete principals A and
B and fresh nonces N1 and N2, the role instantiations should correspond to the execution, by
principal A, of the sequence of actions runInit

A (A,B,N1, N2):

〈fresh(N1).send({|N1;A|}aKB
, B).rec({|N1;N2|}aKA

).send({|N2|}aKB
, B)〉 ,

and to the execution, by principal B, of the sequence runResp
B (A,B,N1, N2):

〈rec({|N1;A|}aKB
).fresh(N2).send({|N1;N2|}aKA

, A).rec({|N2|}aKB
)〉 .

In general, an Alice-and-Bob-style protocol description P may involve j principal identifier
variables a1, . . . , aj , corresponding to j distinct roles, and k fresh data variables f1, . . . , fk (stand-
ing for the freshly created nonces, symmetric keys, or private asymmetric keys), and consist of a
sequence 〈msg1 . . .msgm〉 of message exchanges, each of the form

(msgq) as → ar : (fq1 , . . . , fqt). M ,

where M can include any of the principal identifiers and fresh data variables.
A protocol instantiation is a variable substitution σ such that each σ(ai) ∈ Princ and each

σ(fi) ∈ Nonces]SymK]PrivK. Moreover, while the intruder can play different roles in a protocol
instantiation, we require that honest agents do not play two roles in the same instantiation. Of
course, this does not prevent the same honest agent from playing the same or other roles in
other protocol instantiations. Hence, if σ(ai1), σ(ai2) ∈ Hon and σ(ai1) = σ(ai2) then i1 = i2.
We extend σ to messages, actions, sequences, formulas, and indices in the natural way. For
example, σ(Kai) = Kσ(ai). Each instantiation prescribes a concrete sequence of actions to be

14

executed by each participant in a protocol run: for each role i, we have the corresponding sequence
runi = msg i1 � · · · � msg im where

msg iq =


〈fresh(fq1) . . . fresh(fqt).send(M,ar)〉 if i = s,

〈rec(M)〉 if i = r,

〈〉 if i 6= s and i 6= r.

If σ(ai) = A, we write runiA(σ) = σ(runi). We can easily formalize the complete execution by
principal A of the run corresponding to role i of the protocol, under the protocol instantiation σ.
If runiA(σ) = 〈act1 . . . actn〉 then we can formalize A’s execution by the local formula roleiA(σ):

actn ∧ P(actn−1 ∧ P(. . . ∧ P act1) . . .) .

In general, if we denote the set of all protocol instantiations by Inst, we can define the set
RunsiA of all possible concrete runs of principal A in role i, and the set RunsA of all of A’s possible
concrete runs in any of the j roles:

RunsiA =
⋃

σ∈Inst
{runiA(σ) | σ(ai) = A ∈ Princ} and RunsA =

j⋃
i=1

RunsiA .

It should be clear that µ, ξ
 @A[roleiA(σ)] if and only if A has just completed the required sequence
of actions runiA(σ) at ξ. Often, in examples, we will use a = 〈a1 . . . aj〉 and f = 〈f1 . . . fk〉, and
write runiA(σ(a), σ(f)) instead of runiA(σ), and roleiA(σ(a), σ(f)) instead of roleiA(σ).

In addition to the assumption that no honest agent ever plays two different roles in the same
run, we also require that honest principals strictly follow the protocol. Therefore, if the local
life-cycle of A ∈ Hon is e1 →A e2 →A e3 →A . . . , we require that the corresponding (possibly
infinite) sequence of actions

w(A) = 〈αA(e1).αA(e2).αA(e3) . . . 〉

must be an interleaving of prefixes of sequences in RunsA, but using distinct fresh data in each of
them. Formally, we say that two distinct sequences of actions w and w′ are independent provided
that if wi = fresh(X) for some i ≤ |w| and some X, and w′j = fresh(Y) for some j ≤ |w′| and
some Y , then X 6= Y . The requirement on protocol models can now be rigorously defined. For
each A ∈ Hon, there must exist a set W ⊆ RunsA of pairwise independent sequences such that
for every i ≤ |w(A)| it is possible to choose w ∈ W , j ≤ |w|, and i1 < · · · < ij = i satisfying
w(A)ik = wk for all k, where k ≤ j. We will use the protocol name P to denote the resulting set
of models.

Note that this is similar to approaches such as [55], where the behavior of an honest agent
A is defined inductively so that the ith action of a sequence w ∈ RunsA can be executed only
if the previous i − 1 actions have been executed. It is also similar to strand spaces [17, 62, 63]
where essentially the same sequences of RunsA are used to model honest agents. In all cases, the
intruder can act freely, according to the standard Dolev-Yao capabilities.

In the case of NSPK models, the life-cycle of each honest agent must be built by interleaving
prefixes of sequences of the form runInit

A (A,B′, N1, N2) or runResp
A (B′, A,N1, N2), where no two

such initiator runs can have the same N1, no two responder runs can have the same N2, and the
N1 of an initiator run must be different from the N2 of any responder run.

3.4 Security goals

The aim of security protocol analysis is to prove (or disprove) the correctness of a protocol with
respect to the security goals that the protocol should achieve. For instance, the secrecy of the
critical data exchanged during a protocol’s execution is one such goal. In addition, an honest
principal running the protocol may wish to authenticate the identities of its protocol partners based

15

on the messages he receives. There are many approaches to specifying secrecy and authentication
in the literature, depending in part on the underlying model used. However, the various approaches
usually agree on the general picture. Below, we show how to formulate secrecy and authentication
goals for protocols in the general case and use the NSPK protocol as an illustration.

As usual, given a protocol and a security goal, we call an attack any protocol model µ and
state ξ for which the formula expressing the goal does not hold. Let us start with secrecy.

3.4.1 Secrecy

We formalize that the messages in a finite set S will remain a shared secret between the participants
A1, . . . , Aj after the complete execution of a protocol under the instantiation σ, with each σ(ai) ∈
Princ, by the formula secrS(σ):

j∧
i=1

@Ai
[P◦ roleiAi

(σ)] ⇒
∧

B∈Princ\{A1,...,Aj}

∧
M∈S

@B [¬ knows(M)].

Of course, this property can be expected to hold only in particular situations. Assume that all the
participants are honest, that is, each Ai ∈ Hon. One might then expect that the “critical” fresh
data generated during the run will remain a secret shared only by the participating principals.
Indeed, being honest, they will not reuse this fresh data in subsequent protocol runs. Using the
logic, we can check the property secrσ(F)(σ) for the relevant set of fresh data variables F ⊆
{f1, . . . , fk}. As before, we sometimes write secrσ(F)(σ(a), σ(f)) instead of secrσ(F)(σ).

In the case of the NSPK protocol, this amounts to requiring that secr{N1,N2}(A,B,N1, N2)
holds, with A and B both honest.

3.4.2 Authentication

There are many possible notions of authentication, e.g., the authentication hierarchy of [43]. In
most cases, authentication formalizes some kind of correspondence property between the messages
an agent receives in a protocol run and the messages that the other participants of the same
run are supposed to have sent. The typical (weak) authentication goal states that if an honest
principal A completes his part of a run of a protocol in role i, with certain partners and data, then
it must be the case that these partners have actually sent to A the messages that A received.

Let σ be a protocol instantiation such that σ(ai) = A ∈ Hon and σ(aj) = B ∈ Princ. Then
the property that A authenticates B in role j at message q of the protocol can be defined in our
logic by the formula authi,j,qA,B(σ), which is

@A[roleiA(σ)]⇒@B [P◦ send(σ(M), A)] ,

assuming that the protocol message msgq requires that aj sends the message M to ai. We would

therefore require authi,j,qA,B(σ) to hold whenever message q is considered essential for authentication.

As before, we sometimes write authi,j,qA,B(σ(a), σ(f)) instead of authi,j,qA,B(σ).
In the case of the NSPK protocol we can specify, for an honest principal A acting as initiator,

the authentication of the responder B at message 2 using authInit,Resp,2
A,B (A,B,N1, N2) as

@A[roleInit
A (A,B,N1, N2)]⇒@B [P◦ send({|N1;N2|}aKA

, A)] .

Analogously, for an honest principal B acting as responder, the authentication of the initiator A
at message 3 using authResp,Init,3

B,A (A,B,N1, N2) is

@B [roleResp
B (A,B,N1, N2)]⇒@A[P◦ send({|N2|}aKB

, B)] .

This last property fails due to the man-in-the-middle attack on NSPK [42], as we show below.

16

4 A meta-level secrecy result and object-level applications

In this section, we show how DTL can be used as an object logic for both protocol verification
and falsification. In particular, we show that the responder fails to authenticate the initiator in
the NSPK protocol, formalized in the previous section. Afterwards, we verify Lowe’s corrected
version of this protocol. For this proof, however, we leverage DTL as a metalogic and first prove a
general metatheorem about sufficient conditions for data to remain secret during communication.
Our verification of the corrected protocol follow as a direct application of this general result.

4.1 Secret data

The result that we will prove is a good example of the kind of meta-level property that any suitable
network model should enjoy. We use the properties of secure messages proved in Section 3 to reason
about secrecy in a protocol-independent way and afterwards prove a proposition about secrecy
properties in protocol models.

Let S ⊆ Msg be a set of secret messages, that is, messages that should not be disclosed. The
following lemma states that, given a group of principals G ⊆ Princ, if all the fresh data in S
originates from principals in G, then the secrets in S will remain unknown outside of G as long as
the principals in G only send S-secure messages.

Lemma 4.1 (Secret Data) Let S be a rational set of messages, G ⊆ Princ be a group of prin-
cipals, and µ be a network model such that

µ

∨
A∈G @A[∗⇒ (knows(X) ∨ F fresh(X))] for each X ∈ (Nonces] SymK] PrivK) ∩ S. (i)

Given a global state ξ of µ with

µ, ξ

∧
B∈Princ\G @B [¬ knows(M)] for every M /∈ S-Sec (ii)

then, for every global state ξ′ ⊇ ξ of µ, either

µ, ξ′

∧
B∈Princ\G @B [¬ knows(M)] for every M /∈ S-Sec (iii)

or else there exists M /∈ S-Sec such that

µ, ξ′

∨
A∈G,C∈Princ @A[P◦ send(M,C)]. (iv)

Proof: We assume (i) and (ii), and prove either (iii) or (iv) for every global state ξ′ ⊇ ξ of µ. The
proof proceeds by induction, using the global invariance rule of Proposition 2.3. The rule’s base
case (1), with ξ′ = ξ, is trivial, as in this case (iii) coincides (ii). We turn to the step case (2), and
must show that assuming, by induction hypothesis, that either (iii) or (iv) hold for ξ′, then (iii)
or (iv) must also hold for any extended global ξ′ ∪ {e}.

By definition, if (iv) holds for ξ′, then it also holds for ξ′ ∪ {e}. Thus, we are left with proving
that if (iii) holds for ξ′, then (iii) or (iv) hold for ξ′ ∪ {e}. Suppose then that (iii) holds for ξ′ but
not for ξ′ ∪ {e}, that is µ, ξ′ ∪ {e}
 @B [knows(M)] for some S-insecure message M and some
B /∈ G. Then, by Lemma 2.1, it must be the case that e ∈ EvB , and so the local states of all other
principals do not change (see axiom (P5)). Moreover, αB(e) cannot be a sending action since this
would not change the knowledge of principal B (see condition (K)). If αB(e) was either rec(M ′) or
spy(M ′) then, using Proposition 3.9 and the assumption that (iii) holds for ξ′, it would follow that
M ′ /∈ S-Sec. However, since M ′ must have been previously sent to the channel (by the axioms
(P3), (C2), (P4), and (C1)), axiom (P1) implies that such a message could only have been sent
by some A ∈ G. Hence, one would have µ, ξ′ ∪ {e}

∨
A∈G,C∈Princ @A[P◦ send(M ′, C)], i.e., (iv)

would hold for ξ′ ∪ {e}. The only remaining possibility is a fresh action. However, it cannot be
fresh(X) for some X ∈ S, independently of whether X is a nonce, a symmetric key, or a private
key, as this, together with the freshness conditions ((F1-2), (K7), (aKey1), (sKey1.1− 2)) and
the fact that B /∈ G, would contradict condition (i), and the result follows. �

17

Note that the set Msg \ S-Sec of S-insecure messages corresponds to what is called an ideal
in the context of strand spaces [62]. However, here we have defined it in a more general setting
that also includes composed keys and hashing. Similarly, the set S-Sec of S-secure messages
corresponds to a coideal in the terminology of [27, 47].

Lemma 4.1 above is a general, protocol-independent result about the network data flow. It can
be used to reason about secrecy properties in protocol models and is similar to results obtained
for PCL [56], which in turn generalize those found in [16, 27, 47], e.g., to include composed keys
and hashing. Indeed, under reasonable conditions, the secrecy of freshly generated data can easily
be seen to hold. Recall that we assume that each principal A initially has a private key, denoted
by K−1

A , and that each pair of principals A and B initially shares a symmetric key, denoted by
KAB , subject to the key axioms (aKey1), (aKey2), (sKey1.1), (sKey1.2) and (sKey2) given
in Section 3.3. If the protocol at hand does not require the existence of some of these initially
distributed keys, then the result still holds if we simply remove the unused keys from the set S.

Proposition 4.2 (Secrecy) A protocol guarantees secrσ(F)(σ) for an instantiation σ of the fresh
data σ(F) generated in a protocol run by honest participants σ(a1) = A1, ..., σ(aj) = Aj provided
that all the messages ever sent by A1, . . . , Aj in any protocol run are S-Secure, for S = ({K−1

Ai
|

1 ≤ i ≤ j} ∪ {KAiAk
| 1 ≤ i, k ≤ j, i 6= k} ∪ σ(F)).

Proof: The result follows from Lemma 4.1 using G = {A1, . . . , Aj}. To begin with, S is a rational

set. Let µ be a network model and ξ a global state and assume that µ, ξ

∧j
i=1 @Ai

[P◦ roleiAi
(σ)].

Condition (i) of the lemma follows as all the corresponding roles of the protocol have been com-
pleted and therefore all fresh data in σ(F) is generated in µ among the principals in G. Moreover,
for the initial state ∅, clearly, no principal outside G knows S-insecure messages. For fresh nonces,
condition (ii) follows directly from axioms (F1− 2). For private and shared keys, condition (ii)
follows from the axioms (aKey2) and (sKey2). Using the lemma, we then have that (iii) or (iv)
must hold for any global state of µ. However, the assumption that A1, . . . , Aj only send S-secure
messages rules out the possibility that condition (iv) of Lemma 4.1 ever holds. Hence, (iii) must
be the case also at ξ, i.e., µ, ξ

∧
B∈Princ\G @B [¬ knows(M)] for every M /∈ S-Sec. It follows

that µ, ξ

∧
B∈Princ\{A1,...,Aj}

∧
M∈σ(F) @B [¬ knows(M)], and the secrecy property holds. �

Note that our assumption that all the messages sent by A1, . . . , Aj in any protocol run are
S-secure corresponds to the notion of discreetness of [27, 47].

4.2 Object-level analysis of NSPK

We will now illustrate the use of DTL as an object logic using two well-known examples: the
NSPK protocol and its corrected version by Lowe.

4.2.1 Protocol falsification

Recall that in the previous section, we formalized the NSPK protocol and the property that the
responder authenticates the initiator: authResp,Init,3

B,A (A,B,N1, N2). We now show that this cannot
be proved by presenting a model that falsifies it. The model formalizes the well-known man-in-
the-middle-attack discovered by Lowe [42], where the intruder Z makes B believe he has run the
protocol with A. It illustrates how concrete execution scenarios can be formalized as DTL models.

Figure 5 presents this model. It is straightforward to see that it satisfies all of the axioms
of the channel model presented in Section 3. For example, (C1) and (P2) are globally satisfied
because every in action is synchronized with a corresponding send action by the same principal
and vice versa. Another example is (P1), which says that only known messages are sent. This
holds for each of the 5 send actions. For example, for send2, the intruder must know {|N1;A|}aKB

,
which is the case because he previously received {|N1;A|}aKZ

, which he can decrypt, and because
he also knows public keys, in particular KB . Additionally, the antecedent of our authentication

18

�
�
�
�
�
�
�
�
� ξ

. . .A •
fresh1

•
send1

. •
rec3

•
send4

. //

. . .B •
rec2

•
fresh2

•
send3

. //•
rec5

. . .Ch . . . •
in1

•
out1

•
in2

•
out2

. . . //•
in3

•
out3

•
in4

•
out4

•
in5

•
out5

. . .Z •
rec1

•
send2

. •
rec4

•
send5

. . . //

where

fresh1 = fresh(N1) fresh2 = fresh(N2)

send1 = send({|N1, A|}aKZ
, Z) in1 = in(A, {|N1, A|}aKZ

, Z)

out1 = out(A, {|N1, A|}aKZ
, Z) rec1 = rec({|N1, A|}aKZ

)

send2 = send({|N1, A|}aKB
, B) in2 = in(Z, {|N1, A|}aKB

, B)

out2 = out(Z, {|N1, A|}aKB
, B) rec2 = rec({|N1, A|}aKB

)

send3 = send({|N1, N2|}aKA
, A) in3 = in(B, {|N1, N2|}aKA

, A)

out3 = out(B, {|N1, N2|}aKA
, A) rec3 = rec({|N1, N2|}aKA

)

send4 = send({|N2|}aKZ
, Z) in4 = in(A, {|N2|}aKZ

, Z)

out4 = out(A, {|N2|}aKZ
, Z) rec4 = rec({|N2|}aKZ

)

send5 = send({|N2|}aKB
, B) in5 = in(Z, {|N2|}aKB

, B)

out5 = out(Z, {|N2|}aKB
, B) rec5 = rec({|N2|}aKB

)

Figure 5: Man-in-the-middle attack to NSPK

formula, @B [roleResp
B (A,B,N1, N2)], is satisfied at the global state ξ since the responder B has

completed his role. In particular, rec2, fresh2, send3, and rec5 are the actions that are required
by B to complete his role. However, the consequent @A[P◦ send({|N2|}aKB

, B)] is not satisfied at ξ
because there is no previous action send({|N2|}aKB

, B). Hence, this model is a counter-example to

our authentication property as it shows that NSPK 6
 authResp,Init,3
B,A (A,B,N1, N2).

4.2.2 Protocol verification

We now show that the authentication property authResp,Init,3
B,A (A,B,N1, N2) for honest B, which

failed for NSPK, actually holds for the NSL protocol [42] given below:

(msg1) a→ b : (n1). {|n1; a|}aKb

(msg2) b→ a : (n2). {|n1;n2; b|}aKa

(msg3) a→ b : {|n2|}aKb

Again, we have two roles: an initiator role Init, represented by a, and a responder role Resp,
represented by b. Given principals A and B and nonces N1 and N2, the role instantiations should
correspond to the execution by principal A of the sequence of actions runInit

A (A,B,N1, N2):

〈fresh(N1).send({|N1;A|}aKB
, B).rec({|N1;N2;B|}aKA

).send({|N2|}aKB
, B)〉 ,

and to the execution by principal B of the sequence runResp
B (A,B,N1, N2):

〈rec({|N1;A|}aKB
).fresh(N2).send({|N1;N2;B|}aKA

, A).rec({|N2|}aKB
)〉 .

19

Prior to showing in Proposition 4.5 that this protocol authenticates the initiator, we prove two
lemmas. The first lemma allows us to conclude that if A is also honest and does not send the
required message {|N2|}aKB

to B, then no other agent would ever have the means to do it either.

Lemma 4.3 Let A,B ∈ Hon, µ be a NSL model, and ξ a global state such that

µ, ξ
 @B [fresh(N2) ∧ F send({|N1;N2;B|}aKA
, A)].

For every global state ξ′ ⊇ ξ, if

µ, ξ′ 6
 @A[P◦ send({|N2|}aKB
, B)]

then, for every C,D,E ∈ Princ with E 6∈ {A,B}, and every message M which is not {N2,K
−1
A }-

secure, or M contains N2 outside a submessage {|N1;N2;B|}aKA
, the following holds:

µ, ξ′ 6
 @Ch[P◦ in(C,M,D)] and µ, ξ′ 6
 @E [knows(M)].

Proof: We prove this with the help of Lemma 4.1. Let G = {A,B} and S = {N2,K
−1
A } ∪ {M |

M contains N2 outside a submessage {|N1;N2;B|}aKA
}. It is not difficult to check that S is a

rational set. Indeed, parts(N2) = parts(K−1
A) = ∅ and, for each of the remaining messages M ,

either N2 ∈ parts(M) and parts(M)∩S 6= ∅ or M ′ ∈ parts(M) for some message M ′ that contains
N2 outside a submessage {|N1;N2;B|}aKA

. But, in this case, M ′ ∈ S and so parts(M) ∩ S 6= ∅.
Next, we establish condition (i) of Lemma 4.1. The only relevant atoms in S are N2 and K−1

A .
As µ, ξ
 @B [fresh(N2)], it follows that µ
 @B [∗⇒ F fresh(N2)]. For K−1

A , it follows from axiom
(aKey1) that µ
 @A[∗⇒ knows(K−1

A)].
Now, let E 6∈ G and suppose that µ, ξ
 @E [knows(M)]. From µ, ξ
 @B [fresh(N2)] and

the freshness axioms (F1-2) it follows not only that M is {N2}-secure, but also that M does
not even contain N2. Furthermore, axiom (aKey2) and the honesty of A guarantee that all the
messages ever in the channel, or known by some principal other than A, are {K−1

A }-secure. Thus,
the message M is S-secure. This implies that condition (ii) of Lemma 4.1 holds, which tells us
that for every global state ξ′ ⊇ ξ of µ either condition (iii) or condition (iv) of Lemma 4.1 must
hold.

We proceed to show that condition (iv) cannot hold. Concretely, we prove by global induction
on ξ′ ⊇ ξ that if µ, ξ′ 6
 @A[P◦ send({|N2|}aKB

, B)] then condition (iii) of Lemma 4.1 holds for ξ′

and condition (iv) of Lemma 4.1 does not. The base case with ξ′ = ξ is simple: the same argument
that we used to show that condition (ii) of Lemma 4.1 holds, together with axiom (P1), establishes
that condition (iv) cannot hold at ξ. For the induction step, let us assume that ξ′ ∪ {e} ⊃ ξ′ ⊇ ξ
are global states and that, by the induction hypothesis, if µ, ξ′ 6
 @A[P◦ send({|N2|}aKB

, B)] then
(iii) holds for ξ′ and (iv) does not. Since, by Lemma 4.1, we know that (iii) or (iv) must hold, it
suffices to show that if µ, ξ′ ∪ {e} 6
 @A[P◦ send({|N2|}aKB

, B)] then (iv) cannot hold for ξ′ ∪ {e}.
We must then consider, in turn, the two relevant cases for condition (iv) to hold, that is, e ∈ EvA
and e ∈ EvB .
Case (1): If e ∈ EvA, we analyze the possible sending actions αA(e).

(1.1) If αA(e) = send({|N∗1 ;A|}aKX
, X), it must be in a prefix

〈fresh(N∗1).send({|N∗1 ;A|}aKX
, X)〉

of an initiator run of the protocol with some X ∈ Princ. As A freshly generated N∗1 , and B
freshly generated N2, the freshness axioms (F1-2) guarantee that N∗1 6= N2. Therefore, the
message M = {|N∗1 ;A|}aKX

∈ S-Sec.

(1.2) If αA(e) = send({|N∗1 ;N∗2 ;A|}aKX
, X), it must be in a prefix

〈rec({|N∗1 ;X|}aKA
).fresh(N∗2).send({|N∗1 ;N∗2 ;A|}aKX

, X)〉

20

of a responder run of the protocol with some X ∈ Princ. As A freshly generated N∗2 , and B
freshly generated N2, the freshness axioms (F1-2) guarantee that N∗2 6= N2. Moreover, A
first received {|N∗1 ;X|}aKA

from the channel, and axioms (P3), (C2), (C1), (P1) together
with the induction hypothesis guarantee that N∗1 6= N2. Therefore, M = {|N∗1 ;N∗2 ;A|}aKX

∈
S-Sec as in case (1.1) above.

(1.3) If αA(e) = send({|N∗2 |}aKX
, X), it must be in a complete initiator run

〈fresh(N∗1).send({|N∗1 ;A|}aKX
, X).rec({|N∗1 ;N∗2 ;X|}aKA

).send({|N∗2 |}aKX
, X)〉

of the protocol with some X ∈ Princ. If, by absurdity, N∗2 = N2, then as A would first
receive {|N∗1 ;N2;X|}aKA

from the channel, it would follow from axioms (P3), (C2), (C1),
(P1) and the induction hypothesis that N∗1 = N1 and X = B. But this would contradict
µ, ξ′ ∪ {e} 6
 @A[P◦ send({|N2|}aKB

, B)]. Hence, N∗2 6= N2 and M = {|N∗2 |}aKX
∈ S-Sec.

Case (2): If e ∈ EvB , we also analyze the possible sending actions αB(e).

(2.1) If αB(e) = send({|N∗1 ;B|}aKX
, X), it must be in a prefix

〈fresh(N∗1).send({|N∗1 ;B|}aKX
, X)〉

of an initiator run of the protocol with some X ∈ Princ. As B freshly generated both
N∗1 and N2, but N2 in a responder run, B’s honesty guarantees that N∗1 6= N2. Hence,
M = {|N∗1 ;B|}aKX

∈ S-Sec.

(2.2) If αB(e) = send({|N∗1 ;N∗2 ;B|}aKX
, X), it must be in a prefix

〈rec({|N∗1 ;X|}aKB
).fresh(N∗2).send({|N∗1 ;N∗2 ;B|}aKX

, X)〉

of a responder run of the protocol with some X ∈ Princ. If N∗2 = N2, since µ, ξ

@B [fresh(N2) ∧ F send({|N1;N2;B|}aKA

, A)], it follows from B’s honesty that also N∗1 = N1

and X = A. Clearly, M = {|N1;N2;B|}aKA
∈ S-Sec. In contrast, if N∗2 6= N2 then, as B

first received {|N∗1 ;X|}aKB
, the axioms (P3), (C2), (C1), (P1) together with the induction

hypothesis guarantee that N∗1 6= N2. Thus, again, M = {|N∗1 ;N∗2 ;A|}aKX
∈ S-Sec.

(2.3) If αB(e) = send({|N∗2 |}aKX
, X), it must be in a complete initiator run

〈fresh(N∗1).send({|N∗1 ;B|}aKX
, X).rec({|N∗1 ;N∗2 ;X|}aKB

).send({|N∗2 |}aKX
, X)〉

of the protocol with some X ∈ Princ. Note that, N∗2 = N2 is impossible, as B would first
receive {|N∗1 ;N2;X|}aKB

from the channel, and axioms (P3), (C2), (C1), (P1) together
with the induction hypothesis would yield a contradiction. Therefore, N∗2 6= N2, and M =
{|N∗2 |}aKX

∈ S-Sec.

Thus, (iv) never holds, (iii) always holds, and the statement follows. �

Note that an analog of this lemma fails for the original NSPK protocol. The proof fails at case
(1.3) because the message {|N1;N2|}aKA

can be understood by A as belonging to a run executed
with an agent different from B, namely the intruder, as we saw in the previous countermodel.

Our second lemma allows us to conclude that if A = Z is the initiator, then it will never be
able to trick an honest principal into sending the message {|N2|}aKB

to B in another run of the
protocol. Namely, the lemma shows that if B is playing the responder in another protocol run
initiated by an honest agent, then it will not mix the relevant data of the two runs.

Lemma 4.4 Let B ∈ Hon, µ be a NSL model, and ξ a global state such that

µ, ξ
 @B [fresh(N2) ∧ F send({|N1;N2;B|}aKZ
, Z)],

21

and let also C ∈ Hon, and ξ′ a global state such that

µ, ξ′
 @C [fresh(N∗1) ∧ F send({|N∗1 ;C|}aKB
, B)].

For every global state ξ′′ ⊇ ξ′, every D,E, F ∈ Princ with F /∈ {C,B}, and every message M ′

which is not {N∗1 ,K−1
B ,K−1

C }-secure, or M ′ contains {|N∗1 ;N2;B|}aKC
, or {|N∗1 ;X|}aKY

with X 6= C
or Y 6= B, or {|N ;N∗1 ;X|}aKY

with any N,X, Y , the following holds:

µ, ξ′′ 6
 @Ch[in(D,M ′, E)] and µ, ξ′′ 6
 @F [knows(M ′)].

Proof: We reuse Lemma 4.1, now with G = {B,C} and S = {N∗1 ,K−1
B ,K−1

C }∪{M ′ |M ′ contains
{|N∗1 ;N2;B|}aKC

, or {|N∗1 ;X|}aKY
with X 6= C or Y 6= B, or {|N ;N∗1 ;X|}aKY

for any N,X, Y }. The
proof that S is a rational set and that conditions (i) and (ii) of Lemma 4.1 hold at ξ′ is similar to
that of Lemma 4.3. Therefore, Lemma 4.1 tells us that for every global state ξ′′ ⊇ ξ′ of µ either
condition (iii) or condition (iv) of Lemma 4.1 must hold.

We proceed to show that condition (iv) cannot hold. Concretely, we prove by global induction
on ξ′′ ⊇ ξ′ that condition (iii) of Lemma 4.1 holds for ξ′′ and condition (iv) of Lemma 4.1 does
not hold. The base case with ξ′′ = ξ′ is immediate. For the induction step, let us assume that
ξ′′ ∪ {e} ⊃ ξ′′ ⊇ ξ′ are global states and that, by induction hypothesis, (iii) holds for ξ′′ and (iv)
does not. Since, by Lemma 4.1, we know that (iii) or (iv) must hold, it suffices to show that (iv)
cannot hold for ξ′′ ∪{e}. We must then consider, in turn, the two relevant cases for condition (iv)
to hold, that is, e ∈ EvB and e ∈ EvC .
Case (1): If e ∈ EvB , we analyze the possible sending actions αB(e).

(1.1) If αB(e) = send({|N◦1 ;B|}aKX
, X), it must be in a prefix

〈fresh(N◦1).send({|N◦1 ;B|}aKX
, X)〉

of an initiator run of the protocol with some X ∈ Princ. As B freshly generated N◦1 , and
C freshly generated N∗1 , the freshness axioms (F1-2) guarantee that N◦1 6= N∗1 . Thus, the
message M ′ = {|N◦1 ;B|}aKX

is in S-Sec.

(1.2) If αB(e) = send({|N◦1 ;N◦2 ;B|}aKX
, X), it must be in a prefix

〈rec({|N◦1 ;X|}aKB
).fresh(N◦2).send({|N◦1 ;N◦2 ;B|}aKX

, X)〉

of a responder run of the protocol with some X ∈ Princ. As B freshly generated N◦2 , and C
freshly generated N∗1 , the freshness axioms (F1-2) guarantee that N◦2 6= N∗1 . Moreover, as
B first receives {|N◦1 ;X|}aKB

, axioms (P3), (C2), (C1), (P1) together with the induction
hypothesis guarantee that either N◦1 6= N∗1 , or N◦1 = N∗1 and X = C. In the former case, it is
immediate that M ′ = {|N◦1 ;N◦2 ;B|}aKX

is S-secure. In the latter case, N◦2 = N2 is impossible,
because µ, ξ
 @B [fresh(N2)∧F send({|N1;N2;B|}aKZ

, Z)] and B’s honesty would necessitate
N◦1 = N1 and X = Z, which contradicts C’s honesty. Therefore, N◦2 6= N2 and the message
M ′ = {|N∗1 ;N◦2 ;B|}aKC

is S-secure.

(1.3) If αB(e) = send({|N◦2 |}aKX
, X), it must be in a complete initiator run

〈fresh(N◦1).send({|N◦1 ;B|}aKX
, X).rec({|N◦1 ;N◦2 ;X|}aKB

).send({|N◦2 |}aKX
, X)〉

of the protocol with some X ∈ Princ. As B will first receive {|N◦1 ;N◦2 ;X|}aKB
, axioms (P3),

(C2), (C1) and (P1) along with the induction hypothesis guarantee that N◦2 6= N∗1 . Thus,
the message M ′ = {|N◦2 |}aKX

is S-secure.

Case (2): If e ∈ EvC , we also analyze the relevant sending actions αC(e).

(2.1) If αC(e) = send({|N◦1 ;C|}aKX
, X), it must be in a prefix

〈fresh(N◦1).send({|N◦1 ;C|}aKX
, X)〉 .

If N◦1 6= N∗1 then M ′ = {|N◦1 ;C|}aKX
is S-secure. In contrast, if N◦1 = N∗1 , as µ, ξ′

@C [fresh(N∗1) ∧ F send({|N∗1 ;C|}aKB
, B)] it follows from C’s honesty that also X = B, and

the message M ′ = {|N∗1 ;C|}aKB
is S-secure.

22

(2.2) If αC(e) = send({|N◦1 ;N◦2 ;C|}aKX
, X), it must be in a prefix

〈rec({|N◦1 , X|}aKC
).fresh(N◦2).send({|N◦1 ;N◦2 ;C|}aKX

, X)〉

of a responder run of the protocol with some X ∈ Princ. As C freshly generates N∗1
and N◦2 , but N∗1 in an initiator run, C’s honesty ensures that N◦2 6= N∗1 . Moreover, since
C first received {|N◦1 ;X|}aKC

from the channel, the axioms (P3), (C2), (C1) and (P1)
along with the induction hypothesis guarantee that N◦1 6= N∗1 . Therefore, the message
M ′ = {|N◦1 ;N◦2 ;C|}aKX

is S-secure.

(2.3) If αC(e) = send({|N◦2 |}aKX
, X), it must be in a complete initiator run

〈fresh(N◦1).send({|N◦1 ;C|}aKX
, X).rec({|N◦1 ;N◦2 ;X|}aKC

).send({|N◦2 |}aKX
, X)〉

of the protocol with some X ∈ Princ. The proof is similar to step (1.3) above.

Thus, (iv) never holds, (iii) always holds, and the statement follows. �

We now proceed to the main result: the responder authenticates the initiator. Recall from
Section 3.3 that given an honest principal B, authResp,Init,3

B,A (A,B,N1, N2) corresponds to

@B [roleResp
B (A,B,N1, N2)]⇒@A[P◦ send({|N2|}aKB

, B)],

where roleResp
B (A,B,N1, N2) is

rec({|N2|}aKB
) ∧ P(send({|N1;N2;B|}aKA

, A) ∧ P(fresh(N2) ∧ P rec({|N1;A|}aKB
))).

Proposition 4.5 NSL
 authResp,Init,3
B,A (A,B,N1, N2) for A ∈ Princ, B ∈ Hon, and N1 and N2

arbitrary distinct nonces.

Proof: Let µ be an NSL model, ξ a global state such that µ, ξ
 @B [roleResp
B (A,B,N1, N2)].

Recall that B is honest. We have two cases: either (1) A is also honest or (2) A is actually Z.
Case (1): Assume, by absurdity, that µ, ξ 6
 @A[P◦ send({|N2|}aKB

, B)]. Since both A and B
are honest, we can consider ξ′, where ξ′ ⊆ ξ and µ, ξ′
 @B [fresh(N2)], and use Lemma 4.3 to
conclude that µ, ξ 6
 @Ch[P◦

∨
C∈Princ in(C, {|N2|}aKB

, B)]. However, given axioms (P3) and (C2),

this contradicts the assumption that µ, ξ
 @B [roleResp
B (A,B,N1, N2)], as in particular it must be

the case that µ, ξ 6
 @B [rec({|N2|}aKB
)]. Hence µ, ξ
 @A[P◦ send({|N2|}aKB

, B)].
Case (2): If A = Z then B’s run is actually

〈rec({|N1;Z|}aKB
).fresh(N2).send({|N1;N2;B|}aKZ

, Z).rec({|N2|}aKB
)〉.

We must show that µ, ξ
 @Z [P◦ send({|N2|}aKB
, B)]. From axioms (P3) and (C1-2), we know

that µ, ξ

∨
C∈Princ @C [P◦ send({|N2|}aKB

, B)]. Hence, it suffices to prove that Z cannot trick an
honest principal C into sending the message {|N2|}aKB

to B. We can exclude the case when C = B,
since in protocol models no honest principal sends messages to himself. Now, an honest C 6= B
will only send such a message in an initiator role of the form

〈fresh(N∗1).send({|N∗1 ;C|}aKB
, B).rec({|N∗1 ;N2;B|}aKC

).send({|N2|}aKB
, B)〉 .

But clearly only B himself, or Z, would send {|N∗1 ;N2;B|}aKC
. Moreover, B can be excluded

because his honesty guarantees that he will not use N2 but rather a fresh value, according to the
definition of protocol models or else it must be the case that N∗1 = N1 and C = Z, which contra-
dicts the honesty of C. Moreover, if for any ξ′ ⊆ ξ we have indeed that µ, ξ′
 @C [fresh(N∗1) ∧
F send({|N∗1 ;C|}aKB

, B)], then Lemma 4.4 guarantees that µ, ξ 6
 @Z [knows({|N∗1 ;N2;B|}aKC
)], and

therefore C would never receive {|N∗1 ;N2;B|}aKC
and thus could not complete the run. We can

therefore conclude that µ, ξ
 @Z [P◦ send({|N2|}aKB
, B)]. �

23

As NSPK and NSL are well studied, our results are not surprising and the proof ideas are
similar to those found, e.g., in [55]. However, our development illustrates well how we can use our
channel model to give semantic proofs and how we can exploit metatheoretic properties, all within
DTL. Other security protocols can be falsified or verified similarly, using DTL as an object logic.
We now turn to the main strength of DTL: its use as a metalogic to relate different models for
security protocols and to prove further metatheorems about the models themselves.

5 Meta-level model analysis

In this section, we present two concrete examples of metareasoning. First, we prove the equivalence
of two models for guaranteeing message-origin authentication. Second, we relate channel-based
and intruder-centric models, showing that it is sufficient to consider models with a single intruder
who controls the network.

5.1 Message-origin authentication

The following example is of a different nature than the last one. We now show how DTL can be
used to relate models at different levels of abstraction. Establishing such formal relationships is a
central paradigm in Information Security and is used, for example, when carrying out simulation
proofs to show that concrete cryptographic operations implement a given ideal functionality. Our
example is centered around message-origin authentication: ensuring that a message purported to
come from an agent really originated with the agent. We will use DTL to study the relationship
between two models designed to guarantee message-origin authentication.

1. An abstract model TTP where principals may use a special “logged” channel T controlled by
a trusted third party. This channel logs all incoming messages and issues evidence of their
origin to the recipients.

2. A concrete model DS that is closer to a possible realization of an authentic channel. Commu-
nication takes place in DS over a public channel, but principals digitally sign the messages
they send so that their signatures can be verified by the recipients.

We investigate several relationships between these two models by exploring transformations
of their corresponding DTL models, along with translations of their properties. By abstracting
away details of the communication media, we prove that the two models are equivalent under mild
assumptions about the nature of message-origin authentication.

5.1.1 TTP: trusted third party logging

In this model, we extend the channel-based model CB of Section 3 with an additional communica-
tion medium T , representing the logged channel and controlled by a trusted third party. Principals
can choose to send or receive messages either through the public channel or T . Messages exchanged
through T are logged by the trusted third party, who issues evidence of their origin to the recipi-
ents. Hence, all principals are augmented with actions for communicating using T and with state
propositions that provide evidence of origin for the messages received from T .

Recall that we consider fixed a network signature 〈Princ,Num〉. The signature ΣTTP =
〈Princ] {Ch, T},Act,Prop〉 is such that for each A ∈ Princ we have that

• ActA is composed of

– send(M,B), rec(M), spy(M), and fresh(X), as in ΣCB,

– sendT (M,B): sending message M to B via T ,

– recT (B,M): receiving from T message M originating from B,

– spyT (B,M): eavesdropping in T message M originating from B;

24

• PropA includes the state propositions

– knows(M), as in ΣCB,

– evid(B,M): evidence was obtained from T that message M originates from B;

and for Ch, as in ΣCB, and also for T , we have

• ActCh = ActT , where both consist of the actions in(A,M,B), out(A,M,B), and leak;

• PropCh = PropT = ∅.

We use LTTP to denote the DTL language over the signature ΣTTP.
The axiomatization of TTP includes the axioms (F1–F2), (C1–C4), and (P1–P6) of CB,

from Section 3. It also includes corresponding versions of the channel axioms for T , namely

(T1) @T [in(A,M,B)�A sendT (M,B)]

(T2) @T [out(A,M,B)⇒ P in(A,M,B)]

(T3) @T [out(A,M,B)�B recT (A,M)]

(T4) @T [leak⇒ (
∨
B∈Princ c©B [>])]

and axioms for the interaction of each principal A ∈ Princ with T , that is

(PT1) @A[sendT (M,B)⇒ Y(knows(M) ∧ knows(B))]

(PT2) @A[sendT (M,B)�T in(A,M,B)]

(PT3) @A[recT (B,M)�T out(B,M,A)]

(PT4) @A[spyT (B,M)�T (leak ∧ P(
∨
C∈Princ in(B,M,C)))]

(PT6) @A[fresh(X)⇒¬ c©T [>]].

An additional axiom is needed to define the state propositions representing evidence for each
principal A ∈ Princ, namely

(E) @A[evid(B,M)⇔ P◦ recT (B,M)].

TTP models µ are those interpretation structures over ΣTTP that satisfy the above axioms and
the following clause (KT), which replaces (K) of the CB model. For each A ∈ Princ, M ∈ Msg,
and non-empty local state ξA,

(KT) µ, ξA
A knows(M) iff M ∈ close({M ′ | µ, ξA
A (Y knows(M ′)) ∨ rec(M ′) ∨ spy(M ′) ∨
fresh(M ′) ∨ (

∨
B∈Princ recT (B,M ′) ∨ spyT (B,M ′))}) .

Clearly, (K1–K7) also follow from KT, as well as the following properties:

@A[recT (B,M)⇒ knows(M)] (KT 5)

@A[spyT (B,M)⇒ knows(M)] (KT 6)

We also strengthen the honesty requirement. Besides axiom (Hon), we require for every
A ∈ Hon:

(HonT) @A[¬ spyT (B,M)], for every B ∈ Princ and message M .

In TTP, we can prove that the state propositions that provide each principal evidence of origin
of the messages he received via T are actually correct.

Proposition 5.1 TTP
 @A[evid(B,M)]⇒@B [P◦ sendT (M,A)] for A,B ∈ Princ and M ∈ Msg.

Proof: Follows easily from axioms (E), (PT3), (T2), and (T1). �

25

5.1.2 Digital signatures

The DS model specializes the channel-based model CB of Section 3. We require that every
principal A possesses a secret, special-purpose asymmetric key K−1

A , subject to the key axioms
(aKey1–aKey2). We assume that these keys are new, i.e., {KA | A ∈ Princ} ∩ Num = ∅,
and that the network signature 〈Princ,Num〉 is augmented to 〈Princ,Num+〉, with Num+ =
Nonces] SymK]PubK+ where PubK+ = PubK]{KA | A ∈ Princ}. We write Msg+ to denote
the set of messages in the augmented signature, in contrast to Msg, the messages in the original
signature. For the purpose of message-origin authentication, we specify that a principal A should
indicate the origin of a message M by sending it along with A’s name and a signature, that is,
A sends M ;A; {|M |}a

K−1
A

. By using the associated public key KA, the message’s receiver can then

verify the signature to determine whether M originates from A.
We define ΣDS to be identical to ΣCB, except defined over the augmented network signature.

We let LDS denote the DTL language over the signature ΣDS. To guarantee the desired behavior,
we require that each honest principal A only uses his private key for signing messages where
signatures or their associated public/private keys do not occur. Similarly, we require that A never
receives messages that use the special-purpose public/private keys, unless they are properly signed.
Namely, we require

(NS) @A[¬ send(M ′, B)] if M ′ ∈ Msg+ \Msg and M ′ 6= M ;A; {|M |}a
K−1

A

for some M ∈ Msg,

(NR) @A[¬ rec(M ′)] if M ′ ∈ Msg+ \ Msg and M ′ 6= M ;B; {|M |}a
K−1

B

for some M ∈ Msg and

B ∈ Princ.

Note that A ∈ Hon will never disclose his special-purpose private key K−1
A or forward messages

signed by other principals using the special-purpose keys. As above, we assume for simplicity that
principals know each other’s names (N) and public keys (PK), and that honest principals do not
spy (Hon). The DS models are the interpretation structures that satisfy these axioms along with
the CB requirements.

5.1.3 Comparing the models

The TTP model is more abstract than the DS model in that it provides a higher-level message-
origin authentication mechanism without using cryptography. Still, we would like that the two
models provide message-origin authentication mechanisms with comparable behavior, as depicted
in Figure 6, where the triple arrow indicates that evid(A,M) holds from that point on.

It is clear that we must use the more abstract language of the TTP and provide a translation
to the language of the DS model. Given a formula γ ∈ LTTP, let γ ∈ LDS be the formula obtained
from γ by uniformly replacing each occurrence of

• T with Ch,

• sendT (M,B) local to principal A with send(M ;A; {|M |}a
K−1

A

, B),

• recT (B,M) with rec(M ;B; {|M |}a
K−1

B

),

• spyT (B,M) with spy(M ;B; {|M |}a
K−1

B

),

• evid(B,M) with P◦ rec(M ;B; {|M |}a
K−1

B

),

• in(A,M,B) local to T with in(A,M ;A; {|M |}a
K−1

A

, B),

• out(A,M,B) local to T with out(A,M ;A; {|M |}a
K−1

A

, B).

We would like to prove that TTP and DS are equivalent in the sense that TTP
 γ iff DS
 γ.
One way to establish such an equivalence is to define model transformations β : TTPΞ → DSΞ and
θ : DSΞ → TTPΞ such that, for every γ ∈ LTTP, 〈µTTP, ξTTP〉 ∈ TTPΞ, and 〈µDS, ξDS〉 ∈ DSΞ:

26

TTP model:

. . .A •
sendT (M,B)

. . . // . . .

. . .T //•
in(A,M,B)

•
out(A,M,B)

. . .

. . .B . . . //•
recT (A,M)

evid(A,M)
+3 . . .

DS model:

. . .A •
send(M ;A; {|M |}a

K−1
A

, B)

. . . // . . .

. . .Ch //•
in(A,M ;A; {|M |}a

K−1
A

, B)
•

out(A,M ;A; {|M |}a
K−1

A

, B)

. . .

. . .B . . . //•
rec(M ;A; {|M |}a

K−1
A

)
. . .

Figure 6: Comparing a TTP model and a DS model.

(i) µTTP, ξTTP
 γ if and only if β(µTTP, ξTTP)
 γ, and

(ii) θ(µDS, ξDS)
 γ if and only if µDS, ξDS
 γ.

Observe that the composition of the two model transformations β and θ need not be the identity,
but only preserve logical equivalence for LTTP modulo translation of formulas to the language of
the DS model.

There are two subtle issues here. First, the model transformations, associated to β and guided
by the syntactic translation defined above, must merge Ch and T together, since there is only one
communication medium in DS.4 Hence, one cannot expect property (i) to hold in general when
γ involves temporal formulas local to either the public or the logged channel. This is, however, a
minor restriction, as we should still be able to prove (i) for all relevant properties concerning the
behavior of the principals.

The second issue concerns property (ii): the transformation θ must be able to represent in TTP
all behaviors allowed in DS models. The problem is that there is a minor incompatibility between
the models related to the use of the special-purpose keys in DS. The axioms (NS) and (NR)
require that honest agents use signatures appropriately in their realization of a trusted channel.
However, a priori, it does not seem reasonable to similarly restrict the intruder. Still, it is clear
that Z gains nothing from sending messages that no other principal is willing to receive. Hence,
as a consequence of axiom (EZ1), we have the following property:

(NSZ) @Z [¬ send(M ′, A)] if M ′ ∈ Msg+ \ Msg and M ′ 6= M ;B; {|M |}a
K−1

B

for some M ∈ Msg

and B ∈ Princ.

(NSZ) is weaker than the axiom (NS) for the honest principals. As a consequence, Z can still
prevent message-origin authentication in the DS model, which we established for the TTP model
in Proposition 5.1. The reason is that in the TTP model, T not only issues evidence of message
origin but it also provides a stronger form of correspondence, in that the intended recipient indeed
receives the signed message. However, this cannot be guaranteed in the DS model since nothing
prevents Z from spying a message M ;A; {|M |}a

K−1
A

sent by a principal A to a principal B, and then

forwarding it to some other principal C. Clearly, when receiving it, C will have evidence of the
message’s origin but cannot be sure that A really sent the message to him. This situation, which

4We will refrain here from working out the details of this model transformation since we will do this in detail
shortly in a slightly different, but compatible, context.

27

. . .A •
send(M ;A; {|M |}a

K−1
A

, B)

. // . . .

. . .B // . . .

. . .C //•
rec(M ;A; {|M |}a

K−1
A

)
. . .

. . .Ch //•
in(A,M ;A; {|M |}a

K−1
A

, B)
•

leak
•

in(Z,M ;A; {|M |}a
K−1

A

, C)
•

out(Z,M ;A; {|M |}a
K−1

A

, C)
. . .

. . .Z . . . •
spy(M ;A; {|M |}a

K−1
A

)
•

send(M ;A; {|M |}a
K−1

A

, C)
. . . // . . .

Figure 7: Z interferes with message-origin authentication in the DS model

is illustrated in Figure 7, cannot be mimicked in the TTP model. Thus, there are two options for
establishing the desired equivalence:

1. Relax the TTP model to allow the intruder to divert messages from T and forward them to
different destinations.

2. Change the way messages are signed in the DS model to guarantee the required form of
correspondence.

Although the second option is more appropriate (as discussed in [51]), both options have advan-
tages and disadvantages, which we discuss below.

Option 1. We can solve the above mismatch by changing the TTP model to allow the situation
described in Figure 7. Namely, we consider a slightly different model TTP′ where the intruder
can divert each message sent to the logged channel T to a different recipient. To formalize this,
we extend the TTP signature with an additional action dvtT for each principal and we change or
add new axioms to specify its properties. The signature ΣTTP′ = 〈Princ] {Ch, T},Act,Prop〉 is
such that for each A ∈ Princ, we have that

• ActA is composed of

– send(M,B), rec(M), spy(M), fresh(X), sendT (M,B), recT (B,M), and spyT (B,M),
as in ΣTTP, and

– dvtT (B,M,C): divert to principal C the message M originating from B;

• PropA includes, as in ΣTTP, the state propositions knows(M) and evid(B,M);

and for Ch and T , as in ΣTTP, we have that

• ActCh = ActT includes the actions in(A,M,B), out(A,M,B), and leak;

• PropCh = PropT = ∅;

We use LTTP′ to denote the DTL language over the extended signature ΣTTP′ . We specify
the new divert actions by replacing axiom (T1) with

(T1’) @T [in(B,M,C)⇒ (c©B [sendT (M,C)] ∨ (
∨
A∈Princ c©A[dvtT (B,M,C)]))]

and adding additional axioms for each principal A, namely:

(PT7) @A[dvtT (B,M,C)⇒ P spyT (B,M)]

(PT8) @A[dvtT (B,M,C)�T in(B,M,C)].

28

Note that as a consequence of axioms (HonT) and (PT7), honest principals are also not
allowed to divert messages. The TTP′ models are then the interpretation structures over ΣTTP′

satisfying (F1 − F2), (C1 −C4), (P1 − P6), (T1’), (T2 −T4), (PT1 − PT4), (PT6 − PT8),
(E), (N), and (KT). In this setting, we can no longer interpret message-origin authentication as
we did in TTP and Proposition 5.1 is weakened as follows.

Proposition 5.2 TTP′
 @A[evid(B,M)]⇒ @B [P◦(
∨
C∈Princ sendT (M,C))] for A,B ∈ Princ

and M ∈ Msg.

Proof: This follows from the definition of satisfaction, using the axioms (E), (PT3), (T2), (T1’),
(PT7), and (PT4) and the fact that interpretation structures are bounded to the past. �

The models TTP ′ and DS can now be shown to be equivalent, in the precise sense described
above, where we extend the translation of formulas γ ∈ LTTP ′ to γ ∈ LDS by additionally replacing
each occurrence of

• dvtT (B,M,C) with send(M ;B; {|M |}a
K−1

B

, C).

Proposition 5.3 For every γ ∈ L6c©TTP′ built from formulas private to principals, TTP′
 γ if and
only if DS
 γ.

We omit the proof as it is technically very similar to the upcoming proof of the corresponding
property that we give for the second option. As a corollary, we have that the model DS based
on digital signatures fulfills a form of message-origin authentication similar to the one stated in
Proposition 5.2 for TTP′, where evidence that a message M originated in B is provided to a
principal A by the past reception of M ;B; {|M |}a

K−1
B

.

Corollary 5.4 DS
 @A[P◦ rec(M ;B; {|M |}a
K−1

B

)] ⇒ @B [P◦(
∨
C∈Princ send(M ;B; {|M |}a

K−1
B

, C))]

for A,B ∈ Princ and M ∈ Msg.

Option 2. In this option, we keep the initial formulation of the TTP model, as well as the
original meaning of message-origin authentication, but add more structure to the digitally-signed
messages in the concrete model. We let ΣDS] = ΣDS, but we will still use LDS] to denote the
corresponding DTL language. We change DS] by requiring that a principal A must now send a
message M whose message-origin authentication is required by the recipient B by including the
name B as part of the signed message, that is, A sends M ;A; {|B;M |}a

K−1
A

(cf. [51]). In addition,

axioms (NS) and (NR) must be rewritten, for every honest A, to:

(NS]) @A[¬ send(M ′, B)], if M ′ ∈ Msg+ \Msg and M ′ 6= M ;A; {|B;M |}a
K−1

A

for some M ∈ Msg

and B ∈ Princ

(NR]) @A[¬ rec(M ′)], if M ′ ∈ Msg+ \Msg and M ′ 6= M ;B; {|A;M |}a
K−1

B

for some M ∈ Msg and

B ∈ Princ

Using axiom (EZ1), we also obtain a variant of the (NSZ) property, namely

(NS]Z) @Z [¬ send(M ′, A)], if M ′ ∈ Msg+ \Msg and M ′ 6= M ;B; {|A;M |}a
K−1

B

for some M ∈ Msg

and B ∈ Princ.

Finally, we redefine the translation between the languages of the two models. Given γ ∈ LTTP,
let γ] ∈ LDS] be the formula obtained from γ by uniformly replacing each occurrence of

• T with Ch,

• sendT (M,B) local to principal A with send(M ;A; {|B;M |}a
K−1

A

, B),

29

• recT (B,M) local to principal A with rec(M ;B; {|A;M |}a
K−1

B

),

• spyT (B,M) with
∨
C∈Princ spy(M ;B; {|C;M |}a

K−1
B

),

• in(A,M,B) local to T with in(A,M ;A; {|B;M |}a
K−1

A

, B),

• out(A,M,B) local to T with out(A,M ;A; {|B;M |}a
K−1

A

, B).

The models TTP and DS] can now be shown to be equivalent, as illustrated in Figure 8.

Proposition 5.5 For every γ ∈ L 6c©TTP built from formulas private to principals, TTP
 γ if and

only if DS]
 γ].

Proof: Let β : TTPΞ → DS]Ξ be defined, for each pair 〈µTTP, ξ〉 ∈ TTPΞ with µTTP = 〈λ, α, π〉,
by β(µTTP, ξ) = 〈〈λ], α], π]〉, ξ〉 where

• λ]A = λA for every A ∈ Princ and λ]Ch = 〈Ev]Ch,≤
]
Ch〉, with Ev]Ch = EvCh ∪ EvT and ≤]Ch

the restriction to Ev]Ch of any linearization of ≤ compatible with the global state ξ;

• α]A(e) =



αA(e) if αA(e) is an A-action in ΣDS]

send(M ;A; {|B;M |}a
K−1

A

, B) if αA(e) = sendT (M,B)

rec(M ;B; {|A;M |}a
K−1

B

) if αA(e) = recT (B,M)

spy(M ;B; {|C;M |}a
K−1

B

) if αA(e) = spyT (B,M) and

αT (e′) = in(B,M,C), for some e′ <T e

α]Ch(e) =


αCh(e) if e ∈ EvCh

in(A,M ;A; {|B;M |}a
K−1

A

, B) if e ∈ EvT and αT (e) = in(A,M,B)

out(A,M ;A; {|B;M |}a
K−1

A

, B) if e ∈ EvT and αT (e) = out(A,M,B)

leak if e ∈ EvT and αT (e) = leak

• π]A(∅) = {knows(M ′) |M ′ ∈ close({M | knows(M) ∈ πA(∅)}∪{KB | B ∈ Princ}∪{K−1
A })},

whereas π]Ch is always empty.

Note that when αA(e) = spyT (B,M), we assume fixed a consistent choice of principal C such

that α]A(e) = spy(M ;B; {|C;M |}a
K−1

B

), as guaranteed by axiom (PT4). In addition, as in all

other cases, when seen as a formula, α]A(e) corresponds to αA(e)
]
. Note also that α]Ch is well-

defined since EvCh ∩ EvT = ∅. Moreover, knows(M) ∈ π]A(∅) iff knows(M) ∈ πA(∅) for every
M ∈ Msg. Whenever one defines a model transformation such as this one, one must guarantee
that indeed 〈λ], α], π]〉 ∈ DS]. It is straightforward, though tedious, to check that all the necessary
conditions are satisfied by the interpretation structure. For instance, note that axiom (NS’) holds
by construction as the only sending actions of an honest principal A are either normal channel-
sending actions like send(M,B) with M ∈ Msg, or else they come from actions like sendT (M,B)
where again M ∈ Msg and they are transformed into M ;A; {|B;M |}a

K−1
A

. Another axiom, such

as (C1), holds in DS] as a consequence of (C1) and (T1) holding in any TTP model. Observe,
moreover that, by construction, ξ is still a global state of 〈λ], α], π]〉.

We must prove that µTTP, ξ
 γ iff β(µTTP, ξ)
 γ], for every γ ∈ L6c©TTP built from formulas
private to principals. As any such γ must be a Boolean combination of private formulas of different

principals, it suffices to show that µTTP, ξ
 @A[ϕ] iff β(µTTP, ξ)
 @A[ϕ]
]
, for every A ∈ Princ

and ϕ ∈ L 6c©A . The result follows by a trivial adaptation of Lemma 2.2, once we note that the
translation of formulas matches the relabeling of the events introduced by β (and θ), and that π
and π] agree for messages in Msg.

30

Conversely, given a DS] model µDS] = 〈λ], α], π]〉, we must be able to identify the channel
events that correspond, in a TTP model, to the trusted third-party T . Of course, these are
precisely the events whose label is somehow related to a message that uses the special-purpose
signatures. Below, we will call e ∈ Ev]Ch a T -event if one of the following conditions holds:

• α]Ch(e) = in(A,M,B) or α]Ch(e) = out(A,M,B), for some A,B ∈ Princ and some M ∈
Msg+ \Msg; or

• α]Ch(e) = leak, and e ∈ Ev]Z with α]Z(e) = spy(M), for some M ∈ Msg+ \Msg.

Note that, as a consequence of conditions (NS]), (NR]), and (NS]Z), all the relevant messages
M ∈ Msg+\Msg appearing in the labels of the events above must be of the formM ′;C; {|D;M ′|}a

K−1
C

for some C,D ∈ Princ and M ′ ∈ Msg. Furthermore, in the context above, condition (EZ2) also

ensures that A = C and B = D. We now let θ : DS]Ξ → TTPΞ be defined for each pair

〈µDS] , ξ〉 ∈ DS]Ξ by θ(µDS] , ξ) = 〈〈λ, α, π〉, ξ〉 where

• λA = λ]A for every A ∈ Princ, λCh = 〈EvCh,≤Ch〉, and λT = 〈EvT ,≤T 〉, where EvT =

{e ∈ Ev]Ch | e is a T -event}, EvCh = Ev]Ch \ EvT , and ≤Ch and ≤T are the corresponding

restrictions of ≤]Ch;

• αA(e) =


α]A(e) if α]A(e) does not involve a message in Msg+ \Msg

sendT (B,M) if α]A(e) = send(M ;A; {|B;M |}a
K−1

A

, B)

recT (B,M) if α]A(e) = rec(M ;B; {|A;M |}a
K−1

B

)

spyT (B,M) if α]A(e) = spy(M ;B; {|C;M |}a
K−1

B

),

αCh(e) = α]Ch(e) for e ∈ EvCh, and

αT (e) =


in(A,M,B) if α]Ch(e) = in(A,M ;A; {|B;M |}a

K−1
A

, B)

out(A,M,B) if α]A(e) = out(A,M ;A; {|B;M |}a
K−1

A

, B)

leak if α]A(e) = leak;

• πA(∅) = {knows(M) |M ∈ π]A(∅) ∩Msg}, and πCh and πT are both always empty.

It is tedious although not difficult to prove that 〈λ, α, π〉 ∈ TTP and that ξ is still a global state.
Moreover, by construction, we have that β and θ are almost inverses of each other, in the sense
that 〈µDS] , ξ〉 and β(θ(µDS] , ξ)) may differ only in the choice of a linearization compatible with
ξ in the construction of the latter that is different from the linearization implicit in the former.
Still, the two models are similar enough to satisfy the preconditions of Lemma 2.2, again, with
respect to all formulas γ ∈ L6c©TTP built from formulas private to principals. As a consequence, we
also obtain that µDS] , ξ
 γ] iff β(θ(µDS] , ξ))
 γ] iff θ(µDS] , ξ)
 γ.

Finally, we can establish the equivalence of the two models. If TTP
 γ and 〈µDS] , ξ〉 ∈ DS]Ξ
then θ(µDS] , ξ) ∈ TTPΞ and thus θ(µDS] , ξ)
 γ. Hence, µDS] , ξ
 γ] and thus DS]
 γ].

Conversely, if DS]
 γ] and 〈µTTP, ξ〉 ∈ TTPΞ then β(µTTP, ξ) ∈ DS]Ξ and so β(µTTP, ξ)
 γ].
Hence, µTTP, ξ
 γ and thus TTP
 γ. �

Figure 8 depicts the essential ingredients of the proof of Proposition 5.5 and it closely follows the
translation of syntax. Note that the upper and lower diagrams depict two DS] models that differ
only in the linearization of the Ch and T events of the diagram in the middle. Note further that
β transforms the middle diagram along with the global state ξ, but the linearization considered
would not be compatible with the global state ξ′ also depicted.

As a corollary of Proposition 5.5, we have that DS] fulfills the message-origin authentication
requirement originally stated for TTP in Proposition 5.2.

31

�
�
�
�
�
�
�
�
�
� ξ

. . .A . . . •

send(M ;A; {|B;M |}a
K−1

A

, B)

. // . . .

. . .B •
send(M ′, A)

. •
rec(M ;A; {|B;M |}a

K−1
A

)

. . . // . . .

. . .Ch //•
in(B,M ′, A)

•
in(A,M ;A; {|B;M |}a

K−1
A

, B)
•

leak
•

out(A,M ;A; {|B;M |}a
K−1

A

, B)
•

leak
. . .

. . .Z •
spy(M ;A; {|B;M |}a

K−1
A

, B)
. . . //•

spy(M ′)
. . .

is transformed by θ into

�
�
�
�
�
�
�
�
�
�
�
�
� ξ′

�
�
�
�
�
�
�
�
�
�
�
�
� ξ

. . .A •
sendT (M,B)

. // . . .

. . .B . . . •
send(M ′, A)

. . . //•
recT (A,M)

. . .

. . .Ch . . . •
in(B,M ′, A)

. . . •
leak

. . . // . . .

. . .T •
in(A,M,B)

. . . •
leak

. . . //•
out(A,M,B)

. . .

. . .Z •
spyT (M,A)

•
spy(M ′)

. . . // . . .

which is transformed back by β into

�
�
�
�
�
�
�
�
�
� ξ

. . .A •

send(M ;A; {|B;M |}a
K−1

A

, B)

. // . . .

. . .B . . . •
send(M ′, A)

. . . •

rec(M ;A; {|B;M |}a
K−1

A

)

. . . // . . .

. . .Ch //•
in(A,M ;A; {|B;M |}a

K−1
A

, B)
•

in(B,M ′, A)
•

leak
•

out(A,M ;A; {|B;M |}a
K−1

A

, B)
•

leak
. . .

. . .Z •
spy(M ;A; {|B;M |}a

K−1
A

, B)
. . . //•

spy(M ′)
. . .

Figure 8: Model transformations between TTP and DS] models.

Corollary 5.6 DS]
 @A[P◦ rec(M ;B; {|A;M |}a
K−1

B

)] ⇒ @B [P◦ send(M ;B; {|A;M |}a
K−1

B

, A)] for

A,B ∈ Princ and M ∈ Msg.

5.2 Channel-based versus intruder-centric models

We now show that, from the perspective of protocol analysis, the channel-based models we have
been using are equivalent to the kinds of intruder-centric models used in many protocol analysis
tools [3, 12, 59, 65]. In intruder-centric models, the intruder controls, and is identified with, the
network. Moreover, it is even possible to eliminate the honest agents. This avoids the complications
of distribution as intruder-centric models correspond to linear models of the network behavior.

Specifically, we will establish a notion called attack equivalence between models, which says that
attacks are neither lost nor gained by moving between models, where an attack is a countermodel
to a security property. In this paper, we restrict our focus to secrecy and authentication properties

32

as described in Section 3.4.
We will proceed in three phases. In the first phase, we translate our CB models to models where

the intruder is merged with the channel, which we call ZB models. Hence, ZB models no longer
have a channel and messages sent go directly to the intruder. In the second phase, which we call
step compression, we reorganize the ZB models so that the actions of each principal corresponding
to the execution of certain protocol steps appear as consecutive events in local life-cycles. We
call these CZB models, standing for compressed ZB models. In the third and final phase, we
drop any explicit reference to the honest principals in CZB models, keeping just the intruder.
This requires changing the granularity of the actions. These are no longer the atomic actions of
sending and receiving messages or generating fresh data, but rather transactions corresponding
to the execution of complete steps of some fixed protocol by some agent. We call the resulting
intruder-centric models ZC models.

Below, we introduce all the models and show their attack equivalence by proving properties
of the proposed model transformations. Before doing so, we take a closer look at protocols and
how we model them. Recall from Section 3 that an Alice-and-Bob-style protocol description
corresponds to a sequence of message exchanges

(msg1) s1 → r1 : (f1,1, . . . , f1,t1). M1
...

(msgq) sq → rq : (fq,1, . . . , fq,tq). Mq

(msgq+1) sq+1 → rq+1 : (fq+1,1, . . . , fq+1,tq+1
). Mq+1

...

(msgm) sm → rm : (fm,1, . . . , fm,tm). Mm

where each si, ri ∈ {a1, . . . , aj} identifies the principal playing one of the j protocol roles. We
assume, as is standard and without loss of generality, that sj+1 = rj , for 1 ≤ j < m.

Whereas we previously considered the protocol run corresponding to each principal given a
specific protocol instantiation, we now split the runs in smaller steps. Specifically, consider two
consecutive lines of the protocol description, e.g., those labeled msgq and msgq+1. Then there
is a sequence of actions that the principal instantiating rq = sq+1 must execute. Namely, he
must receive Mq, freshly generate fq+1,1, . . . , fq+1,tq+1

, and finally send Mq+1. In general, such
a protocol description gives rise to m + 1 protocol steps, where the first protocol step (by the
principal instantiating s1) does not include an initial receiving action and the last protocol step
(by the principal instantiating rm) consists only of receiving the last message.

Formally, given a protocol instantiation σ, a protocol role 1 ≤ i ≤ j, and 0 ≤ k ≤ m, we define
stepik = msg ik � msg ik+1, where we assume that msg i0 = msg im+1 = 〈〉. Thus, we have:

stepik =



〈fresh(f1,1) . . . fresh(f1,t1).send(M1, r1)〉 if k = 0 and s1 = ai

〈rec(Mk).fresh(fk+1,1) . . . fresh(fk+1,tk+1
).send(Mk+1, rk+1)〉 if 0 < k < m and

rk = sk+1 = ai

〈rec(Mm)〉 if k = m and rm = ai

〈〉 otherwise

In this way, runi = msg i1 � · · · �msg im = stepi0 � · · · � stepim. If σ(ai) = A then we write stepiA,k(σ) =

σ(stepik), or simply stepiA,k(σ(a), σ(f)) where a and f stand, respectively, for the sequences of
identifiers and fresh data symbols used in the protocol description.

Below, in step-compressed models, we will require that the events whose labels match a given
protocol step by a principal must be consecutive, that is, protocol steps will not be interleaved
with other actions. Then, in intruder-centric models, we will introduce explicit (trans)actions
transiA,k(σ) to represent each protocol step stepiA,k(σ). In Figure 9, we illustrate the successive
transformation of a CB model to a ZB, CZB, and ZC model. For simplicity, we consider there a

33

The CB model

. . .A •
fresh(F1)

•
send(M1, B)

. //•
rec(M ′2)

. . .

. . .B •
rec(M1)

•
fresh(F2)

•
fresh(F ′1)

. . . •
send(M2, A)

. . . •
send(M ′1, C)

. // . . .

. . .Ch . . . •
in(A,M1, B)

•
out(A,M1, B)

. //•
in(B,M2, A)

•
leak

•
in(B,M ′1, C)

•
in(Z,M ′2, A)

•
out(Z,M ′2, A)

. . .

. . .Z •
fresh(F ′2)

. . . •
spy(M2)

. . . •
send(M ′2, A)

. . . // . . .

is attack equivalent (by Corollary 5.13) to the ZB model

. . .A •
fresh(F1)

•
send(M1, B)

. //•
rec(M ′2)

. . .

. . .B •
rec(M1)

•
fresh(F2)

•
fresh(F ′1)

. . . •
send(M2, A)

•
send(M ′1, C)

. . . // . . .

. . .Z . . . •
in(A,M1, B)

•
out(Z,M1, B)

. //•
fresh(F ′2)

•
in(B,M2, A)

•
in(B,M ′1, C)

•
out(Z,M ′2, A)

. . .

which is attack equivalent (by Corollary 5.17) to the CZB model

. . .A •
fresh(F1)

•
send(M1, B)

. //•
rec(M ′2)

. . .

. . .B •
rec(M1)

•
fresh(F2)

•
send(M2, A)

•
fresh(F ′1)

•
send(M ′1, C)

. . . // . . .

. . .Z •
in(A,M1, B)

•
fresh(F ′2)

•
out(Z,M1, B)

•
in(B,M2, A)

//•
in(B,M ′1, C)

•
out(Z,M ′2, A)

. . .

which is attack equivalent (by Corollary 5.30) to the ZC model

. . .Z //•
transInitA,0(A,B, F1)

•
fresh(F ′2)

•
transResp

B,1 (A,B, F1, F2)
•

transInitB,0(B,C, F ′1)
•

transInitA,2(A,B, F1, F ′2)
. . .

Figure 9: From CB to ZC models (via ZB and CZB models)

protocol of the form

a→ b : (f1) . M1

b→ a : (f2) . M2

The figure depicts a (possible attack) scenario where honest principals A and B are running the
protocol, but B’s reply in the second message is intercepted by the intruder, who then sends a
fake message to A. While this happens, B is also starting another protocol run with C.

5.2.1 Phase 1: Intruder as the channel

The first phase of our reduction is to merge the intruder with the channel, as illustrated by the
two topmost models in Figure 9. We call the resulting models intruder-based models, or ZB models
for short. In this step, we keep the same network signature 〈Princ,Num〉. The intruder-based
signature ΣZB is a distributed signature obtained from the network signature, analogously to
how we obtained the channel-based signature in Section 3.2. However, we now drop the channel,
replacing it by the intruder, and the actions send and rec of the intruder become the actions in
and out of the new intruder. Moreover, when constructing a ZB model from a CB model, we
remove all events representing interaction between the channel and the intruder. Hence, we delete

34

the actions spy, send, and rec of the intruder and the action leak of the channel. The signature
ΣZB = 〈Princ,Act,Prop〉 is such that

• for each A ∈ Hon, ActA is composed of send(M,B), rec(M), and fresh(X), and PropA
is composed of the state propositions knows(M), where B ∈ Princ, M ∈ Msg, and X ∈
Nonces] SymK] PubK;

• ActZ contains in(A,M,B), out(A,M,B), and fresh(X), and PropZ contains the state propo-
sitions knows(M), where A,B ∈ Princ, M ∈ Msg, and X ∈ Nonces] SymK] PubK.

The ZB models µ are those satisfying the axioms (K), for honest principals, (F1–F2) of the
CB model, which guarantee the freshness and uniqueness of nonces, as well as:

(KZ) µZ , ξZ
Z knows(M) iffM ∈ close({M ′|µZ , ξZ
Z (Y knows(M ′))∨(
∨
A,B∈Princ in(A,M ′, B))∨

fresh(M ′)}) for every non-empty local state ξZ

(Z1) @Z [in(A,M,B)⇒ c©A[send(M,B)]]

(Z2′) @Z [out(Z,M,B)⇒ Y(knows(M) ∧ knows(B))]

(Z3) @Z [out(A,M,B)⇒ c©B [rec(M)]]

(P1) @A[send(M,B)⇒ Y(knows(M) ∧ knows(B))], for every A ∈ Hon

(PZ2) @A[send(M,B)⇒@Z [in(A,M,B)]], for every A ∈ Hon

(PZ3) @A[rec(M)�Z out(Z,M,A)], for every A ∈ Hon

(PZ5) @A[
∧
B∈Hon\{A} ¬ c©B [>]]

(PZ6′) @A[fresh(X)⇒¬ c©Z [>]]

(PZ6′′) @Z [fresh(X)⇒
∧
A6=Z ¬ c©A[>]]

Axiom (KZ) adapts axiom (K) for the intruder, which handles the new intruder action in,
from which Z can learn new messages. The axioms for the channel are adapted to the new model,
replacing the channel by the intruder. Axioms (Z1) and (Z3) (corresponding to (C1) and (C3),
respectively) are not affected, apart from name replacement. Axiom (C2) is replaced by (Z2’), as
we assume that all outputs are generated by the intruder and therefore do not have corresponding
input actions. The only requirement, in this case, is that the intruder knows all the necessary
information to produce such messages. Axiom (C4) is simply dropped, as spying actions are no
longer needed. Some of the axioms for the principals’ behavior are also adapted. Axiom (P1) is
as before but with the restriction to honest agents, which applies also to some of the other axioms.
In axioms (PZ2) and (PZ3), the channel is replaced by the intruder. Axiom (P4) is dropped as
there are no longer spy and leak actions. Axiom (PZ5) is adapted to allow honest principals to
communicate with the intruder but, as before, not with other honest principals. Axiom (P6) is
split into (PZ6′) and (PZ6′′), for honest agents and for the intruder, respectively.

As we changed the signature for the intruder by replacing send and rec actions by out and in
actions, our formulas must be rewritten accordingly. From now on, given a formula γ over a CB
signature where spy and leak do not occur, we denote by γ† the formula over the ZB signature
obtained from γ by uniformly replacing all occurrences of send(M,A) local to Z by out(Z,M,A),
and all occurrences of rec(M) local to Z by

∨
A∈Hon in(A,M,Z). In particular, secrS(σ)† is the

same as secrS(σ) when all the principals are honest. The situation is similar for authentication,
if both principals are honest. Note, however, that Z now controls the channel and outputs all
the messages received by honest principals. Hence, it makes no sense for honest principals to
authenticate the intruder.

Our goal is to prove that the two models are attack equivalent. We therefore start by defining
a model transformation β : CBΞ → ZBΞ. For each 〈µCB, ξ〉 ∈ CBΞ, with µCB = 〈λ, α, π〉, let
β(µCB, ξ) = 〈〈λ†, α†, π†〉, ξ†〉 such that

35

• µ†A = µA for A ∈ Hon and µ†Z is such that

– λ†Z = 〈Ev†Z ,≤
†
Z〉, where Ev†Z = (EvZ ∪ EvCh) \ (EvZ ∩ EvCh) and ≤†Z is some discrete

linearization of →Ch ∪ →Z restricted to Ev†Z that has (ξ|Z ∪ ξ|Ch) ∩ Ev†Z as a local
state;

– α†Z(e) =


αCh(e) if e ∈ EvCh and αCh(e) = in(B,M,C) for some B,M,C

out(Z,M,C) if e ∈ EvCh and αCh(e) = out(B,M,C) for some B,M,C

αZ(e) if e ∈ EvZ \ EvCh;

– π†Z is inductively defined as expected, requiring π†Z(∅) = πZ(∅);

• ξ†A = ξA and ξ†Z = (ξCh ∪ ξZ) ∩ Ev†Z .

Note that α† is defined so that α†A(e) = αA(e)†, for every A ∈ Princ and e ∈ Ev†A. We claim
that 〈µ†, ξ†〉 ∈ ZBΞ. As for the construction of µ†, observe that the intruder in µ† is obtained by
merging the old intruder with the channel. In doing so, we drop some events, namely all synchro-
nizations between the channel and the (old) intruder, e.g. leak and spy(M2), and in(Z,M3, A) and
send(M3, A) in the CB model in Figure 9. Hence, all that remains from the old intruder are the

fresh actions. Moreover, the local successor relation →†Z is defined by a discrete linearization of
the union of the successor relations of the channel and the old intruder, e.g., fresh(F3) is moved
before out(Z,M3, A) in the ZB model in Figure 9. Note that it is always possible to linearize these
two relations in a way compatible with an existing state ξ. Note also that, as a consequence of
the remarks above, the map β is not injective.

We now prove some properties of this model transformation.

Lemma 5.7 Let 〈µCB, ξ〉 ∈ CBΞ, A ∈ Hon and ϕ ∈ L6c©A where spy does not occur. Then

1. µCB, ξ
 @A[ϕ] if and only if β(µCB, ξ)
 @A[ϕ];

2. µCB, ξ
 @A[roleiA(σ)] if and only if β(µCB, ξ)
 @A[roleiA(σ)].

Proof: The first condition follows from Lemma 2.2, given that for 〈µ†, ξ†〉 = β(µCB, ξ) we have

by construction µA = µ†A and ξA = ξ†A. The second condition follows from the first as roles never
involve communication formulas. �

In Lemma 5.7, we have that @A[ϕ]† equals @A[ϕ], and @A[roleiA(σ)]† equals @A[roleiA(σ)].
Next, we prove a weaker version of this lemma for the intruder.

Lemma 5.8 Let 〈µCB, ξ〉 ∈ CBΞ. If µCB, ξ
 @Z [knows(M)] then β(µCB, ξ)
 @Z [knows(M)],
for every message M .

Proof: Let 〈µ†, ξ†〉 = β(µCB, ξ). If µCB, ξ
 @Ch[in(A,M,B)] then µ†, ξ†
 @Z [P◦ in(A,M,B)] so,
every message that Z could eventually spy on the CB model is received by him in the ZB model.
Using axiom (KZ), it follows that µCB, ξ
 @Z [knows(M)] implies that µ†, ξ†
 @Z [knows(M)],
which concludes the proof. �

Note that the converse of Lemma 5.8 fails since in β(µCB, ξ) the intruder knows all messages
sent from one agent to another, which is not the case for 〈µCB, ξ〉. From Lemmas 5.7 and 5.8, it
follows that the transformation from CB models to ZB models is attack preserving, as formalized
below.

Proposition 5.9 (Attack preservation) Let 〈µCB, ξ〉 ∈ CBΞ. Then,

• an attack on secrS(σ) at 〈µCB, ξ〉 implies an attack on secrS(σ)† at β(µCB, ξ);

• an attack on authi,j,qA,B(σ) at 〈µCB, ξ〉 implies an attack on authi,j,qA,B(σ)† at β(µCB, ξ).

36

To prove the converse, we first define a model transformation θ : ZBΞ → CBΞ. For each
〈µZB, ξ

†〉 ∈ ZBΞ with µZB = 〈λ†, α†, π†〉 we introduce explicit communication events local to

the channel. Hence, let Fr = {e ∈ Ev†Z | α
†
Z(e) = fresh(X), for some X}, Succ = {e ∈ Ev†Z |

α†Z(e) = in(A,M,B), for some A,M,B}, NewS = {s(e) | e ∈ Succ}, Pred = {e ∈ Ev†Z | α
†
Z(e) =

out(Z,M,A), for some M,A}, NewP = {p(e) | e ∈ Pred}, and Sync = Ev†Z \ Fr. Note that s(e)
and p(e) denote new events representing successor and predecessor events of e in the channel.
Then, θ(µZB, ξ

†) = 〈µ, ξ〉 is as follows.

• µA = µ†A for every A ∈ Hon;

• µCh = 〈λCh, αCh, πCh〉 with

– λCh = 〈EvCh,≤Ch〉 where EvCh = (Ev†Z\Fr)∪(NewS∪NewP), and→Ch is the successor

relation obtained from ≤†Z by letting e →Ch s(e) for every e ∈ Succ, and p(e) →Ch e
for every e ∈ Pred;

– αCh(e) =


α†Z(e) if e ∈ Ev†Z \ Fr

leak if e ∈ NewS

in(Z,M,A) if e = p(e′) and α†Z(e′) = out(Z,M,A)

• µZ = 〈λZ , αZ , πZ〉 where

– λZ = 〈EvZ ,≤Z〉 is such that EvZ = Fr ∪NewS ∪NewP , and →Z is obtained from →†Z
by replacing every e ∈ Succ by s(e), and every event in e ∈ Pred by p(e);

– αZ(e) =


spy(M) if e = s(e′) and α†Z(e′) = in(A,M,B)

send(M,A) if e = p(e′) and α†Z(e′) = out(Z,M,A)

α†Z(e) if e ∈ Fr

– πZ is inductively defined as expected, requiring πZ(∅) = π†Z(∅).

• ξA = ξ†A for every A ∈ Hon, ξCh = (ξ†Z ∩ EvCh) ∪ {s(e) ∈ NewS | e ∈ ξ†Z} ∪ {p(e) ∈ NewP |
e ∈ ξ†Z}, and ξZ = (ξ†Z ∩ EvZ) ∪ {s(e) ∈ NewS | e ∈ ξ†Z} ∪ {p(e) ∈ NewP | e ∈ ξ†Z}.

Note that although θ is not the inverse of β, there is a clear relationship between θ(β(µCB, ξ))
and 〈µCB, ξ〉. Namely, the former is precisely the CB interpretation structure in β−1(β(µCB, ξ))
that maximizes the activity of the intruder in terms of spying every possible message from the
channel as soon as possible.

We claim that θ(µZB, ξ
†) = 〈µ, ξ〉 is a CB model. Recall the ZB model (the second) depicted in

Figure 9 and consider, for instance, the event e ∈ Ev†B ∩Ev
†
Z such that α†B(e) = send(M2, A) and

α†Z(e) = in(B,M2, A). Then, as also shown in the topmost CB model, we have two events e, s(e) ∈
EvCh with e ∈ EvB and s(e) ∈ EvZ such that αB(e) = send(M2, A), αCh(e) = in(B,M2, A),
αCh(s(e)) = leak, and αZ(s(e)) = spy(M2). Intruder sending actions are introduced similarly. In
the translation of the global state, we add to ξ both the events corresponding to incoming messages
from other principals that were already in ξ† and all outgoing messages from the intruder.

The proof of the following lemma is analogous to the proof of Lemma 5.7.

Lemma 5.10 Let 〈µZB, ξ
†〉 ∈ ZBΞ, A ∈ Hon, and ϕ ∈ L6c©A where spy does not occur. Then

1. θ(µZB, ξ
†)
 @A[ϕ] if and only if µZB, ξ

†
 @A[ϕ];

2. θ(µZB, ξ
†)
 @A[roleiA(σ)] if and only if µZB, ξ

†
 @A[roleiA(σ)].

Observe that in the construction of the translated model, the intruder spies on every message
that enters the channel. He therefore has the same knowledge as in the ZB model and we can
establish the following result.

Lemma 5.11 Let 〈µZB, ξ
†〉 ∈ ZBΞ. Then

37

1. θ(µZB, ξ
†)
 @Z [P◦ a] if and only if 〈µZB, ξ

†〉
 @Z [P◦ a
†], for non-spying a ∈ ActZ in ΣCB;

2. θ(µZB, ξ
†)
 @Z [knows(M)] if and only if 〈µZB, ξ

†〉
 @Z [knows(M)], for every message M .

Proof:

1. By the construction of αZ , the intruder in θ(µZB, ξ
†) never receives messages. If a is a fresh

generation action, then the result is trivial. If a = send(M,A), then it must be the label of
an event p(e′) such that the label of e′ is a† = out(Z,M,A).

2. The knowledge set computed with (KZ) at the given 〈µZB, ξ
†〉 is the same that can be

computed using (K), for principal Z, by just exchanging each in(A,M,B) with spy(M), and

recalling that πZ(∅) = π†Z(∅). �

Lemmas 5.10 and 5.11 yield the following proposition, formalizing attack reflection.

Proposition 5.12 (Attack reflection) Let 〈µZB, ξ
†〉 ∈ ZBΞ. Then,

• an attack on secrS(σ)† at 〈µZB, ξ
†〉 implies an attack on secrS(σ) at θ(µZB, ξ

†);

• an attack on authi,j,qA,B(σ)† at 〈µZB, ξ
†〉 implies an attack on authi,j,qA,B(σ) at θ(µZB, ξ

†).

As a corollary, we conclude that the two models are attack equivalent.

Corollary 5.13 The models CB and ZB are attack equivalent.

5.2.2 Phase 2: Step compression

We now apply step compression, a model-reduction technique used to improve the efficiency of
various protocol analysis tools, such as [3, 10, 23, 49, 52]. The essence of step compression is that
when an honest principal receives a message, he immediately sends a reply. As shown in the third
model of Figure 9, this reduction technique groups together entire protocol steps of honest agents
into consecutive sequences of actions in the resulting model, as depicted inside the boxes.

Step-compressed models, or CZB models, are ZB models with an additional restriction. Re-
call that, for each A ∈ Hon, the sequence of actions labeling A’s local life-cycle must interleave
prefixes of pairwise independent instantiations of protocol runs for principal A. Let runiA(σ) =
stepiA,0(σ) � · · · � stepiA,m(σ) = 〈act0,1 . . . act0,n0〉 � 〈act1,1 . . . act1,n1〉 � · · · � 〈actm,1 . . . actm,nm〉 =
〈act0,1 . . . act0,n0

.act1,1 . . . act1,n1
. . . actm,1 . . . actm,nm

〉 be one such run and consider the pre-
fix 〈. . . actk,uk

〉, with k ≤ m and uk ≤ nk. Then, for each 0 ≤ q ≤ k, we let uq = nq
and require that there are consecutive events eiq+1 →A · · · →A eiq+uq

such that αA(eiq+1) =
actq,1, . . . , αA(eiq+uq) = actq,uq , i.e., the actions within a step cannot be interleaved with other
actions. Below, we refer to the last event eiq+uq as the anchor event for step q of the run. It
should be clear that with the exception of the initial and final steps of a run, every non-empty
intermediate step must start with a receiving action and end with a sending action. Thus, we will
also require that the corresponding shared events on the intruder side are consecutive. That is,
for each 1 ≤ q ≤ k, such q 6= m and uq = nq 6= 0, we require that eiq+1 →Z eiq+nq

.
At the specification level, this corresponds to adding axioms of the form:

(SCi
A,q,uq

(σ)) @A[actq,uq
⇒ Y(actq,uq−1 ∧ Y(. . . ∧ Y actq,1 . . .))], for each uq ≤ nq 6= 0;

(ZSCi
A,q(σ)) @Z [c©A[actq,nq]⇒ Y c©A[actq,1]], for each 0 < q < m with nq 6= 0.

We will show that if there is an attack on a security goal in an intruder-based model, then
there is also a step-compressed model where the attack happens. The idea is to delay the events
corresponding to each protocol step so that they are as close as possible to the step’s anchor
event, and similarly for the intruder model, to delay the out actions so that they are next to the
corresponding in actions, as described above. We now give the associated construction.

38

To establish the attack preservation results, we first define a model transformation β : ZB →
CZB. In this case, we do not consider states in the translation as the attacks on the different
security goals may require constructing different global states. For each µZB = 〈λ, α, π〉 ∈ ZB, we
define the sets of floating events that must be reordered when constructing the step-compressed
model as FltA = {e ∈ EvA | e is not an anchor event} for each A ∈ Hon, and FltZ = EvZ ∩
(
⋃
A∈Hon FltA). Then, β(µZB) = 〈λ[, α[, π[〉 is as follows:

• for A ∈ Hon, µ[A = 〈λ[A, α[A, π[A〉 is:

– λ[A = 〈Ev[A,≤[A〉 where Ev[A = EvA and →[
A results from restricting ≤A to anchor

events in EvA \ FltA, and requiring that eq,1 →[
A eq,2 →[

A · · · →[
A eq,uq

where eq,uq

is the anchor event of the protocol step corresponding to the αA labels of the events
eq,1 ≤A eq,2 ≤A · · · ≤A eq,uq−1 ≤A eq,uq ;

– α[A = αA and π[A(∅) = πA(∅);

• for the intruder Z, µ[Z = 〈λ[Z , α[Z , π[Z〉 where:

– λ[Z = 〈Ev[Z ,≤[Z〉 where Ev[Z = EvZ and →[
Z is the restriction of ≤Z to anchor events

in EvZ \FltZ , where we additionally require that eq,1 →[
Z eq,nq where eq,1 ≤Z eq,nq are

the first and last events of a complete protocol step by some honest principal, and that
→[
Z is compatible with the definition of ≤[A for all the other floating events;

– α[Z = αZ and π[Z(∅) = πZ(∅).

In β(µZB), protocol steps are grouped together as illustrated by the boxes in the CZB model
in Figure 9. This grouping preserves the ordering of actions within runs and therefore also within
steps. Only the interleaving of the different steps may change. Hence, β(µZB) is still a ZB model
and, since it satisfies the restrictions, it is also a CZB model. To show that this transformation is
attack preserving, we first prove two auxiliary results.

Lemma 5.14 Let µZB ∈ ZB and let ξ be one of its global states. For each global state ξ[of
β(µZB) such that last(ξA) = last(ξ[A), for A ∈ Hon, we have

µZB, ξ
 @A[roleiA(σ)] if and only if β(µZB), ξ[
 @A[roleiA(σ)].

Proof: Assume that µZB, ξ
 @A[roleiA(σ)]. Then, µZBA
, ξA
A roleiA(σ). Assume also that

runiA(σ) = 〈act1 . . . actn〉. Hence, there are e1, . . . , en ∈ EvA such that e1 <A · · · <A en, αA(ei) =

acti, for i ∈ {1, . . . , n} and last(ξA) = en. By construction, e1, . . . , en ∈ Ev[A and α[A(ei) = acti,
for i ∈ {1, . . . , n}. Furthermore, since e1, . . . , en are associated with the same protocol run, then
e1 <

[
A · · · <[A en by the construction of →[

A. Hence, as last(ξ[A) = last(ξA) = en, it follows that
β(µZB), ξ[
 @A[roleiA(σ)]. The proof of the converse is similar. �

Lemma 5.15 Let A ∈ Hon, µZB ∈ ZB, and ξ be a global state of µZB such that last(ξA) = eA ∈
EvA ∩EvZ is an anchor event. Let ξ[be the least global state of β(µZB) such that last(ξ[A) = eA.
Then ξ[Z ⊆ ξZ , and for every B ∈ Hon \ {A}, if e ∈ ξ[B is such that e ∈ EvB ∩ EvZ is an anchor
event, then e ∈ ξB.

Proof: To start with, note that ξ[= eA↓ under the global ordering ≤[. To show that ξ[Z ⊆ ξZ ,
let e ∈ ξ[Z . As eA ∈ EvZ , we have that e ≤[Z eA. Assume, for the sake of contradiction, that
e /∈ ξZ . Then e >Z eA and from the construction of →[

Z we conclude that e is not an anchor
event. Thus, in the construction, e was moved towards its anchor event, which must also be after
eA. Hence e >[Z eA, which contradicts e ≤[Z eA. Finally, let B ∈ Hon \ {A} and e ∈ ξ[B be such
that e ∈ EvB ∩ EvZ is an anchor event. As both e, eA ∈ EvZ are anchor events, then e ≤[Z eA
and the definition of →[

Z imply that e ≤Z eA. Therefore, e ∈ ξZ and also e ∈ ξB . �

We could also show, under the conditions of the previous lemma, that ξ[A ⊆ ξA. However, this
fact would not be useful for proving our envisaged result.

39

Lemma 5.16 (Attack preservation) Let 〈µZB, ξ〉 ∈ ZBΞ. Then,

• an attack on secrS(σ)† at 〈µZB, ξ〉 implies an attack on secrS(σ) at some state of β(µZB);

• an attack on authi,j,qA,B(σ)† at 〈µZB, ξ〉 implies an attack on authi,j,qA,B(σ)† at some state of
β(µZB).

Proof: Let µ[= β(µZB). Assume that an attack on secrS(σ)† happens at the global state ξ of

µZB. Let ξ[be the least global of µ[that contains ξ. Then, µZB, ξ

∧j
i=1 @Ai [P◦ roleiAi

(σ)] and

µZB, ξ 6

∧
B∈Princ\{A1,...,Aj}

∧
M∈S @B [¬ knows(M)]. From Lemma 5.14, since ξ ⊆ ξ[, it follows

that µ[, ξ[

∧j
i=1 @Ai [P◦ roleiAi

(σ)]. Furthermore, as ξ[extends ξ and the labeling of events does

not change, we also have that µ[, ξ[6

∧
B∈Princ\{A1,...,Aj}

∧
M∈S @B [¬ knows(M)].

Assume now that an attack on authi,j,qA,B(σ)† happens at the global state ξ of µZB. Let ξ[

be the least global state of µ[such that last(ξ[A) = last(ξA). Then, µZB, ξ
 @A[roleiA(σ)] and
µZB, ξ 6
 @B [P◦ send(σ(M), A)]†. It follows from Lemma 5.14 that µ[, ξ[
 @A[roleiA(σ)]. Note
also that any event of B ∈ Hon \ {A} labeled with a sending action is necessarily an anchor event
shared with the channel. Thus, Lemma 5.15 guarantees that µ[, ξ[6
 @B [P◦ send(σ(M), A)]†. �

Hence, the two models are attack equivalent. Note that we do not state a reflection result
because any CZB model is also a ZB model.

Corollary 5.17 The models ZB and CZB are attack equivalent.

5.2.3 Phase 3: Intruder-centric models

In our last translation step, we “forget” the honest agents and keep only the intruder, as illustrated
in the last two models of Figure 9. An intruder-centric signature ΣZC is a distributed signature
obtained from the network signature with just one agent identifier, Z, for the intruder. Hence,
ΣZC = 〈{Z},Act,Prop〉 where, recalling the Alice-and-Bob-style protocol description above:

• ActZ contains all the actions transiA,k(σ), for each A ∈ Princ, each protocol role 0 ≤ i ≤ j,
each 0 ≤ k ≤ m, and each protocol instantiation σ, as well as fresh(X) for X ∈ Nonces]
SymK] PrivK;

• PropZ contains all the state propositions knowsA(M), for every A ∈ Princ and M ∈ Msg.

Note that we are considering the same network signature 〈Princ,Num〉 as before.
Before we proceed to establish the preservation results, we need some auxiliary notation:

• recs(〈act1 . . . actk〉) = {M | acti = rec(M) for some 1 ≤ i ≤ k};

• snds(〈act1 . . . actk〉) = {M | acti = send(M,A) for some 1 ≤ i ≤ k and A};

• fshs(〈act1 . . . actk〉) = {X | acti = fresh(X) for some 1 ≤ i ≤ k}.

We define the knowledge learned by a B ∈ Hon in a transaction as follows:

• learnB(transiA,k(σ)) =

{
∅ if A 6= B

recs(stepiA,k(σ)) ∪ fshs(stepiA,k(σ)) otherwise;

• learnB(fresh(X)) = ∅.

The knowledge learned by the intruder in each action, assuming stepiA,k(σ) = 〈act1 . . . actnk
〉, is:

• learnZ(transiA,k(σ)) =

{
∅ if actnk

6= send(M,A) for any A,M

snds(stepiA,k(σ)) otherwise;

40

• learnZ(fresh(X)) = {X}.

Next, we rewrite all the relevant axioms in this new setting. These include axioms about
knowledge, axioms to guarantee freshness and uniqueness of the data generated by each principal,
and principal axioms among others.

(K•) µ, ξ
 knowsA(M) iff M ∈ close({M ′|µ, ξ
 Y knowsA(M ′)} ∪ learnA(α(last(ξ)))), for every
state ξ

(F1•Z) @Z [fresh(X)⇒ Y(¬ knowsZ(M))]

(F2•Z) @Z [fresh(X)⇒
∧
A∈Hon ¬ knowsA(M)]

(F1•A) @Z [transiA,k(σ)⇒ Y(¬ knowsA(M ′))]

(F2•A) @Z [transiA,k(σ)⇒
∧
B∈Princ\{A ¬ knowsB(M ′)]

Here M ranges over all messages such that cont(X)∩cont(M) 6= ∅ and M ′ ranges over all messages
such that cont(X ′)∩cont(M ′) 6= ∅, for every X ′ ∈ fshs(stepiA,k(σ)). Observe that these are exactly
the same axioms as (F1− 2), but written in this new language.

Next, we rewrite the axioms about keys, where we assume that A,B ∈ Princ and A 6= B.

(aKey1•) @Z [∗⇒ knowsA(K−1
A)]

(aKey2•) @Z [∗⇒ ¬ knowsB(M)], for every M containing K−1
A

(sKey1.1•) @Z [∗⇒ knowsA(KAB)]

(sKey1.2•) @Z [∗⇒ knowsB(KAB)]

(sKey2•) @Z [∗⇒ ¬ knowsC(M)], for every C ∈ Princ \ {A,B} and every M containing KAB

We may also assume, for simplicity, that all principals A,B ∈ Princ know each other’s names
and public keys from the start.

(N•) @Z [∗⇒ knowsA(B)]

(PK•) @Z [∗⇒ knowsA(KB)]

In order for µ to be a model of the protocol, we require that it satisfies the above axioms and
also that the projection of the trace on each honest agent A, after expanding the actions, is still a
legal run, i.e. an interleaving of prefixes of runs (as before). We delay the details of this expansion
until the definition of the model transformation θ from ZC models to CZB models.

Observe that our notion of model requires, for every transiA,q(σ) and transiA,k(σ) with k < q,

that @Z [transiA,q(σ)⇒ P transiA,k(σ)].
The change in the language also affects how our security goals are written. Consider first the

notion of role. In this setting, if runiA(σ) = stepiA,k1 � · · · � stepiA,kq then

roleiA(σ)• ≡ transiA,kq (σ) ∧ P(transiA,kq−1(σ) ∧ P(. . . ∧ P transiA,k1(σ))).

To express that the messages in a finite set S will remain a shared secret between participants
A1, . . . , Aj after the complete execution of a protocol under the instantiation σ, with σ(ai) = Ai,
we write:

@Z

(j∧
i=1

P◦ roleiAi
(σ)•

)
⇒

 ∧
M∈S

∧
B∈Princ\{A1,...,Aj}

¬ knowsB(M)


and denote this formula by secrS(σ)•.

41

As for authentication properties, let σ be a protocol instantiation such that σ(ai) = A ∈ Hon
and σ(aj) = B ∈ Hon. Then the property that A authenticates B in role j at step q of the

protocol can be defined by the following formula authi,j,qA,B(σ)•, assuming that msgq of the protocol
requires that B sends the message M to A:

@Z [roleiA(σ)• ⇒ P◦ trans
j
B,q(σ)]

Note that it must be the case that stepjB,q(σ) = 〈act1 . . . actk〉 and actk = send(M,A).
We now proceed to prove that the two models are attack equivalent. We start by defining the

model transformation θ : ZC→ CZB from ZC models to SC models, which is considerably easier
than the converse direction. The following notation will be useful. Let µZC = 〈λ•, α•, π•〉 ∈ ZC
with λ = 〈Ev•,→•〉 and A ∈ Hon. We denote by EvA the events of Ev• that involve actions from
A and we will need as many as the number of atomic actions in each of the corresponding steps.
Hence, we define

EvA = {(e, k) | e ∈ Ev•Z , α
•(e) = transiA,q(σ) and 1 ≤ k ≤ |stepiA,q(σ)|} .

We also need a similar construction for the intruder:

EvZ = {(e, 1) | e ∈ Ev•Z , α
•
Z(e) = transiA,q(σ) and (stepiA,q(σ))1 = rec(M) for some M} ∪

{(e, k) | e ∈ Ev•Z , α
•
Z(e) = transiA,q(σ), |stepiA,q(σ)| = k and

|stepiA,q(σ)|k = send(M,B) for some B,M} ∪
{(e, 1) | e ∈ Ev•Z and α•Z(e) = fresh(X) for some X} .

Then θ(µZC) = 〈λ, α, π〉 is as follows:

• µA = 〈λA, αA, πA〉, for each A ∈ Hon, is

– λA = 〈EvA,≤A〉 such that (e1, k1) ≤A (e2, k2) if e1 ≤•Z e2, or e1 = e2 and k1 < k2;

– αA((e, k)) = (stepiA,q(σ))k if α•(e) = transiA,q;

– πA(∅) = {knows(M) | knowsA(M) ∈ π•Z(∅)};

• µZ = 〈λZ , αZ , πZ〉 is

– λZ = 〈EvZ ,≤Z〉 such that (e1, k1) ≤Z (e2, k2) if e1 ≤•Z e2, or e1 = e2 and k1 < k2;

– αZ((e, k)) =



out(Z,M,A) if αA((e, k)) = rec(M), for the unique A ∈ Hon

such that (e, k) ∈ EvA

in(A,M,B) if αA((e, k)) = send(M,B), for the unique A ∈ Hon

such that (e, k) ∈ EvA

α•Z(e) otherwise;

– πZ(∅) = {knows(M) | knowsZ(M) ∈ π•Z(∅)}.

Our construction of CZB models is quite intuitive. We simply expand each action transjA,q(σ)

into its corresponding atomic actions. For instance, in Figure 9, transInitA,0 in the ZC model is
expanded to fresh(F1)→A send(M1, B) for A and to in(A,M1, B) for Z in the corresponding CZB
model.

Given the above translation, it is straightforward to define a translation for states. Given a
ZC state ξ• then ξ is the CZB state such that ξA = {(e, k) ∈ EvA | e ∈ ξ•Z} for each A ∈ Princ.

Next, we prove the reflection of attacks on security goals from ZC models to CZB models. We
start with some preliminary results.

Lemma 5.18 Let µZC ∈ ZC and let ξ• be one of its states. Then, for every A ∈ Princ

µZC, ξ
•
 @Z [knowsA(M)] if and only if θ(µZC), ξ
 @A[knows(M)], for every M.

42

Proof: Assume that A ∈ Hon and let µ = θ(µZC). Then, µZC, ξ
•
 @Z [knowsA(M)] iff

knowsA(M) ∈ π•Z(ξ•) iff M ∈ close({M ′ | knowsA(M ′) ∈ π•Z(∅)} ∪
⋃
e∈ξ• learnA(α•Z(e))) iff

M ∈ close({M ′ | knows(M ′) ∈ πA(∅)} ∪
⋃
e∈ξA recs(αA(e)) ∪ fshs(αA(e)) iff knows(M) ∈ πA(ξA)

iff µ, ξ
 @A[knows(M)].
For the intruder, we have that µZC, ξ

•
 @Z [knowsZ(M)] iff knowsZ(M) ∈ π•Z(ξ•) iff M ∈
close({M ′ | knowsZ(M ′) ∈ π•Z(∅)} ∪

⋃
e∈ξ• learnZ(α•Z(e))) iff M ∈ close({M ′ | knows(M ′) ∈

πZ(∅)} ∪ (
⋃
A∈Hon

⋃
e∈(ξZ∩EvA) snds(αA(e))) ∪ (

⋃
A∈Hon

⋃
e∈(ξZ\EvA) fshs(αZ(e))) iff knows(M) ∈

πZ(ξZ) iff µ, ξ
 @Z [knows(M)]. �

Lemma 5.19 Let µZC ∈ ZC and let ξ• be one of its states. Then, for every A ∈ Hon

µZC, ξ
•
 @Z [transiA,q(σ)] if and only if θ(µZC), ξ
 SCi

A,q,uq
(σ).

Proof: Let µ = θ(µZC). Then, µZC, ξ
•
 @Z [transiA,q(σ)] iff last(ξ•Z) = e and α•Z(e) = transiA,q(σ)

iff, by definition of µA, there exist events (e, 1), . . . , (e, uq) ∈ EvA such that (e, 1) →A · · · →A

(e, uq) and αA((e, j)) = actq,j , for j ∈ {1, . . . , uq}, iff µ, ξ
 SCi
A,q,uq

(σ), observing that last(ξA) =

(e, uq). �

An immediate consequence of the previous result is the following lemma.

Lemma 5.20 Let µZC ∈ ZC and let ξ• be one of its states. Then, for every A ∈ Hon

µZC, ξ
•
 @Z [roleiA(σ)•] if and only if θ(µZC), ξ
 @A[roleiA(σ)].

These results allow us to establish the following proposition.

Proposition 5.21 (Attack reflection) Let µZC and let ξ• be one of its local states. Then,

• an attack on secrS(σ)• at 〈µZC, ξ
•〉 implies an attack on secrS(σ)† at 〈θ(µZC), ξ〉;

• an attack on authi,j,qA,B(σ)• at 〈µZC, ξ
•〉 implies an attack on authi,j,qA,B(σ)† at 〈θ(µZC), ξ〉.

Proof: Let µ = θ(µZC). Assume that an attack on secrS(σ)• happens at the global state

ξ• of µZC. Then, it must be the case that µZC, ξ
•
 @Z [

∧j
i=1 P◦ roleiAi

(σ)•] and also that
µZC, ξ

• 6
 @Z [
∧
M∈S

∧
B∈Princ\{A1,...,Aj} ¬ knowsB(M)]. From Lemma 5.20, it follows that µ, ξ
∧j

i=1 @Ai [P◦ roleiAi
(σ)], and from Lemma 5.18, it follows that µ, ξ 6

∧
M∈S

∧
B∈Princ\{A1,...,Aj}

@B [¬ knows(M)]. Hence, an attack on secrS(σ)† happens at the global state ξ of µ.
Assume now that an attack on authi,j,qA,B(σ)• happens at the global state ξ• of µZC, for B ∈ Hon.

Then, µZC, ξ
•
 @Z [roleiA(σ)•] and µZC, ξ

• 6
 @Z [P◦ trans
j
B,q(σ)]. From Lemma 5.20, it follows

that µ, ξ
 @A[roleiA(σ)], and from Lemma 5.19, it follows that µ, ξ
 P◦ SCi
B,q,uq

(σ)5. Note that,
by the construction of µ and ξ, and by the fact that B ∈ Hon and, thus, is following his role in the
protocol, it cannot be the case that µ, ξ
 @B [P◦ actq,uq

] and µ, ξ 6
 @B [P◦ Y(actq,uq−1 ∧ Y(. . . ∧
Y actq,1))]. Furthermore, by the definition of authi,j,qA,B(σ)•, we have that actq,uq

= send(M,A).

Hence, µ, ξ 6
 @B [P◦ actq,uq
]. Thus, an attack on authi,j,qA,B(σ)• happens at the global state ξ of µ.

�

Now, we prove the converse: if an attack on a security goal occurs in a CZB model it is possible
to mimic that attack in a ZC model. In this case, we consider two different model transformations
depending on the type of attack that we are considering. This has to do with the way we treat
incomplete steps. In first transformation, we include the incomplete steps in the resulting model as
we will use this translation to show attack preservation on secrecy properties. Then, we consider
a second transformation where we forget all the incomplete steps and use this to show attack
preservation on authentication properties.

Let µCZB = 〈λ, α, π〉 ∈ CZB. We consider the following sets of events:

5Here, we write P◦ SCi
B,q,uq

(σ) for @B [P◦(actq,uq ⇒ Y(actq,uq−1 ∧ Y(. . . ∧ Y actq,1 . . .)))].

43

• Ev•f = {e ∈ EvZ | αZ(e) = fresh(X), for some X},

• Ev•c =
⋃
A∈Hon{e ∈ EvZ | e is an anchor event in some run of A},

• Ev•a =
⋃
A∈Hon{e ∈ EvA | e is an anchor event in some run of A}.

Note that the set Ev•c contains the (anchor) events corresponding to all the steps that were
completed. In contrast, Ev•a contains all (anchor) events of steps that were started, including the
ones corresponding to incomplete steps. Observe that if a step was completed, then the anchor
event is shared between the agent and the intruder (the last action of a step is always a send or a
rec). If the step was not completed then the anchor event might not be shared with the intruder,
but will always be an event of the agent performing that step. In fact, Ev•c ⊆ Ev•a.

The first model transformation that we consider is β1 : CZB→ ZC, which we use to show the
preservation of attacks on secrecy properties. In this case, β1(µCZB) = 〈λ•, α•, π•〉 is as follows:

• Ev•Z = Ev•f ∪ Ev•a and ≤•Z is any linearization of Ev•Z compatible with ≤Z ;

• α•Z(e) =

{
αZ(e) if e ∈ Ev•f
transiA,q(σ) if e ∈ Ev•a and e occurs in stepiA,q(σ) ;

• π•Z(∅) =
⋃
A∈Princ{knowsA(M) | knows(M) ∈ πA(∅)}.

In the following, given a global state ξ of µCZB, we denote by ξ• the global state of β1(µCZB)
such that ξ•Z = (ξZ ∩ Ev•f) ∪ (

⋃
A∈Hon ξA ∩ Ev•a).

Lemma 5.22 Let µCZB ∈ CZB and let ξ be one of its local states. Then, for every A ∈ Hon,

if µCZB, ξ
 SCi
A,q,uq

(σ) then β1(µCZB), ξ•
 @Z [P◦ trans
i
A,q(σ)].

Proof: Let µ• = β1(µCZB). If µCZB, ξ
 SCi
A,q,uq

(σ), then there exist e1 →A · · · →A eu,q such

that αA(ej) = (stepiA,q(σ))j . In particular, euq is an anchor and thus euq ∈ ξ•. Furthermore,

α•Z(euq
) = transiA,q(σ) and, so, µ•, ξ•
 @Z [P◦ trans

i
A,q(σ)]. �

Lemma 5.23 Let µCZB ∈ CZB and let ξ be one of its local states. Then, for every A ∈ Hon,

if µCZB, ξ
 @A[roleiA(σ)] then β1(µCZB), ξ•
 @Z [P◦ roleiA(σ)•].

Proof: Let β1(µCZB) = µ• and runiA(σ) = stepiA,0(σ) � · · · � stepiA,m(σ) = 〈act0,1 . . . act0,n0
.

act1,1 . . . act1,n1
. . . actm,1 . . . actm,nm

〉. If µCZB, ξ
 @A[roleiA(σ)] then there are e0,1 →A · · · →A

e0,n0
≤A · · · ≤A em,1 →A · · · →A em,nm

such that αA(ej,k) = actj,k. In particular, ej,nj
, with

j ∈ {0, . . . ,m}, are all anchor events and are all shared with Z. Hence, e0,n0 ≤Z · · · ≤Z em,nm

and, furthermore, ej,nj ∈ Ev•Z , for j ∈ {0, . . . ,m}. Thus, ej,nj ∈ ξ•Z , α•Z(ej,nj) = transiA,j(σ), and

e0,n0 ≤•Z · · · ≤•Z em,nm
. Hence µ•, ξ•
 @Z [P◦ roleiA(σ)•]. �

Lemma 5.24 Let µCZB ∈ CZB and let ξ be one of its local states. Then, for every A ∈ Princ,

if µCZB, ξ
 @A[knows(M)] then β1(µCZB), ξ•
 @Z [knowsA(M)].

Proof: We start by proving that
⋃
e∈ξA recs(αA(e)) ∪ fshs(αA(e)) ⊆

⋃
e∈ξ•Z

learnA(α•Z(e)). Let

e ∈ ξA such that αA(e) occurs in some stepiA,q(σ). If e is an anchor event, then e ∈ ξ•Z and

α•Z(e) = transiA,q(σ). Hence, recs(αA(e)) ∪ fshs(αA(e)) ⊆ learnA(α•Z(e)). If e is not an anchor

event, let e′ be its anchor event. Again, e′ ∈ ξ•Z and α•Z(e′) = transiA,q(σ), and, so, recs(αA(e)) ∪
fshs(αA(e)) ⊆ learnA(α•Z(e′)). The rest of the proof follows as in Lemma 5.18 using this result. �

44

Proposition 5.25 (Attack preservation – secrecy) Let µCZB ∈ CZB and let ξ be one of
its local states. Then an attack on secrS(σ)† at 〈µCZB, ξ〉 implies an attack on secrS(σ)• at
〈β1(µCZB), ξ•〉.

Proof: The proof of this result is similar to the proof of Proposition 5.21 using Lemma 5.23 and
Lemma 5.24. �

We now focus of authentication properties, where the model translation will only consider
the anchor events from completed steps. All incomplete steps will be ignored. In this case,
β2(µCZB) = 〈λ•, α•, π•〉 is as follows:

• Ev•Z = Ev•f ∪ Ev•c and ≤•Z is the restriction of ≤Z to Ev•Z ;

• α•Z and π•Z are as in β1.

In the following, given a global state ξ of µCZB and A ∈ Hon, we denote by ξ•A the global state
of β2(µCZB) such that (ξ•A)Z = last(ξA) ↓ (in β2(µCZB)).

Lemma 5.26 Let A ∈ Hon, µCZB ∈ CZB, and ξ be a global state of µCZB such that last(ξA) ∈
EvA ∩ EvZ is an anchor event. Then, (ξ•A)Z ⊆ ξZ , and for every B ∈ Hon \ {A}, if e ∈ (ξ•A)Z is
such that e ∈ EvB ∩ EvZ is an anchor event, then e ∈ ξB.

Proof: The condition on Z is straightforward by construction of Ev•Z . Let eA = last(ξA). As both
e and eA are anchor events then e, aA ∈ Ev•Z . If e ∈ (ξ•A)Z , then it must be the case that e ≤•Z eA.
Hence, e ≤Z eA which implies that e ∈ ξZ and, so, e ∈ ξB . �

Lemma 5.27 Let µCZB ∈ CZB and let ξ be one of its local states. Then, for every A ∈ Hon and
j ∈ {1, . . . , |stepiA,q(σ)|},

if β2(µCZB), ξ•A
 @Z [P◦ trans
i
A,q(σ)] then µCZB, ξ
 @A[P◦(stepiA,q(σ))j].

Proof: Let µ• = β2(µCZB) and assume that stepiA,q(σ) = 〈act1 . . . actk〉. If µ•, ξ•A
 @Z [P◦ trans
i
A,q(σ)]

then there is an e ∈ (ξ•A)Z such that α•Z(e)) = transiA,q(σ). Furthermore, e ∈ EvA ∩ EvZ and e is
an anchor event, and so, e ∈ ξA. By the definition of anchor events, there are e1 →A · · · →A ek = e
such that αA(ej) = actj . Hence, ej ∈ ξA and the result follows. �

Lemma 5.28 Let µCZB ∈ CZB and let ξ be one of its local states. Then, for every A ∈ Hon,

β2(µCZB), ξ•A
 @Z [roleiA(σ)•] iff µCZB, ξ
 @A[roleiA(σ)].

Proof: Let β2(µCZB) = µ• and runiA(σ) = stepiA,0(σ) � · · · � stepiA,m(σ) = 〈act0,1 . . . act0,n0 .

act1,1 . . . act1,n1 . . . actm,1 . . . actm,nm〉. Assume that µCZB, ξ
 @A[roleiA(σ)]. Then, there are
e0,1 →A e0,n0 ≤A · · · ≤A em,1 →A em,nm such that αA(ej,k) = actj,k with em,nm = last(ξA) and
such that ej,nj

∈ EvA∩EvZ are anchor events. Then, by construction, e0,n0
≤•Z · · · ≤•Z em,nm

and

α•Z(ej,nj) = transiA,j(σ). This implies that µ•, ξ•A
 @Z [roleiA(σ)•], since last((ξ•A)Z) = em,nm .
The proof of the converse is similar. �

Proposition 5.29 (Attack preservation – authentication) Let µCZB ∈ CZB and let ξ be
one of its local states. Then an attack on authi,j,qA,B(σ)† at 〈µCZB, ξ〉 implies an attack on authi,j,qA,B(σ)•

at 〈β2(µCZB), ξ•A〉.

Proof: The proof of this result is similar to the proof of Proposition 5.21 using Lemma 5.28 and
Lemma 5.27. �

From Proposition 5.21, Proposition 5.25, and Proposition 5.29, we have the following corollary.

Corollary 5.30 The models CZB and ZC are attack equivalent.

45

6 Related work and conclusions

Communication, distribution, and cryptography are the essential ingredients of security protocols.
Many attacks on security protocols arise from problems in communication and distribution, rather
than cryptography itself. Hence, we follow the approach often taken in the formal methods
community of abstracting away cryptographic details by assuming perfect black-box cryptography.
The remaining ingredients — communication and distribution — are precisely the central concepts
underlying DTL, which suggests DTL’s suitability for this domain. DTL is neutral with respect to
the kinds of interpretation structures it formalizes and, as we showed through our case studies, by
choosing different signatures and axioms, we can define theories that are well suited for formalizing
and reasoning about different application domains and problems in security protocol analysis.

DTL is closely related to the family of temporal logics whose semantics are based on the
models of true concurrency, introduced and developed in [40, 41, 57]. DTL was proposed in [34]
as a logic for specifying and reasoning about distributed information systems and several versions
were given, reflecting different perspectives on how non-local information can be accessed by each
agent [8, 16, 17]. In this paper, we use the simplest and most expressive formulation, from [8]. We
stick with a propositional language, which suits our purposes, as we describe our schema axioms
by taking advantage of explicit meta-level quantifications and of the inductive definition of closed
sets of messages.

Of course, there are other formalisms for modeling distributed, communicating systems. A
key difference is that DTL provides not just a modeling language (as process algebras also do, for
example) but also a logic for reasoning about systems. Reasoning about local temporal properties
of distributed agents could also be performed in a linear temporal logic over linearizations of
the distributed models. However, this would come at the price of readability and simplicity. In
contrast, DTL is simple and robust in the sense that formulas are invariant with respect to different
linearizations. We have taken advantage of this in the proofs given in this paper.

With respect to formalizing and reasoning about security protocols and associated models, a
large number of logics, formalisms, and tools have been proposed in recent years, e.g. [3, 5, 10, 12,
22, 30, 62, 63, 38, 42, 46, 48, 52, 55, 59, 60, 64, 65]. We will not compare with those logics that have
been proposed solely as an object logic for protocol verification, e.g. [13, 15, 21, 38, 56, 58]. Rather,
we compare with formalisms and logics that can be used to establish metatheoretic properties of
protocol models or even relate protocol models.

The semantics of DTL is based on event structures. The most closely related formalism from
the security community is strand spaces [36, 60, 63], which is widely used to analyze properties
and models of security protocols. In [17], we formally investigated the relationship between the
interpretation structures of our DTL network models and strand spaces. This comparison yields,
transitively, a comparison with the other approaches that have been related to strand spaces,
e.g. [20, 28, 29, 37]. Our results show that DTL network models and strand-space models are
compatible, although they offer different views of protocol executions. We defined property-
preserving, back-and-forth translations between models in our logic and strand-space models. This
is nontrivial as, despite the similarities between the two formalisms (for example, both are based on
partially-ordered sets of events with labeling information), there are substantial differences. These
differences concern the way the principals and the intruder executing a protocol are represented, the
way communication is formalized, and the locality of information. While carrying out semantic
reasoning directly in terms of our interpretation structures is not that different than reasoning
about bundles in the strand space approach, a fundamental difference is that strand spaces do not
provide a logic. Hence, strand spaces lack a means for specifying classes of models axiomatically,
a deductive system, a property specification language, and the ability to relate models based on
the properties they preserve, possibly under formula translations.

The idea of using DTL to investigate general metatheoretic properties of security protocol
models and model simplification techniques was first explored in [16]. In this preliminary work,
we used DTL to formalize and establish the correctness of two model-simplification techniques.
We first proved that one intruder is enough, namely that it is sufficient to consider one Dolev-Yao
intruder instead of multiple intruders. Second, we proved the correctness of a predatory intruder,

46

which is an intruder with restricted behavior, e.g. who only sends messages that are immediately
received and processed by honest agents. Lemma 4.1 from the current paper generalizes not
only a similar result from [16] but also the protocol-independent secrecy results of [27, 47], which
capitalize on the notion of honest ideals on strand spaces introduced in [62].

The step-compression technique that we considered in Section 5.2 is used in several other
approaches, such as [3, 10, 52]. We have begun applying our logic to validate other techniques
that can be used to improve the performance of analysis tools for security protocols, such as the
partial-order techniques developed for the OFMC model checker [9, 53].

Numerous formal models have been proposed for reasoning about communication channels in
security protocols and services, e.g. [1, 4, 14, 31, 32, 45, 51], For example, [51] gives two different
abstract models for channels that are authentic, confidential, or secure: one that represents the
ideal functionality of the channel and a second that employs concrete cryptographic messages
to realize the channel properties. These two models are then shown equivalent under suitable
assumptions. Our metareasoning results are in this spirit, in particular the proof of equivalence
of the two models for guaranteeing message-origin authentication. It will be interesting to see
how far we can take our approach in this regard. That is, whether and how our approach can be
applied not only to obtain other such simulation-based results, but also to reason about protocol
compositionality as done, for instance, in [6, 11, 19] at the cryptographic level and in [51] as well
as in [1, 2, 14, 25, 31, 32, 35, 56] at a symbolic, black-box cryptography level. The combination
of results, techniques, and tools from these and related approaches will play an important role in
consolidating research in security protocol analysis.

We close with a final word on our use of DTL in this paper. Admittedly, given that our main
example deals with the linearization of the channel model, we do not not require here the full power
of the logic. Moreover, the security goals that we have considered, secrecy and authentication,
constitute safety properties, and therefore we have mostly used formulas with simple past-time
operators. Nevertheless, it should be clear that DTL can be used in many other, more complex,
scenarios, for example, to model the presence of multiple non-collaborating intruders (possibly
with different capabilities) or different channels with different properties (possibly controlled by
different intruders). Furthermore, studying other interesting security goals, like forms of fairness
in contract-signing protocols, would also require working with liveness properties, for which more
complex temporal patterns would be necessary. Finally, note that we have avoided writing formulas
with nested communications. This does not mean that such formulas are not necessary, as they
result easily from our axioms (for instance, from the composition of axioms (P3), (C2), and
(C1)). It is just a consequence of another nice property of DTL: in specifying each agent, locally,
in a distributed system, it is possible to replace any DTL formula with nested communications
with an equivalent finite set of formulas without nested communications [34]. The application of
DTL to such more complex scenarios, in the context of security protocols and web services, is the
subject of future work.

Acknowledgments

This work was partially supported by the FP7-ICT-2007-1 Project no. 216471, “AVANTSSAR:
Automated Validation of Trust and Security of Service-oriented Architectures”, by the PRIN’07
project “SOFT”, and by FCT and EU FEDER via the KLog project PTDC/MAT/68723/2006
of SQIG-IT and the AMDSC UTAustin/MAT/0057/2008 project of IST. We thank Cas Cremers,
Bruno Conchinha, Sebastian Mödersheim, and the anonymous referees for their valuable feedback
on earlier drafts of this paper.

References

[1] M. Abadi, C. Fournet, and G. Gonthier. Secure Implementation of Channel Abstractions.
Information and Computation, 174(1):37–83, 2002.

47

[2] S. Andova, C. Cremers, K. Gjøsteen, S. Mauw, S. Mjølsnes, and S. Radomirović. A framework
for compositional verification of security protocols. Information and Computation, 206:425–
459, 2008.

[3] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. H. Drielsma, P.-
C. Heám, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch,
J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The AVISPA Tool for the Automated
Validation of Internet Security Protocols and Applications. In Proceedings of CAV’2005,
LNCS 3576, pages 281–285. Springer-Verlag, 2005.

[4] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. Tobarra Abad. Formal Analysis
of SAML 2.0 Web Browser Single Sign-On: Breaking the SAML-based Single Sign-On for
Google Apps. In Proceedings of FMSE 2008. ACM Press, 2008.

[5] A. Armando and L. Compagna. SAT-based Model-Checking for Security Protocols Analysis.
International Journal of Information Security, 6(1):3–32, 2007.

[6] M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability framework for asyn-
chronous systems. Information and Computation, 2007.

[7] D. Basin, C. Caleiro, J. Ramos, and L. Viganò. A Labeled Tableaux System for the Distributed
Temporal Logic DTL. In Proceedings of TIME 2008, pages 101–109. IEEE CS Press, 2008.

[8] D. Basin, C. Caleiro, J. Ramos, and L. Viganò. Labeled Tableaux for Distributed Temporal
Logic. Journal of Logic and Computation, 19(6):1245–1279, 2009.

[9] D. Basin, S. Mödersheim, and L. Viganò. Constraint Differentiation: A New Reduction
Technique for Constraint-Based Analysis of Security Protocols. In Proceedings of CCS’03,
pages 335–344. ACM Press, 2003.

[10] D. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model checker for security
protocols. International Journal of Information Security, 4(3):181–208, 2005.

[11] M. Bellare, P. Rogaway, and H. Krawczyk. A modular approach to the design and analysis
of authentication and key exchange protocols. In Proceedings of STOC’98. ACM Press, 1998.

[12] B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In Proceedings
of CSFW’01, pages 82–96. IEEE CS Press, 2001.

[13] C. Boyd and A. Mathuria. Protocols for Authentication and Key Establishment. Springer-
Verlag, 2003.

[14] M. Bugliesi and R. Focardi. Language based secure communication. In Proceedings of CSF
21, pages 3–16. IEEE CS Press, 2008.

[15] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transactions on
Computer Systems, 8:18–36, 1990.

[16] C. Caleiro, L. Viganò, and D. Basin. Metareasoning about Security Protocols using Dis-
tributed Temporal Logic. In Proceedings of ARSPA’04, pages 67–89. ENTCS 125(1), 2005.

[17] C. Caleiro, L. Viganò, and D. Basin. Relating strand spaces and distributed temporal logic
for security protocol analysis. Logic Journal of the IGPL, 13(6):637–664, 2005.

[18] C. Caleiro, L. Viganò, and D. Basin. On the Semantics of Alice&Bob Specifications of Security
Protocols. Theoretical Computer Science, 367(1–2):88–122, 2006.

[19] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proceedings of FOCS’01, pages 136–145. IEEE CS Press, 2001.

48

[20] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. A Comparison
between Strand Spaces and Multiset Rewriting for Security Protocol Analysis. In Proceedings
of ISSS 2002, LNCS 2609, pages 356–383. Springer-Verlag, 2003.

[21] I. Cervesato and P. F. Syverson. The logic of authentication protocols. In Foundations of
Security Analysis and Design, LNCS 2171, pages 63–136. Springer-Verlag, 2001.

[22] Y. Chevalier and L. Vigneron. Automated Unbounded Verification of Security Protocols. In
Proceedings of CAV’02, LNCS 2404, pages 324–337. Springer-Verlag, 2002.

[23] E. M. Clarke, S. Jha, and W. R. Marrero. Verifying security protocols with brutus. ACM
Trans. Softw. Eng. Methodol., 9(4):443–487, 2000.

[24] H. Comon-Lundh and V. Cortier. Security properties: two agents are sufficient. In Proceedings
of ESOP’2003, LNCS 2618, pages 99–113. Springer-Verlag, 2003.

[25] V. Cortier and S. Delaune. Safely composing security protocols. Formal Methods in System
Design, 34(1):1–36, 2009.

[26] V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used in crypto-
graphic protocols. Journal of Computer Security, 1:1–43, 2006.

[27] V. Cortier, J. Millen, and H. Rueß. Proving secrecy is easy enough. In Proceedings of
CSFW’01. IEEE CS Press, 2001.

[28] F. Crazzolara and G. Winskel. Events in security protocols. In Proceedings of CCS’01, pages
96–105. ACM Press, 2001.

[29] F. Crazzolara and G. Winskel. Composing strand spaces. In Proceedings of FST TCS 2002,
LNCS 2556, pages 97–108. Springer-Verlag, 2002.

[30] C. Cremers. The Scyther Tool: Verification, falsification, and analysis of security protocols.
In Proceedings of CAV’08, LNCS 5123, pages 414–418. Springer-Verlag, 2008.

[31] C. Dilloway. Chaining secure channels. In Proceedings of FCS-ARSPA-WITS’08, 2008.

[32] C. Dilloway and G. Lowe. On the specification of secure channels. In Proceedings of WITS
’07, 2007.

[33] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198–208, 1983.

[34] H.-D. Ehrich and C. Caleiro. Specifying communication in distributed information systems.
Acta Informatica, 36:591–616, 2000.

[35] J. D. Guttman. Cryptographic protocol composition via the authentication tests. In Proceed-
ings of FOSSACS’09, LNCS 5504, pages 303–317. Springer-Verlag, 2009.

[36] J. D. Guttman and F. J. Thayer Fábrega. Authentication tests and the structure of bundles.
Theoretical Computer Science, 283(2):333–380, 2002.

[37] J. Y. Halpern and R. Pucella. On the relationship between strand spaces and multi-agent
systems. ACM Transactions on Information and System Security, 6(1):43–70, 2003.

[38] B. Jacobs and I. Hasuo. Semantics and logic for security protocols. Journal of Computer
Security, 17(6):909–944, 2009.

[39] F. Jacquemard, M. Rusinowitch, and L. Vigneron. Compiling and Verifying Security Proto-
cols. In Proceedings of LPAR 2000, LNCS 1955, pages 131–160. Springer, 2000.

49

[40] K. Lodaya, R. Ramanujam, and P. Thiagarajan. Temporal logics for communicating sequen-
tial agents: I. Intern. Journal of Foundations of Computer Science, 3(1):117–159, 1992.

[41] K. Lodaya and P. Thiagarajan. A modal logic for a subclass of event structures. In Proceedings
of ICALP 14, LNCS 267, pages 290–303. Springer-Verlag, 1987.

[42] G. Lowe. Breaking and Fixing the Needham-Shroeder Public-Key Protocol Using FDR. In
Proceedings of TACAS’96, LNCS 1055, pages 147–166. Springer-Verlag, 1996.

[43] G. Lowe. A hierarchy of authentication specifications. In Proceedings of CSFW’97. IEEE CS
Press, 1997.

[44] G. Lowe. Casper: a Compiler for the Analysis of Security Protocols. Journal of Computer
Security, 6(1):53–84, 1998.

[45] U. M. Maurer and P. E. Schmid. A calculus for security bootstrapping in distributed systems.
Journal of Computer Security, 4(1):55–80, 1996.

[46] C. Meadows. The NRL Protocol Analyzer: An Overview. Journal of Logic Programming,
26(2):113–131, 1996.

[47] J. Millen and H. Rueß. Protocol-independent secrecy. In 2000 IEEE Symposium on Security
and Privacy. IEEE CS Press, May 2000.

[48] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol
analysis. In Proceedings of ACM Conference on Computer and Communications Security
CCS’01, pages 166–175, 2001.

[49] J. K. Millen and G. Denker. Capsl and mucapsl. Journal of Telecommunications and Infor-
mation Technology, 4:16–27, 2002.

[50] S. Mödersheim. Algebraic Properties in Alice and Bob Notation. In Proceedings of Ares’09,
pages 433–440. IEEE Xplore, 2009.

[51] S. Mödersheim and L. Viganò. Secure Pseudonymous Channels. In Proceedings of Esorics’09,
LNCS 5789, pages 337–354. Springer-Verlag, 2009.

[52] S. Mödersheim and L. Viganò. The Open-Source Fixed-Point Model Checker for Symbolic
Analysis of Security Protocols. In FOSAD 2008/2009, LNCS 5705, pages 166–194. Springer-
Verlag, 2009.

[53] S. Mödersheim, L. Viganò, and D. Basin. Constraint Differentiation: Search-Space Reduc-
tion for the Constraint-Based Analysis of Security Protocols. Journal of Computer Security,
18(4):575–618, 2010.

[54] R. Needham and M. Schroeder. Using encryption for authentication in large networks of
computers. Communications of the ACM, 21(12):993–999, 1978.

[55] L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Computer
Security, 6:85–128, 1998.

[56] Protocol Composition Logic (PCL). http://crypto.stanford.edu/protocols/.

[57] R. Ramanujam. Locally linear time temporal logic. In Proceedings of LICS 11, pages 118–127.
IEEE CS Press, 1996.

[58] R. Ramanujam and S. Suresh. A (restricted) quantifier elimination for security protocols.
Theoretical Computer Science, 367:228–256, 2006.

[59] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. Modelling and Analysis of
Security Protocols. Addison Wesley, 2000.

50

[60] D. Song, S. Berezin, and A. Perrig. Athena: a novel approach to efficient automatic security
protocol analysis. Journal of Computer Security, 9:47–74, 2001.

[61] D. R. Stinson. Cryptography Theory and Practice (Third Edition). CRC Press, Inc., 2005.

[62] F. J. Thayer Fábrega, J. C. Herzog, and J. D. Guttman. Honest ideals on strand spaces. In
Proceedings of CSFW 17, pages 66–78. IEEE CS Press, 1998.

[63] F. J. Thayer Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security
protocols correct. Journal of Computer Security, 7:191–230, 1999.

[64] M. Turuani. The CL-Atse Protocol Analyser. In Proceedings of RTA’06, LNCS 4098, pages
277–286, 2006.

[65] L. Viganò. Automated Security Protocol Analysis with the AVISPA Tool. ENTCS 155,
155:61–86, 2006.

[66] G. Winskel. Event structures. In Petri Nets: Applications and Relationships to Other Models
of Concurrency, LNCS 255, pages 325–392. Springer-Verlag, 1987.

[67] G. Winskel and M. Nielsen. Models for concurrency. In Handbook of Logic in Computer
Science (Vol. 4): Semantic Modelling, pages 1–148. Oxford University Press, Oxford, UK,
1995.

51

