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Abstract. In many network applications and services, agents that share
no secure channel in advance may still wish to communicate securely
with each other. In such settings, one often settles for achieving security
goals weaker than authentication, such as sender invariance. Informally,
sender invariance means that all messages that seem to come from the
same source actually do, where the source can perhaps only be identified
by a pseudonym. This implies, in particular, that the relevant parts of
messages cannot be modified by an intruder.
In this paper, we provide the first formal definition of sender invariance
as well as a stronger security goal that we call strong sender invariance.
We show that both kinds of sender invariance are closely related to,
and entailed by, weak authentication, the primary difference being that
sender invariance is designed for the context where agents can only be
identified pseudonymously. In addition to clarifying how sender invari-
ance and authentication are related, this result shows how a broad class
of automated tools can be used for the analysis of sender invariance pro-
tocols. As a case study, we describe the analysis of two sender invariance
protocols using the OFMC back-end of the AVISPA Tool.

1 Introduction

The establishment of a secure channel between communicating parties requires a
pre-existing relationship between them. Examples of such relationships include
shared passwords and transitive relationships, for instance where the parties
exchange public-key certificates issued by a trusted certification authority. Com-
mon to these types of relationships is the prerequisite that some data is available
in order to bootstrap the secure channel. This data may have been exchanged in
advance, or it might be produced on the fly by a reliable source like a certification
authority.

In many network applications and services, however, agents that share no
such bootstrap data in advance may still wish to communicate securely with
each other. Indeed, they might have no prior relationship whatsoever, not even
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a transitive one. In such situations, classical authentication (e.g. via public keys)
is impossible. To remedy this problem, one would have to define a process by
which bootstrap data is established and distributed, but in many settings this is
too expensive or cumbersome, as one must require that every participant must
somehow “register” before using a service. For a small coffee shop offering its
customers a wireless hotspot, such a registration process could detract from one
of its main selling points: convenience.

In settings where no bootstrap data is available, a weaker security goal is
still achievable, namely sender invariance. Informally, sender invariance means
that all messages that seem to come from the same source actually do, where the
source can perhaps only be identified by a pseudonym. This implies, in particular,
that the messages cannot be modified by an intruder, at least not their relevant
parts. Moreover, one may want to ensure the secrecy of the communicated data
between the participants.

Sender invariance arises in a variety of situations, both wired and wireless.
Consider, for instance, any of the many free web-based e-mail services available
online. In general, users register for an online e-mail service via an informal pro-
cess whereby a new username and password are established. At no point does
a formal authentication process take place involving, for example, photo identi-
fication or a physical signature. This process is acceptable, as an email address
can be seen as a pseudonym that is not necessarily linkable with its owner’s true
identity. This, however, has ramifications concerning how one should describe the
login process, as there is no reliable means of linking the established username
with the identity of the user. If one considers the login process and ignores regis-
tration, simply assuming that credentials have been exchanged sometime in the
past, then the user login process can be called authentication. However, in light
of this informal registration process, the login process should more accurately be
described as ensuring sender invariance: that is, the user with pseudonym John
Doe is the same user who originally opened the account registered as John Doe,
although the e-mail provider does not know his proper identity.

Such online services, whose users can be logged in based only on creden-
tials which are not linkable to their actual identities, are already prevalent. As
networks move towards increased mobility and ad-hoc connections, situations
in which reliable pre-shared cryptographic credentials are limited or unavailable
will arise with increasing frequency. Understanding what security goals can be
achieved in such situations is important for the design of next-generation net-
work protocols. In this paper, we aim to further this understanding by examining
sender invariance in detail.

Contributions: Our first contribution is a formal definition of sender invariance
and a stronger, related security goal which we call strong sender invariance. We
also show that (strong) sender invariance is closely related to weak authentica-
tion, the primary difference being that sender invariance assumes that agents
can only be identified pseudonymously. Based on this, we show that the three
security goals constitute a hierarchy. Furthermore, we show how a broad class of
automated analysis tools can be used to analyze sender invariance protocols. We



also describe the analysis of two protocols using the On-the-Fly Model Checker
OFMC [7], one of the back-ends of the AVISPA Tool for security protocol anal-
ysis [3].

Related Work: Our work focuses on the formal definition security goals and the
relationships between them. Gollmann [14] considered authentication in detail,
and Lowe [16] subsequently defined a hierarchy of authentication goals which
apply in settings where relationships between agents have been established in
advance. In §2.5, we similarly define a hierarchy that relates the two forms of
sender invariance and weak authentication. Our focus, however, is on settings in
which the kinds of relationships that one would normally require to bootstrap a
secure channel are not available.

Our motivation to examine settings where agents know each other perhaps
only via pseudonyms was inspired by current trends in protocol development, in
particular the work of the Internet Engineering Task Force on Mobile IPv6 [15].
In [17], for instance, the authors identify sender invariance as a goal that should
be ensured by the IPv6 SEcure Neighbor Discovery protocol (SEND [2]) in ad
hoc networks.1 In SEND, this is achieved via a mechanism for providing sender
invariance called Cryptographically Generated Addresses (CGA [4]). In this pa-
per, we consider a similar idea, the Purpose-Built Keys Framework [10].

Organization: In §2, we define and discuss sender invariance and strong sender
invariance. In §3, we present a case study based on the Purpose-Built Keys
Framework that illustrates the formal analysis of sender invariance with the
OFMC tool. In §4, we discuss settings in which agents share some bootstrap
data, but not enough to achieve mutual authentication. In §5, we summarize our
results and discuss future work.

2 Sender Invariance

Designers of modern security protocols face a challenge. On the one hand, pro-
tocols need to be designed with ever-increasing mobility in mind. On the other
hand, this very mobility means that designers should also make few assump-
tions about the amount of information shared, in advance, among protocol par-
ticipants; indeed, one must often assume that participants share no a priori
relationships at all. Yet authentication protocols tend to rely on just such pre-
shared information, such as a public key or a shared password. Indeed, in [9],
Boyd argues that in the absence of authenticated shared information, no secure
channels can be established.

Sender invariance protocols are based on the idea that, in many situations,
one party of a protocol does not need to be authenticated in the classical sense,

1 Note that the authors do not actually call the goal sender invariance, but merely
describe the intuition: “nodes ensure that they are talking to the same nodes (as
before)” [17, §3.3].



but rather could pick a pseudonym and be identified by that pseudonym there-
after. The protocols ensure that an intruder cannot “take over” somebody else’s
pseudonym, i.e. generate messages that appear to originate from the owner of
the pseudonym, or read messages that are sent to the owner of the pseudonym.

A variety of mechanisms can be used to realize sender invariance. Perhaps the
most common one, and the one used in our running example PBK, is as follows.
An agent creates an asymmetric key pair, publishes the public key, and uses a
hash value of the public key as a pseudonym. Clearly, the intruder can generate
his own pseudonym, but he cannot sign or decrypt messages with the private key
associated with somebody else’s pseudonym. The remarkable thing about these
mechanisms is thus that we get—out of nothing—variants of authentic channels
that only differ from the classical ones by the fact that one end point is identified
by a pseudonym.

The goals that are considered for sender invariance protocols are thus similar
to classical authentication and secrecy goals, but with the twist that one side is
identified by a pseudonym rather than a real name. By sender invariance, we
informally mean that all messages come from the same source that is identified
by a pseudonym:

A two-party protocol P guarantees the responder role sender invariance
with respect to the initiator role iff the following holds: whenever an
agent b in the responder role receives a message that appears to have
been sent by an agent with pseudonym id, then this message originates
from the same agent playing the initiator role as all previous messages
that appeared to come from pseudonym id.

Note that sender invariance differs in several respects from privacy (for in-
stance, the privacy properties defined in [1]). Privacy means to protect the iden-
tities of the communicating agents from being observable (to an outstanding
party or even to each other); for sender invariance, the protection of identities
is not an issue (and agents may expose their identities, even if they cannot
prove them). Sender invariance is rather the best we can achieve when identifi-
cation/authentication is not possible.

The relation of this goal with classical authentication will be discussed shortly.
We note that one may similarly develop a concept of receiver invariance as an
analogue of secrecy goals in this pseudonym-based communication; we do not,
however, consider this further in this paper.

2.1 Purpose-Built Keys

As a running example, we introduce a protocol based on the Purpose-Built Keys
Framework (PBK [10]), a mechanism for achieving sender invariance. PBK uses
freshly generated, temporary, asymmetric key pairs. A user’s pseudonym is sim-
ply a hash of the temporary public key, the so-called PBID. In an initialization
phase, the sender agent transmits his purpose-built public key. If this exchange is
not tampered with, then the sender can sign subsequent messages, thus assuring
the receiver that the source of the messages has not changed.



1. A → B : PBKA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. A → B : {Msg}PBKA

−1 .H(PBKA)
3. B → A : NB .H(PBKA)
4. A → B : {NB}PBKA

−1 .H(PBKA)

Protocol 1. An example PBK protocol

We note that denial of service attacks are possible, in the sense that the
intruder can drop messages from an honest initiator. We do not consider such
attacks here, however, as they do not constitute violations of sender invariance.

Example. Protocol 1 is an example protocol which uses PBK to ensure sender
invariance between an initiator A and a responder B. Upon starting the protocol,
A generates her purpose-built key pair PBKA and PBKA

−1. She sends the former
to B in message 1. The dotted line separates the initialization phase from the
rest of the protocol. In message 2, A sends some payload Msg to B signed with
her PBK. Messages 3 and 4 perform a challenge-response exchange in order to
prove to B that the party purporting to possess PBKA

−1 is indeed active and the
signed messages are not simply being replayed. We assume that A and B might
want to exchange multiple payload messages with the pseudonym H(PBKA), so
messages 2 through 4 might be repeated arbitrarily often.

The running example of Protocol 1 will serve as a basis for the discussions
below, where we describe our model and define sender invariance formally.

2.2 Formalizing Sender Invariance

The informal definition given above is meant to provide the intuition behind the
goal of sender invariance: namely, that a sequence of messages that apparently
all originate from the same sender truly do. Note that we do not assume that
the agent playing the responder role knows the real identity of the initiator with
whom he communicates; this property should hold even if the receiver knows the
sender only via some pseudonym. It is this intuition that we strive to capture in
our formal definition of sender invariance below.

To formulate sender invariance independently of which particular formalism
or tool is adopted for modeling and analysis, we define requirements for protocol
models (summarized in Fig. 1), that are sufficient to formalize sender invariance.
We assume that there exists a set Msg of all messages, which we represent as
free terms with the standard perfect cryptography assumption. Let Agent ⊆ Msg
denote the set of all possible agent identifiers, including both real names and
a set ID ⊆ Agent of pseudonyms. We also assume that there exists a set of
honest agent identifiers, which we denote HAgent ⊆ Agent, and a set of honest
pseudonyms, which is H ID = ID ∩ HAgent. As notation, we will use upper case
A,B, ... to denote role names and lower case a, b, ... for agent names.



E Set of events
AE ⊇ {witness, request} Auxiliary events, with AE ⊆ E
Msg Set of all possible messages
Agent ⊆ Msg Agent identifiers, both names and pseudonyms
HAgent ⊆ Agent Honest agent identifiers
ID ⊆ Agent Pseudonyms
H ID = ID ∩ HAgent Pseudonyms belonging to honest agents
Vars Set of protocol variable identifiers

Fig. 1. Notation

We follow the standard Dolev-Yao model [13] of an active intruder who con-
trols the network but cannot break cryptography: the intruder can intercept
messages and analyze them if he possesses the respective keys for decryption,
and he can generate messages from his knowledge and send them under any
party’s name.

The protocol models must also provide some means to reason about the way
that an agent interprets particular concrete messages. In Protocol 1, for instance,
the responder B might want to ensure that a concrete value he receives and
interprets as A’s payload message Msg was indeed intended by A as a payload
message and not, for instance, as a response to the challenge NB . To this end, we
require the existence of a set Vars of identifiers for the variables of the protocol.
The elements of Vars are logical identifiers indicating how an agent interprets a
given value. The definition of the set itself is protocol specific. For instance, for
Protocol 1, the set Vars = {PBKA,Msg , NB} would be appropriate.

We assume that protocol models have behaviors that can be expressed as lin-
early ordered traces of events from a fixed event set E. Traces contain events from
a set AE of auxiliary events that express information about an honest agent’s
assumptions or intentions when executing a protocol. These events provide a
language over which we then define the goals of the protocol.2 We assume that
the intruder can neither generate events from AE nor modify those AE events
generated by honest agents. By convention, we call the events in AE witness and
request . For a, b ∈ Agent, v ∈ Vars, and m ∈ Msg,

– witness(a, b, v, m) expresses that initiator a intends to execute the protocol
with responder b and wishes to use value m as the protocol variable v; and

– request(b, a, v, m) expresses that responder b accepts the value m and now
relies on the guarantee that agent a exists and agrees with him on this value
for protocol variable v.

2 This approach to formalizing protocol goals is standard. It is adopted, for instance,
in the AVISPA Tool [3, 7], and it is analogous to other approaches like that of [16],
where goals are formulated in terms of “status signals” exchanged on special channels
to which the intruder has no access.



Consider an honest initiator a who wishes to execute a protocol with a re-
sponder b. For all v ∈ Vars that are of interest (where the definition of interest
will depend strongly on the goals of the protocol in question), a will generate an
event witness(a, b, v, m) upon setting a value m for v, and each honest respon-
der will generate an event request(b, a, v, m′) after reaching an accepting state
in which he has assigned the value m′ to v. Following [3, 7], we define protocol
goals below as conditions on traces that specify how witness and request events
must correspond with one another.

Example. In Protocol 1, one can define the variables of interest to be those
which the responder wants to be sure originated from the pseudonym H(PBKA):
namely, Msg and the signed NB . Honest agents will, as mentioned, generate
auxiliary events for each of these variables of interest, but we consider only Msg
in this example. We assume that agent a with PBK pbka wishes to execute
Protocol 1 with agent b, and that a wishes to transmit the payload message 17.
Furthermore, for the sake of example, we ignore possible manipulations by the
intruder and assume that messages are transmitted without modification.

Upon sending message 1, a generates the event witness(H(pbka), b,Msg , 17),
expressing that, under her pseudonym, she intends to send to b the value 17,
interpreting it as protocol variable Msg . The responder accepts the protocol
run only after receiving message 4, which confirms recentness. After receiving
message 4, b will generate the event request(b, H(pbka),Msg , 17), indicating that
he accepts the value 17, believes that it originates from the agent associated
with pseudonym H(pbka), and interprets it as the protocol variable Msg .

We now formally define the security goal of sender invariance as the following
temporal property of traces of events over the set E, where 2 and ♦- denote the
linear time temporal operators “always in the future” and “sometime in the
past”, respectively:

si: ∀b ∈ HAgent.∀id ∈ H ID.∀m ∈ Msg.∀v ∈ Vars.
2(request(b, id, v,m) → ∃v′ ∈ Vars.♦- witness(id, b, v′,m))

We assume, in this definition, that the initiator knows the real name of the
responder b, but we do not require that b knows the real name of the initia-
tor. This definition expresses that every honest agent b is guaranteed that, if
id ∈ H ID, then there exists an honest agent who sent all the values m that b be-
lieves originated from pseudonym id. Recall that only honest agents generate the
auxiliary events in AE, therefore the presence of a witness event implies that it
was generated by an honest agent. Moreover, for each incoming message m that
b associates with the protocol variable v in the request , there exists some proto-
col variable v′ that expresses how the honest owner of pseudonym id intended
to send the value m. This implies that the values m have not been modified in
transit, but the sender and receiver may have assigned different interpretations
to the transmitted values.



2.3 Strong Sender Invariance

A stronger goal results when the interpretations must agree. We define strong
sender invariance, a modification of sender invariance, by requiring that the
sender and the receiver agree on the interpretation of each message. We formalize
this as follows:

strongsi: ∀b ∈ HAgent.∀id ∈ H ID.∀m ∈ Msg.∀v ∈ Vars.
2(request(b, id, v,m) → ♦- witness(id, b, v,m))

Strong sender invariance, as the name implies, provides a stronger guarantee
than sender invariance itself (we will show this formally in §2.5). Specifically, it
requires that all values m received by b apparently from an honest pseudonym
id indeed originated from the same honest agent. Moreover, for each m, the pro-
tocol variable v with which b associates m must be the same as the v for which
the value was intended by the sender id; that is, v is the same in both auxiliary
events. As before, this implies that the value was not modified in transit, but
we now additionally require that the interpretations agree. In the extreme case,
that the protocol-specific set of “interesting” protocol variables includes all pro-
tocol variables, this implies that the exact messages sent by the initiator arrive,
without tampering, at the responder.

2.4 Discussion

The informal notion that the source of a communication does not change suffers
from ambiguities that one must resolve when defining sender invariance formally.
Perhaps most importantly, one must define to what extent sender invariance
implies message integrity.

Conservatively, one can define sender invariance in such a way that any mes-
sage modification violates sender invariance. This would be akin to the notion
of matching conversations, defined in [8]. Such a definition is quite restrictive
and of limited practical use, particularly in ad-hoc settings with potentially no
relationships among protocol participants.

Instead, we opt for a finer-grained definition in which integrity must be guar-
anteed only for relevant parts of the exchanged messages, where “relevant” can
be defined in a protocol-specific way. The case described above is then a special
case of this more general approach in which all parts of the protocol messages
are considered relevant. In order to pursue this fine-grained approach, we formal-
ize sender invariance over the auxiliary trace events witness and request rather
than, for instance, over the communication events themselves.

The auxiliary events witness and request confer a further benefit; namely,
they contain all the information one needs to formalize authentication itself.
This facilitates a direct comparison of the two forms of sender invariance with
authentication, discussed in the next subsection.

Finally, we note that alternate definitions of (strong) sender invariance are
also possible and may be appropriate for certain settings. In our definition, we



assume a setting in which the owner of pseudonym id knows the identity of the
agent b with whom he wants to communicate. This assumption is appropriate
for one of our larger case-study protocols, Mobile IPv6 [15]. One could, however,
envision protocols in which the recipient is unimportant, or indeed known via
a pseudonym. For such protocols, one might define sender invariance as follows
(and strong sender invariance analogously):

si′: ∀b ∈ HAgent.∀id ∈ H ID.∀m ∈ Msg.∀v ∈ Vars.∃b′ ∈ Agent.
2(request(b, id, v,m) → ∃v′ ∈ Vars.♦- witness(id, b′, v′,m)) .

For the rest of the paper, however, we will focus on our original definition si.

2.5 Relating Sender Invariance and Authentication

We now examine the relationship between sender invariance, strong sender in-
variance, and authentication. We first recall the informal definition of weak au-
thentication (adapted from [16], where it is termed non-injective agreement):

A protocol guarantees weak authentication to a responder B on a set
of protocol variables V iff whenever B completes a run of the protocol,
apparently with initiator A, then A has previously been executing the
protocol as initiator, apparently with responder B, and the two agents
agree on the data values corresponding to all the variables in V.

In our model, we equate the responder’s completion of a protocol run with his ar-
rival in an accepting state. Since we assume that responders issue request events
only after reaching an accepting state, we can formally define weak authentica-
tion as follows:

wauth: ∀b ∈ HAgent.∀a ∈ HAgent.∀m ∈ Msg.∀v ∈ Vars.
2(request(b, a, v, m) → ♦- witness(a, b, v, m))

Observe that strong sender invariance differs from weak authentication only
in the inclusion of the pseudonym id ∈ H ID rather than an actual agent iden-
tifier b ∈ HAgent, which may be either a pseudonym or a real name. Thus,
strong sender invariance is the direct analogue to weak authentication for the
pseudonymous setting, and we have that wauth implies strongsi. The con-
verse, however, does not hold, as expressed as Proposition 1.

Proposition 1 Weak authentication is a strictly stronger security goal than
strong sender invariance.

Proof. We first show that every trace that satisfies weak authentication also
satisfies strong sender invariance; thus, if all traces induced by a protocol satisfy
weak authentication, then they also satisfy strong sender invariance. To that end,
consider an arbitrary trace that satisfies weak authentication and any event
on this trace of the form request(b, id, v,m), for arbitrary b ∈ HAgent, id ∈



H ID, v ∈ Vars and m ∈ Msg. We have to show that this event is preceded by
the event witness(id, b, v,m). This follows directly, since H ID ⊆ HAgent, and
weak authentication demands that any event request(b, a, v, m)—where now a ∈
HAgent—is preceded by witness(a, b, v, m). Note that if a /∈ H ID for all initiators
a ∈ HAgent for which request terms are generated, then sender invariance holds
trivially. Since we have not assumed any specific property about b, id, v, and
m, or where in the trace the request event occurs, every request(b, id, v,m) is
preceded by witness(id, b, v,m).

To see that weak authentication is strictly stronger than strong sender invari-
ance, consider a trace with the event request(b, a, v, m) with a ∈ HAgent \H ID,
and no other witness or request events. This trace trivially satisfies strong sender
invariance (as a /∈ H ID) but not weak authentication. This example is a bit con-
trived, but we give a more realistic example (Protocol 2) in §3.1. 2

We now examine the relationship between the two types of sender invariance
itself.

Proposition 2 Strong sender invariance is a strictly stronger security goal than
sender invariance.

Proof. As before, we show that strong sender invariance is at least as strong as
sender invariance by showing that any trace satisfying the stronger form also
satisfies the weaker one. Consider an arbitrary trace that satisfies strong sender
invariance, and consider any event of the form request(b, id, v,m) in the trace,
again for arbitrary values b, id, v, and m of the respective types. We have to show
that this event is preceded on the trace by the event witness(b, id, v′,m) for some
v′ ∈ Vars. This holds for v = v′, since the trace satisfies strong sender invariance,
which requires that witness(id, b, v,m) must precede said request event. As we
have not assumed anything about the arguments of the request event and its
position in the trace, this holds for all such request events, which shows that
sender invariance holds of the trace.

A trivial example to show that sender invariance does not imply strong sender
invariance is a trace that contains request(b, id, v,m), preceded by witness(id, b,
v′,m) for arbitrary constants b, id, v, v′, and m, where v 6= v′, and such that
the trace contains no other witness and request events. This satisfies sender
invariance, but not strong sender invariance. Another example is Protocol 1,
which will be discussed in the following section. 2

It follows from these propositions that there is a hierarchy of security goals in
which weak authentication is strongest, followed by strong sender invariance, and
finally sender invariance itself. Specifically, we have seen that strong sender in-
variance is precisely weak authentication in which pseudonyms are used in place
of true agent names. We can observe the same of sender invariance, modulo the
fact that the agreement of protocol variables is also ignored. As we will discuss
in the next section, this result also illustrates the potential to take existing tools
for the automated analysis of authentication protocols and directly use them for
the analysis of (strong) sender invariance as well.



3 Analyzing Sender Invariance

We now show how to apply automated tools to analyze (strong) sender invari-
ance protocols. We illustrate this with a case study: the formal analysis of two
protocols that use the Purpose-Built Keys Framework.

Classically, the model checking problem M � ϕ verifies whether a model M
of a system fulfills a specification of the goal ϕ. We have analyzed our case-study
protocols using the On-the-Fly Model Checker OFMC [5–7], a state-of-the art
tool for protocol analysis. OFMC is one of the back-ends of the AVISPA Tool,
in which protocols are specified using the High-Level Protocol Specification Lan-
guage HLPSL [3, 11].3 Protocol models built using this specification language
capture the requirements for formalizing sender invariance that we identified in
Fig. 1. OFMC allows the modeler to specify ϕ, where goals are specified nega-
tively as attack states. Thus, for the analyses described in the coming sections,
we were able to translate the formulas strongsi and si into HLPSL directly.

Note that while OFMC allows for user-defined goals, some model checkers
for security protocols consider a fixed, built-in set of goals ϕ tailored to the ap-
plication domain: in general, authentication and secrecy. In the previous section,
however, we showed that both forms of sender invariance can be seen as a gen-
eralization of weak authentication. Based on this, we can identify the following
additional requirements on protocol models for use with such fixed-goal model
checkers. If

– one can construct protocol specifications in which authentication is per-
formed on pseudonyms,

– honest pseudonyms can be distinguished in the model from those belonging
to the intruder, and

– in the case of si, agreement on protocol variables can be ignored,

then model checkers that are tailored to check wauth can be employed, out of
the box, to also check strongsi and si.

3.1 Case Study: Purpose-Built Keys

Analyzing Protocol 1 We return to Protocol 1, introduced in §2.1. We con-
structed a formal model of the Protocol 1 in HLPSL and analyzed it in a scenario

3 The HLPSL is an expressive, modular, role-based, formal language that allows for the
specification of control flow patterns, data structures, complex security properties, as
well as different cryptographic operators and their algebraic properties. The AVISPA
Tool automatically translates a user-defined security problem into an equivalent
specification written in the rewrite-based formalism IF (for Intermediate Format).
An IF specification describes an infinite-state transition system amenable to formal
analysis: this specification is input to OFMC and the other back-ends of the AVISPA
Tool, which implement a variety of techniques to search the corresponding infinite-
state transition system for states that represent attacks on the intended properties
of the protocol.



1. A → i : PBKA

2. A → i : {MsgA}PBKA
−1 .H(PBKA)

3. i → A : MsgI .H(PBKA)
4. A → i : {MsgI }PBKA

−1 .H(PBKA)
1′. i → B : PBKA

2′. i → B : {MsgI }PBKA
−1 .H(PBKA)

Fig. 2. An attack on Protocol 1 that violates strongsi

with a bounded number of protocol sessions. For brevity, we omit the HLPSL
specification itself and describe only the aspects most important for the analysis.

In our model of the protocol, honest agents generate new PBKs freshly for
each session, and these are added to the set H ID upon generation. HLPSL
supports the modeling of sets, and using this we maintain a single, global H ID.
The intruder, who is active and has full Dolev-Yao [13] control over the network
as described, may also generate fresh PBKs (and may apply the function H to
generate valid pseudonyms), but he may not add them to H ID. He may, however,
replay any of the keys in that set. We assume that the responder wants sender
invariance guarantees on the contents of every message after the initialization
phase. Thus, the set Vars = {Msg , NB}, and in the model the responder issues
two request facts after receiving message 4. In turn, the initiator role issues
witness facts upon sending messages 2 and 4.

OFMC employs a number of symbolic techniques to perform falsification
(by finding an attack on the input protocol) and bounded verification, i.e. ver-
ification for a finite number of protocol sessions. In our analysis scenario, we
assumed four concurrent protocol sessions (four instances each of the initiator
and responder roles). In OFMC, these sessions are specified symbolically, so we
need not specify concretely which agent plays which role. Rather, the identi-
ties of the agents participating in each session are given simply as variables, and
OFMC searches symbolically through all possible assignments of these variables.
Our first analysis used si, sender invariance, as the goal of the protocol. As our
analysis found no attacks, this amounts to bounded verification of all possible
analysis scenarios consisting of four protocol sessions. This shows that PBK is
indeed a strong mechanism for providing sender invariance.

Strong Sender Invariance We also analyzed Protocol 1 against the goal of
strong sender invariance. Recall that, by design, sender invariance ignores the
interpretation that agents assign to messages, which we express via the protocol
variables in set Vars. Thus, protocols guaranteeing sender invariance may well
suffer from vulnerabilities in which an intruder succeeds in causing a confusion
between the interpretation assigned to a message by the sender and that assigned
by the receiver. Indeed, our analysis found an attack on strong sender invariance,
shown in Fig. 2.



1. A → B : PBKA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. A → B : {tag1.Msg}PBKA

−1 .H(PBKA)
3. B → A : NB .H(PBKA)
4. A → B : {tag2.NB}PBKA

−1 .H(PBKA)

Protocol 2. A refined PBK-Based protocol

In this execution, the intruder intercepts the purpose-built key PBKA and
wishes to pass himself off to B as someone who possesses the associated pri-
vate key. To this end, after receiving A’s second message, he replies with the
challenge MsgI , the payload message he actually wants to send to B. A replies
in good faith, signing the challenge with PBKA

−1. In a second session, i then
claims PBKA as his own purpose-built key and sends the signed payload message
{MsgI }PBKA

−1 . Recall that we assume that messages 2 through 4 may be re-
peated multiple times to transmit payload data over the lifetime of a pseudonym,
therefore the intruder can even perform the challenge-response exchange with B
as soon as A sends another payload message.

This attack represents a confusion of the protocol variables assigned to mes-
sage 4 by A and message 2′ by B. Although A did indeed once send the message
{MsgI }PBKA

−1 .H(PBKA), she sent it interpreting it as message 4 of the proto-
col and thus assigned NB = MsgI , whereas B interprets it as message 2 upon
receipt, assigning Msg = MsgI . Thus, this attack violates the goal of strong
sender invariance, but not sender invariance itself. As discussed in §2.5, Protocol
1 illustrates that si is strictly weaker than strongsi.

Analyzing Protocol 2 Protocol 2 shows an alternative example of a protocol
that uses the PBK framework. It is identical to Protocol 1 save for the fact that
so-called tags have been added to messages 2 and 4. The tags tag1 and tag2 are
intended as identifiers for the signed messages that signify the purpose of the
signature. They avoid, for instance, that B or an intruder can bring A to sign
arbitrary data without indicating what the signature is intended for.

We used OFMC to analyze Protocol 2 in the same setting as used in our
analysis of Protocol 1. The witness and request facts generated contain protocol
variables indicating the interpretation assigned by the agents, m2 and m4 for
messages 2 and 4, respectively. As specified in the formula strongsi, matching
request and witness events must agree on this interpretation. Our analysis results
show that, for scenarios consisting of four protocol sessions, Protocol 2 is safe
from attacks on strong sender invariance. From Proposition 2, we can conclude
that Protocol 2 is thus safe from attacks on sender invariance as well.



1. A → B : PBKA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. A → B : {tag1.{K}PKB }PBKA

−1 .H(PBKA)
3. B → A : {NB .B}K .H(PBKA)
4. A → B : {NB .H(PBKA)}K .H(PBKA)

Protocol 3. A PBK-Based protocol in which A knows B’s public key in advance

4 Varying Amounts of Pre-Shared Information

Sender invariance appears to be an appealing security goal that is appropriate
for settings such as those that arise in mobile networks where users do not know
one another in advance. Naturally, situations arise that fall between the case in
which two agents involved in a protocol run initially share cryptographically au-
thenticated information and the other extreme case in which they share nothing.
Perhaps the most prevalent example of this arises in E-commerce situations in
which the selling party presents a public-key certificate signed by a well-known
certification authority, while the buyer’s credentials comprise, at most, a user-
name and password set up via an informal registration procedure.

In cases like these, where the amount of information shared between protocol
participants is greater, we can achieve accordingly stronger security goals. We
illustrate this with a brief example: Protocol 3 is another protocol that employs
the PBK framework. Unlike in the previous ones, however, we assume that the
initiator A knows the public key PKB of the responder B in advance. After A
sends her PBK, she generates a new session key K for use between A and B.
She encrypts this key with PKB and signs it, together with a tag indicating the
purpose of the signature. B responds, encrypting a nonce NB together with his
name using the new key K. A responds to the challenge and returns the nonce
NB together with her pseudonym H(PBKA) (twice, once encrypted and once in
plaintext).

In discussing the previous protocols, we focused on role B’s guarantee of
(strong) sender invariance with respect to role A. The agent playing role A,
however, could say little or nothing about the security of her communication
with B. As in Protocol 2, B is ensured sender invariance with respect to role A.
Here, however, A is able to leverage the fact that she knows B’s public key to
send a new session key K secretly. Messages 3 and 4 serve to ensure recentness
and key confirmation to both parties. Subsequent communication secured with
the key K should then enjoy the following security properties:

– secrecy of the communication,
– responder B should be guaranteed sender invariance with respect to role A,

and
– initiator A should be guaranteed authenticity of the communication from B

(as only B should have been able to decrypt K).



This simple example shows how a pre-existing relationship, even a unilateral
one, enables significantly greater security. A more prominent example of this is
found in the use of SSL/TLS [12] in E-commerce. Most E-commerce applications
employ server certificates for servers to authenticate themselves to clients, but
forgo the use of client certificates. Hence, this situation is analogous to the one
just described: the client is guaranteed the authenticity of the server, but—
at least on the transport layer—the server can only refer to the client via a
pseudonym.

Overall, as mobile and ad-hoc networks gain ground, we expect to see an
increase in situations in which some measure of information, though perhaps
not as much as is assumed by traditional authentication protocols, is initially
shared. It is therefore important to precisely understand what security goals are
achievable in the different settings.

5 Conclusion

Sender invariance is a variant of authentication, with the difference that the
identity of a sender is not known to the receiver, but rather the sender is identified
by a pseudonym. The key point is that sender invariance can be achieved out of
nothing, i.e. even when the agents have no previous security relationship (like
shared keys, public keys, or a relationship via a trusted third party) and therefore
classical authentication cannot be achieved.

In this paper, we have formalized two forms of sender invariance as variants
of classical authentication, and showed that these goals form a hierarchy in the
sense that one goal is strictly stronger than the other, with classical authentica-
tion being the strongest.

This relationship with classical authentication has allowed us to formalize
sender invariance goals for an existing protocol analysis system, the OFMC
back-end of the AVISPA Tool. As a case study, we have analyzed protocols
using the Purpose-Built Keys Framework (PBK [10]), showing that a näıve pro-
tocol implementation has vulnerabilities but still provides a weak form of sender
invariance, while an improved implementation with tags provides strong sender
invariance.

Our current work includes further investigations into sender invariance pro-
tocols. We have recently completed a formal analysis of the secure neighbor
discovery protocol of Mobile IPv6 [2] and will report on our findings in an up-
coming paper. Moreover, we plan to examine a further generalization of the view
on sender invariance and, conversely, investigate “receiver invariance”, i.e. the
property that only the party that sent the first message (and who created the
respective pseudonym) can read the messages directed to him. Receiver invari-
ance can then be the counterpart of classical secrecy goals in the realm of sender
invariance protocols.



References

1. M. Abadi. Private Authentication. In Proceedings of PET’02, LNCS 2482, pages
27–40. Springer, 2002.

2. J. Arkko, J. Kempf, B. Zill, and P. Nikander. RFC3971 – SEcure Neighbor Dis-
covery (SEND). March 2005.

3. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. H.
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Security Protocols. International Journal of Information Security, 4(3):181–208,
2005.

8. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Pro-
ceedings of CRYPTO’93, LNCS 773, pages 232–249. Springer, 1994.

9. C. Boyd. Security architectures using formal methods. IEEE Journal on Selected
Areas in Communications, 11(5):694–701, 1993.

10. S. Bradner, A. Mankin, and J. I. Schiller. A framework for purpose built keys
(PBK), June 2003. Work in Progress (Internet Draft).

11. Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma, J. Mantovani,
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