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Abstract. A monitoring algorithm is trace-length independent if its space con-
sumption does not depend on the number of events processed. The analysis of
many monitoring algorithms has aimed at establishing trace-length independence.
But a trace-length independent monitor’s space consumption can depend on char-
acteristics of the trace other than its size.

We put forward the stronger notion of event-rate independence, where the
monitor’s space usage does not depend on the event rate. This property is critical
for monitoring voluminous streams of events arriving at a varying rate. Some
previously proposed algorithms for past-only temporal logics satisfy this new
property. However, when dealing with future operators, the traditional approach
of using a queue to wait for future obligations to be resolved is not event-rate
independent. We propose a new algorithm that supports metric past and bounded
future operators and is almost event-rate independent, where “almost” denotes a
logarithmic dependence on the event rate: the algorithm must store the event rate
as a number. We compare our algorithm with traditional ones, providing evidence
that almost event-rate independence matters in practice.

1 Introduction

Rules are integral to society. Companies and administrations are highly regulated and
subjected to rules, laws, and policies that they must comply to and demonstrate their
compliance to. In many domains, the rules are sufficiently precise that automatic mon-
itoring tools can be used to prove compliance or identify violations.

A monitoring tool should solve the standard (online) monitoring problem: Given a
stream of time-stamped data, called events, and a policy formulated in a temporal logic,
decide whether the policy is satisfied at every point in the stream [6, 13, 17]. Compared
with other verification techniques, the monitoring problem is attractive because it can be
solved in a scalable way. Monitoring algorithms usually have a modest time complexity
per inspected event. In contrast, keeping the space requirements low for high-velocity
event streams is more challenging; this is precisely the problem we tackle here.

Monitoring algorithms have been analyzed in the past with respect to their space
requirements. The notion of trace-length independence requires a monitor’s space com-
plexity to be constant in the overall number of events. In some settings, only algorithms
satisfying this property are considered worthy of being called monitors [5]. Trace-length
independence aims at distinguishing monitors that can handle huge volumes of data
from those that cannot. The classic 3V characterization by volume, velocity, and vari-
ety [15], however, tells us that this is only one challenging aspect of big data. Here, we
account for another aspect: velocity or event rate.



We propose a new notion, event-rate independence, which states that a monitor’s
space requirement does not depend on the number of events in a fixed time unit. We
survey existing monitoring algorithms (Section 2) and identify several for past-only
linear temporal logic (ptLTL) [10] and its extension with metric intervals (ptMTL) [19]
that have this property. No such monitors exist, however, that support future operators.

We tackle this problem, focusing on metric temporal logic (MTL) [12] with bounded
future operators interpreted over streams of time-stamped events (Section 3). This dis-
crete semantics is based on integer time-stamps, which mirrors the imprecision of
physical clocks. A finite number of consecutive events, each defining a time-point,
might, however, carry the same time-stamp. The event rate is defined as the number
of time-points per time-stamp. There are several trace-length independent monitoring
algorithms for MTL on streams with a bounded event rate, but none that are event-rate
independent or even trace-length independent on streams with an unbounded event rate.

From a traditional standpoint, event-rate independent monitors for MTL seem im-
possible: future operators require the monitor to wait before it can output a Boolean
verdict on whether the formula holds. The sheer number of events that the monitor may
need to wait for is larger than the event rate. Moreover, it is unclear if one could even
achieve a slightly weaker notion, which we call almost event-rate independence, where
the monitor’s space complexity is upper bounded by a logarithm of the event rate (and
hence the monitor can store indices or pointers).

As a way out of this dilemma, we propose a monitor that works differently from the
traditional ones. Our monitor outputs two kinds of verdicts: standard Boolean verdicts
expressing that a formula is true or false at a particular time-point and equivalence
verdicts. The latter express that the monitor does not know the Boolean verdict at a given
time-point, but it knows that the verdict will be equal to another one (presently also not
known) at a different time-point. Additionally, our monitor will output verdicts out of
order relative to the input stream. Thus, it must indicate in the output to which time-
point a verdict belongs. Instead of storing (and outputting) a global time-point reference,
we store the time-stamp and the time-point’s relative offset denoting its position among
the time-points labeled with the same time-stamp. We assume that time-stamps can
be stored in constant space, which is realistic since 32 bits (as used for Unix time-
stamps) will suffice to model seconds for the next twenty years. Storing the offset,
however, requires space logarithmic in the event rate.1 Beyond this, our monitor’s space
requirement is independent of the event rate.

Although our monitor’s output is nonstandard, we are convinced that it is useful.
First, the output provides sufficient information to reconstruct all violations. Second,
often the monitor’s users are only interested in the existence of violations. In this case,
they can safely ignore all equivalence verdicts. Third, users are generally interested in
the first (earliest) violation. When outputting equivalences, we ensure that the equiva-
lence is output for the later time-points, while the earliest time-point stays in the mon-

1 One could argue that, if time-stamps model seconds, there is a physical bound on the number
of events that fit into this fixed unit of time and the space to store this number can be considered
constant. However, we envision applications where time-stamps model days, month, or even
years, for which the number of events fitting into one time unit increases dramatically.



itor’s memory and is eventually output with a Boolean verdict. Thus, users will always
see a truth value at the earliest violating event.

In summary, our work makes the following contributions. We propose the new no-
tion of (almost) event-rate independence, which is crucial for the online monitoring of
high-velocity event streams (Section 4). We provide an almost event-rate independent
monitoring algorithm for MTL on integer time-stamps with bounded future operators
(Section 5). Finally, we report on a prototype implementation of our algorithm (Sec-
tion 5.4) together with an experimental evaluation (Section 6). Taken together, these
contributions lay the foundations for online monitoring that scales both with respect to
the volume and the velocity of the event stream.

2 Related Work

There is considerable related work on monitoring. We focus on those algorithms and
techniques that are closely related to ours and we touch upon other related works.

Havelund and Roşu [10] propose a simple, yet efficient online monitor for past-time
linear temporal logic (ptLTL) using dynamic programming. The satisfaction relation of
ptLTL can be recursively defined on a trace by examining the truth-values of subfor-
mulas only at the previous time-point. They exploit this insight to develop an algorithm
that stores the truth-values of subformulas only at the two latest time-points. The algo-
rithm’s space complexity is O(n), where n is the number of subformulas.

Thati and Roşu [19] extend the results by Havelund and Roşu [10] to provide a trace-
length independent, dynamic programming monitoring algorithm for MTL based on
derivatives of formulas. Their monitor’s space complexity depends only on the size of
the formula and the constants occurring in its intervals. Thus their monitor is event-rate
independent. However, the algorithm outputs verdicts with respect to a non-standard
semantics of MTL, truncated to finite traces. It immediately outputs a verdict at time-
points without looking at future events that could possibly alter the verdict. Computing
verdicts this way defeats the purpose of (top-level) future operators: An until that is not
satisfied at the current time-point, but only at the next one, is reported as a violation.

Our algorithm builds on these dynamic programming approaches [10,19] to handle
past-time operators. Our technique for monitoring future formulas under the standard
non-truncated semantics of MTL in an event-rate independent manner is new.

Basin et al. [3, 4] introduce techniques to handle MTL and metric first-order tem-
poral logic with bounded future operators, adhering to the standard non-truncated se-
mantics for future formulas. Their monitor uses a queue to postpone evaluation until
sufficient time has elapsed to determine the formula’s satisfiability at a previous time-
point. This requires the algorithm to store in the worst case all time-points during the
time-interval it waits. Therefore the monitor’s space complexity grows linearly with the
event rate, as is confirmed by their empirical evaluation [3, Section 6.3]. Their monitor
outputs verdicts in order with respect to time-points, while our algorithm may output
verdicts out of order to achieve a better space complexity.

Researchers have developed trace-length independent monitoring algorithms for
various temporal specification languages. Maler et al. [14] compare the expressive
power of timed automata and MTL. They show that past formulas can be converted to



deterministic timed automata (DTA) and there exist future formulas that cannot be rep-
resented by a DTA. Ho et al. [11] give a trace-length independent algorithm for MTL in
the dense time domain. There exist trace-length independent monitors for timed regular
expressions [20], ptLTL extended with counting quantifiers [7], and ptMTL extended
with recursive definitions [9]. The underlying logics have different time domains and se-
mantics. We leave the study of event-rate independence in these settings as future work.

3 Metric Temporal Logic

Metric temporal logic (MTL) [12] is a logic for specifying qualitative and quantitative
temporal properties. We briefly describe the syntax and the point-based semantics of
MTL over a discrete time domain. A more in-depth discussion of various flavors of
MTL is given elsewhere [4].

Let I denote the set of non-empty intervals over N. We write an interval in I as [a,b],
where a ∈N, b ∈N∪{∞}, a≤ b, and [a,b] = {x ∈N | a≤ x≤ b}. For a number n ∈N,
I−n denotes {x−n | x∈ I}∩N. For an interval I, let max(I) denote the largest constant
occurring at the endpoints of I, i.e. max([a,b]) = b if b 6= ∞, else a. We write r for the
upper bound of the interval, i.e., r([a,b]) = b, which is possibly ∞.

The set of MTL formulas over a set of atomic propositions P is defined inductively:

ϕ= p | ¬ϕ | ϕ1∨ϕ2 |#I ϕ | I ϕ | ϕ1 SI ϕ2 | ϕ1 UI ϕ2,

where p ∈ P and I ∈ I. Along with the standard Boolean operators, MTL includes
the temporal operators  I (previous), SI (since), #I (next), and UI (until), which may
be nested freely. We restrict the intervals attached to future operators to be bounded,
i.e., we require r(I) 6= ∞, as we want the formulas to be both finitely satisfiable and
falsifiable (see [3] for details). We omit the subscript I if I = [0,∞), and use the usual
syntactic sugar for additional Boolean constants and operators true = p∨¬p, false =
¬true, ϕ∧ψ = ¬(¬ϕ∨¬ψ) and future temporal operators eventually ♦Iϕ ≡ true UI ϕ
and always �Iϕ≡¬♦I¬ϕ as well as their past counterparts once �I and historically �I .

MTL formulas are interpreted over streams, which are infinite sequences of time-
stamped events. A time-stamped event is of the form (πi, τi), where πi ∈ 2P and τi ∈N.
Given a stream ρ = 〈(π0, τ0), (π1, τ1), (π2, τ2), . . .〉, abbreviated by 〈(πi, τi)〉i∈N, we
call the τi time-stamps and their indices i time-points. The sequence of time-stamps
〈τi〉i∈N is monotonically increasing, i.e., τi ≤ τi+1 for all i≥ 0. Moreover, 〈τi〉i∈N makes
progress, i.e., for every τ ∈ N, there is some index i ≥ 0 such that τi > τ. Note that
successive time-points can have identical time-stamps; for example, 〈5,5, 5, 7, 8, . . .〉.
Hence, time-stamps may stutter, but only for finitely many time-points. A finite prefix
of an event stream is called trace.

The semantics of MTL formulas for a given stream ρ = 〈(πi, τi)〉i∈N and a time-
point i is defined inductively as follows.

(ρ, i) |= p iff p ∈ πi
(ρ, i) |= ¬ϕ iff (ρ, i) 6|= ϕ
(ρ, i) |= ϕ1∨ϕ2 iff (ρ, i) |= ϕ1 or (ρ, i) |= ϕ2
(ρ, i) |= Iϕ iff i > 0 and τi−τi−1 ∈ I and (ρ, i−1) |= ϕ
(ρ, i) |=#Iϕ iff τi+1−τi ∈ I and (ρ, i+1) |= ϕ



(ρ, i) |= ϕ1 SI ϕ2 iff (ρ, j) |= ϕ2 for some j≤ i with τi−τ j ∈ I
and (ρ, k) |= ϕ1 for all j < k ≤ i

(ρ, i) |= ϕ1 UI ϕ2 iff (ρ, j) |= ϕ2 for some j≥ i with τ j−τi ∈ I
and (ρ, k) |= ϕ1 for all i≤ k < j

When the stream ρ is clear from the context, we also simply write i |= ϕ.
From the semantics of MTL, it is easy to derive an equivalent recursive definition

for the until and since operators for a fixed stream ρ:
i |= ϕ1 SI ϕ2 iff 0 ∈ I and i |= ϕ2, or

i > 0, τi−τi−1 ≤ r(I), i |= ϕ1, and i−1 |= ϕ1 SI−(τi−τi−1) ϕ2

i |= ϕ1 UI ϕ2 iff 0 ∈ I and i |= ϕ2, or
τi+1−τi ≤ r(I), i |= ϕ1, and i+1 |= ϕ1 UI−(τi+1−τi) ϕ2

Note that the formula being “evaluated” on the right-hand side of these recursive equa-
tions has the same structure as the initial formula, except that the interval has been
shifted by the difference between the current and the previous (or the next) time-stamps.
Our algorithm, described in Section 5, uses these recursive equations to update the
monitor’s state by simultaneously monitoring the formulas arising from all possible
interval shifts. We call such formulas interval-skewed subformulas. For an MTL for-
mula ϕ, let SF(ϕ) denote the set of its subformulas defined in the usual manner. Note
that ϕ ∈ SF(ϕ). The set of interval-skewed subformulas of ϕ is defined as

ISF(ϕ) = SF(ϕ) ∪ {ϕ1 SI−n ϕ2 | ϕ1 SI ϕ2 ∈ SF(ϕ) and n ∈ [1,max(I)]}
∪ {ϕ1 UI−n ϕ2 | ϕ1 UI ϕ2 ∈ SF(ϕ) and n ∈ [1,max(I)]}.

Clearly, the size of ISF(ϕ) is bounded by O(|SF(ϕ)|× c), where c is the largest integer
constant occurring in the intervals of ϕ. We define a well-order < over ISF(ϕ) that
respects the following conditions:

– if ϕ1 is a subformula of ϕ2 and ϕ1 6= ϕ2, then ϕ1 < ϕ2
– if ϕ1 = αSI β and ϕ2 = αS I′β and I′ = I−n for some n > 0, then ϕ1 < ϕ2.

We use this to order the elements of ISF(ϕ) into an array in Section 5.
We also define the future reach (FR) of an MTL formula following Ho et al. [11],

which we subsequently use to analyze the complexity of our proposed algorithm.

FR(p) = 0 FR(¬ϕ) = FR(ϕ) FR(ϕ1∨ϕ2) =max(FR(ϕ1), FR(ϕ2))
FR( Iϕ) = FR(ϕ)− inf(I) FR(#Iϕ) = sup(I)+FR(ϕ)
FR(ϕ1 SI ϕ2) =maximum(FR(ϕ1), FR(ϕ2)− inf(I))
FR(ϕ1 UI ϕ2) = sup(I)+maximum(FR(ϕ1), FR(ϕ2))

Here maximum denotes the maximum of two integers and sup and inf denote the supre-
mum and infimum of sets of integers, respectively. For a bounded future MTL formula
ϕ, we have FR(ϕ) 6= ∞. Intuitively, events that have a time-stamp larger than τi+FR(ϕ)
are irrelevant for determining ϕ’s validity at a time-point i with time-stamp τi.

Example 1. Consider the formula ϕ = a U[0,1] b and the event stream ρ = 〈({a}, 1),
({a}, 2), ({a}, 2), ({b}, 3),({a,b}, 4), . . .〉. In Figure 1,> and⊥ denote the satisfaction
and violation of ϕ. Note that the verdict ⊥ at time-point 0 is determined only after the
event ({b}, 3) has arrived. This observation would also apply, even if the event ({a}, 2)
was replicated arbitrarily often in the stream.



i (time-point) 0 1 2 3 4 . . .
πi (events) {a} {a} {a} {b} {a,b} . . .
τi (time-stamps) 1 2 2 3 4 . . .
i |= aU[0,1] b ⊥ > > > > . . .

Fig. 1. Evaluation of aU[0,1] b on an example stream

4 Almost Event-Rate Independence

The space complexity of monitoring algorithms has been previously analyzed with re-
spect to two parameters: formula size and trace length. In most scenarios, the formula
is much smaller than the trace and does not change during monitoring. Hence, an algo-
rithm with a space complexity exponential in the formula size is usually tolerable, but a
space complexity linear in the trace length is problematic since this corresponds to stor-
ing the entire trace. Recently, researchers have studied trace-length independence [5].
A monitor is trace-length independent if its efficiency does not decline as the number of
events increases. In the setting of MTL, we call a monitoring algorithmM trace-length
independent on the stream ρ if the space required byM to output the verdict at time-
point i when monitoring ρ is independent of i. This property is critical for determining
whether a monitor scales to large quantities of data. However, it does not yield insights
into the monitor’s performance regarding other aspects of the stream such as its velocity.

We propose the notion of event-rate independence, which not only guarantees the
monitor’s memory efficiency with respect to the number of events, but also with respect
to the rate at which the events arrive. A varying event rate is a realistic concern in many
practically relevant monitoring scenarios. For example, if the unit of time-stamps is on
the order of days, there may be millions of time-points with the same time-stamp in a
stream. An event-rate dependent algorithm may work well on days with a few thousand
events, but fall short of memory when the number of events rises significantly. (Such
a situation could be an indicator that something interesting happened, which in turn
makes the monitor’s output particularly valuable on that day.)

We first formally define a stream’s event rate.

Definition 1. The event rate er of a stream ρ= 〈(πi, τi)〉i∈N at time-stamp τ is defined as
the number of time-points whose time-stamps are equal to τ, i.e., erρ(τ) = |{i | τi = τ}|.
An online monitoring algorithmM for MTL is event-rate independent on the stream ρ
if for all time-points i the monitorM’s space complexity to compute the verdict at i is
constant with respect to erρ(τj) for all j≤ i, i.e., the event rates in ρ at all time-stamps
up to and including the current one. Ultimately, we are interested in monitors that are
event-rate independent on all streams ρ. For example, the dynamic programming algo-
rithms [10, 19] are event-rate independent on all streams ρ for past-only MTL.

The trace length up to time-point i is greater than the sum of the event rates erρ(τ)
for τ < τi for all streams ρ. Hence, we obtain the following lemma by contraposition.

Lemma 1. Fix a stream ρ. LetM be a monitoring algorithm for MTL. IfM is event-
rate independent on ρ, thenM is trace-length independent on ρ.

In general, event-rate independence is not strictly stronger than trace-length indepen-
dence. To see this, consider the following stream where the event rate itself depends on



the trace length: ρ= 〈(π0, 0), (π1, 1), (π1, 1), (π2, 2), (π2, 2), (π2, 2), (π2, 2), . . .〉, where
(πτ, τ) is repeated 2τ times. Any event-rate dependent monitor for ρ is also trace-length
dependent, since the event rate is roughly half of the trace length at each time-point.

In contrast to the above example, streams arising in practice have a bound on the
event rate. For such an (event-rate) bounded stream ρ we have ∀i. erρ(τi) < bρ for some
arbitrary but fixed bρ. In fact, the related bounded variability assumption [8, 11, 14] is
deemed necessary for trace-length independence. The consideration of the event rate
clarifies the need for this assumption: On bounded streams ρ, event-rate independence
is strictly stronger than trace-length independence. For example, monitors using a wait-
ing queue for future operators [3] are trace-length independent on ρ, but not event-rate
independent on ρ. On unbounded streams, i.e., streams that are not event-rate bounded,
the two notions coincide. This is in line with the fact that there are trace-length inde-
pendent monitors for MTL (with future operators) on bounded streams [3,11], but none
on unbounded streams.

Event-rate independence and trace-length independence for unbounded streams are
indeed impossible if we adhere to the mode of operation of existing MTL monitors. Ex-
isting monitors output verdicts monotonically, i.e., for time-points i and j, if i < j then
the verdict at i is output before the verdict at j. Monotonicity makes any monitor han-
dling future operators linearly event-rate dependent (and hence trace-length dependent
for unbounded streams), as it must wait for and therefore store information associated
to more than erρ(τ)-many events (for some τ) before being able to output a verdict. So
event-rate independence seems to be too strong a condition for traditional monitors.

To overcome this problem, our monitor outputs verdicts differently. In addition to
the standard Boolean verdicts > and ⊥, it outputs equivalence verdicts j ≡ i (with
i < j) if it is certain that the verdict at time-point j will be equivalent to the verdict at a
previous time-point i, even if the exact truth value is presently unknown at both points.
This makes verdict outputs non-monotonic with respect to time-points, but it is still
possible to ensure monotonicity with respect to time-stamps for time-stamps that are far
enough apart. More precisely, a monitor that is monotonic with respect to time-stamps
outputs the verdict at i before the verdict at j when monitoring ϕ, if τ j−τi > FR(ϕ).

To output equivalence verdicts, the algorithm must refer to time-points. This re-
quires non-constant space, e.g., logarithmic space for natural numbers. Time-points in-
crease with the trace length, leading to a logarithmic dependence on the trace length.
An alternative way to refer to time-points is to use time-stamps together with an offset
pointing into a block of consecutive time-points labeled with the same time-stamp. (The
size of such a block is bounded by the event rate.) The space requirement of an algo-
rithm outputting such verdicts is therefore not event-rate independent. However, it is
logarithmic in the event rate. These observations suggest the slightly weaker notion of
almost event-rate independence, which is defined identically to event-rate independence
except that the space complexity is upper bounded by a logarithm of the event rate.

Definition 2. An online monitoring algorithmM for MTL is almost event-rate inde-
pendent if for all time-points i and streams ρ the space complexity ofM for outputting
the verdict at i is O(log(max j≤i erρ(τj))).

Our proposed monitor is almost event-rate independent. Moreover, it is the first
almost trace-length independent monitor on unbounded streams.



5 Monitoring Algorithm

We describe the high-level design of our monitoring algorithm for MTL informally.
Then we give a formal description using functional programming notation, prove its
correctness and almost event-rate independence, and discuss implementation details.

5.1 Informal Account

The idea of outputting equivalence verdicts draws inspiration from a natural way to
approach simultaneous suffix matching with automata. To decide which suffixes of a
word are matched by an automaton, a naive approach is to start running the automa-
ton at each position in the word. For a word of length n this requires storing n copies
of the automaton. A more space-efficient approach is to store a single copy, and use
markers (one marker for each position in the word) that are moved between states upon
transitions. If n is larger than the number of states, then at some point two markers will
necessarily mark the same state. At this point, it suffices to output their equivalence and
track only one of them, since they would travel through the automaton together. Our al-
gorithm follows a similar approach; however, we avoid explicitly constructing automata
from formulas.

Our algorithm builds on Havelund and Roşu’s dynamic programming algorithm for
past-time LTL [10], where the monitor’s state consists of an array of Boolean verdicts
for all subformulas of the monitored formula at a given time-point. The array is dy-
namically updated when consuming the next event based on the recursive definition of
satisfiability for LTL. To support intervals, we use the idea by Thati and Roşu [19] to
store an array of verdicts for all interval-skewed subformulas instead of plain subformu-
las as in Havelund and Roşu. This accounts for possible interval changes when moving
between different time-stamps according to the recursive definition of satisfiability for
past-time MTL. This step crucially relies on the time-stamps being integer-valued, as
otherwise the number of skewed subformulas would be infinite.

The problem with future operators is that they require us to wait until we are able to
output a verdict. At first, we sidestep almost event-rate independence and formulate a
dynamic programming algorithm that treats past operators as Havelund and Roşu’s al-
gorithm [10] but also supports future operators. The recursive equation for until reduces
the satisfaction of a formula ϕ1 UI ϕ2 at the current time-point to a Boolean combina-
tion of the satisfaction of ϕ1 and ϕ2 at the current time-point and the satisfaction of
ϕ1 UI−n ϕ2 (for some n) at the next time-point. While we can immediately resolve the
dependencies on the current time-point, those on the next time-point force us to wait.
This also means that we cannot store the verdict in an array (because we do not know
it yet), but instead we will store the dependency in the form of pointers to some en-
tries in the next array to be filled. In general, our dynamically updated array (of length
|ISF(ϕ)|), indexed by interval-skewed subformulas, will contain Boolean expressions
instead of Booleans, in which the variables denote the dependencies on those next en-
tries.

Additionally, we may only output verdicts when the Boolean expressions are re-
solved to a Boolean verdict. This will happen eventually, since in our setting time pro-
gresses and future intervals are bounded. But until this happens, the yet-to-be-output



Boolean expressions must be stored, which affects the algorithm’s space consumption.
In the worst case, the monitor would store as many expressions as there are time-points
in any interval of timespan d, where d is the future reach of the monitored formula.

Finally, to obtain almost event-rate independence, we refine our monitor’s output
by allowing it to output equivalence verdicts between different time-points. As soon
as the monitor sees two semantically equivalent Boolean expressions, it may output
such verdicts and discard one of the two expressions. Since there are only O(22|ISF(ϕ)|)
semantically different Boolean expressions in O(|ISF(ϕ)|) variables (corresponding to
the verdicts for interval-skewed subformulas at the next time-point), the space required
to store them depends only on the monitored formula ϕ. However, for the equivalence
verdicts to be understandable to users, the equivalences must refer to different time-
points via indices. Storing those indices requires logarithmic space in the event rate.
Hence, the overall algorithm is almost event-rate independent.

5.2 The Algorithm

We now give a more formal description of our algorithm. For the presentation, we use
a functional programming-style pseudo code, with pattern matching, that resembles
Standard ML. Type constructors, such as _ list or _ array for functional lists and arrays
(lists of fixed length with constant time element access), are written postfix, with the
exception of the product type × and the function space→, which are written infix. We
write N for the type of natural numbers and, for the type of time-stamps (although, in
our case, these are again just natural numbers). Lists are either empty [] or constructed
by prepending an element to a list x :: xs. List concatenation is written infix as ++.
Anonymous functions are introduced using λ-abstractions.

Our monitor for a fixed formula Φ operates on an input stream of time-stamped
events I and writes verdicts to an output stream O. Additionally, it starts in some initial
state init of type σ and can perform state transitions step : σ→ σ. The state consists of
three parts: a list of time-stamped Boolean expressions for which the verdict depends on
future events, a current time-stamp, and an array of Boolean expressions for all interval-
skewed subformulas at the current time-point (similarly to the state of Havelund and
Roşu’s algorithm). Expressions for small subformulas are stored at low indices in this
array, while the monitored formula Φ has index |ISF(Φ)| − 1. In other words, if we
think of the array as being indexed by subformulas, then the array’s indices are ordered
by the well-order <. We formalize the state using a record type:

record σ= {hist : (,×N×bexp) list, now :,×N, arr :,→ bexp array}.

Two points are worth noting here. First, in addition to the time-stamp for each time-
point, we store an offset of type N, which stores the position of the time-point within
a block of time-points with the same time-stamp. Using the time-stamp and the offset,
each time-point can be uniquely identified. Second, the array in arr has a dependency
on a future time-stamp because the recursive definition of satisfaction for until depends
the time-stamp difference between the next and the current time-point. As a result, our
monitor will output a verdict for a time-point only after having seen the time-stamp of
the next time-point. We will revisit and rectify this limitation in Section 5.4.

Overloading notation, (Boolean) expressions can be defined inductively as follows:



init= {hist= [], now = (−1, 0), arr = λ_.⊥n}
step {hist= h, now = (τ, i), arr = fa}=

let (π, τ′)⇐ I
a = fa τ′

h′ = fold (update a) (rev h) []
j = if τ= τ′ then i+1 else 0

in {hist= add (τ, i, a[Φ]) h′, now = (τ′, j),
arr = progress a τ π τ′}

update a (τ, i, b) h =
let c = subst (λx. a[x]) b
in if c =>∨ c =⊥

then
let if τ≥ 0 then (τ, i, c)⇒ O
in h

else
add (τ, i, c) h

Fig. 2. The transition system of the monitor: init and step

bexp =⊥ | > | bexp∧bexp | bexp∨bexp | ¬bexp | var N.

Here, a variable should be thought of as a pointer into the arr array of the yet-to-
be-computed next state, i.e., a natural number less than n, where n is the number
of interval-skewed subformulas of Φ. To lighten the notation, we implicitly convert
interval-skewed subformulas of Φ to natural numbers between 0 and n− 1, and vice
versa. For example, we write var ϕ (or a[ϕ]) to denote a variable pointing to the ar-
ray entry corresponding to the formula ϕ (or the array entry itself). We assume that all
expressions of type bexp are normalized using Boolean simplifications, e.g., ⊥∧ x is
rewritten to ⊥. Thus, each expression is either a Boolean ⊥ or > or does not contain ⊥
or > as a subexpression. Furthermore, we will use the function subst : (N→ bexp)→
bexp→ bexp to replace variables with expressions according to the given function ar-
gument as well as a decision procedure ≡ : bexp→ bexp→ {⊥,>} for the semantic
equivalence of Boolean expressions. We omit the definitions of those two functions.

The monitor’s initial state init and its transition function step are shown in Figure 2.
The function step formalizes the transition from the current time-point to the next one.
First, it retrieves the new event π and its time-stamp τ′ from the input stream I (which
we write as (π, τ′)⇐ I). Using τ′, the next step evaluates the future-dependent array fa
to obtain an array of Boolean expressions a. Note that the expressions in a refer to the
array of the next state, while all expressions in the history h refer to the current state,
namely to a itself. To overcome this mismatch, the monitor iterates over the history
using the standard fold combinator on lists and updates each of the Boolean expressions
to refer to the next state using subst in the function update. This update may convert
some of the expressions into Boolean verdicts, which are immediately output (written
. . .⇒ O) and removed from the history. Next, the monitor computes the new offset j
depending on whether the time-stamp has increased. Finally, the last entry of the array
a is added to the history (or output in case it is a Boolean verdict) using the function
add and the new future-dependent array is produced by (a partial application of) the
progress function and stored in the state. We describe these two core functions next.

We consider three different implementations of the add function:

add (x as (_, _, c)) xs =

if c =⊥∨ c => then (let x⇒ O in xs) else


x :: xs NAIVE

go⊥ [] x xs GLOBAL

go> [] x xs LOCAL



progress a τ π τ′ τ′′ =
let b =⊥n

for x = 0, . . . , n−1
b[x] = case x of
| p ⇒ p ∈ π
| ¬ϕ ⇒ ¬ b[ϕ]
| ϕ∨ψ ⇒ b[ϕ] ∨ b[ψ]
| Iϕ ⇒ if τ′−τ ∈ I then subst (λx. b[x]) a[ϕ] else⊥
|#Iϕ ⇒ if τ′′−τ′ ∈ I then var ϕ else⊥
| ϕSI ψ ⇒ (if 0 ∈ I then b[ψ] else⊥) ∨

(if τ′−τ≤ r(I) then b[ϕ] ∧ subst (λx. b[x]) a[ϕSI−(τ′−τ) ψ] else⊥)
| ϕUI ψ ⇒ (if 0 ∈ I then b[ψ] else⊥) ∨

(if τ′′−τ′ ≤ r(I) then b[ϕ] ∧ var (ϕSI−(τ′′−τ′) ψ) else⊥)
in b

go loc done x [] = x :: rev done
go loc done (τ, i, b) ((τ′, j, c) :: todo) =

if loc∧τ 6= τ′ then (τ, i, b) :: rev done++ (τ′, j, c) :: todo
else if c≡ d then

let (τ, i)≡ (τ′, j)⇒O in rev done++(τ′, j, c) :: todo
else go loc ((τ′, j, c) :: done) (τ, i, b) todo

Fig. 3. Recursive formula progression and insertion modulo semantic expression equivalence

The NAIVE version simply prepends the element to the history (which is kept in re-
versed order with respect to the input stream). This version is not almost event-rate
independent. The GLOBAL version adds the new expression only if there is no semanti-
cally equivalent expression in the history. The LOCAL version adds the new expression
only if there is no semantically equivalent expression labeled with the same time-point.
Whenever an expression is not added to the history, an equivalence verdict is output.
Both versions, LOCAL and GLOBAL, are implemented using the auxiliary function go
shown in Figure 3 and give rise to almost event-rate independent algorithms.

The last missing piece is the update of the arr entry of the monitor’s state. The
function progress shown in Figure 3 performs this update. It has access to the previous
time-stamp τ, the current time-stamp τ′, the next time-stamp τ′′, the current event π, and
the previous array of Boolean expressions a. Given these inputs, it fills the next array b
starting from the smallest subformulas and progressing up to the formula Φ itself. Each
array entry is filled following the recursive definition of satisfaction of the topmost
operator of the formula it corresponds to. Moreover, whenever the previous array a is
accessed for past operators, the retrieved expression’s dependencies are updated using
subst as before. In contrast, for future dependencies, the var constructor of expressions
is used.

Example 1. (continued) Figure 4 shows the internal states of the GLOBAL version of our
algorithm when monitoring the formula aU[0,1] b on the stream ρ= 〈({a}, 1), ({a}, 2),
({a}, 2), ({b}, 3),({a,b}, 4), . . .〉. The first two rows show the incoming events and their
time-stamps, the third the within-time-stamp offset, and the fourth the current history.
The next four rows are dedicated to the Boolean expressions stored for each interval-
skewed subformula. The last row displays the monitor’s verdicts. At each time-point,
the monitor’s state consists (roughly) of one column from this table. Since it is hard to
display the function fa, we show instead the result of applying fa to the time-stamp of
the next state. This causes a delay of one time-point between the values in the arrays
and the history updates and verdict outputs.



π {a} {a} {a} {b} {a,b}
τ − 1 2 2 3 4
i 0 0 0 1 0 0

h [] [] [(1, 0, var ϕ0)]
[(2, 0, var ϕ1),
(1, 0, var ϕ0)]

[(2, 0, var ϕ0)] []

fa 1 fa 2 fa 2 fa 3 fa 4 · · ·
a ⊥ > > > ⊥ ·· ·
b ⊥ ⊥ ⊥ ⊥ > ·· ·

ϕ0 = aU[0,0] b ⊥ ⊥ var ϕ0 ⊥ > ·· ·
ϕ1 = aU[0,1] b ⊥ var ϕ0 var ϕ1 var ϕ0 > ·· ·

verdicts
(1, 0) =⊥
(2, 1) = (2, 0)

(2, 0) =>
(3, 0) =>

Fig. 4. An execution of the monitoring algorithm on aU[0,1] b

5.3 Correctness and Complexity Analysis

In this subsection, we fix a formula Φ and a stream ρ. To prove the soundness and
completeness of our monitor and to establish its space complexity bounds, we formulate
an invariant I that holds after processing the first event and all subsequent states.

I {hist= h, now = (τ, i), arr = fa)}=
(I1) (∀(τ′, j, b) ∈ h. τ′@ j |=Φ←→ τ@i |=bexp b)
∧ (I2) (∀ϕ ∈ ISF(Φ). τ@i |= ϕ←→ τ@i+1 |=bexp fa (ττ@i+1)[ϕ])
∧ (I3) (∀ϕ ∈ ISF(Φ). vars (fa (ττ@i+1)[ϕ])⊆ ISF(ϕ))
∧ (I4) (∀(τ′, j, b) ∈ h. b 6=>∧b 6=⊥)
∧ (I5) h is sorted in strictly descending order by time-point
∧(I6) (∀(τ′, j, b)∈ h. ∀(τ′′, k, c)∈ h. τ′@ j 6= τ′′@k→ compact τ′ τ′′ b c)

We write τ@i to denote the time-point uniquely identified by the time-stamp τ and the
within-time-stamp offset i. Moreover, vars is the set of vars in a Boolean expression, τk
is the time-stamp from ρ at time-point k, and |=bexp is the lifting of MTL satisfaction to
expressions. For the base case of this lifting, we have k |=bexp var ϕ←→ k |= ϕ.

The invariant consists of six predicates. (I1) and (I2) capture the semantics of the
entries in the history and the expression array. (I3) expresses that future dependencies
in any expression indexed by a subformula ϕ may only refer to ϕ’s interval-skewed
subformulas. (I4) and (I5) are important structural properties of the history. (I6) is
crucial for our complexity analysis. It uses an auxiliary predicate compact, defined
differently for each of the three versions of the monitoring algorithm we consider.

compact τ′ τ′′ b c =


> NAIVE

b 6≡ c GLOBAL

τ′ = τ′′→ b 6≡ c LOCAL

We prove that I holds for every reachable state except the initial state itself. In the
initial state (I2) is violated. The fa array of the initial state is accessed only for past-
time operators at the first event. In this case, the stored values⊥ for all subformulas have
exactly the right semantics: essentially they affirm that there is no previous time-point.



Lemma 2. I (step init) and for any state s if I(s) then I (step s)

Proof (core idea). The core of the proof is the preservation of (I2) by the progress
function. We prove the following auxiliary lemma: Fix a stream ρ= 〈(πi, τi)〉i∈N and a
time-point k. Assume progress a τk πk+1 τk+1 τk+1 = b and for all ϕ ∈ ISF(Φ) we have
k |= ϕ←→ k+1 |=bexp a[ϕ]. Then k+1 |= ϕ←→ k+2 |=bexp b[ϕ] holds for all ϕ∈ ISF(Φ).

The lemma follows by well-founded induction on the lexicographic product of the
natural number order on time-points and the order < on formulas: Fix ϕ ∈ ISF(Φ).
The induction hypothesis allows us to assume k+1 |= ψ←→ k+ 2 |=bexp b[ψ] for any
ψ < ϕ. We continue by a case distinction on ϕ and present here only the case where
ϕ= ϕ1 UI ϕ2. Let ∆= τ′′−τ′ and I′ = I−∆. We calculate

k+1 |= ϕ1 UI ϕ2
recursive def. of |=←→ (0 ∈ I∧ k+1 |= ϕ2)∨

(∆≤ r(I)∧ k+1 |= ϕ1∧ k+2 |= ϕ1 UI′ ϕ2)

twice IH + def. |=bexp←→ (0 ∈ I∧ k+2 |=bexp b[ϕ2])∨
(∆≤ r(I)∧ k+2 |=bexp b[ϕ1]∧ k+2 |=bexp var (ϕ1 UI′ ϕ2))

def. of progress←→ k+2 |=bexp b[ϕ1 UI ϕ2]

Other cases follow similarly. Past operators additionally use the assumption on a. ut

The step from the invariant to a correctness theorem is easy. For soundness, we
calculate the expected semantic properties for verdicts output in a step taking (I1) and
(I2) of the invariant into account. Completeness also holds: for each time-point either
a verdict is output or an expression is inserted into the history. Each expression from
the history is eventually output as time progresses and all future intervals are bounded.

Theorem 1 (Correctness). The monitor for a formula Φ is sound: whenever it outputs
the Boolean verdict (τ, i, b) we have τ@i |=Φ←→ b and whenever it outputs the equiv-
alence verdict (τ, i)≡ (τ′, j) we have τ@i > τ′@ j and τ@i |=Φ←→ τ′@ j |=Φ. For the
LOCAL mode, we additionally have τ= τ′. Moreover, the monitor is complete.

Finally, we establish complexity bounds. Let n= |ISF(Φ)| and d = FR(ϕ). Note that
d ≤ n. The size of a Boolean expression in n variables can be bounded by 2n assuming
a normal form for expressions such as CNF. Then the size of the future-dependent array
arr is n ·2n. The length of the history depends on the version of the algorithm used and
(except for the NAIVE algorithm) dominates the size of arr.

Theorem 2 (Space Complexity). The space complexity for storing all Boolean expres-
sions used by the three versions of the algorithm at the time-stamp τ is

NAIVE: O(2n · (n+∑
τ
τ′=τ−d er(τ

′))), GLOBAL: O(22n+n), and LOCAL: O(d ·22n+n).

Time-stamps additionally require a constant and the offsets a logarithmic amount of
space in the event rate. Hence, GLOBAL and LOCAL are almost event-rate independent.

Proof. Each stored Boolean expression requires O(2n) space. The bound for NAIVE
follows since, at time-stamp τ, we can output Boolean verdicts for all time-stamps that
are at most τ−d. Hence, the history needs to store only those expressions that fit into the
interval (τ−d, τ]. For GLOBAL (or LOCAL) there are at most 22n

(or d ·22n
) semantically

different Boolean expressions that must be stored in the history. ut



5.4 Implementation

We have implemented the presented algorithm using Standard ML. The implementation
comprises just roughly 600 lines of code. It is available online [1].

Our implementation follows the pseudo-code in Section 5.2. In one aspect, it takes a
more refined approach. The monitor’s users would like violations to be reported as early
as possible. The presented monitor does not do this as it delays the output of verdicts for
one time-point, even if no future operators are involved. Our implementation improves
this by refining the type of arr in the monitor’s state from,×N×(,→ bexp array) to
the more precise,×N×bexpf array, where the type of potentially future expressions
bexpf is either an immediate Boolean expression or a future-dependent expression as
before. Formally bexpf = Now bexp | Later (,→ bexp).

This refined type makes it possible to output verdicts at the current time-point in-
stead of the following one, provided that the computation of progress resulted in a Now
constructor for the monitored formula Φ. Accordingly, the function progress must be
refined to carefully assemble possibly future expressions to maximize the number of
Now constructors in the array. To achieve this, all constructors (e.g., ∧) of bexp are
lifted to functions (e.g., ∧f ) on bexpf that try to produce as many Nows as possible by
applying simplification rules such as Now ⊥∧f Later f = Now ⊥.

To implement the expression equivalence check, we use a simple BDD based algo-
rithm that has been formally verified in the Isabelle proof assistant by Nipkow [16]. It
would be interesting to explore working with BDDs instead of Boolean expressions all
the time (and not only in the equivalence check) to potentially improve time complexity.

6 Evaluation

We compare the three versions of our tool with MONPOLY [2, 3], a state-of-the art
monitor for metric first-order temporal logic. The experiments were run on a 3.1 GHz
dual-core Intel Core-i7 processor and 16 GB RAM. We evaluate the memory consump-
tion of all tools while monitoring four MTL formulas on pseudo-randomly generated
event logs with varying average event rates. For the random generation, we used a dif-
ferent probability distribution for each event, depending on the formula. For example,
for the formula ♦[0,5]p, the probability of p occurring was very small. All our logs con-
sist of 100 different time-stamps, with the number of time-points labeled with the same
time-stamp ranging from 100 to 100000 on average per log. Overall, the log files com-
prised 8 GB of data. Their generation required more time than the actual monitoring
task (at least for the LOCAL and GLOBAL version of our algorithms). GNU Parallel [18]
was invaluable for both generating the logs and running the four tools on them.

Figure 5 shows our evaluation results. Each data point in the graphs represents the
average of the maximum memory consumption over 10 randomly generated logs of a
fixed average event rate. (The standard deviation is omitted in the figure as it was far
below 1 MB for most time-points.) For all formulas, the space consumption of both the
NAIVE version of our tool and MONPOLY increases linearly in the event rate, while for
LOCAL and GLOBAL it stays almost constant. This relationship between the memory
usage and the average event rate is consistent with our theoretical analysis. Moreover,



100 1,000 10,000 100,000

20

40

60

us
ed

m
em

or
y

in
M

B

♦[0,5]p

100 1,000 10,000 100,000

20

40

60
pU[0,5] q

100 1,000 10,000 100,000

20

40

60

average event rate in log scale

us
ed

m
em

or
y

in
M

B

pU[0,5] (qS[2,6] r)

100 1,000 10,000 100,000

20

40

60

average event rate in log scale

pU[0,5] (qU[2,6] r)

NAIVE LOCAL GLOBAL MONPOLY

Fig. 5. Results of the experimental evaluation

LOCAL and GLOBAL do not differ essentially in memory consumption. We therefore
advise using the LOCAL version of the algorithm given its additional guarantee of out-
putting equivalence verdicts only for time-points labeled with the same time-stamp.

Although we were not measuring time, increasing the memory consumption to 60
MB results in a significant increase in processing time per event, which leads to a much
lower throughput for monitors like NAIVE and MONPOLY. This is not the case for our
almost event-rate independent monitors.

7 Conclusion

We introduced the notion event-rate independence for measuring the space complex-
ity of monitoring algorithms. This notion is desirable for monitors processing event
streams of varying velocity. We presented a novel algorithm for monitoring metric tem-
poral logic with bounded future operators that is almost event-rate independent. Our
algorithm is concise and efficient.

As future work, we plan to study which extensions of metric temporal logic per-
mit almost event-rate independent algorithms. Moreover, we intend to parallelize our
algorithm, using existing frameworks in the spirit of Spark [21], to obtain monitors for
expressive temporal logics that scale to big data applications.
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[17] Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Automated
Software Engineering 12(2), 151–197 (2005)

[18] Tange, O.: Gnu parallel - the command-line power tool. ;login: The USENIX Magazine
36(1), 42–47 (Feb 2011), http://www.gnu.org/s/parallel
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