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Abstract

In the context of security protocols, the so-called Alice&Bob notation is often used
to describe the messages exchanged between honest principals in successful protocol
runs. While intuitive, this notation is ambiguous in its description of the actions
taken by principals, in particular with respect to the conditions they must check
when executing their roles and the actions they must take when the checks fail.

In this paper, we investigate the semantics of protocol specifications in Alice&Bob
notation. We provide both a denotational and an operational semantics for such
specifications, rigorously accounting for these conditions and actions. Our denota-
tional semantics is based on a notion of incremental symbolic runs, which reflect
the data possessed by principals and how this data increases monotonically during
protocol execution. We contrast this with a standard formalization of the behavior
of principals, which directly interprets message exchanges as sequences of atomic ac-
tions. In particular, we provide a complete characterization of the situations where
this simpler, direct approach is adequate and prove that incremental symbolic runs
are more expressive in general. Our operational semantics, which is guided by the
denotational semantics, implements each role of the specified protocol as a sequen-
tial process of the pattern-matching spi calculus.
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1 Introduction

Context and motivation. Message Sequence Charts and related nota-
tions [23,30,33,37] describe communication between entities, e.g. objects in
a distributed system, as a sequence of messages exchanged in an execution
scenario. In the context of security protocols, these diagrams are written in
a syntax commonly called Alice&Bob notation [36,42]. Here, the objects are
principals participating in the protocol, like Alice and Bob, and communica-
tion is described by a linear sequence of message exchange steps of the form

A → B : M .

While Alice&Bob notation is compact and intuitive, it is informal and provides
an incomplete description of the actions of principals engaged in the protocol
execution. Namely, it describes only the actions taken in a complete protocol
run between honest principals. In contrast, it does not describe what happens
during unsuccessful runs, for example, with possibly dishonest participants.
Moreover, it leaves implicit that even in successful runs, certain checks must
be taken and execution will abort when the checks fail.

In the standard use of sequence diagrams, these alternative execution possi-
bilities are unproblematic: sequence diagrams only specify requirements on in-
ter -object communication, rather than specifying intra-object behavior. That
is, they specify possible communication scenarios between objects rather than
the inner-workings of the objects themselves. Intra-object behavior is instead
described using an automata-like language, which gives a full behavioral spec-
ification of each object (see, for instance, [23] for a discussion on this). But in
the security protocol community, Alice&Bob notation is often taken as defin-
ing the protocols themselves, that is, as a notation that can be more-or-less
(e.g., perhaps with additional information about the types of data manipu-
lated) translated to protocol automata for the principals involved.

Let us give a simple example, pointing to some of the problems. Consider a
protocol with the step

A → B : {|M |}s
K ,

indicating that a principal in the role A sends the message M encrypted with
the symmetric (hence the superscript s) key K to a principal in the role B.
Intuitively, this describes steps that must be taken by both (principals in the
roles of) A and B: A sends {|M |}s

K and B receives {|M |}s
K . Moreover, to send

the message, A must compose {|M |}s
K , e.g. A must possess {|M |}s

K , which he
then directly sends, or he possesses the components M and K and then per-
forms encryption first. What about B? His responsibility is to receive {|M |}s

K .
Moreover, when he possesses both M and the corresponding decryption key
(which we can assume to be K itself as the encryption is symmetric), then he
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should check that he received the expected message. He can do this by check-
ing that decryption with K yields M . If this check fails, then B should abort
the protocol execution. Equivalently, B could encrypt M with K, compare the
result with the message he received, and again abort if the comparison fails.
However, when B does not possess M and K, he cannot perform this check,
although he should perform it later when (if at all) he accumulates enough
data.

Hence, to reason about protocols where checks like the one we just described
must occur, it is not sufficient to formalize the behavior of principals by di-
rectly interpreting message exchanges as sequences of atomic actions. Various
researchers (e.g. [2,3,9,13,16,20,24,26,28,31,32]) have thus investigated ways of
making explicit at least part of what is left implicit, or even unspecified, in
Alice&Bob–style specifications. This includes the view that a principal has of
a received message with respect to his current knowledge, the conditions a
principal must check during protocol execution and the actions he must take
when the checks fail, and, thus, also the conditions that must be satisfied by
the principals in order to execute a protocol. For instance, the original strand
spaces approach, e.g. [40], which is directly based on Alice&Bob-style protocol
specifications, was extended in [20,26] to model such explicit checks.

Making such information explicit is essential for providing a suitable seman-
tics for protocol specification languages, and also for correctly translating Al-
ice&Bob protocol specifications into low-level languages that can be handled
by automated analysis tools (including those cited above). In fact, many of the
above works are directed towards protocol verification, and hence the solutions
they propose incorporate additional information that ends up hiding some of
the relevant modeling details, which are independent of the particular kind of
formalism and the kinds of reasoning employed to carry out the analysis in
each case. This paper aims at giving a precise description of these modeling
details, thereby providing an abstract denotational semantics for Alice&Bob
specifications. We also provide a corresponding operational semantics, which
implements protocol roles as spi calculus processes.

Contributions. We see our contributions as follows. First, we provide a
denotational semantics for security protocol specifications based on Alice&Bob
notation. This semantics is based on a notion of incremental symbolic runs,
which reflect the data possessed by principals and how this data increases
monotonically during protocol execution.

Second, we provide a formal characterization of the “denotational semantic
spectrum” of Alice&Bob specifications. Namely, we compare our denotational
semantics with the simpler direct interpretation that formalizes the behav-
ior of principals by directly interpreting message exchanges as sequences of
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atomic actions. We give a complete characterization of the situations where
this simpler interpretation is adequate and prove that incremental symbolic
runs are more expressive in general. We call our denotational semantics the
fine interpretation and we also introduce a coarse interpretation, which we
show to be appropriate for those protocol descriptions where principals are
not required to check messages that they previously received.

Third, we use our fine interpretation to precisely characterize the roles of an
Alice&Bob protocol specification as processes in the sequential spi calculus.
That is, guided by our abstract denotational semantics, we give an operational
semantics for Alice&Bob specifications in terms of the pattern-matching spi
calculus [28], where we interpret a security protocol as a collection of sequen-
tial processes, one for each protocol role, which includes all the machinery
necessary to handle exceptional cases. Moreover, the processes obtained are
effectively executable in the sense that both the analysis of received messages
and the construction of sent messages are explicitly prescribed.

Together, the two semantics that we consider (the operational one and the
denotational one based on incremental symbolic runs) give Alice&Bob speci-
fications an unambiguous meaning, both in terms of operations performed by
principals and their communication and knowledge at a more abstract level.
We prove that these two semantics are equivalent in an appropriate sense.

Overall, our results are independent of the details of the formalism used for
protocol analysis (e.g., multiset rewriting, distributed temporal logic, strand
spaces, process algebras, trace-based models, and so on; see, for example,
[3,4,7–10,15,22,32,34,35,38–41]), of the details of the intruder model (which
could be the standard Dolev-Yao model or the model of an intruder with dif-
ferent capabilities), and of the particular security properties considered (such
as secrecy of some data or different forms of authentication). Therefore, our
results can be used to provide a formal footing for using Alice&Bob notation
in different security protocol analysis tools and for guiding the translation
from this notation into protocol automata or other descriptions suitable for
direct analysis or for actual implementation.

The differences that we describe between the direct, coarse, and fine inter-
pretations have a clear relevance for protocol analysis models and protocol
correctness results. In fact, considering different interpretations may lead to
conflicting results. We show that, in general, a protocol correctness result ob-
tained for the direct interpretation is not very meaningful because the fine
interpretation may introduce further behaviors that violate the relevant secu-
rity properties. Similarly, an attack to a security property obtained by means
of a coarse interpretation of the protocol may also not have a counterpart in
terms of the behaviors allowed by the fine interpretation.
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Organization. We proceed as follows. In Section 2, we introduce Alice&Bob
protocol specifications and their direct interpretation. Afterwards, in Section 3,
we introduce a more adequate denotational semantics, followed in Section 4
with a corresponding operational semantics. In Section 5, we discuss related
work and draw conclusions. For the sake of readability, the full proofs of the
technical results are given in the appendix.

2 The direct interpretation of Alice&Bob protocol specifications

2.1 Protocol specifications in Alice&Bob notation

Security protocols describe how principals exchange messages, built using
cryptographic primitives, in order to obtain security guarantees. We begin
our formalization of these protocols by introducing an algebra of messages
and then define the actions that principals can take during protocol execu-
tion.

Protocol specifications are parametric in the sense that they prescribe a gen-
eral recipe for communication that can be used by different principals playing
in the different protocols roles (sender, responder, server, etc.). The messages
transmitted are bit-strings, but, for our purposes, they can also be taken from
any other appropriate set of values and our results are independent of such
details. We just consider fixed a set Princ of principal identifier symbols and
a set Num of “number” symbols. The elements of Num are used to model ran-
dom data, like nonces and keys. We will use upper-case letters like A, B, C, . . .
to denote principals, N and I to denote numbers, and M to denote an arbi-
trary message. All of these symbols may be annotated with subscripts or
superscripts. The algebra of messages can then be defined as follows.

Definition 1 Messages are built inductively from atomic messages (identi-
fiers and number symbols) by pairing, encryption, inversion, and hashing. For
M , M1, and M2 messages, we write the pairing of M1 and M2 as M1; M2, the
asymmetric encryption of M1 by M2 as {|M1|}a

M2
, the symmetric encryption

of M1 by M2 as {|M1|}s
M2

, the asymmetric inversion of M by M−1, and the
application of a hash function H to M as H(M).

For readability, we will often write K to denote a message intended to be
used as an encryption key. Whenever the distinction between symmetric and
asymmetric encryption is not important we will write {|M |}K .

Observe that K−1 denotes the asymmetric inverse of K. Some approaches,
e.g. [35], denote by K−1 the inverse of a symmetric key K, with K−1 = K. In
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this paper, following [7] and many other approaches, we consider a model in
which messages are untyped and hence the inverse key cannot be determined
from (the type of) the key. In our model, every message has an asymmetric
inverse. Hence, principals (including dishonest ones) can compose a message
from its submessages but can neither generate K−1 from K nor vice-versa.
The only ways in which a principal A can obtain the inverse of a key are
to know it initially, to receive it in a message, or when it is the private key
of an asymmetric key-pair that A has generated. Furthermore, note that we
consider only a key K and its inverse K−1, but not the inverse of the inverse
(K−1)−1; see, for instance, the message derivation rules in Definition 11 below.

Definition 2 The set sub(M) of submessages of a message M is defined
inductively by

sub(M) =



{M} if M is atomic,
{M1;M2} ∪ sub(M1) ∪ sub(M2) if M = M1;M2,

{{|M1|}K} ∪ sub(M1) ∪ sub(K) if M = {|M1|}K ,

{K−1} ∪ sub(K) if M = K−1,

{H(M1)} ∪ sub(M1) if M = H(M1).

If S is a set of messages, then we will also write sub(S) to denote the set of
all submessages of messages in S, i.e., sub(S) =

⋃
M∈S sub(M). Note that, in

this paper, we will work in the free algebra, where syntactically different terms
denote different messages.

As notation for keys, we will write KA to denote a public key of the prin-
cipal A, with the corresponding private key K−1

A , and we will write KAB to
denote a symmetric key that is shared by the principals A and B. As is often
done in security protocol analysis, we follow the perfect cryptography assump-
tion, which postulates that the cryptographic primitives themselves cannot
be attacked, and hence the only way to decrypt a message is to possess the
appropriate key. While the public key KA of a principal A may be known by
other principals, the key K−1

A should only be known by A. Similarly, a shared
key KAB should not be known by principals other than A and B (except by
trusted third parties when the protocol prescribes that).

We will use the following notation for sequences. We write w = 〈w1.w2.w3 . . . 〉
to denote a (possibly infinite) sequence w composed of the elements w1, w2,
w3, . . . . Further, we write |w| to denote the length of the sequence w, where
|〈〉| = 0 for the empty sequence 〈〉 and |w| = ∞ whenever w is infinite. Finally,
we write w � w′ to denote the concatenation of two sequences, provided that
the first sequence is finite, and we write w|i to denote the prefix of w of length
i, i.e. w|i = 〈w1 . . . wi〉, provided that 0 ≤ i ≤ |w|. Clearly, w|0 = 〈〉.

Definition 3 An Alice&Bob protocol specification consists of a finite se-
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(nspk1) A → B : (N1). {|N1; A|}a
KB

(nspk2) B → A : (N2). {|N1; N2|}a
KA

(nspk3) A → B : {|N2|}a
KB

Fig. 1. The simplified Needham-Schroeder Public-Key Protocol (NSPK).

quence 〈prot1 . . .protm〉 of message-exchange steps, each of the form

(protq) As → Ar : (N1, . . . , Nt). M ,

where As and Ar are distinct principal symbols and N1, . . . , Nt are distinct
number symbols.

Overall, an Alice&Bob protocol specification involves one principal symbol
corresponding to each intended protocol participant playing a specific role.
We write Part to denote the set of all honest protocol participants, i.e. those
principals who send or receive messages in some step of the protocol.

The description also involves a collection of number symbols. The number sym-
bols N1, . . . , Nt at each step represent values that must be (pseudo-)randomly
generated by the sender As just before the message M is sent to the receiver
Ar. Hence, we assume that these values are fresh, i.e., that they do not occur
in any message from the preceding steps of the protocol specification. 3

Example 4 As an example, consider the simplified Needham-Schroeder Pu-
blic-Key Protocol (NSPK) [18]. Fig. 1 shows the usual Alice&Bob specification
of NSPK, where A and B are principal symbols that identify the roles played
in one run of the protocol.

Let us from now on consider a fixed, arbitrary protocol specification

〈prot1 . . .protm〉 ,

where, for brevity, we will often omit “specification” and simply speak of “the
protocol 〈prot1 . . .protm〉”. We define A-role, the role of an A ∈ Part, as the
sequence of message-exchange steps

〈protA
1 . . .protA

n 〉

that results by removing those steps from the protocol where A is neither the
sender nor the receiver. Hence, each role prescribes the sequence of actions that
are executed by the principal playing it in a successful run of the protocol.

3 This means that the new numbers have not appeared before and thus they cannot
be used to generate the inverse of any known key.
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Definition 5 The actions that can be executed by a principal playing a role
in a protocol are:

• s(M, B) — sending the message M to the principal B,
• r(M) — receiving the message M , and
• f(N) — generating the fresh number N .

These actions reflect the fact that the underlying network may be hostile:
sending actions name the intended recipient but receiving actions do not name
the message’s sender. In fact, we can assume, as is standard, that the network
is controlled by, and can be identified with, a Dolev-Yao intruder [25] who
can compose, send, and intercept messages at will, but, following the perfect
cryptography assumption, cannot break cryptography. Our results, however,
are independent of the particular capabilities of the intruder.

Note that Alice&Bob specifications say little about the internal actions of
principals. Aside from the two communication actions, we have modeled only
one internal action f(N). It is often the case that protocol specifications in
Alice&Bob notation do not make the generation of fresh nonces explicit, since
one can always infer these nonces by collecting the new atomic data in the
message being sent. In our case, we chose to represent fresh nonce genera-
tion explicitly, not only for technical simplicity, but also because nonces are
security-relevant data. All other internal activities are abstracted away. For
example, neither Alice&Bob specifications nor the denotational semantics that
we will present shortly prescribe a specific way of constructing messages prior
to sending them. However, we will do this carefully in our operational se-
mantics, so that the resulting process descriptions are directly executable.
This computation depends in general on the data collected from the messages
received in preceding steps. Similarly, Alice&Bob specifications also do not
specify how a recipient should process received messages.

2.2 The direct interpretation

We now introduce a direct interpretation of Alice&Bob protocol specifications,
which we obtain by directly extracting a sequence of actions for each protocol
participant. Formally, we proceed by defining the sequence of actions, or run,
that characterizes the behavior of each of the participants in a complete, suc-
cessful execution of the protocol. From now on, we will focus on the protocol
role A-role = 〈protA

1 . . .protA
n 〉.

Definition 6 Let A ∈ Part. In the direct interpretation of Alice&Bob pro-
tocol specifications, the run corresponding to the execution of A’s role in the
protocol is

A-run = seq(protA
1 ) � · · · � seq(protA

n ) ,
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A → B : (N). {|N |}a
KA

B → A : N.

Fig. 2. A non-executable protocol specification.

where seq is a function that translates a message-exchange step into a sequence
of actions:

seq(As → Ar : (N1, . . . , Nt). M) =

〈f(N1) . . . f(Nt) . s(M, Ar)〉 if A = As,

〈r(M)〉 if A = Ar.

Note that A-run is parametric and a concrete run is obtained by instantiating
all the symbols occurring in the actions with concrete data.

While the above definition is straightforward, internal actions other than nonce
generation are not represented. This turns out to have important consequences
revolving around the notion of “possession”. First, most protocols are designed
so that the participants can actually execute all the steps prescribed for them
in their concrete runs. But this is only the case when principals can construct
all the messages they are supposed to send using the data they possess. For
instance, an encrypted message {|M |}K can only be synthesized if one possesses
both M and K. Similarly, a hashed message H(M) can only be synthesized
if one has M (assuming, as we do, that the hash function H is known by all
parties).

Second, it is left implicit what internal actions a principal should take after
receiving a message. In particular, if a principal is to gain access to any proper
submessage of a received message M (for example, to test that it agrees with
previously received or generated data, or to compose new messages from it),
then it must be feasible for him to parse the received message, i.e., decompose
and verify the message’s structure. This also depends on the data he possesses.
For example, an encrypted message {|M |}a

K can only be feasibly parsed if one
possesses both M and K, or the decryption key K−1. A similar restriction
applies to hashes: H(M) can only be feasibly parsed given M .

We will give formal definitions of what it means for a protocol to be executable
and an action to be feasible in Section 3 (and in Section 4 we will then intro-
duce a constructive notion of implementable message). We explain here, and
illustrate with examples, that the direct interpretation does not take these two
notions into account.

Example 7 The toy protocol described in Fig. 2 exemplifies non-executability:
B cannot send the fresh nonce N back to A as B is not supposed to know A’s
private key K−1

A .
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A-run : 〈f(N1). s({|N1; A|}a
KB

, B). r({|N1; N2|}a
KA

). s({|N2|}a
KB

, B)〉

B-run : 〈r({|N1; A|}a
KB

). f(N2). s({|N1; N2|}a
KA

, A). r({|N2|}a
KB

)〉

Fig. 3. The initiator and responder runs of the NSPK protocol.

(or1) A → B : (N1). I; A; B; {|N1; I; A; B|}s
KAS

(or2) B → S : (N2). I; A; B; {|N1; I; A; B|}s
KAS

; {|N2; I; A; B|}s
KBS

(or3) S → B : (K). I; {|N1; K|}s
KAS

; {|N2; K|}s
KBS

(or4) B → A : I; {|N1; K|}s
KAS

Fig. 4. The Otway-Rees Authentication/Key-Exchange Protocol (OR).

B-run : 〈r(I; A; B; {|N1; I; A; B|}s
KAS

).

f(N2).

s(I; A; B; {|N1; I; A; B|}s
KAS

; {|N2; I; A; B|}s
KBS

, S).

r(I; {|N1; K|}s
KAS

; {|N2; K|}s
KBS

).

s(I; {|N1; K|}s
KAS

, A)〉

Fig. 5. The responder run of the OR protocol.

Moreover, received messages need not be feasibly parsable, even when the
protocol itself is executable. The root of the problem is that these notions
are dynamic: they depend on the participants’ possessions, which monotoni-
cally grow with each protocol action taken. Handling this will require a data-
sensitive view of runs, which we introduce later.

Example 8 As a simple example of an executable protocol, consider the NSPK
protocol. There are two participants playing in two roles, an initiator A and
a responder B. The two corresponding sequences of actions A-run and B-run
are shown in Fig. 3.

These two sequences provide a high-level representation of the behavior of the
participants of the NSPK protocol playing in the respective roles. Moreover,
as the reader may easily check, given the information available at each step,
the principals can both parse and check the contents of the messages they
receive (A and B should each possess their own private key), and construct
the messages they need to send (by using the data obtained by decrypting
previous messages). The NSPK protocol is thus indeed executable.

Example 9 As another example, in Fig. 4 we present the Alice&Bob speci-
fication of the Otway-Rees Authentication/Key-Exchange Protocol (OR) [18].
In this protocol, an initiator A and a responder B attempt to mutually au-
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(asw1) A → B : (N1). {|KA; KB; M ; H(N1)|}K−1
A

(asw2) B → A : (N2). {|{|KA; KB; M ; H(N1)|}K−1
A

; H(N2)|}K−1
B

(asw3) A → B : N1

(asw4) B → A : N2

Fig. 6. The Exchange Subprotocol of the ASW Protocol (simplified).

thenticate each other and to exchange a shared key KAB with the help of a
server S, with whom they respectively share the keys KAS and KBS. I is a run
identifier, contained in each of the four messages.

Directly interpreting the responder role of the Alice&Bob specification of the
OR protocol yields the sequence of actions B-run shown in Fig. 5 (written
vertically for the sake of readability). In contrast to the NSPK example, al-
though the OR protocol is also executable, this sequence does not properly
represent the feasible behavior of the responder. The problem concerns B’s
first action in the run, where he receives I; A; B; {|N1; I; A; B|}s

KAS
. As B is

not supposed to posses the key KAS, he cannot parse and thereby check that
the fourth part of this message is indeed of the form {|N1; I; A; B|}s

KAS
. The

problem here is not one with the notion of feasibility, but rather it reflects a
limitation of the direct interpretation. In this protocol, we must interpret the
submessage {|N1; I; A; B|}s

KAS
differently. For B, this submessage is opaque:

it represents a chunk of information that he cannot decompose but which he
should simply forward to S in the second step. In fact, from B’s point of view,
any message of the form I; A; B; M is acceptable at this point. For similar
reasons, the submessage {|N1; KAB|}s

KAS
that B receives in the third step is

also opaque and is intended to be forwarded too.

In this example, B will never have the chance to check if the message that he
receives from A in his first receiving action is actually of the form prescribed
by the protocol. Instead, it is S who must carry out this check later. In other
protocols, it may be possible for a principal to receive enough information
later on to analyze an opaque message himself.

In general, principals accumulate data incrementally during a protocol run
and may only be able to tell if a message received has the required structure
(and abort the protocol when this is not the case) at some future protocol
step. It is easy to construct an example of this where a principal receives
an encrypted message {|M |}K but only later M and K, or the decryption key.
The following protocol provides a concrete example of this phenomenon, using
hashes to compute commitments of the protocol participants.

Example 10 The ASW Protocol is an optimistic fair-exchange protocol for
contract signing proposed by Asokan, Shoup, and Waidner in [5]. Fig. 6 dis-
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B-run : 〈r({|KA; KB; M ; H(N1)|}K−1
A

).

f(N2).

s({|{|KA; KB; M ; H(N1)|}K−1
A

; H(N2)|}K−1
B

, A).

r(N1).

s(N2, A)〉

Fig. 7. The responder run of the Exchange Subprotocol of the ASW protocol.

plays (a slightly simplified version of) the Exchange Subprotocol of ASW; for
brevity, we will subsequently refer to this protocol as the ASW protocol. The
idea is that if two honest principals execute this protocol, and there are neither
network failures nor intruder intervention, then afterwards both will possess a
valid contract. We write M to denote the contract text, and write {|M ′|}a

K−1
A

to

denote the digital signature of a message M ′ by the principal A, whose public
key for signature verification is KA. The principals A and B generate nonces
N1 and N2, which are called their respective secret commitments to the con-
tract. Given these, they compute their public commitments by hashing these
values, yielding H(N1) and H(N2), respectively. The protocol then proceeds
in two rounds: in the first, each principal expresses his public commitment to
the agreed-upon contract but does not disclose his secret commitment; in the
second, they exchange their respective secret commitments. Each principal can
then hash the secret commitment received and verify that it indeed corresponds
to the public commitment from the first round. At the end of this exchange,
each principal possesses a valid standard contract of the form

{|KA; KB; M ; H(N1)|}a
K−1

A
; {|{|KA; KB; M ; H(N1)|}a

K−1
A

; H(N2)|}a
K−1

B
; N1; N2 .

Fig. 7 displays the responder run B-run obtained by the direct interpretation
of the ASW protocol. As with the OR protocol, although the ASW protocol
is executable, this sequence does not properly represent the feasible behavior
of the responder. The problem is that before carrying out the action r(N1),
the principal B cannot check the structure of the submessage H(N1), even
though he knows the hash function H. Therefore, until N1 is received, the
submessage H(N1) is again just an opaque chunk of information to be stored.
However, upon receiving N1, B should hash it and abort the protocol execution
if it does not coincide with the opaque submessage previously stored. In this
case, he should not even execute the last sending action of the run. This
kind of situation occurs for several protocols, in particular for those involving
commitments to values by principals (e.g., the Zhou-Gollmann protocol, as
discussed in [20]).
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3 A feasible denotational semantics for Alice&Bob specifications

As illustrated by the examples of the previous section, the direct interpre-
tation does not take into account all of the relevant notions implicit in Al-
ice&Bob specifications, in particular the notions of executable protocol and
feasible action. In this section, we will formalize these notions and then in-
troduce a feasible denotational semantics for Alice&Bob specifications that
accounts for the way that the data possessed by each principal evolves during
protocol execution. We proceed as follows. In Subsection 3.1, we introduce
background concepts. In Subsection 3.2, we present a denotational seman-
tics for Alice&Bob specifications that we call the fine interpretation. We also
employ the notion of message opacity to formally characterize the class of
protocol specifications for which the direct interpretation is appropriate. In
Subsection 3.3, we introduce a coarse interpretation, which we show to be ap-
propriate for those protocol specifications where the evolution of the message
views does not require principals to check messages that they previously re-
ceived. In Subsection 3.4, we sum up the results of this section by comparing
the three interpretations that we have considered.

3.1 Data manipulation and datasets

We begin, as is standard, by defining the sets of messages that principals can
analyze (decompose) and synthesize (compose).

Definition 11 Let S be a set of messages. The set analyz(S) is the least
superset of S closed under the rules

M1; M2

M1

M1; M2

M2

{|M |}a
K K−1

M

{|M |}a
K−1 K

M

{|M |}s
K K

M
,

and the set synth(S) is the least superset of S closed under the rules

M1 M2

M1; M2

M K

{|M |}K

M

H(M)
.

The least superset of S closed under both the analysis and synthesis rules is
denoted by close(S). Whenever S = close(S), we will call S a dataset.

Since we do not consider inverses of inverses (K−1)−1, as is customary, we have
two unambiguous analysis rules for asymmetric encryption: one for decrypting
with a private key K−1 a message M that has been asymmetrically encrypted
with a public key K, and one for decrypting with a public key K a message
M that has been asymmetrically encrypted with a private key K−1 (as usual,

13



this corresponds to verifying with key K a message that has been signed with
key K−1).

It is well-known that if one forbids encryption using composed messages as
keys (i.e., if all keys are atomic), then close(S) = synth(analyz(S)). In general,
however, synth(analyz(S))  close(S), that is, the inclusion is proper. For
example, if S contains just the message M1; {|M |}a

(M1;M1)−1 then M ∈ close(S)
but M /∈ synth(analyz(S)). In any case, as shown for instance in [17,19],
close(S) is decidable for finite S.

For a given A ∈ Part, assume now that A-run = 〈a1 . . . as〉. To formalize how
the data A possesses evolves along an execution of this run, we must account
for both the protocol-relevant data that A starts with and the data that he
generates or receives with each protocol action. Since our protocol actions do
not model the way that principals synthesize and analyze messages, we will use
the datasets to represent the possessions of each principal after each action.

Let Di
A denote the data that A possesses after executing the first i actions of

the run. We can then visualize the evolution of A′s dataset as follows:

a1 a2 a3 as−1 as
D0

A
// D1

A
// D2

A
// . . . // Ds−1

A
// Ds

A

.

Here D0
A contains A’s initial knowledge. Each Di+1

A is the extension of Di
A

with the new data that A obtains by executing the action ai+1 and taking the
closure of the result. When the action is the generation of a number or the
reception of a message, then A learns the number generated or the message
received. In contrast, A learns nothing new just by sending a message.

Definition 12 The data collected by a principal executing an action a is the
set gets(a) defined by

gets(a) =


∅ if a = s(M, B) ,

{M} if a = r(M) ,

{N} if a = f(N) .

Given an initial dataset D0
A, the datasets Di

A for 1 ≤ i ≤ s are inductively
defined by

Di
A = close(Di−1

A ∪ gets(ai)) .

Hence, for every i > 0, we have that

Di
A =


Di−1

A if ai = s(M, B) ,

close(Di−1
A ∪ {M}) if ai = r(M) ,

close(Di−1
A ∪ {N}) if ai = f(N) ,

14



and each run defines a (non-strictly) increasing chain D0
A ⊆ D1

A ⊆ D2
A ⊆ · · · ⊆

Ds−1
A ⊆ Ds

A of datasets.

While the messages A sends play no role in constructing the sets Di
A, it must

be the case that A can construct each of these messages using the data avail-
able to him. This assumption, which is often left implicit in protocol analysis
approaches, can be formalized in the current setting once we fix D0

A. The ini-
tial dataset need only contain the protocol-relevant data that the principal
A requires to execute his role of the protocol, such as the identities of rel-
evant participants, their public keys, and A’s own private and shared keys,
as well as any protocol-specific data such as numbers (e.g., run identifiers as
in the Otway-Rees protocol) used as parameters in the protocol run. A pre-
cise description of this data is usually missing from Alice&Bob–style protocol
specifications. However, it can generally be inferred from the description of
the roles themselves. Here we specify requirements on this dataset. 4

Definition 13 An initial dataset for a principal A is a dataset

close({A, KA, K−1
A } ∪ DataA) ,

where DataA = PartA ∪KeyA ∪ NumA and

• PartA ⊆ Part,
• KeyA ⊆ {KB, KAB | B ∈ PartA}, and
• NumA is a set of non-fresh symbols occurring in the specification.

Given these requirements, we can now define executability.

Definition 14 The role of A is executable provided that there exists an initial
dataset D0

A for A such that, for every 1 ≤ i ≤ s, if ai = s(M, B) then
M, B ∈ Di−1

A . A protocol specification is executable when all of its roles are.

In the remainder of this paper, we will assume that the protocol specifications
that we consider are all executable (for brevity, we will often omit “specifi-
cation” and simply speak of “an executable protocol”). We will also assume
fixed a protocol participant A and an initial dataset D0

A that makes A’s role
executable.

Example 15 For our example protocols NSPK, OR, and ASW, all of which
are executable, we fix the initial datasets generated (according to Definition 13)
using the following data:

NSPK protocol: DataA = {B, KB} and DataB = {A, KA}.

4 This definition can be generalized straightforwardly, e.g., to consider the case
where A initially possesses more than one asymmetric key-pair.
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OR protocol: DataA = {B, S, KAS, I}, DataB = {S, KBS}, and DataS =
{A, B, KAS, KBS}.

ASW protocol: DataA = {B, KB, M} and DataB = {A, KA}.

3.2 The fine interpretation of Alice&Bob specifications

We now introduce a denotational semantics for Alice&Bob specifications that
we call the fine interpretation. Given that each message that is sent in a proto-
col run must actually be constructed by its sender, we begin by considering the
question of how the evolving datasets affect the way that principals parse the
messages they receive. As we saw in the examples at the end of the previous
section, this data-sensitive inspection must be feasible and plays an essential
role in the correct interpretation of Alice&Bob specifications.

Since principals cannot always fully parse the messages they receive, we in-
troduce a set of symbols that represent place-holders: each symbol marks the
occurrence of an unparsable message until it becomes parsable. Formally, we
introduce a new atomic ghost symbol γM for each unparsable message M .
These symbols will be used to mark the (sub)messages that are opaque to a
principal, in the sense that the currently available data does not allow him to
parse these (sub)messages and thereby ascertain their precise form and extract
their content.

Definition 16 The view vD(M) that a principal has of a message M accord-
ing to a given dataset D is defined inductively as follows:

• vD(M) = M , if M is atomic;

• vD(M1; M2) = vD(M1); vD(M2);

• vD({|M1|}a
K) = {|vD(M1)|}a

vD(K), if M1, K ∈ D, else

vD({|M1|}a
K) = {|vD(M1)|}a

γK
, if K−1 ∈ D, else

vD({|M1|}a
K) = γM with M = {|M1|}a

K;

• vD({|M1|}a
K−1) = {|vD(M1)|}a

vD(K−1), if M1, K
−1 ∈ D or K ∈ D, else

vD({|M1|}a
K−1) = γM with M = {|M1|}a

K−1;

• vD({|M1|}s
K) = {|vD(M1)|}s

vD(K), if K ∈ D, else
vD({|M1|}s

K) = γM with M = {|M1|}s
K;

• vD(K−1) = vD(K)−1, if K ∈ D, else
vD(K−1) = γ−1

K , if {|M1|}a
K ∈ D for some M1, else

vD(K−1) = γM with M = K−1;

• vD(H(M1)) = H(vD(M1)), if M1 ∈ D, else
vD(H(M1)) = γM with M = H(M1).

A message M is D-transparent if vD(M) = M and D-opaque if vD(M) = γM .
We extend vD to actions and sequences of actions in the obvious way.
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This definition deserves some explanation. First of all, the definition of vD(M)
will be used in the context of a given protocol specification, where D is the
dataset of a principal at some point in the execution of his role of the protocol,
and M is (a submessage of) a message that he is about to send or has just
received, that is, M ∈ D. Moreover, the computation of views is closely related
to the synthesis and analysis of messages. Indeed, if M can be synthesized from
simpler messages that are in D, then the view of M should correspond to the
construction of M from the views of these submessages. This fact explains
the cases when M is an atomic message, a pair of messages, a symmetric
encryption, or the hash of a message. Namely:

• A pair M1; M2 can always be analyzed, the views vD(M1) and vD(M2) of its
components computed, and vD(M1; M2) synthesized from them.

• A symmetric encryption {|M1|}s
K can only be analyzed by a principal when

he knows K; but then he also obtains the message M1 in the body of
the encryption. Thus, the views vD(M1) and vD(K) can be computed and
vD({|M1|}s

K) synthesized from them. Otherwise, the principal’s view of the
message M is simply the ghost symbol γM , i.e., γ{|M1|}s

K
.

• Hashed messages are treated similarly, since H(M1) can only be analyzed
by a principal if he has M1. Then he can compute vD(M1) and hash it to
obtain H(vD(M1)). Otherwise, the principal’s view of the message is again
simply a ghost symbol.

The cases when M is an asymmetric encryption or an inverse key are more
complex and are interrelated:

• The case when M is {|M1|}a
K−1 is similar to the cases above when the

principal has both M1 and K−1. In this case, he computes vD(M1) and
vD(K−1), and then synthesizes vD({|M1|}a

K−1) as {|vD(M1)|}a
vD(K−1). If the

principal only has K, then he can still use it to decrypt the message and
obtain M1. Of course, he cannot be sure about M1 but he can compute
its view vD(M1). He can also compute his view of K and use it to com-
pute the view of K−1, that is, vD(K−1) = vD(K)−1. Consequently, we de-
fine vD({|M1|}a

K−1) = {|vD(M1)|}a
vD(K−1) = {|vD(M1)|}a

vD(K)−1 . Otherwise, we
again use a ghost symbol.

• The case when M is {|M1|}a
K is treated similarly to the cases above if

the principal’s dataset contains M1 and K. When this holds, the princi-
pal can compute vD(M1) and vD(K), and then synthesize vD({|M1|}a

K) as
{|vD(M1)|}a

vD(K). Even if the principal does not have M1 and K, he may still
be able to view something in {|M1|}a

K if he has the key to decrypt it, i.e.,
K−1 ∈ D. Then, he can decrypt {|M1|}a

K to obtain M1. Of course, he can
still not grasp the structure of K, and also he cannot be sure about M1

unless he has a clear view of it. So, he can compute vD(M1), and recognize
that vD({|M1|}a

K) should be vD(M1) encrypted under “something”. We thus
define vD(K−1) = γ−1

K and vD({|M1|}a
K) = {|vD(M1)|}a

γK
. If none of these two
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subcases apply, we again use a ghost symbol to define the view.

It should be clear that the cases of {|M1|}a
K and {|M1|}a

K−1 are different when
K−1 ∈ D and K ∈ D, respectively. The difference is due to the fact that
vD(K) may be used to compute vD(K−1), since K is a submessage of K−1,
but not vice-versa. For the sake of clarity, let us consider again what happens
with messages of the form K−1.

• If K ∈ D, then the principal can encrypt any message M1 with K and
then decrypt again, using K−1, to recover M1. Hence, he can confirm that
K−1 is indeed the inverse of K, and so we define vD(K−1) = vD(K)−1.
If K /∈ D, then the principal can still use K−1 to decrypt any message
{|M1|}a

K ∈ D. However, he will not be able to analyze K. Hence, we define
vD(K−1) = γ−1

K (and also vD({|M1|}a
K) = {|vD(M1)|}a

γK
). Otherwise, we again

use the corresponding ghost symbol.

It is interesting to note that if we had considered a closure rule like

K−1

K

then we would simply have vD(K−1) = vD(K)−1 in all cases. Moreover, we
would also have vD({|M1|}a

K) = {|vD(M1)|}a
vD(K) whenever {|M1|}a

K is not D-
opaque. We have not considered such a rule, however, because it is admissible,
in general, that one can get hold of K−1 and not know K.

To illustrate this definition further, let us consider two examples. First, let
D = close({{|M1|}a

(N ;N)−1 , N ; N}) for some message M1 and some number N .
Then, the views of the two messages in D are vD({|M1|}a

(N ;N)−1) = {|M1|}a
(N ;N)−1

and vD(N ; N) = N ; N . Let now D′ = close({{|M1|}a
N ;N , (N ; N)−1}). The cor-

responding views are vD({|M1|}a
N ;N) = {|M1|}a

γN ;N
and vD((N ; N)−1) = γ−1

N ;N ,
since we have no way of viewing the structure of N ; N . Hence, although N ; N
by itself can be analyzed, N ; N /∈ D and thus our view of the messages uses
the place-holder γN ;N instead.

Note that M is D-opaque when M = {|M1|}K , {M1, K} * D, and the decryp-
tion key is also not in D, or when M = K−1 and no message {|M1|}a

K is in
D, or else when M = H(M1) and M1 /∈ D. That is, M is either an encrypted
message that cannot be decrypted or constructed, an inverse that cannot be
used for asymmetric decryption, or the hash of an unknown message. Clearly,
if K−1 is D-opaque then K /∈ D, or otherwise one would also have {|K|}a

K ∈ D.
The converse does not hold in general, that is, K /∈ D does not imply that
K−1 is D-opaque. It is also clear that if a ghost symbol γM occurs in vD(M ′)
then M is a D-opaque submessage of M ′, or else M /∈ D and γM occurs
only in non-analyzable positions in M ′, that is, in keys of encrypted messages
or in inverse submessages. Note also that views under each of the evolving
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datasets of a protocol participant can be computed given that these datasets
are generated by the closure of finite sets of messages.

Before we define feasibility, and in order to clarify the distinction with respect
to executability, we should stress the fact that belonging to the dataset D and
being D-transparent are two independent properties of messages. We already
know that a message M ∈ D does not have to be D-transparent, but note
also that a D-transparent message does not have to be in D. Namely, {|M |}s

K

is close({K})-transparent whenever M is, even if {|M |}s
K is not in close({K}).

Definition 17 Let D be a dataset, a an action, and D′ = close(D∪gets(a)).
We say that a is D-feasible if vD′(a) = a.

For example, r({|M |}a
K) is not ∅-feasible, simply because {|M |}a

K is not {|M |}a
K-

transparent.

Clearly, A-role = 〈a1 . . . as〉 can be executable even if, for some i, ai is not
Di−1

A -feasible. This is the case for both the OR and the ASW protocols. Hence,
to provide a feasible semantics for Alice&Bob protocol specifications, we must
extend the direct interpretation by incorporating this dynamic, data-sensitive
notion of feasibility.

Of course, if D ⊆ D′ then D′-opaque messages are also D-opaque. The
converse, however, is false: a D-opaque message may be parsable (at least
partially) using the additional data in D′. This is the key insight behind
the interpretation we now suggest. Instead of directly interpreting the run
A-run = 〈a1 . . . as〉, we will view the execution of A’s protocol role as pro-
ceeding as described by the diagram in Fig. 8. Hence, vDk+1

A
(ai) is obtained

from vDk
A
(ai) by uniformly replacing all occurrences of ghost symbols γM for

M ∈ Dk+1
A by vDk+1

A
(M). The substitution has no effect when M remains

opaque, that is, vDk+1
A

(M) = γM .

The sequence composed by the rows between the two axes in the diagram of
Fig. 8, i.e., the sequence whose kth element is the sequence

〈vDk
A
(a1) . vDk

A
(a2) . . . vDk

A
(ak−1) . vDk

A
(ak)〉 ,

will be called an incremental symbolic run (cf. Definition 18 below).

At this point, some further explanation is in order. First, the diagram il-
lustrates how actions both serve to extend sequences and instantiate ghost
variables. From A’s viewpoint, a successful execution of the first step of the
protocol corresponds to executing vD1

A
(a1). In the resulting sequence, vD1

A
(a1)

may differ from a1 in that opaque submessages are replaced by ghost symbols.
After execution of the second step, the protocol corresponds to executing
the actions vD2

A
(a1) and vD2

A
(a2) and it is possible that vD2

A
(a1) differs from
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≤σ ��

≤τ//

D0
A

a1
��

D1
A

a2

��

vD1
A
(a1)

D2
A

a3
��

vD2
A
(a1) vD2

A
(a2)

...
as−1

��

...
...

. . .

Ds
A vDs

A
(a1) vDs

A
(a2) · · · · · · vDs

A
(as−1) vDs

A
(as)

Fig. 8. The execution of A’s protocol role.

vD1
A
(a1) in that some of the ghost symbols occurring in vD1

A
(a1) may disappear

in vD2
A
(a1), having been replaced by more structured patterns. This happens

whenever the execution of the second action results in data that allows A to
view a previously opaque message in a different way. Hence, the rationale is
that, upon executing the second action, A should pick from his backlog of
ghost symbols those that correspond to messages that are no longer opaque,
and check whether the concretization of each relevant ghost symbol agrees
with his new view of the message. When this is not the case, he should abort
the protocol. Otherwise, he will have executed the first two actions as vD2

A
(a1)

and vD2
A
(a2). This process is repeated for each executed action.

Formally, upon executing the (k +1)-th action of his role, for each M ∈ Dk+1
A ,

A should pick each of the γM ghost symbols occurring in 〈vDk
A
(a1) . . . vDk

A
(ak)〉

and check if the relevant concrete instantiations of γM and vDk+1
A

(M) coincide,

and abort the protocol when this is not the case. Of course, there is nothing
to check if M remains opaque.

Second, our use of the term “symbolic” in naming these runs stems from the
ghost symbols, which are not present in the Alice&Bob protocol specifications
and hence are also absent from the runs obtained via the direct interpretation.
Of course, the runs obtained by the direct interpretation are also symbolic, in
the sense that they contain symbols corresponding to parameters that must
be instantiated in order to obtain concrete runs. However, the structure of the
terms with which they are instantiated is irrelevant, whereas ghost symbols
can be instantiated with concrete messages whose inner structure is protocol
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B-isrun :

〈r({|KA; KB; M ; γ|}a
K−1

A
)〉

〈r({|KA; KB; M ; γ|}a
K−1

A
) . f(N2)〉

〈r({|KA; KB; M ; γ|}a
K−1

A
) . f(N2) .s({|{|KA; KB; M ; γ|}a

K−1
A

; H(N2)|}a
K−1

B
, A)〉

〈r({|KA; KB; M ; H(N1)|}a
K−1

A
) . f(N2) .s({|{|KA; KB; M ; H(N1)|}a

K−1
A

; H(N2)|}a
K−1

B
, A) .r(N1)〉

〈r({|KA; KB; M ; H(N1)|}a
K−1

A
) . f(N2) .s({|{|KA; KB; M ; H(N1)|}a

K−1
A

; H(N2)|}a
K−1

B
, A) .r(N1) . s(N2, A)〉

Fig. 9. The incremental symbolic responder runs of the Exchange Subprotocol of
the ASW protocol.

relevant. In this paper, we will use the term symbolic to refer to terms and
runs that may contain ghost symbols.

Finally, the notion of symbolic sequences being extended and instantiated
by actions can be formally described in terms of orderings: an instantiation
ordering ≤σ, a prefix ordering ≤τ , and their composition ≤τσ. Given two
symbolic sequences u and v, we say that u ≤σ v iff v is a substitution instance
of u, i.e., there exists a substitution σ such that σ(u) = v. Moreover, we say
that u ≤τ v iff u is a prefix of v, i.e., the sequence v extends u. Finally, we
define ≤τσ = ≤τ ◦ ≤σ, i.e., u ≤τσ v iff there is a symbolic sequence w such that
u ≤σ w and w ≤τ v. In other words, there is a substitution instance w of u that
can be extended to v, or simply, v extends a substitution instance of u. Fig. 8
shows the two dimensions induced by the instantiation and prefix orderings:
the symbolic runs grow left-to-right according to ≤τ and top-down according
to ≤σ. That is, each symbolic sequence extends its predecessor and possibly
instantiates some of its ghost symbols. Hence, in an incremental symbolic run
〈t1 . t2 . . . tn〉, we have ti ≤τσ ti+1, for all i with 1 ≤ i < n.

We now introduce the fine interpretation of Alice&Bob protocol specifications
in terms of incremental symbolic runs that characterize the possible behavior
of each of the participants in a (possibly incomplete) protocol execution.

Definition 18 Let A ∈ Part. In the fine interpretation of Alice&Bob protocol
specifications, the incremental symbolic run corresponding to the execution of
A’s role in the protocol is

A-isrun = 〈A-isrun1 . . . A-isruns〉 ,

where A-isruni = vDi
A
(A-run|i) for 1 ≤ i ≤ s = |A-run|.

Example 19 Under the fine interpretation, the responder run of the ASW
protocol is, instead of the B-run of Fig. 7, the incremental symbolic run
B-isrun (i.e., the sequence of subruns, of growing length) displayed in Fig. 9.
Here, for simplicity, we write γ instead of γH(N1).

This example illustrates how the new data available to the principal executing
a role may turn opaque elements into non-opaque ones. That happens if ai is
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B-isrun :

〈r({|N1; A|}a
KB

)〉
〈r({|N1; A|}a

KB
) . f(N2)〉

〈r({|N1; A|}a
KB

) . f(N2) .s({|N1; N2|}a
KA

, A)〉
〈r({|N1; A|}a

KB
) . f(N2) .s({|N1; N2|}a

KA
, A) . r({|N2|}a

KB
)〉

Fig. 10. The incremental symbolic responder runs of the NSPK protocol.

B-isrun :

〈r(I; A; B; γ1)〉
〈r(I; A; B; γ1) .f(N2)〉
〈r(I; A; B; γ1) .f(N2) . s(I; A; B; γ1; {|N2; I; A; B|}s

KBS
, S)〉

〈r(I; A; B; γ1) .f(N2) . s(I; A; B; γ1; {|N2; I; A; B|}s
KBS

, S) .r(I; γ2; {|N2; K|}s
KBS

)〉
〈r(I; A; B; γ1) .f(N2) . s(I; A; B; γ1; {|N2; I; A; B|}s

KBS
, S) .r(I; γ2; {|N2; K|}s

KBS
) . s(I; γ2, A)〉

Fig. 11. The incremental symbolic responder runs of the OR protocol.

a receiving action taken by the protocol participant B, γM occurs in vDi−1
B

(aj)

for some j < i, and γM does not occur in vDi
B
(aj). When this happens, B

should abort the execution of his role of the protocol whenever the actual
value of γM does not match vDi

B
(M).

Note, however, that, in cases like NSPK, the direct interpretation appears to be
appropriate. Indeed, as shown in Fig. 10, the direct runs are representative in
the sense that each sequence of the fine interpretation coincides with the prefix
of corresponding length of the direct run, that is, each A-isruni = A-run|i.
This happens because the direct run is feasible since all the messages involved
are transparent, and hence ghost symbols and corresponding checks are not
necessary. We can give a precise characterization of the protocol descriptions
for which the direct interpretation is appropriate:

Proposition 20 The sequence A-run is representative iff every received mes-
sage is transparent when it is received, i.e., if ai = r(M), then M is Di

A-
transparent.

3.3 The coarse interpretation of Alice&Bob specifications

While the ASW protocol clearly demonstrates the importance of the fine in-
terpretation, cases such as that of the OR protocol (for which the direct inter-
pretation is not feasible) still maintain some of the regularity of the simplest
cases. Indeed, although ghost symbols are necessary, there is no need for abor-
tion checks since opaque messages always remain opaque. Hence, the sequence
〈vD1

A
(a1) . . . vDs

A
(as)〉 in the diagonal of the incremental symbolic run obtained

by the fine interpretation, besides being still feasible, is also representative.
Namely, each A-isruni = 〈vD1

A
(a1) . . . vDi

A
(ai)〉. For these cases, a coarse inter-

pretation in terms of a unique sequence of actions with ghost symbols but
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Semantics domain function
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Coarse interpretation symbolic runs A-srun

Fig. 12. Direct, fine and coarse interpretations.

no checks for previous messages seems to be appropriate. We will call such a
sequence a symbolic run, in contrast to “incremental” symbolic runs.

Definition 21 Let A ∈ Part and A-run = 〈a1 . . .as〉. In the coarse interpre-
tation of Alice&Bob protocol specifications, the symbolic run corresponding to
the execution of A’s role in the protocol is

A-srun = 〈vD1
A
(a1) . . . vDs

A
(as)〉 .

Fig. 11 shows the incremental symbolic responder runs B-isrun of the OR
protocol, whose diagonal is the symbolic run B-srun, where, for simplicity, we
simply write γ1 and γ2 instead of γ{|N1;I;A;B|}s

KAS
and γ{|N1;K|}s

KAS
, respectively.

A precise characterization of the protocol specifications for which the coarse
interpretation is appropriate can also be obtained (by considering the different
possible actions):

Proposition 22 The sequence A-srun is representative iff every received mes-
sage preserves the ghost symbols that occur in the views of previously received
messages, i.e., if 1 ≤ j < i ≤ s, aj and ai are receiving actions, and γM

occurs in vDi−1
A

(aj), then γM also occurs in vDi
A
(aj).

Note that in this case, only message forwarding may be necessary. The precise
meaning of forwarding is now well understood: if a sent message contains
an opaque submessage M then M must also occur, and be opaque, in some
previously received message. Note also that Proposition 20 can be seen as a
corollary of Proposition 22.

3.4 Summary: the denotational semantic spectrum of Alice&Bob specifica-
tions

Fig. 12 sums up the results of this section, displaying, in general, the rela-
tionship between the sets of all possible concrete behaviors for each protocol
participant determined by the three interpretations: direct, fine, and coarse. In
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the direct and coarse interpretations, the allowed (possibly incomplete) behav-
iors for each participant correspond to all prefixes of all concrete instantiations
of the run or symbolic run, respectively. In the fine interpretation, the allowed
behaviors correspond to all concrete instantiations of each of the incremental
symbolic runs. Hence, the direct interpretation is the strictest, although it is
not always feasible. Clearly, all the allowed behaviors obtained by the direct
interpretation can be seen as particular cases of the fine interpretation where
all the ghost symbols are concretized exactly by the intended messages, in
which case all the checks involved will succeed. The inclusion is in general not
an equality (cf. the OR and ASW protocols), but the two coincide precisely for
those protocols that, like NSPK, meet the conditions of Proposition 20. The
allowed behaviors obtained by the fine interpretation can also be obtained for
the coarse interpretation if one just ignores all the checks. Again the inclu-
sion is not in general an equality (cf. the ASW protocol) because some of the
checks that are ignored may actually lead to abortion in the fine interpreta-
tion. The two coincide for those protocols, like OR, that fulfill the conditions
of Proposition 22.

The above differences have a clear relevance for protocol analysis models and
protocol correctness results since considering different interpretations may lead
to conflicting results. In general, a protocol correctness result obtained for the
direct interpretation is not very meaningful because the fine interpretation
may introduce further behaviors that violate the relevant security properties.
Similarly, an attack to a security property obtained by means of a coarse
interpretation of the protocol may also not have a counterpart in terms of
the behaviors allowed by the fine interpretation. In contrast, attacks obtained
under the direct interpretation, as well as correctness results obtained under
the coarse interpretation, do carry over to the fine interpretation.

4 An operational semantics for Alice&Bob specifications

In this section, we formalize an executable operational counterpart of the fine
interpretation of Alice&Bob protocol specifications in terms of incremental
symbolic runs. To this end, we will use (a fragment of) the pattern-matching
spi calculus [28], which is an extension of the spi calculus [1] that includes
pattern matching as a primitive. We could have used other formalisms, e.g.,
formalisms based on process-algebra such as LySa [9] or suitable extensions
of CASPER [32], or formalisms based on multiset-rewriting as in [31], or
even conventional programming languages. However, explicit pattern match-
ing makes the pattern-matching spi calculus particularly well-suited for our
purposes: pattern matching allows us to formalize that principals accept mes-
sages they receive only when these messages match the specified patterns.
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4.1 Pattern-matching spi calculus

Strictly speaking, we will actually use a slight variant of the pattern-matching
spi calculus. In [28], as is usual in spi calculi, messages are modeled as elements
of an algebraic datatype. Since there is no essential difference, we will simplify
matters by sticking to our previous definition of messages (cf. Section 2).
Moreover, we will also assume that there exists an untrusted communication
channel netA for each principal A, instead of a global untrusted channel net.
The idea is that whenever a honest principal A sends a message to another
principal B, A should deliver it to the channel netB. Also, if A is honest, then
A will only receive messages from netA. Furthermore, the pattern-matching
spi calculus is a typed language, but for our purposes we will consider just a
type Num of numbers (without differentiating between numbers that are keys,
nonces, etc.) and a generic type Msg of messages.

Formally, we will work with the following fragment of the full pattern-matching
spi calculus of [28]. This fragment defines a set of sequential processes that we
will use to implement each of the roles of a given Alice&Bob specification.

P ::= processes

out N M ; P asynchronous output of message M on message N

inp N T ; P input from message N against pattern T

new N : T ; P generation of name N of type T

0 inactivity

Patterns T are of the form
(∃X) M ,

where M is a message and X = {X1, . . . , Xn} is a set of symbols. We will often
use X, Y , and Z to denote arbitrary symbols. Note also that, as is usual, we
will typically omit the 0 at the end of a sequential composition and simply
write P instead of P ; 0. 5

The meaning of these constructs, as explained in [28], is as follows.

• out N M ; P is a process that asynchronously outputs the message M on
(the channel) N , and proceeds as P .

• inp N (∃X) M ; P is a process that inputs from (the channel) N a message
matching the pattern M (where the symbols in X occur), and proceeds as P ,

5 Usually, in spi calculi, output processes are not allowed to have a continuation
by sequential composition. However, we are adopting here the standard convention
that out N M ; P is indeed the parallel composition of out N M and P (cf. [27]).
Although we do not explicitly introduce it, parallel composition is another construct
of spi calculi.
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where the symbols in X are instantiated with their actual values according
to the pattern-matched input message.

• new N : T ; P is a process that creates a new name N of type T , which is
bound in the continuation P .

As notation, we denote by [X1 := M1, . . . , Xn := Mn] the substitution function
that uniformly replaces every occurrence of a symbol Xi with Mi, where the
trivial substitution [] is the identity and we denote composition of substitutions
by ◦. We can then explain more rigorously the input-output behavior of the
spi processes: if processes

out N M [X1 := M1, . . . , Xn := Mn]; P and inp N (∃X1, . . . , Xn) M ; Q

coexist, in parallel, then they can both evolve respectively into

P and Q[X1 := M1, . . . , Xn := Mn] .

In [28], a number of syntactic restrictions are imposed on the messages and
patterns involved. In out N M , it must be the case that M is an implementable
message. Similarly, in inp N (∃X) M , it must be the case that (∃X) M is
an implementable pattern. Also, the N , in both notions, must be an imple-
mentable message (in our case, it will always be a channel or a locally bounded
message symbol). These notions of implementability are closely related to our
notions of executability and feasibility (cf. Section 3), respectively, as some of
the underlying ideas are the same. However, while implementability is context-
independent and depends only on the message or pattern at hand, our notions
depend in an essential way on the context where the message (or pattern)
appears. Hence, rather than following [28], we will introduce our own notions,
based on adapting the notions of executability and feasibility to spi-calculus
processes.

From here on, we will only consider processes that are built by sequential
composition of blocks of the following four kinds.

new-block: new N : Num.
out-block: out netB M .
inp-block: inp netA (∃X) M .
chk-block: chk(Y1; . . . ; Ym | (∃X) M1; . . . ; Mm) =

new tmp : Msg; out tmp Y1; . . . ; Ym; inp tmp (∃X) M1; . . . ; Mm.

The first three kinds of block are straightforward, while the fourth kind re-
quires more explanation. To implement the symbolic checks for abortion (na-
mely, to check if one or more patterns matches one or more messages), we
will use processes of the form chk(Y1; . . . ; Ym | (∃X) M1; . . . ; Mm), where
Y1, . . . , Ym are symbols that do not occur in M1; . . . ; Mm. This process ex-
ecutes successfully whenever each Yi matches Mi. Note that tmp is just a
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local name through which the matching will take place. If the match fails, the
process will just deadlock (due to the design of the process calculus, there is
no explicit way of raising an abortion).

We now introduce our notion of implementability. As previously noted, im-
plementability is not a static notion as it depends in an essential way on the
basic set of messages possessed by the principal at each point in the execution
of his process. We assume that, starting from the initial dataset that is given
as a parameter of the process, these possessions grow during execution by col-
lecting every newly generated number, as well as all existentially quantified
symbols and inverse submessages appearing in analyzable positions in blocks
of kind chk-block. Note that by an analyzable position we mean an occurrence
in a submessage that can be reached using the analysis rules, that is, we do not
count the symbols occurring in K in submessages of the form {|M |}K or K−1.
We will call such a set of messages a basic set. Note also that, by definition,
a basic set is always closed for analysis, and therefore its closure can be ob-
tained just by closing it under the synthesis rules. It is important to stress that
pattern-matches mark precisely the learning process of the principal, together
with the collection of all freshly generated numbers.

Let χ be a symbol set. We define an implementable pattern to be a pattern that
is transparent with respect to χ, corresponding to a feasible receiving action
and where all symbols not in χ are existentially quantified and thus added
to χ as long as they occur in analyzable positions. This means that, given a
transparent message M , the unique corresponding implementable pattern is
(∃X1, . . . , Xn) M , where X1, . . . , Xn are the symbols not in χ that occur in
M . For brevity, we may simply write (∃χ)M for such an (∃X1, . . . , Xn) M .
Note that, although we do not quantify over them, all inverse messages that
occur in M in analyzable positions must also be stored.

Moreover, we adopt a notion of implementable message that is explicitly con-
structive. In general, when a principal sends a message, he must be able to
build it. This is what we have called executability. However, executability
itself does not immediately yield a recipe to actually produce the message
since, in general, there may be many ways of doing it. We provide a solu-
tion to this problem, obtaining an executable process that precisely prescribes
how to build all the messages that need to be sent. In general, given χ, an
implementable message is one that can be synthesized directly from χ.

Note that, by pattern matching, a symbol that appeared earlier in the process
may be instantiated with a more concrete message. We will also build the
corresponding substitution incrementally, starting from the trivial substitution
[]. We further assume that as soon as A knows the name of another principal
B, then A also knows the channel netB, for communicating with B.
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For our purposes, it is convenient to use as symbols the atomic messages
(identifiers and number symbols) and the ghost symbols γM . Hence, let us
fix a process PA(DataA) = Q1; . . . ; Qk for principal A, where each Qi is a
process of kind new-block, out-block, inp-block, or chk-block. We will define
the incremental sequence of symbol sets χ0, χ1, . . . , χk possessed by A during
the execution of the process, along with the corresponding sequence of substi-
tutions σ0, σ1, . . . , σk, and use them to state the necessary implementability
conditions for the process. The rationale is that if a principal A possesses a
symbol set χi−1, with corresponding substitution σi−1, and executes Qi, then
he obtains a symbol set χi and substitution σi, but only provided that the
implementability condition is fulfilled. More specifically, we have the following
cases, depending on Qi:

• Initially, χ0 = DataA and σ0 = [];
• For each i = 1, . . . , k we have:
· If Qi = new N : Num, then χi = χi−1∪{N} and σi = σi−1. The condition

for implementability is N /∈ sub(χi−1).
· If Qi = out netB M , then χi = χi−1 and σi = σi−1. The condition for

implementability is B, M ∈ synth(χi−1).
· If Qi = inp netA (∃X)M , then χi = χi−1∪{X ∈ X | X analyzable in M}∪
{K−1

1 , . . . , K−1
j }, where K−1

1 , . . . , K−1
j are the inverse messages occurring

in analyzable positions of M , and σi = σi−1. The conditions for imple-
mentability are that M is synth(χi)-transparent and that X consists of
the new symbols in M determined according to χi−1.

· If Qi = chk(Y1; . . . ; Ym | (∃X) M1; . . . ; Mm), then χi = χi−1 ∪ {X ∈
X | X analyzable in M1; . . . ; Mm}∪{K−1

1 , . . . , K−1
j }, where K−1

1 , . . . , K−1
j

are the inverse messages occurring in analyzable positions of M , and
σi = [Y1 := σi−1(M1), . . . , Ym := σi−1(Mm)] ◦ σi−1. The conditions for im-
plementability are that M1; . . . ; Mm is synth(χi)-transparent and X con-
sists of the new analyzable symbols in M1; . . . ; Mm determined according
to χi−1.

4.2 Spi-calculus processes for Alice&Bob specifications

We now formalize an executable operational semantics for Alice&Bob proto-
col specifications based on the pattern-matching spi calculus that corresponds
to the denotational semantics provided by our fine interpretation. In this se-
mantics, we assign to each protocol role a sequential process that provides an
actual implementation of the corresponding incremental symbolic run. The
full protocol process is then obtained by the parallel composition of all these
sequential processes with a suitable environment process.

To guarantee that all sent messages can be synthesized from the symbols col-
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lected along the execution of the protocol process, it is essential that principals
engage in a careful analysis of the messages they receive. We now formalize how
received messages must be parsed and their analyzable constituents stored for
future use. First of all, a message has what we call a facial pattern, where en-
crypted, inverted, or hashed submessages are not parsed, but simply “stored”
in a suitable ghost symbol, which serves as a macro for them.

Definition 23 The facial pattern face(M) that a principal A sees of a mes-
sage M is defined inductively as follows:

• face(M) = M , if M is atomic;
• face(M1; M2) = face(M1); face(M2); and
• face(M) = γM , otherwise.

When the messages corresponding to each of the ghost symbols introduced in
the definition of face are not opaque, one can then proceed stepwise and parse
their content. We postpone the details of this parsing (to Definition 25) and
define now the constructive form of a constructible message to be sent, with
respect to the current set of symbols.

Definition 24 Given a set of symbols χ, the constructive form cfχ(M) that a
principal has of synthesizing (his view of) a message M is defined inductively
as follows:

• cfχ(M) = M , if M is atomic;

• cfχ(M1; M2) = cfχ(M1); cfχ(M2);

• cfχ({|M1|}K) = {|cfχ(M1)|}cfχ(K), if cfχ(M1), cfχ(K) ∈ synth(χ), else
cfχ({|M1|}K) = γM with M = {|M1|}K;

• cfχ(K−1) = face(K)−1, if face(K)−1 ∈ χ, else

cfχ(K−1) = γ−1
K , if γ−1

K ∈ χ, else
cfχ(K−1) = γM with M = K−1;

• cfχ(H(M1)) = H(cfχ(M1)), if cfχ(M1) ∈ synth(χ), else
cfχ(H(M1)) = γM with M = H(M1).

The constructive form of a message with respect to a set of symbols is closely
related to message synthesis. If M can be constructed from simpler messages
that are in synth(χ), then cfχ(M) should correspond to the synthesis of M
from (the constructive form of) these submessages. Otherwise, we use the
corresponding ghost symbol γM . Note, in particular, that cfχ(K−1) is given,
when available, by the best possible representative of the message in χ, that
is, face(K)−1 or γ−1

K if the former is not available. This explains why we need
to store some inverse messages in the basic sets, given that inverse messages
cannot be synthesized.

In order to check the content of a given symbol γM against M , we define now
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a constructive version of view.

Definition 25 Given a symbol set χ, an encrypted, inverse, or hashed mes-
sage M can be parsed by a principal A whenever the corresponding inner facial
pattern infaceχ(M) is defined, where

• infaceχ({|M1|}a
K) = {|cfχ(M1)|}a

cfχ(K), if cfχ(M1), cfχ(K) ∈ synth(χ), else

infaceχ({|M1|}a
K) = {|face(M1)|}a

face(K), if face(K)−1 ∈ χ, else

infaceχ({|M1|}a
K) = {|face(M1)|}a

γK
, if γ−1

K ∈ χ, else
infaceχ({|M1|}a

K) is undefined;

• infaceχ({|M1|}a
K−1) = {|cfχ(M1)|}a

cfχ(K−1), if cfχ(M1), cfχ(K−1) ∈ synth(χ),

else
infaceχ({|M1|}a

K−1) = {|face(M1)|}a
cfχ(K)−1, if cfχ(K) ∈ synth(χ), else

infaceχ({|M1|}a
K−1) is undefined;

• infaceχ({|M1|}s
K) = {|face(M1)|}s

cfχ(K), if cfχ(K) ∈ synth(χ), else

infaceχ({|M1|}s
K) is undefined;

• infaceχ(K−1) = cfχ(K)−1, if cfχ(K) ∈ synth(χ), else
infaceχ(K−1) is undefined;

• infaceχ(H(M1)) = H(cfχ(M1)), if cfχ(M1) ∈ synth(χ), else
infaceχ(H(M1)) is undefined.

Clearly, infaceχ(M) mimics the view vD(M) of M , but using now a basic set
and what can be synthesized from it, instead of a dataset. If the message can-
not be analyzed given the information available, the result will be undefined.
Otherwise, it will result in the immediate inner pattern of M , which is thus
opened for further analysis.

Now we can finally define the spi-calculus implementation of each of the roles
of an Alice&Bob protocol specification. Each received message is decomposed
according to the definition of face, whose ghost symbols are stored for further
checking. Then, each available ghost symbol is checked, in a stepwise manner,
according to the definition of inface. Finally, the messages to be sent are then
synthesized from the data items available, in accordance with the definition of
cf. Let A-run = 〈a1 . . . as〉 be obtained for a participant A in an Alice&Bob
protocol specification as defined in Section 2. Since the translation will be
inductive, we can rely on the symbol sets χ0, . . . , χs collected along the exe-
cution of the process, where χk is collected up to the block corresponding to
action ak.

Definition 26 Let A ∈ Part. The spi-calculus sequential process A-proc that
implements the execution of A’s role for a parameter set DataA is defined
inductively by

PA(DataA) = spiA1 (a1); . . . ; spiAs (as) ,

with

30



• spiAk+1(f(N)) = new N : Num,

• spiAk+1(s(M, B)) = out netB cfχk
(M), and

• spiAk+1(r(M)) = inp netA (∃χk
) face(M); chk1; . . . ; chkt,

where, using χi
k to denote the basic set that extends χk with the analyzable

existentially quantified symbols and inverse messages collected and updated up
to inp netA (∃χk

) face(M); . . . ; chki−1, we have that

• for each i, either
· chki = chk(γM ′ | (∃χi

k
) infaceχi

k
(M ′)), for some previously unchecked sym-

bol γM ′ ∈ χi
k such that M ′ can be parsed, or

· chki = chk(γK−1 ; γ{|M ′|}a
K
| (∃χi

k
) γ−1

K ; {|face(M ′)|}a
γK

), for some previously

unchecked symbols γK−1 , γ{|M ′|}a
K
∈ χi

k, or

· chki = chk(γK | (∃χi
k
) cfχi

k
(K)), for some previously unchecked symbol

γK /∈ χi
k such that γ−1

K ∈ χi
k and cfχi

k
(K) ∈ synth(χi

k), and
• no further checks are possible.

Let us explain the three kinds of possible checks. In the first case, we are
checking γM ′ , where M ′ is an encrypted, hashed, or inverse message, according
to its inner face pattern, whenever it is parsable. The second case corresponds
to the situation where a principal has {|M ′|}a

K and K−1 and none of these
messages can be parsed given the rest of the available information, although
they can clearly be parsed jointly since one is the key to decrypt the other,
thus yielding the check that we introduce. Finally, checks of the third kind
serve to refine the view that a principal has of a key K, if it ever becomes
available, after he gets K−1.

Our running examples (the NSPK, OR, and ASW protocols) only require
very simple checks of the first kind (see Example 29 below). Hence, we now
introduce some small, artificial examples that illustrate checks of the first kind
on nested messages, as well as checks of the second and third kinds.

First, suppose that the initial dataset of principal A contains K−1
A and KB

and his role is of the form 〈r({|{|N |}a
K−1

B

; H(N)|}a
KA

), . . . 〉. The corresponding

(fragment of the) A-proc is given by

PA(DataA) = inp netA (∃γ) γ;

chk(γ | (∃δ, θ) {|δ; θ|}a
KA

);

chk(δ | (∃N) {|N |}a
K−1

B

);

chk(θ | H(N)); . . .

where all checks are of the first kind and, for simplicity, we used γ, δ, and θ
instead of γ{|{|N |}a

K−1
B

;H(N)|}a
KA

, γ{|N |}a

K−1
B

, and γH(N), respectively.
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Suppose now that, in a protocol, some principal generates a fresh number
N and uses it to produce a key K = N ; H(N) and its inverse K−1 =
(N ; H(N))−1. Then, later in the protocol, some other principal A receives,
in three different messages, first {|M |}a

K , then K−1 in order to obtain M , and
finally N itself so that he can check the key K. This corresponds to a role for
A of the form 〈. . . r({|M |}a

N ;H(N)) . . . r((N ; H(N))−1) . . . r(N) . . . 〉. The corre-
sponding (fragment of the) A-proc is given by

PA(DataA) = . . . ; inp netA (∃γ) γ;

. . . ; inp netA (∃δ) δ; chk(δ; γ | (∃M, θ) θ−1; {|M |}a
θ);

. . . ; inp netA (∃N) N ; chk(θ | N ; (H(N))); . . .

where the check in the second line is of the second kind, and the check in the
third line is of the third kind. Note that, for simplicity, we used γ, δ, and θ
instead of γ{|M |}a

N ;H(N)
, γ(N ;H(N))−1 , and γN ;H(N), respectively. Note too that,

although θ is existentially quantified in the check in the second line, θ itself
will not be collected into the principal’s basic set because it does not occur
in an analyzable position. Hence, the principal will not be able to compose
messages using θ. Actually, θ−1 will be collected instead, which explains the
last check.

Given an executable protocol specification, the spi-calculus processes that im-
plement its roles are all implementable. To prove this, one needs to draw a
parallel between the evolving datasets of the previous section and the symbol
sets resulting from the corresponding spi process. By induction, it follows that:

Proposition 27 Let D0
A, . . . , Ds

A be the evolving datasets corresponding to A’s
run of the protocol. For every i such that 0 ≤ i ≤ s, if M ∈ Di

A then

(1) cfχi
(M) ∈ synth(χi),

(2) σk(cfχi
(M)) = vDk

A
(M), for each i ≤ k ≤ s, and

(3) if face(M) ∈ synth(χi) then σk(face(M)) = vDk
A
(M), for each i ≤ k ≤ s.

As a direct consequence of (1) in Proposition 27, and since the transparency
of all the patterns checked in the process is guaranteed by Definitions 23, 25,
and 26, we obtain the following result.

Proposition 28 For every participant A of an executable Alice&Bob protocol
specification, the process A-proc is implementable.

Example 29 We give processes for the roles of the protocol examples that
we have previously considered, where, for simplicity, γ, δ, θ, µ, . . . name the

32



symbols involved in the processes. The processes for the two NSPK roles are:

NSPKA(B,KB) = new N1 : Num;

out netB {|N1;A|}a
KB

;

inp netA (∃γ) γ;

chk(γ | (∃N2) {|N1;N2|}a
KA

);

out netB {|N2|}a
KB

NSPKB(A,KA) = inp netB (∃γ) γ;

chk(γ | (∃N1) {|N1;A|}a
KB

);

new N2 : Num;

out netA {|N1;N2|}a
KA

;

inp netB (∃δ) δ;

chk(δ | {|N2|}a
KB

)

The processes for the three OR roles are:

ORA(B,S, KAS , I) = new N1 : Num;

out netB I;A;B; {|N1; I;A;B|}s
KAS

;

inp netA (∃γ) I; γ;

chk(γ | (∃K) {|N1;K|}s
KAS

)

ORB(S, KBS) = inp netB (∃I, A, γ) I;A;B; γ;

new N2 : Num;

out netS I;A;B; γ; {|N2; I;A;B|}s
KBS

;

inp netB (∃δ, θ) I; δ; θ;

chk(θ | (∃K) {|N2;K|}s
KBS

);

out netA I; δ

ORS(A,B, KAS ,KBS) = inp netS (∃I, γ, δ) I;A;B; γ; δ;

chk(γ | (∃N1) {|N1; I;A;B|}s
KAS

);

chk(δ | (∃N2) {|N2; I;A;B|}s
KBS

);

new K : Num;

out netB I; {|N1;K|}s
KAS

; {|N2;K|}s
KBS

Finally, the processes for the two roles of the ASW protocol include not only
ghost symbols but also abortion checks (which we expand for the sake of illus-
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tration):

ASWA(B,KB,M) = new N1 : Num;

out netB {|KA;KB;M ;H(N1)|}a
K−1

A

;

inp netA (∃γ) γ;

chk(γ | (∃δ, θ) {|δ; θ|}a
K−1

B

);

chk(δ | (∃µ) {|KA;KB;M ;µ|}a
K−1

A

);

chk(µ | H(N1));

out netB N1;

inp netA (∃N2) N2;

chk(θ | H(N2))

ASWB(A,KA) = inp netB (∃γ) γ;

chk(γ | (∃M, δ) {|KA;KB;M ; δ|}a
K−1

A

);

new N2 : Num;

out netA {|γ;H(N2)|}a
K−1

B

;

inp netB (∃N1) N1;

chk(δ | H(N1));

out netA N2

Let us compare A-proc = PA(DataA) with A-isrun. To begin with, DataA

introduces precisely the minimal initial dataset D0
A. Inspecting the spi-calculus

process, we see that, by definition, A-proc is a sequential composition of blocks
of the kinds new-block, out-block, and a block kind that combines input and
check as follows:

inp-chk-block:
inp netA (∃χ) M ; chk(M ′

1 | (∃χ1) M1); . . . ; chk(M ′
t | (∃χt) Mt).

Recall that each of the messages M ′
i in such an inp-chk-block is either a ghost

symbol, or a pair of ghost symbols.

The blocks can be identified with f, s, and r actions, respectively.

Definition 30 The function act associates an action to each spi-calculus block
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of kind new-block, out-block, or inp-chk-block as follows:

act(Q) =



f(N) if Q = new N : Num,

s(M, B) if Q = out netB M,

r(M) if Q = inp netA (∃χ)M ;

chk(M ′
1 | (∃χ1)M1); . . . ; chk(M ′

t | (∃χt)Mt).

Inp-chk-blocks, however, express much more than just the corresponding ac-
tion. As we have seen before, while the action corresponding to each block
is meant to extend the action execution sequence (with respect to the ≤τ

ordering), inp-chk-blocks also refine the execution sequence already obtained
(with respect to the ≤σ ordering). When successful, the execution of each
chk(M ′ | (∃χ)M) allows the principal executing the process to recognize that
every previous occurrence of the symbols in M ′ match the corresponding sub-
messages of M , i.e., the principal can refine the previous sequence by substi-
tuting every occurrence of each of the symbols with the corresponding sub-
message, thus building the sequence of substitutions previously defined.

Recall that a spi-calculus process P = Q1; . . . ; Qn induces a sequence of sub-
stitutions σ0, σ1, . . . , σn, as defined at the end of Subsection 4.1.

Definition 31 Let P = Q1; . . . ; Qn be a spi-calculus process obtained by the
sequential composition of blocks Qi of kinds new-block, out-block, or inp-chk-
block. The symbolic run induced by P is

den(P ) = 〈σn(act(Q1)), . . . , σn(act(Qn))〉.

We can now formalize the correctness of the operational semantics we have
presented with respect to the denotational semantics obtained by the fine
interpretation. Recall that A-run = 〈a1 . . . as〉. By induction, exploiting items
(2) and (3) of Proposition 27, we have that:

Proposition 32 den(spiA1 (a1); . . . ; spiAi (ai)) = A-isruni for every i such
that 1 ≤ i ≤ s.

Hence, A-isrun corresponds to

den(spiA1 (a1))

den(spiA1 (a1); spiA2 (a2))
...

den(spiA1 (a1); spiA2 (a2); . . . ; spiAs (as)).
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Fig. 13. Correctness of the implementation with respect to the fine interpretation.

Fig. 13 summarizes the resulting relations between A-role, A-proc, and A-isrun.

5 Related work, concluding remarks, and outlook

We have provided a detailed analysis of the meaning and limitations of a mes-
sage sequence notation for security protocols, commonly known as Alice&Bob
notation. We have given a formal characterization of the denotational seman-
tic spectrum of Alice&Bob protocol specifications. Guided by our abstract
denotational semantics based on incremental symbolic runs, we have also pro-
vided a fully executable operational semantics for Alice&Bob specifications
in terms of the pattern-matching spi calculus, where all the details of the in-
ternal manipulation of messages by principals is made explicit. This semantic
investigation is independent of the particular formalism chosen for protocol
analysis and thus is relevant for researchers working on the design of security
protocol specification languages and analysis tools, as well as for practitioners
interested in precisely understanding what their specifications (should) mean.

Our results illustrate that, despite the fact that the Alice&Bob notation does
not include explicit control-flow constructs, it is possible to make some of
these aspects explicit when producing formal models and implementations for
protocols that consist of a linear sequence of message-exchange steps. For non-
linear protocols with explicit control flow, alternative notation must be used,
based on richer specification languages.

As we remarked above, several researchers (e.g. [2,3,9,13,16,20,24,26,28,31,32])
have investigated ways of making explicit at least part of what is left implicit,
or even unspecified, in Alice&Bob–style specifications. We will now discuss
some of these alternatives in more detail and make comparisons.

The syntax of Casper [32] explicitly extends the standard Alice&Bob nota-
tion to include a “%”-notation for representing unreadable messages as vari-
ables. The user must insert this notation by hand during specification, i.e., he
must perform an analysis of which messages are opaque and explicitly mark
these as such. In contrast, by changing the interpretation of the terms used in
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Alice&Bob specifications, we automatically handle message opacity without
resorting either to new notation or user involvement.

Our definition of the view that a principal has of a message with respect to his
current knowledge is similar to the message patterns proposed by Abadi and
Rogaway in [2]. Their patterns were introduced for a rather different purpose,
namely reconciling cryptographic and formal methods approaches to security
protocol analysis. The main technical difference is that we distinguish between
distinct opaque elements by means of distinct variables, whereas Abadi and
Rogaway use only one variable (their “box” symbol). This difference reflects
the different objectives: Abadi and Rogaway aim to define a notion of equiva-
lence between messages up to opaque submessages, while we are interested in
describing precisely all the possible concrete instances of messages that match
a pattern. In this sense, different variables can be given different values, which
cannot be done if we use the same variable. Moreover, even if two messages
are opaque, one can certainly still compare them and check if they are equal.

In [9], Bodei et al. present a protocol analysis approach in which standard
Alice&Bob protocol specifications are extended with annotations that spec-
ify some of the checks that principals should perform on messages, as well
as the authentication goals of the protocol under consideration. Their anno-
tated protocol specifications are translated into terms in the process algebra
LySa, where static analysis methods are used for protocol verification [9,13].
While their use of annotation also aims at disambiguating Alice&Bob proto-
col specifications, their annotations are quite different from our incremental
symbolic runs. Their annotations allow one to specify details like the origin
and destinations of messages, which data should be secret, as well as assump-
tions that are useful for proving authentication. In contrast, our incremental
symbolic runs formalize how the data possessed by the principals grows dur-
ing protocol execution. We believe that our equivalence results between the
denotational and operational semantics could prove helpful for implementing
the annotation process of [9], which is now carried out by hand.

CAPSL [24] and CASRUL [31] are two systems that, like Casper, automate
the translation of protocol descriptions into low-level languages that can be
handled by automated analysis tools. All these systems are based on high-
level specification languages that allow one to write the messages exchanged
in the protocols in an Alice&Bob–style notation and also to specify additional
information, such as the types of the data manipulated, the initial knowledge
of the principals, the capabilities of the intruder, and the protocol sessions
to be considered during analysis. In particular, the CAPSL environment also
features a compiler from the CAPSL high-level specification language to an
intermediate formalism CIL, which may be converted to input for different au-
tomated protocol analysis tools such as Maude [6] or NRL [11]. Note, however,
that CAPSL does not explicitly consider message opacity and, for instance,
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cannot handle protocols where a principal receives a message that he cannot
decrypt immediately, which is a feature that is necessary for some protocols,
such as non-repudiation protocols.

In [31], Jacquemard, Rusinowitch, and Vigneron present a compiler that au-
tomatically translates protocol descriptions written in a high-level protocol
specification language based on Alice&Bob notation into low-level descrip-
tions suitable for automatic analysis with CASRUL and the AVISS Tool [4]. 6

In [31], the authors present an operational semantics for Alice&Bob specifica-
tions by means of a translation into a low-level language based on multi-set
rewriting. Our formalization of Alice&Bob specifications is in the same spirit
as theirs, but our starting point and aim are different. Our work provides a
formal characterization of the denotational semantic spectrum of Alice&Bob
specifications, ranging from the direct interpretation to the abstract denota-
tional semantics based on (incremental) symbolic runs. Our investigation is
independent of the particular protocol analysis formalism chosen, and we have
then formally related the denotational semantics to an operational one, thus
providing a justification of the operational semantics in terms of the deno-
tational one. For concreteness, as a “low-level” formalism, we have used the
pattern-matching spi calculus, but our approach is general and other, similar
formalisms could have also been chosen. In fact, thanks to their generality and
expressiveness, the multi-set rewriting specifications of [31] can also be seen
as providing an “implementation” of incremental symbolic runs, which con-
stitutes an alternative to the operational semantics we have given here. Note,
however, that our operational semantics provides a direct implementation of
each of the protocol roles, while CASRUL does not consider the internal ma-
nipulation of messages by principals, thus yielding a symbolic model. Although
this symbolic model does not provide an executable description of all the steps
taken by principals executing their role automata, we should stress that it is
a perfectly adequate model for protocol verification, since security properties
depend only on the sequence of messages sent and received, but not on how
these messages were synthesized or analyzed. This comment applies also to
other approaches that consider only symbolic models.

In parallel with our work, Briais and Nestmann [12] have proposed an op-
erational semantics for Alice&Bob protocol specifications, which fixes a par-
ticular interpretation on how the involved protocol participants are supposed
to execute, and which provides the basis for formally translating Alice&Bob
specifications into the spi calculus. Although similar in spirit and aim, their

6 This compiler has then been extended to similarly translate protocol descriptions
written in the high-level protocol specification language HLPSL of the AVISPA
Tool [3,7,16,41], which allows for the specification of control-flow constructs such
as if-then-else branches, looping and other features that cannot be captured using
Alice&Bob notation.
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work is quite different from ours. They provide an operational semantics for
Alice&Bob specifications, without a denotational one. In contrast, we pro-
vide a denotational semantics which guided the formalization of our opera-
tional semantics. Another difference is that, for the sake of brevity, Briais and
Nestmann consider a more restricted protocol language with only (atomic)
symmetric keys, which drastically simplifies the treatment of inverse keys.
The definition of the knowledge of the honest agents and the intruder is also
simplified. This simplification, together with a number of restrictions that
they consider, restricts the kinds of checks that the agents perform in their
approach in comparison with ours. Finally, their spi-calculus processes (and
message sending) are not executable in our sense.

Explicit pattern matching as a primitive makes the spi calculus of Haack and
Jeffrey [28] well-suited for our purposes (e.g., to check that the pattern of
a ghost symbol matches a given message, and thus implement the symbolic
checks for protocol abortion), and we have used a slight syntactic variant of a
fragment of the calculus of [28]. Our notions of feasibility and executability are
closely related to the notions of message and pattern implementability, as the
underlying ideas are the same. However, as remarked above, implementability
is a context-independent notion that depends only on the message or pattern
at hand; in contrast, feasibility and executability depend on the context where
the message (or pattern) appears.

We close with a few remarks on future work. To begin with, it is not difficult
to see how our work could be integrated with the strand spaces approach, in
particular with the extensions considered in [20,26] to model explicit checks.
Denotational protocol models, for instance, could then be built such that the
allowed behaviors for the participants correspond to all concrete instantiations
of each of the incremental symbolic runs of the fine interpretation. For exam-
ple, in strand spaces, each of these sequences should correspond to a strand.
Capturing the resulting non-determinism would not require an enrichment of
the strand spaces approach itself; rather, one could just enlarge the number of
strands in the space that models the protocol under consideration. However,
in the general case, i.e., for protocols with explicit control flow, the extension
of strand spaces with a notion of conflict as suggested in [21,29] seems to be
the only option.

As we have previously remarked, we have only focused in this paper on sending
and receiving messages and generating fresh numbers. However, other internal
actions, such as those that construct messages by applying cryptographic op-
erations, can be modeled similarly and our results extended straightforwardly.
Such an extension would allow us to fully formalize the process of compiling
messages to sequences of actions and thus extend the ideas described above to
directly build analysis tools based on them. As shown by our operational se-
mantics, incremental symbolic runs provide a good basis for generating proto-
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col implementations from Alice&Bob-style specifications that explicitly carry
out all necessary checks when parsing received messages.

Finally, note that we have not considered protocol goals here, i.e., the security
properties that the protocols have been designed to achieve. This is deliberate
and in contrast to most protocol analysis approaches, where the descriptions
of protocols and properties are often given together (such as the different “an-
notations” considered in [3,9,16,24,31,32]). Our approach is based instead on a
methodological decision to separate protocols and properties: this separation
allows us to view a security protocol as a distributed program, for which we
can give both a denotational and an operational semantics, independent of
the particular properties that the protocol is supposed to satisfy. Analyzing
whether a protocol satisfies a property can then be carried out based on the
semantics. We have begun extending our approach to carry out such analysis
and will report on that soon.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148:1–70, 1999.

[2] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the
computational soundness of formal encryption). Journal of Cryptology,
15(2):103–127, 2002.

[3] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar,
P. Hankes Drielsma, P.-C. Heám, J. Mantovani, S. Mödersheim, D. von Oheimb,
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A Appendix

A.1 On datasets and views

In the first part of this appendix, we prove a number of technical lemmas
related to datasets and views that are useful for proving the main results of
the paper in A.2.

Recall that, given a dataset D, we say that a set of messages S is D-opaque,
or D-transparent, provided that all the messages in S are. In case D is itself
D-transparent, we will simply refer to D as transparent. By the definitions,
D-transparency is related to the absence of D-opaque submessages.

Lemma 33 A message M is D-transparent iff sub(M) does not contain D-
opaque elements.

PROOF. We proceed by induction on the structure of the message M .

• If M is atomic, then both sides of the “iff” are trivially true since sub(M) =
{M} and vD(M) = M , which means that M is D-transparent and thus not
D-opaque.

• If M = M1; M2, then M is D-transparent iff vD(M1; M2) = vD(M1); vD(M2)
= M1; M2 iff M1 and M2 are D-transparent iff sub(M1) and sub(M2) do not
contain D-opaque elements (using the induction hypothesis) iff sub(M1; M2)
does not contain D-opaque elements (since M1; M2 is never D-opaque).

• If M = {|M1|}K , then M is D-transparent iff vD({|M1|}K) = {|vD(M1)|}vD(K)

= {|M1|}K iff M1 and K are D-transparent and {|M1|}K is not D-opaque iff
sub(M1) and sub(K) do not contain D-opaque elements (using the induction
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hypothesis) and {|M1|}K is not D-opaque iff sub({|M1|}K) does not contain
D-opaque elements.

• If M = K−1, then M is D-transparent iff vD(K−1) = vD(K)−1 = K−1 iff K
is D-transparent and K−1 is not D-opaque iff sub(K) does not contain D-
opaque elements (using the induction hypothesis) and K−1 is not D-opaque
iff sub(K−1) does not contain D-opaque elements.

• If M = H(M1), then M is D-transparent iff vD(H(M1)) = H(vD(M1)) =
H(M1) iff M1 is D-transparent and H(M1) is not D-opaque iff sub(M1) does
not contain D-opaque elements (using the induction hypothesis) and H(M1)
is not D-opaque iff sub(H(M1)) does not contain D-opaque elements. 2

To better understand how a principal’s view of a message may evolve, we also
prove:

Lemma 34 Let D ⊆ D′, with D′ a dataset. For a given message M ′, the
following are equivalent:

(1) vD(M ′) = vD′(M ′).
(2) If γM occurs in vD(M ′) then it also occurs in vD′(M ′).
(3) If γM occurs in vD(M ′) then M is D′-opaque, or else M /∈ D′ occurs in

M ′ only in non-analyzable positions.

PROOF. (1) implies (2) because if the views are the same, then they contain
the same ghost symbols. It is also straightforward to show that (2) implies
(3) because if γM occurs in vD′(M ′), then either it occurs in an analyzable
position and M is D′-opaque, or it occurs only in non-analyzable positions
and M /∈ D′. Hence, by transitivity, (1) implies (3).

To show that (3) implies (1), we proceed by induction on the structure of M ′.

• If M ′ is atomic, then it is immediate that vD(M ′) = M ′ = vD′(M ′).
• If M ′ = M1; M2, then γM occurs in vD(M1; M2) = vD(M1); vD(M2) iff it oc-

curs in vD(M1) or vD(M2) and, by assumption, M must be D′-opaque. Thus,
by the induction hypothesis, vD(M1) = vD′(M1) and vD(M2) = vD′(M2),
which implies that vD′(M1; M2) = vD′(M1); vD′(M2) = vD(M1; M2).

• If M ′ = {|M1|}K , then we must consider two possibilities for vD({|M1|}K).
· If {|M1|}K is not D-opaque then vD({|M1|}K) is either {|vD(M1)|}vD(K) or
{|vD(M1)|}vD(K). Hence, if γM occurs in vD({|M1|}K) then M is D′-opaque
or else it does not occur in analyzable positions of vD(M1) and M /∈ D′.
Thus, by the induction hypothesis, vD(M1) = vD′(M1). If vD({|M1|}K) =
{|vD(M1)|}vD(K) then M1, K ∈ D. Now, when γM occurs in vD(K) and M is
not D′-opaque then M /∈ D′ and it can only occur in non-analyzable posi-
tions because K ∈ D. Thus, by the induction hypothesis, we have vD(K) =
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vD′(K), and therefore vD′({|M1|}K) = {|vD′(M1)|}vD′ (K) = vD({|M1|}K) be-
cause D ⊆ D′.

· Otherwise, {|M1|}K is D-opaque. Then vD({|M1|}K) = γM ′ occurs in an an-
alyzable position and, by assumption, {|M1|}K must be D′-opaque. There-
fore, vD′({|M1|}K) = γM ′ = vD({|M1|}K).

• If M ′ = K−1, then we must consider two possibilities for vD(K−1).
· If K−1 is not D-opaque, then vD(K−1) is either vD(K)−1 or γ−1

K . In any
case, if γM occurs in vD(K−1) then it must be in a non-analyzable position
and, by assumption, M is D′-opaque or M /∈ D′. If vD(K−1) = vD(K)−1

then, when γM occurs in vD(K) and M is not D′-opaque then M /∈ D′ and
it can only occur in non-analyzable positions because K ∈ D. Thus, by
the induction hypothesis, vD(K) = vD′(K) which, together with D ⊆ D′,
implies that vD′(K−1) = vD′(K)−1 = vD(K−1). If vD(K−1) = γ−1

K then
K is D′-opaque or K /∈ D′. If K /∈ D′ then vD′(K−1) = γ−1

K = vD(K−1).
Otherwise, vD′(K−1) = vD′(K)−1 = γ−1

K = vD(K−1) because K must be
D′-opaque.

· Otherwise, vD(K−1) = γM ′ occurs in an analyzable position and, by as-
sumption, M ′ must be D′-opaque. Therefore, vD′(K−1) = γM ′ = vD(K−1).

• If M ′ = H(M1), then we must also consider two possibilities.
· If H(M1) is not D-opaque, then γM occurs in vD(H(M1)) = H(vD(M1))

iff it occurs in vD(M1) and, by assumption, M must be D′-opaque. Thus,
by the induction hypothesis, vD(M1) = vD′(M1) which, together with
D ⊆ D′, implies that vD′(H(M1)) = H(vD′(M1)) = vD(H(M1)).

· Otherwise, vD(H(M1)) = γM ′ and, by assumption, M ′ must be D′-opaque.
Therefore, vD′(H(M1)) = γM ′ = vD(H(M1)). 2

Note that if D ⊆ D′ then it immediately follows that D′-opaque messages
are also D-opaque. Hence, as a corollary of Lemma 34, we have that if D′′

is also a dataset and D ⊆ D′ ⊆ D′′, then vD(M ′) = vD′′(M ′) implies that
vD(M ′) = vD′(M ′) = vD′′(M ′).

The following lemma tells us that if an opaque message does not appear as a
submessage of any message in a set S, then it cannot appear as a submessage
of any message in close(S).

Lemma 35 Let M be a D-opaque message and let S ⊆ D. Then M ∈
sub(close(S)) iff M ∈ sub(S).

PROOF. Note that S ⊆ close(S) and thus sub(S) ⊆ sub(close(S)). There-
fore, the right-to-left implication is immediate. We prove the left-to-right im-
plication by induction on the construction rules of the messages M ′ ∈ close(S),
assuming that M ∈ sub(M ′).

• If M ′ ∈ S, then M ∈ sub(M ′) ⊆ sub(S).

45



• If M ′ = M1; M2 with M1, M2 ∈ close(S), then M ∈ sub(M1) or M ∈
sub(M2) because M1; M2 cannot be D-opaque. In either case, by the induc-
tion hypothesis, M ∈ sub(S).

• If M ′ = H(M1) with M1 ∈ close(S), then M ∈ sub(M1) because M1 ∈ D,
and hence H(M1) is not D-opaque. So, by the induction hypothesis, M ∈
sub(S).

• If M ′ = {|M1|}K with M1, K ∈ close(S), then M ∈ sub(M1) or M ∈ sub(K)
because M1, K ∈ D and hence {|M1|}K is not D-opaque. In either case, by
the induction hypothesis, M ∈ sub(S).

• If M ′; M ′′ ∈ close(S) (or, analogously, if M ′′; M ′ ∈ close(S)), then M ∈
sub(M ′; M ′′) and by the induction hypothesis, M ∈ sub(S).

• If {|M ′|}a
K , K−1 ∈ close(S), then M ∈ sub({|M ′|}a

K) and by the induction
hypothesis, M ∈ sub(S).

• If {|M ′|}a
K−1 , K ∈ close(S), then M ∈ sub({|M ′|}a

K−1) and by the induction
hypothesis, M ∈ sub(S).

• Finally, if {|M ′|}s
K , K ∈ close(S), then M ∈ sub({|M ′|}s

K) and by the induc-
tion hypothesis, M ∈ sub(S). 2

Lemma 35 has the following two immediate corollaries.

Corollary 36 If S is a set of atomic messages, then close(S) is transparent.

Note that, by definition, atomic messages are always transparent. Hence, if S is
a set of atomic messages, then sub(S) = S does not contain opaque elements.
Therefore, Lemma 35 implies that also sub(close(S)) does not contain opaque
elements. Finally, Lemma 33 guarantees that close(S) is transparent.

Corollary 37 Let M ′ be a message and D′ = close(D∪{M ′}). If D is trans-
parent, then D′ is transparent iff M ′ is D′-transparent.

By induction on the structure of messages, we can obtain a result similar to
Lemma 35, which explains how ghost symbols appear during protocol execu-
tion:

Lemma 38 Let S be a set of messages and D′ = close(D ∪ S). If M ′ ∈ D′,
M /∈ sub(D), and γM occurs in vD′(M ′), then γM also occurs in vD′(S).

PROOF. We proceed by induction on the construction rules of M ′ ∈ D′.

• If M ′ ∈ D, then γM does not occur in vD′(M ′) or else we would have
M ∈ sub(M ′) ⊆ sub(D).

• If M ′ ∈ S, then the result follows trivially because vD′(M ′) ∈ vD′(S).
• If M ′ = M1; M2 with M1, M2 ∈ D′, then when γM occurs in vD′(M1; M2) =

vD′(M1); vD′(M2) it must occur in vD′(M1) or in vD′(M2). In either case, by
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the induction hypothesis, γM also occurs in vD′(S).
• If M ′ = H(M1) with M1 ∈ D′, then when γM occurs in vD′(H(M1)) =

H(vD′(M1)) it must occur in vD′(M1). So, by the induction hypothesis, γM

also occurs in vD′(S).
• If M ′ = {|M1|}K with M1, K ∈ D′, then when γM occurs in vD′({|M1|}K) =
{|vD′(M1)|}vD′ (K) it must occur in vD′(M1) or in vD′(K). In either case, by
the induction hypothesis, γM also occurs in vD′(S).

• If M ′; M ′′ ∈ D′, then when γM occurs in vD′(M ′) it must also occur in
vD′(M ′; M ′′) = vD′(M ′); vD′(M ′′). So, by the induction hypothesis, γM also
occurs in vD′(S).

• Analogously, if M ′′; M ′ ∈ D′, then when γM occurs in vD′(M ′) it must also
occur in vD′(M ′′; M ′) = vD′(M ′′); vD′(M ′). So, by the induction hypothesis,
γM also occurs in vD′(S).

• If {|M ′|}a
K , K−1 ∈ D′, then when γM occurs in vD′(M ′) it must also occur in

vD′({|M ′|}a
K), no matter whether it is {|vD′(M ′)|}a

vD′ (K) or {|vD′(M ′)|}a
γK

. So,

by the induction hypothesis, γM also occurs in vD′(S).
• Analogously, if {|M ′|}a

K−1 , K ∈ D′, then when γM occurs in vD′(M ′) it must
also occur in vD′({|M ′|}a

K−1) = {|vD′(M ′)|}a
vD′ (K−1). So, by the induction hy-

pothesis, γM also occurs in vD′(S).
• Finally, if {|M ′|}s

K , K ∈ D′, then when γM occurs in vD′(M ′) it must also
occur in vD′({|M ′|}s

K) = {|vD′(M ′)|}s
vD′ (K). So, by the induction hypothesis,

γM also occurs in vD′(S). 2

The way that views are updated as the datasets evolve can also be explained
in terms of substitutions of ghost symbols.

Lemma 39 Let S be a set of messages and D′ = close(D ∪ S). For every
message M ∈ D (without ghost symbols), we have that vD′(M) = σ(vD(M)),
where σ is the substitution that replaces each ghost symbol γM ′ such that M ′ ∈
D′ occurring in vD(M) by vD′(M ′).

PROOF. We proceed by induction on the structure of the message M .

• If M is atomic, then vD′(M) = vD(M) = M , and σ(M) = M because M
cannot be a ghost symbol.

• If M = M1; M2, then vD′(M1; M2) = vD′(M1); vD′(M2), which equals, using
the induction hypotheses, σ(vD(M1)); σ(vD(M2)) = σ(vD(M1); vD(M2)) =
σ(vD(M1; M2)).

• If M = {|M1|}K , then we must consider the following two situations.
· When {|M1|}K is not D-opaque, then vD({|M1|}K) is either {|vD(M1)|}vD(K)

or {|vD(M1)|}γK
. In the former case, the result follows by just applying

the induction hypothesis. In the latter case, using also the induction hy-
pothesis for M1, if K ∈ D′ then {|σ(vD(M1))|}σ(γK) = {|vD′(M1)|}vD′ (K) =
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vD′({|M1|}K); if, on the contrary, K /∈ D′ then we have {|σ(vD(M1))|}σ(γK) =
{|vD′(M1)|}γK

= vD′({|M1|}K).
· When {|M1|}K is D-opaque, we have vD({|M1|}K) = γM , M ∈ D, and so

σ(γM) = vD′({|M1|}K).
• If M = K−1, then we must also consider two situations.
· When K−1 is not D-opaque, then vD(K−1) is either vD(K)−1 or γ−1

K . In
the former case, the result follows immediately by using the induction
hypothesis. In the latter case, if K ∈ D′ then σ(γK)−1 = vD′(K)−1 =
vD′(K−1); if, on the contrary, K /∈ D′ then σ(γK)−1 = γ−1

K = vD′(K−1).
· When K−1 is D-opaque, we have vD(K−1) = γM , M ∈ D, and σ(γM) =

vD′(K−1).
• Finally, if M = H(M1), then we must similarly consider two situations.
· When H(M1) is not D-opaque, and hence also not D′-opaque, we have

vD′(H(M1)) = H(vD′(M1)), which equals, using the induction hypothesis,
H(σ(vD(M1))) = σ(H(vD(M1))) = σ(vD(H(M1))).

· When H(M1) is D-opaque, we have vD(H(M1)) = γM , and σ(γM) =
vD′(H(M1)). 2

To continue this sequence of technical results, we consider what happens to
the notion of opacity when D is augmented by a fresh number instead of an
arbitrary message. Recall that freshness means that the value occurs neither
in any previous message nor in the inverse of a submessage of any previous
message.

Lemma 40 Let N be a number symbol such that N /∈ sub(D), and D′ =
close(D ∪ {N}). If M ∈ sub(D) and M is D-opaque, then M is also D′-
opaque.

PROOF. We prove this in several steps.

(1) We begin by observing that D ∪ {N} is closed for analysis. If M1; M2 ∈
D ∪ {N}, then M1; M2 ∈ D and therefore M1, M2 ∈ D because D is closed.
If {|M1|}a

K , K−1 ∈ D ∪ {N}, then {|M1|}a
K ∈ D. Thus K ∈ sub(D) and N /∈

sub(K). Since K−1 6= N , it must be the case that K−1 ∈ D and M1 ∈ D
because D is closed. If {|M1|}a

K−1 , K ∈ D ∪ {N}, then {|M1|}a
K−1 ∈ D. Thus

K ∈ sub(D) and N /∈ sub(K). Hence, K 6= N and it must be the case that
K ∈ D and M1 ∈ D because D is closed. Similarly, if {|M1|}s

K , K ∈ D ∪ {N},
then {|M1|}s

K ∈ D. Thus K ∈ sub(D) and N /∈ sub(K). Hence, K 6= N and it
must be the case that K ∈ D and M1 ∈ D because D is closed.

(2) Next we can show, by induction on the synthesis rules, that if M ′ ∈
synth(D ∪ {N}) and N /∈ sub(M ′) then M ′ ∈ D.

• If M ′ ∈ D ∪ {N} and M ′ 6= N , then M ′ ∈ D.
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• If M ′ = M1; M2 and M1, M2 ∈ synth(D ∪ {N}), then N /∈ sub(M1) and
N /∈ sub(M2). So, by the induction hypothesis M1, M2 ∈ D and M1; M2 ∈ D
because D is closed.

• If M ′ = H(M1) and M1 ∈ synth(D ∪ {N}), then N /∈ sub(M1). So, by the
induction hypothesis M1 ∈ D and H(M1) ∈ D because D is closed.

• If M ′ = {|M1|}K and M1, K ∈ synth(D ∪ {N}), then N /∈ sub(M1) and
N /∈ sub(K). So, by the induction hypothesis M1, K ∈ D and {|M1|}K ∈ D
because D is closed.

(3) Now we can prove that D′ = synth(D ∪ {N}). Indeed, since D ∪ {N} is
closed for analysis and it is always the case that synth(analyz(S)) ⊆ close(S),
it suffices to show that synth(D ∪ {N}) is still closed for analysis.

• If M1; M2 ∈ synth(D∪{N}), then either M1; M2 ∈ D∪{N} or M1; M2 was
synthesized from M1, M2 ∈ synth(D ∪ {N}). The latter case is trivial. In
the former case, since D ∪ {N} is closed for analysis M1, M2 ∈ D ∪ {N} ⊆
synth(D ∪ {N}).

• If {|M1|}a
K , K−1 ∈ synth(D∪{N}), then either {|M1|}a

K ∈ D∪{N} or {|M1|}a
K

was synthesized from M1, K ∈ synth(D∪{N}). The latter case is trivial. In
the former case, since N /∈ sub(K) ⊆ sub(D) and N 6= K−1, the result in
(2) above guarantees that K−1 ∈ D. But {|M1|}a

K ∈ D ∪ {N} implies that
{|M1|}a

K ∈ D and so M1 ∈ D ⊆ synth(D ∪ {N}) because D is closed.
• If {|M1|}a

K−1 , K ∈ synth(D ∪ {N}), then either {|M1|}a
K−1 ∈ D ∪ {N} or

{|M1|}a
K−1 was synthesized from M1, K

−1 ∈ synth(D∪{N}). The latter case
is trivial. In the former case, since N /∈ sub(K) ⊆ sub(K−1) ⊆ sub(D),
the result in (2) above guarantees that K ∈ D. But {|M1|}a

K−1 ∈ D ∪ {N}
implies that {|M1|}a

K−1 ∈ D and so M1 ∈ D ⊆ synth(D ∪ {N}) because D
is closed.

• If {|M1|}s
K , K ∈ synth(D∪{N}), then either {|M1|}s

K ∈ D∪{N} or {|M1|}s
K

was synthesized from M1, K ∈ synth(D ∪ {N}). The latter case is trivial.
In the former case, since N /∈ sub(K) ⊆ sub(D), the result in (2) above
guarantees that K ∈ D. But {|M1|}s

K ∈ D ∪ {N} implies that {|M1|}s
K ∈ D

and so M1 ∈ D ⊆ synth(D ∪ {N}) because D is closed.

Let us now consider the D-opaque message M ∈ sub(D).

• If M = {|M1|}a
K , then K−1 /∈ D and {M1, K} * D. Moreover, N /∈

sub(M1) ⊆ sub(D), N /∈ sub(K) ⊆ sub(D), and so N /∈ sub(K−1). Hence,
by (2) and (3), K−1 /∈ D′, {M1, K} * D′ and so M = {|M1|}a

K is D′-opaque.
• If M = {|M1|}a

K−1 , then K /∈ D and {M1, K
−1} * D. Moreover, N /∈

sub(M1) ⊆ sub(D) and N /∈ sub(K) ⊆ sub(K−1) ⊆ sub(D). Hence, by (2)
and (3), K /∈ D′, {M1, K

−1} * D′ and so M = {|M1|}a
K−1 is D′-opaque.

• If M = {|M1|}s
K then K /∈ D. Moreover, N /∈ sub(K) ⊆ sub(D). Hence, by

(2) and (3), K /∈ D′ and so M = {|M1|}s
K is D′-opaque.

• If M = K−1, then {|M ′|}a
K /∈ D for any M ′. In particular, K /∈ D. Moreover,
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{|M ′|}a
K 6= N , hence, by (2) and (3), {|M ′|}a

K /∈ D′, for any M ′, and K−1 is
D′-opaque.

• If M = H(M1), then M1 /∈ D. Moreover, N /∈ sub(M1) ⊆ sub(D), hence,
by (2) and (3), M1 /∈ D′ and M = H(M1) is D′-opaque. 2

A.2 Proofs of the main results

We now prove the main results given in the body of the paper. Recall that
we assume fixed an executable protocol and a participant A, with A-run =
〈a1 . . . as〉.

Proposition 20 The sequence A-run is representative iff every received mes-
sage is transparent when it is received, i.e., if ai = r(M), then M is Di

A-
transparent.

PROOF. Note that A-run is representative if, for every i ≤ s, we have
that A-isruni = A-run|i, that is, 〈vDi

A
(a1), . . . , vDi

A
(ai)〉 = 〈a1, . . . , ai〉. This

amounts to having vDi
A
(aj) = aj, for each 1 ≤ j ≤ i ≤ s.

The left-to-right implication is immediate since, for each i, vDi
A
(ai) = ai implies

that vDi
A
(r(M)) = r(M) if ai = r(M), and therefore vDi

A
(M) = M .

For the right-to-left implication, we first prove, by induction, that for every
i ≤ s, the data set Di

A is transparent and vDi
A
(ai) = ai if i > 0. Clearly,

D0
A is transparent according to Corollary 36. For i > 0, assume that Di−1

A

is transparent. If ai = s(M, B), then it follows from the executability of the
protocol that M ∈ Di−1

A and therefore vDi
A
(M) = M . Of course, Di

A = Di−1
A

is transparent. If ai = r(M) then, by assumption, vDi
A
(M) = M . Hence, by

Corollary 37, we also have that Di
A is transparent. Finally, if ai = f(N) then

obviously vDi
A
(N) = N and Corollary 37 again implies that Di

A is transparent.

The result follows by observing that Dj
A ⊆ Di

A for 0 ≤ j < i, and thus
vDj

A
(M) = M implies vDi

A
(M) = M .

Proposition 22 The sequence A-srun is representative iff every received mes-
sage preserves the ghost symbols that occur in the views of previously received
messages, i.e., if 1 ≤ j < i ≤ s, aj and ai are receiving actions, and γM

occurs in vDi−1
A

(aj), then γM also occurs in vDi
A
(aj).

PROOF. Note that A-srun is representative if, for every i ≤ s, we have that
A-isruni = A-srun|i, that is, 〈vDi

A
(a1), . . . , vDi

A
(ai)〉 = 〈vD1

A
(a1), . . . , vDi

A
(ai)〉.
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This amounts to having vDi
A
(aj) = vDj

A
(aj), for each 1 ≤ j ≤ i ≤ s.

The left-to-right implication is straightforward. Assume that A-srun is repre-
sentative, 1 ≤ j < i ≤ s, ai and aj are receiving actions, and γM occurs in
vDi−1

A
(aj). Then γM also occurs in vDi

A
(aj) = vDj

A
(aj) = vDi−1

A
(aj).

For the right-to-left implication, we will prove that vDi−1
A

(aj) = vDi
A
(aj) for

every 1 ≤ j < i ≤ s. We have to consider the three possibilities for ai.

• If ai is a sending action, then Di
A = Di−1

A and thus the views are equal.
• If ai is a fresh generation action, then Di

A = close(Di−1
A ∪ {N}), where

N is the fresh number symbol. If γM occurs in vDi−1
A

(aj) then M is Di−1
A -

opaque or else it occurs only in non-analyzable positions and M /∈ Di−1
A .

In the former case, M ∈ sub(Di−1
A ) because M is a submessage of the mes-

sage present in aj, which is certainly an element of Dj
A ⊆ Di−1

A . Therefore,
Lemma 40 guarantees that M is Di

A-opaque. In the latter case, property (2)
of Lemma 40, guarantees that M /∈ Di

A. Thus, it follows from Lemma 34
that vDi−1

A
(aj) = vDi

A
(aj).

• Finally, let us assume that ai is a receiving action.
· If aj is a fresh generation action, then obviously vDi−1

A
(aj) = vDi

A
(aj).

· If aj is also a receiving action, then, by assumption, all the ghost symbols
in vDi−1

A
(aj) also occur in vDi

A
(aj). Thus the equality of the views follows

from Lemma 34.
· If aj is a sending action, then, as the protocol is executable, the message

Mj being sent must be in Dj
A ⊆ Di−1

A . Clearly for each ghost symbol γM

that occurs in vDi−1
A

(Mj) it must be the case that M is Di−1
A -opaque or

it occurs only in non-analyzable positions and M /∈ Di−1
A . In the former

case, since Di−1
A = close(D0

A ∪ S), where S collects all the messages sent
or freshly generated up to the (i−1)-th action, Lemma 35 ensures that in
this case M must appear as a submessage of one of the received messages
in S, and thus Lemma 38 guarantees that γM also occurs in the view at
i − 1 of some of these received messages. But, by assumption, these are
preserved up to the view at step i, so M must also be Di

A-opaque. Using
a similar argument, if M /∈ Di−1

A one can also conclude that M /∈ Di
A.

Finally, it follows from Lemma 34 that vDi−1
A

(Mj) = vDi
A
(Mj).

A simple inductive argument now shows that vDj
A
(aj) = vDj+1

A
(aj) = · · · =

vDi−1
A

(aj) = vDi
A
(aj), and the representativity of A-srun follows. 2

Note that in this case only message forwarding may be necessary. The precise
meaning of forwarding can also be clarified with the help of Lemmas 34, 35,
and 38, as explained in the proof of Proposition 22: if a sent message contains
an opaque submessage M then M must also occur, and be opaque, in some
previously received message.
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We now turn to the correctness of the operational semantics with respect to
the denotational semantics obtained by fine interpretation.

Proposition 27 Let D0
A, . . . , Ds

A be the evolving datasets corresponding to A’s
run of the protocol. For every i such that 0 ≤ i ≤ s, if M ∈ Di

A then

(1) cfχi
(M) ∈ synth(χi),

(2) σk(cfχi
(M)) = vDk

A
(M), for each i ≤ k ≤ s, and

(3) if face(M) ∈ synth(χi) then σk(face(M)) = vDk
A
(M), for each i ≤ k ≤ s.

PROOF. (1) The proof proceeds by induction on i. Clearly, we have that
D0

A = close(DataA) = synth(DataA) = synth(χ0). Moreover, cfχ0
(M) = M for

every M ∈ DataA. Hence if M ∈ D0
A then cfχ0

(M) ∈ synth(χ0).

Assume now, by the induction hypothesis, that if M ∈ Di−1
A then cfχi−1

(M) ∈
synth(χi−1). We have to consider the three possibilities for ai.

• If ai = s(M ′, B) then Di
A = Di−1

A , χi = χi−1, and the result follows by the
induction hypothesis.

• If ai = f(N) then Di
A = synth(Di−1

A ∪{N}), using property (1) of Lemma 40,
and χi = χi−1 ∪ {N}. By the induction hypothesis, if M ∈ Di−1

A then it is
constructible. By the addition of N to χi, N is also constructible. Moreover,
we can use the synthesis rules, so if M ∈ Di

A then cfχi
(M) ∈ synth(χi).

• If ai = r(M ′) then Di
A = synth(Di−1

A ∪{M ′}) and χi extends χi−1. We prove
that if M ∈ Di

A then cfχi
(M) ∈ synth(χi) by induction on the closure rules.

· If M ∈ Di−1
A then the result follows by the induction hypothesis.

· If M = M ′, the received message, then we do inp netA (∃χi−1
)face(M).

Now, M = M1; . . . ; Mk where each Mj for 1 ≤ j ≤ k is an atomic,
encrypted, hashed, or inverse message, and the definition of face(M1) will
force all the atoms and ghost symbols of the complex messages Mj to be
in χi. By the definition of cf, it is clear that each cfχi

(Mj) ∈ synth(χi).
Take, for instance, an atomic Mj, then cfχi

(Mj) = Mj ∈ χi. Take now a
complex Mj for which cfχi

(Mj) = γMj
. Clearly, γMj

∈ χi. Finally, consider
a complex Mj such that cfχi

(Mj) 6= γMj
and note that all the possibilities

in the definition of cfχi
(Mj) guarantee that it belongs to synth(χi).

· If M is synthesized from messages in Di
A then, by the induction hypothesis,

the construction of these messages is in synth(χi), and so is the construc-
tion of the whole message as well.

· If M is analyzed from M ; M1 ∈ Di
A (and analogously for M1; M ∈ Di

A)
then, by the induction hypothesis, cfχi

(M ; M1) = cfχi
(M); cfχi

(M1) ∈
synth(χi). Since basic sets like synth(χi) do not contain paired messages,
cfχi

(M); cfχi
(M1) must have been synthesized from cfχi

(M), cfχi
(M1) ∈

synth(χi).
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· If M is analyzed from {|M |}a
K , K−1 ∈ Di

A then, by the induction hypothe-
sis, cfχi

({|M |}a
K), cfχi

(K−1) ∈ synth(χi). If cfχi
({|M |}a

K) = {|cfχi
(M)|}a

cfχi
(K)

then cfχi
(M) ∈ synth(χi), as we wanted. Otherwise, cfχi

({|M |}a
K) = γ{|M |}a

K

and there are three possibilities for cfχi
(K−1).

If cfχi
(K−1) = face(K)−1 ∈ χi then the process includes the check

chk(γ{|M |}a
K
| (∃ . . . ){|face(M)|}a

face(K)).

If cfχi
(K−1) = γ−1

K with γ−1
K ∈ χi, then the process includes the check

chk(γ{|M |}a
K
| (∃ . . . ){|face(M)|}a

γk
) and cfχi

(M) ∈ synth(χi) follows, as
above in the case of the received message.

If cfχi
(K−1) = γK−1 ∈ χi, then the process includes the joint check

chk(γK−1 ; γ{|M |}a
K
| (∃ . . . )γ−1

K ; {|face(M)|}a
γk

). In any case, from face(M)
it then follows that cfχi

(M) ∈ synth(χi), using the same argument as
above in the case of the received message.

· If M is analyzed from {|M |}a
K−1 , K ∈ Di

A, then, by the induction hy-
pothesis, cfχi

({|M |}a
K−1), cfχi

(K) ∈ synth(χi). If we have cfχi
({|M |}a

K−1) =
{|cfχi

(M)|}a
cfχi

(K−1), then cfχi
(M) ∈ synth(χi), as we wanted. Otherwise,

cfχi
({|M |}a

K−1) = γ{|M |}a
K−1

and the process includes the check chk(γ{|M |}a
K−1

|
(∃ . . . ){|face(M)|}a

cfχi
(K)−1). From face(M), it then follows that cfχi

(M) ∈
synth(χi), using the same argument as above.

· If M is analyzed from {|M |}s
K , K ∈ Di

A then, by the induction hypothesis,
cfχi

({|M |}s
K), cfχi

(K) ∈ synth(χi). If cfχi
({|M |}s

K) = {|cfχi
(M)|}s

cfχi
(K) then

cfχi
(M) ∈ synth(χi), as we wanted. Otherwise, cfχi

({|M |}s
K) = γ{|M |}s

K
and

the process includes chk(γ{|M |}s
K
| (∃ . . . ){|face(M)|}s

cfχi
(K)). From face(M),

it follows that cfχi
(M) ∈ synth(χi), using the same argument as above.

(2) First note that all the elements of χi have a counterpart in Di
A. Namely,

if γM ∈ χi them M ∈ Di
A, if γ−1

K ∈ χi or face(K)−1 ∈ χi then K−1 ∈ Di
A, and

every atom in χi is also in Di
A. This fact can be proved by detailed inspection

of all possible checks, but it should be clear that all the elements of χi appear
in analyzable positions of received messages. Therefore, if face(M) ∈ synth(χi)
or cfχi

(M) ∈ synth(χi), then we have that M ∈ Di
A.

Now, we prove that σi(γM) = vDi
A
(M) whenever γM ∈ χi, or face(M) ∈

synth(χi) and γ−1
M ∈ χi, and σi(γM) = γM otherwise. The proof proceeds by

induction on i.

• Obviously, no γM occurs in χ0 = DataA and σ0 = []. Therefore, σ0(γM) =
γM , as it should.

• We now consider the three possible forms for the i-th action.
· If ai = s(M ′, B) then χi = χi−1, σi = σi−1, Di

A = Di−1
A , and the result

follows from the induction hypothesis.
· If ai = f(N) then χi = χi−1 ∪ {N}, σi = σi−1, Di

A = close(Di−1
A ∪ {N}) =

synth(Di−1
A ∪ {N}), by using the proof of Lemma 40. If γM ∈ χi, or

face(M) ∈ synth(χi) and γ−1
M ∈ χi, then that must have been the case al-
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ready for χi−1. Thus, using the induction hypothesis, σi(γM) = σi−1(γM) =
vDi−1

A
(M) = vDi

A
(M), again using Lemma 40.

· If ai = r(M) then σi = ρi ◦ σi−1, where ρi is obtained by composing
the substitutions obtained in each of checks. Hence, given Lemma 39, the
desired property for σi boils down to showing the same property for ρi.
If γM ∈ χi is not checked then it means that M is Di

A-opaque and so
ρi(γM) = γM = vDi

A
(M). If γ−1

M ∈ χi and γM is not checked then it means

that cfχi
(M) /∈ synth(χi), which implies that M /∈ Di

A, in which case also
ρi(γM) = γM , as it should.

Thus, we now need to show that for the remaining γM occurring in χi,
the checks done are enough to guarantee that ρi(γM) = vDi

A
(M). Since all

possible checks will be done, by definition of spiAi , it is enough to verify
that each check performed, namely on γM , indeed “opens” the message
and allows a principal to compute its view. Let us analyze each of the
three possible kinds of checks.

In the first case, the check is chk(γM | (∃ . . . )infaceχk
i−1

(M)) with γM ∈
χi and M parsable according to infaceχk

i−1
(M). An inspection of its defini-

tion guarantees that everything works, given the properties of cf and face
proved in this proposition. An exhaustive analysis of all possible cases is
straightforward and is thus omitted.

In the second case, the check that is performed is chk(γK−1 ; γ{|M |}a
K
|

(∃ . . . )γ−1
K ; {|face(M)|}a

γK
) with γK−1 , γ{|M |}a

K
∈ χi. Clearly, a subsequent

check for γK happens iff K ∈ Di
A. Thus, if K /∈ Di

A then ρi(γK−1) =
γ−1

K = vDi
A
(K−1) and ρi(γ{|M |}a

K
) = {|ρi(face(M))|}a

ρi(γK)) = {|vDi
A
(M)|}a

γK
=

vDi
A
({|M |}a

K). Otherwise, ρi(γK−1) = ρi(γ
−1
K ) = ρi(γK)−1 = vDi

A
(K)−1 =

vDi
A
(K−1) and ρi(γ{|M |}a

K
) = {|ρi(face(M))|}a

ρi(γK) = {|vDi
A
(M)|}a

v
Di

A
(K) =

vDi
A
({|M |}a

K).

In the third and final case, the check that is performed is chk(γM |
(∃ . . . )cfχk

i−1
(M)) with γM /∈ χk

i−1, γ−1
M ∈ χi and cfχk

i−1
(M) ∈ synth(χi).

Hence, ρi(γM) = ρi(cfχk
i−1

(M)) = vDi
A
(M).

Using this fact, together with the definition of cf, we can now prove by induc-
tion on M that σk(cfχi

(M)) = vDk
A
(M).

• If M is atomic then cfχi
(M) = M , σk(M) = M , and vDk

A
(M) = M .

• If M = M1; M2 then σk(cfχi
(M1; M2)) = σk(cfχi

(M1); cfχi
(M2)) =

σk(cfχi
(M1)); σk(cfχi

(M2)), which equals vDk
A
(M1); vDk

A
(M2) = vDk

A
(M1; M2),

by the induction hypothesis.
• If M = {|M1|}K then there are two possibilities. First, if cfχi

({|M1|}K) =
{|cfχi

(M1)|}cfχi
(K) then σk({|cfχi

(M1)|}cfχi
(K)) = {|σk(cfχi

(M1))|}σk(cfχi
(K)),

which equals, by the induction hypothesis, {|vDk
A
(M1)|}v

Dk
A

(K) =vDk
A
({|M1|}K),

because cfχi
(M1), cfχi

(K) ∈ synth(χi) imply that M1, K ∈ Di
A ⊆ Dk

A. If
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cfχi
({|M1|}K) = γM ∈ χi ⊆ χk then we know that σk(γM) = vDk

A
(M).

• If M = H(M1) then there are two possibilities. If we have cfχi
(H(M1)) =

H(cfχi
(M1)) then σk(H(cfχi

(M1))) = H(σk(cfχi
(M1))), which equals, by

the induction hypothesis, H(vDk
A
(M1)) = vDk

A
(H(M1)), because cfχi

(M1) ∈
synth(χi) implies that M1 ∈ Di

A ⊆ Dk
A. If we have cfχi

(H(M1)) = γM ∈
χi ⊆ χk then we know that σk(γM) = vDk

A
(M).

• If M = K−1 then there are three possibilities. If cfχi
(K−1) = cfχi

(K)−1

then we must have checked chk(γK | (∃ . . . )face(K)), and thus γ−1
K ∈ χi and

face(K) ∈ synth(χi). So, by the induction hypothesis, σk(cfχi
(K)a−1) =

σk(cfχi
(K))−1 = vDk

A
(K)−1 = vDk

A
(K−1) as γ−1

K ∈ χi implies that K−1 ∈
Di

A ⊆ Dk
A. Otherwise, we can have the second possibility, i.e., cfχi

(K−1) =

γ−1
K , provided that some γ{|M ′|}a

K
∈ χi. If that is the case, then we have

checked chk(γK−1 ; γ{|M ′|}a
K
| (∃ . . . )γ−1

K ; {|face(M1)|}a
γK

). Therefore, σk(γ
−1
K ) =

σk(γK)−1. But now, if K ∈ Dk
A then γK ∈ χk and σk(γK)−1 = vDk

A
(K)−1 =

vDk
A
(K−1). If not, then σk(γK)−1 = γ−1

K = vDk
A
(K−1). Finally, if cfχi

(K−1) =

γM ∈ χi ⊆ χk then we know that σ(γM) = vDk
A
(M).

(3) Clearly, face(M) ∈ synth(χi) means that all outermost atoms of M are in
χi, and all outermost encrypted, hashed, or inverse submessages of M have
their corresponding ghost symbol in χi. The fact that σk(face(M)) = vDk

A
(M)

follows immediately employing the result used in the proof of property (2)
above. 2

Proposition 28 For every participant A of an executable Alice&Bob protocol
specification, the process A-proc is implementable.

PROOF. The fact that all the patterns in the process are transparent can
be shown by a simple inspection of each of the possible cases, according to
Definitions 23, 25, and 26. The constructibility of every sent message follows
immediately from property (1) of Proposition 27. 2

Proposition 32 den(spiA1 (a1); . . . ; spiAi (ai)) = A-isruni, for every i such
that 1 ≤ i ≤ s.

PROOF. Clearly it suffices to show that σi(act(spiAk (a))) = vDi
A
(a), for every

action a, and 1 ≤ k ≤ i ≤ s. We consider each of the three possibilities for
action a.

• If a = f(N), then σi(act(spiAk (f(N)))) = σi(act(new N : Num)) = σi(f(N))
= f(σi(N)) = f(N) = vDi

A
(f(N)), since N is atomic and vDi

A
(N) = N .
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• If a = s(M, B), then σi(act(spiAk (s(M, B)))) = σi(act(out netB cfχk
(M))) =

σi(s(cfχk
(M), B) = s(σi(cfχk

(M)), σi(B)) = s(vDi
A
(M), B) = vDi

A
(s(M, B)),

since B is atomic and vDi
A
(B) = B, and using property (2) of Proposition 27.

• If a = r(M), then we have that σi(act(spiAk (r(M)))) = σi(act(inp netA (∃χk
)

face(M); . . . )) = σi(r(face(M))) = r(σi(face(M))) = r(vDi
A
(M)) =

vDi
A
(r(M)), using property (3) of Proposition 27.

Then

den(spiA1 (a1); . . . ; spiAi (ai)) = (by def.)

〈σi(act(spiA1 (a1)); . . . ; σi(act(spiAi (ai))〉 = (by the above)

〈vDi
A
(a1); . . . ; vDi

A
(ai)〉 = (by def.)

A-isruni.

2
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