
David Basin, Cas Cremers, Catherine Meadows

Model Checking Security

Protocols

May 19, 2015

Springer

2

Summary. The formal analysis of security protocols is a prime example of a domain
where model checking has been successfully applied. Although security protocols are
typically small, analysis by hand is difficult as a protocol should work even when
arbitrarily many runs are interleaved and in the presence of an adversary. Specialized
model-checking techniques have been developed that address both the problems
of unbounded, interleaved runs and a prolific, highly nondeterministic adversary.
These techniques have been implemented in model-checking tools that now scale to
protocols of realistic size and can be used to aid protocol design and standardization.

In this chapter, we provide an overview of the main applications of model check-
ing in security protocol analysis. We explain the central concepts involved in the
analysis of security protocols: the abstraction of messages, protocols as role au-
tomata, the adversary model, and property specification. We explain and relate the
main algorithms used and describe systems based on them. We also give examples
of the successful applications of model checking to protocol standards. Finally, we
provide an outlook on the field: What is possible with state-of-the-art and what are
the future challenges?

24.1 Introduction

Cryptographic protocols are communication protocols that use cryptography
to achieve security goals such as secrecy, authentication, and agreement in the
presence of adversaries. Examples of well-known cryptographic protocols are
SSL/TLS [DR06], IKEv2 [KHNE10], and Kerberos [NHR05], which can be
used, respectively, to secure web-based traffic, setup virtual private networks,
and perform authentication in distributed environments. In order to ensure
that such protocols always achieve their goals, they are designed under the
assumption that the network is completely controlled by an adversary (also
called the intruder or attacker). This means that the adversary can intercept,
redirect, and alter data, have access to any operation that is available to legit-
imate agents, and even control one or more legitimate agents and thus access
their keys. Given the hostility of the intended environment, it is not surprising
that cryptographic protocols are difficult to design and are subject to subtle
flaws, even when the cryptographic primitives used, such as encryption and
hash functions, are themselves secure.

To give an idea of what can go wrong, consider Lowe’s often-cited attack
[Low96] on the Needham-Schroeder public key protocol [NS78]. The goal of the
protocol is to allow two parties to authenticate each other, i. e., after execution
of the protocol they can be sure that they have been communicating with
the intended partner. The protocol achieves this by combining two challenge-
response interactions. Agents can execute the initiator role A or the responder
role B. At the end of the protocol, the initiator and the responder agree on a
pair of shared secrets, NA and NB, where NA is a random number (or nonce)
generated by the initiator and NB is a nonce generated by the responder.
The protocol relies on public key encryption: anyone can send a message to
an agent X using X ’s public key pk(X), but only X can decrypt it, using its

24.1 Introduction 3

private key sk(X). We write {|M |}a
pk(X) to denote the (asymmetric) encryption

of the message M with X ’s public key. A message sequence chart describing
the protocol is shown in Fig. 24.1.

pk(B), sk(A)

A

pk(A), sk(B)

B

generate NA

{|A,NA |}apk(B)

generate NB

{|NA, NB |}apk(A)

{|NB |}apk(B)

Fig. 24.1. Needham-Schroeder protocol (NS)

Let us go through the protocol steps and their rationale.

1. A → B : {|A,NA |}a
pk(B)

The responder receives the initiator’s message and decrypts it. At this
point, the responder assumes that the initiator has indeed sent the message
recently and will try to confirm his assumption in the next two steps. The
responder generates a nonce NB.

2. B → A : {|NA, NB |}a
pk(A)

When the initiator receives this message, she decrypts it. Because the
message contains the nonce NA, which the initiator generated recently
and sent encrypted for the responder, the initiator concludes that the
message was indeed sent recently by the responder.

3. A → B : {|NB |}apk(B)

The last message is sent so that the responder can verify his assumptions.
He reasons that the message is recent, since NB is recent. Moreover, only
the initiator and the responder know NB, and the responder did not send
the message. So the message must come from the initiator. Finally, the
initiator will have received NB as part of the responder’s message that
also contained NA, so she would not have responded unless NA was also
recently sent by the initiator.

Although this informal correctness argument may seem convincing, it suf-
fers from the following attack. Here i denotes the adversary and ia denotes
the adversary impersonating agent a. The corresponding message sequence
chart is shown in Fig. 24.2.

4

pk(i), sk(a)

thread 1
a in role A

partner: i

pk(b), sk(i)

Adversary
acting as
i (with 1)
ia (with 2)

pk(a), sk(b)

thread 2
b in role B

partner: a

generate Na

{| a,Na |}
a

pk(i)
{| a,Na |}

a

pk(b)

generate Nb

{|Na, Nb |}
a

pk(a)
{|Na, Nb |}

a

pk(a)

{|Nb |}
a

pk(i)
{|Nb |}

a

pk(b)

Fig. 24.2. Lowe’s man-in-the-middle attack on the Needham-Schroeder protocol

The attack proceeds in the following way.

1. a → i : {| a,Na |}apk(i)
The agent a initiates the protocol in the initiator role, aiming to commu-
nicate with i, and generates a fresh nonce Na.

2. ia → b : {| a,Na |}apk(b)
The adversary i uses a’s nonce to impersonate a and initiates an instance
of the protocol with b, who executes the responder role.

3. b → a : {|Na, Nb |}apk(a)
b responds to a correctly, generating his own nonce Nb in the process.
Since a sees the nonce she sent to i, she assumes the message is from i.

4. a → i : {|Nb |}apk(i)
a responds to i, following the rules of the initiator role of the protocol.

5. ia → b : {|Nb |}apk(b)
i re-encrypts Nb under b’s public key and sends the result to b. Since b is
expecting this response from a, he concludes that he shares Na and Nb

with a and a alone.

Since b thinks he is communicating with a, and neither a nor b deviate from
the protocol and their keys are not known to the adversary, b expects that Na

and Nb are only known to a and himself. Clearly, b’s assumption is violated
by the attack.

There are two things to notice about this attack. First, it is nonintuitive: if
one looks closely, one sees that the security argument relies on the assumption

24.1 Introduction 5

that agents do not reveal secrets, and that this assumption is violated by i
when forwarding a’s nonce to b. Indeed, Needham and Schroeder explicitly
make this assumption in their paper. However, relaxing the assumption has
surprising consequences, as this attack makes clear. Second, the attack does
not depend on any flaws in the cryptographic primitives used and requires
only a very simple adversary model. The only operations on data that the
adversary employs are concatenation and splitting of messages, and encryption
and decryption.

In general, we would like to establish the correctness of protocols with
respect to even more powerful, but realistic, adversaries. We typically also
give the adversary the ability to compute a limited set of functions on data.
Namely, the adversary can read, redirect, and delete any message sent along a
network, impersonate any agent, and create new messages by applying func-
tions available to him to data he has already seen. This results in a model that
can capture a large class of potential protocol problems. Such a model, which
is both simple and expressive enough to capture a large class of nonintuitive
security flaws, lends itself well to model checking. Hence it is not surprising
that the analysis of protocols with respect to such models has been a ma-
jor application of model checking in security. Basically, one uses the model
checker to find all possible ways an adversary can interact with a protocol by
using arbitrary combinations of interception, redirection, and the other basic
operations available to him. The state space thus generated is of course infi-
nite, but as we will see, the problem is decidable under certain limiting but
reasonable restrictions, and heuristics and abstraction techniques have been
developed to reason about the case in which the restrictions are not assumed.

Model checking cryptographic protocols is not just of intellectual inter-
est. It can do much to streamline the development and adoption of security
standards. New cryptographic protocols are constantly being invented as new
communication paradigms are introduced. Since a protocol must be widely
adopted before it is useful, new protocols are usually introduced through a
standardization process. This process can be drawn-out and argumentative,
and standards can be difficult to modify once they are in place. Formal anal-
ysis can help speed up standardization by finding problems early and giving
evidence of security if no flaws are found. Moreover, it can also help pre-
vent flawed protocols from being standardized. Finally, model checking has
the advantage that the counter-examples it finds depict actual attacks on the
protocol. This gives insight into a protocol’s vulnerabilities, and how they can
be fixed.

We proceed as follows. In Sect. 24.2 we give a brief historical overview of
the field. Then, in Sect. 24.3, we describe a basic model for security proto-
cols and their properties. In Sect. 24.4 we give an overview of several issues
that arise in model checking security protocols, and approaches that have
been taken to address them. In Sect. 24.5 we describe representative systems
based on these approaches. We discuss current and future research questions
in Sect. 24.6 and we draw conclusions in Sect. 24.7.

6

24.2 History

In this section, we give a brief history of model checking cryptographic pro-
tocols.

The first symbolic approach to cryptographic protocol analysis that has
become the basis of the methods used by current model checking tools was
that of Dolev and Yao [DY81, DY83], and shortly later, Dolev, Even, and Karp
[DEK82], just after the invention of public key cryptography. They introduced
the paradigm now known as the Dolev-Yao model. In this model, a protocol
is modeled as a machine consisting of an arbitrary number of honest agents
executing the protocol, in which all messages sent are intercepted by the
adversary (even if he does no more than forward them), all messages received
are sent by the adversary, and any message processing done by the adversary
is done using an arbitrary combination of a finite set of operations. The model
also formalizes an abstraction of cryptography where messages are represented
by terms rather than bit-strings and cryptography is “perfect” in the sense
that cryptographic operators do not leak information, e. g., the only way for
the adversary to decrypt an encrypted message is to have the decryption key.

The Dolev-Yao model is at the basis of all applications of model checking to
cryptographic protocols, although today’s protocol analysis tools take a very
different approach than that taken originally. Dolev and Yao were interested in
low-complexity algorithms for proving secrecy, and gave several polynomial-
time algorithms for a class of protocols they characterized as “ping-pong”
protocols. However, it turned out that the problem quickly became unde-
cidable when the algebraic properties of the cryptographic algorithms were
represented more faithfully [EGS85], and interest in the problem petered out.

A few years later, researchers started tackling the problem from another
point of view, developing tools that would exhaustively search the problem
space or some portion of it. The first tool to take this approach was Millen’s
Interrogator [MCF87], followed by the Longley-Rigby search tool [LR92] and
the NRL Protocol Analyzer (NPA) [Mea96]. These can be thought of as proto-
model checkers. Indeed the NPA offered many features of a model checker, in-
cluding an automated means of proving that exhaustive search of a finite space
implied exhaustive search of the infinite state space, and later, a temporal logic
language, NPATRL [SM96], for describing protocol security properties.

Interest in model checking cryptographic protocols really took off with
Lowe’s use of the FDR model checker to analyze the Needham-Schroeder
public key protocol [Low96], described above. The fact that he could demon-
strate a problem that had gone unnoticed for seventeen years alerted people
to the power of model checking. Other researchers began applying their own
model checkers to the problem, most notably the use of the Murphi model
checker by Mitchell et al. [MMS97] to analyze variations on the TLS protocol.
From there it was a short step to the development of special purpose model
checkers, such as Clarke et al.’s Brutus [CJM00].

24.2 History 7

Parallel to this was research on the complexity of model checking. The
key feature turned out to be the number of sessions involved, where a ses-
sion refers to a single (potentially partial) execution of the protocol. As we
see from the attack on the Needham-Schroeder protocol, attacks often inter-
leave different sessions. Indeed it is possible to create protocols that are only
vulnerable to attacks that require interleaving an arbitrarily large number of
sessions [Mil99]. In [DLMS99, DLM04], Durgin et al. show that, given a model
similar to the one described in this chapter, the secrecy problem (that is, the
problem of deciding whether or not the adversary learns a particular term) is
undecidable if the number of sessions and nonces is unbounded. Rusinowitch
and Turuani [RT01] later showed that the secrecy problem is NP-complete if
the number of sessions is bounded. Moreover, their procedure applies more
generally to arbitrary state properties, and thus can also be applied to other
reachability properties such as authentication.

The decidability of security for the bounded session case led to the de-
velopment of bounded session model checkers, in which the user specifies the
number of sessions the model checker should search. Bounded session model
checkers are of practical significance, since most attacks on realistic proto-
cols require only a few sessions. Indeed, an attack that requires interleaving
many sessions would not be practical to implement. Bounded session model
checkers include Shmatikov and Millen’s constraint based tool [MS01], the
Constraint-Logic-based Attack Searcher (CL-Atse) [Tur06], the On-the-Fly
Model Checker (OFMC) [BMV05b], and the SAT-based Model Checker SAT-
MC [AC04]. The same period saw the development of unbounded session
model checkers relying on abstraction (such as ProVerif [Bla01]) and heuris-
tics (such as Maude-NPA [EMM07] and Athena [Son99], the latter of which
formed the basis for the current tool Scyther [Cre08]). We present these tools
in more detail in Sect. 24.5.

In recent years, as the field matures, researchers are increasingly concen-
trating on making the tools available for others to use, and are applying them
to practical problems such as the verification of standards. Some of the tools
that have seen the widest use are the AVISPA tool suite [ABB+05, Vig06],
which is a set of model checkers (the above-mentioned CL-Atse, SAT-MC, and
OFMC), with a common front end, and the above-mentioned ProVerif tool.
Many tools have been used in the analysis of standards, sometimes detecting
problems that would have gone unnoticed otherwise. For example, the NPA
was used in the verification of two IETF protocols: the Internet Key Exchange
Protocol [Mea99] and the Group Domain of Interpretation (GDOI) protocol
[MSC04]. In the case of GDOI, the tool was instrumental in catching some
vulnerabilities early on that were straightforward to fix in the design stage but
could have led to problems if they had not been caught in time. The AVISPA
tools have been applied to a suite of protocol standards. ProVerif has been
used in the production of formally verified implementations of TLS [BFCZ08]
and the smart card protocol InfoCard [BFGS08]. Scyther has been used in
the analysis of the MQV family of protocols [BC10b], and has found attacks

8

against members of that family when the adversary is able to compromise
parts of the local state of the agents. Furthermore, Scyther has been used
for the analysis of the entity authentication protocols in the ISO/IEC 9798
standard [BCM12] and the IKE key exchange protocols in the IPsec stan-
dard [Cre11].

Ultimately, we would expect model checking to become a standard tool for
cryptographic protocol design, as it has become in hardware design. This has
not quite happened yet. Although model checking has proved useful in the
analysis of standards, it has not yet become part of the standards designer’s
basic toolbox. However, designers of new protocols are starting to accompany
them with formal analyses. The field is still actively growing and changing, and
we would not be surprised to see model checking being more widely adopted
in the near future.

Although the basic decidability results and model checking algorithms
for what is commonly accepted as the standard Dolev-Yao model are well
understood, there is still much to be learned, and there is currently active
research going on in a number of areas. These include making the Dolev-Yao
model more precise and expressive, e. g., by including equational properties
of cryptographic algorithms such as the associativity-commutativity of expo-
nentiation, and incorporating cryptographic theories of correctness, reasoning
about non-trace properties such as non-repudiation, non-interference, and in-
distinguishability, extending soundness results down to the code level, and
handling probabilistic behavior. These topics will be discussed in further de-
tail in Sect. 24.6.

24.3 Formal model

Each of the tools mentioned in the previous section is based on a formal
model of cryptographic protocols and the actions available to the adversary.
Although these models differ in their details, they have a number of impor-
tant features in common, since they are all based on the Dolev-Yao symbolic
approach presented in Sect. 24.2. In this section we present a basic symbolic
model (based on [BC10b]) for formalizing and reasoning about security pro-
tocols, which captures the main features shared by these different models. We
will use this model as a reference point when we describe the different tools
and approaches later in this chapter.

As the model is symbolic, messages are represented by terms in a term
algebra. Protocols themselves are described by a set of roles, each role with
an associated script that describes the sequence of events taken by the agents
executing the role. The protocols are given an operational semantics where
agents may play in multiple roles giving rise to arbitrarily many role instances
(also called threads). This gives rise to a semantics formalized by an infinite-
state transition system, with an associated notion of trace.

24.3 Formal model 9

For expository purposes, we present a simple model that handles only
a restricted class of security protocols. We describe these restrictions along
with extensions and other design options. We also explain how basic security
properties can be formalized within this model.

24.3.1 Notational preliminaries

Let f be a function. We write dom(f) and ran(f) to denote f ’s domain and
range, respectively. We write f [a 7→ b] to denote f ’s update, which is the
function f ′ where f ′(x) = b when x = a and f ′(x) = f(x) otherwise. We
write f : X 7→ Y to denote a partial function mapping some elements from X
to elements from Y . We write fn to denote the n-fold composition of f , for
n ≥ 0, where f0 is the identity function.

For any set S, P(S) denotes the power set of S and S∗ denotes the set of
finite sequences of elements from S. We write 〈s0, . . . , sn〉 (omitting brackets
when no confusion can result) to denote the sequence consisting of the ele-
ments s0 through sn. For s a sequence of length |s| and i < |s|, we write si to
denote the i-th element. We write ŝ s′ for the concatenation of the sequences
s and s′. Abusing set notation, we write e ∈ s iff ∃i . si = e, and write set(s)
for {x | x ∈ s}.

We use standard notions (see e. g., [BN98]) for manipulating terms. Let
Sub denote the set of substitutions of terms for variables (we will define these
syntactic categories shortly). We write [t0, . . . , tn/x0, . . . , xn] ∈ Sub to denote
the substitution of ti for xi, for 0 ≤ i ≤ n. We extend the functions dom and
ran to substitutions. We write σ∪σ′ to denote the union of two substitutions,
which is defined when dom(σ)∩dom(σ′) = ∅. We write σ(t) for the application
of the substitution σ to t.

For R a binary relation, we write R−1 to denote the inverse of R, i. e.,
R−1 = {(y, x) | (x, y) ∈ R}. Furthermore, R+ denotes the transitive closure
of R.

24.3.2 Terms and events

We assume given the pairwise-disjoint infinite sets Agent , Role, Fresh, Var ,
Func, TID , and AdvConst of agent names, roles, freshly generated terms
(nonces, session keys, coin flips, etc.), variables, function names, thread iden-
tifiers, and adversary-generated constants.

In order to bind local terms, such as freshly generated terms or local
variables, to a protocol role instance (thread), we write t♯tid. This denotes
that the term t is local to the protocol role instance identified by the thread
identifier tid, where tid ∈ TID .

Definition 1. Basic terms

BasicTerm ::= Agent | Role | Fresh | Var | AdvConst

| Fresh♯TID | Var♯TID

10

Definition 2. Terms

Term ::= BasicTerm | (Term ,Term)

| pk(Term) | sk(Term) | k(Term,Term)

| {|Term |}aTerm | {|Term |}sTerm | Func(Term∗)

For each X,Y ∈ Agent , sk(X) denotes the long-term private key of X , pk(X)
denotes the long-term public key belonging to X , and k(X,Y) denotes the
long-term symmetric key shared between X and Y . Moreover, {| t1 |}at2 denotes
the asymmetric encryption of the term t1 with the key t2, and {| t1 |}

s

t2
denotes

symmetric encryption. Elements of the set Func can be used to model other
cryptographic functions, such as hash functions. Freshly generated terms and
variables are assumed to be local to a thread. We model constants as 0-ary
functions.

Depending on the protocol analyzed, we assume that symmetric or asym-
metric long-term keys have been distributed prior to protocol execution. We
assume the existence of an inverse function on terms, where t−1 denotes
the inverse key of t. We have pk(X)−1 = sk(X), sk(X)−1 = pk(X) for all
X ∈ Agent , and t−1 = t for all other terms t.

As noted in the introduction, one of the distinguishing features of model
checking security protocols is that they operate in an environment controlled
by an adversary. To formalize the powers of a Dolev-Yao-style adversary, we
define a binary relation ⊢, where M ⊢ t denotes that the term t can be inferred
from the set of terms M . Let t0, . . . , tn ∈ Term and let f ∈ Func. We define
⊢ as the smallest relation satisfying:

t ∈ M ⇒ M ⊢ t

M ⊢ t1 ∧M ⊢ t2 ⇔ M ⊢ (t1, t2)

M ⊢ t1 ∧M ⊢ t2 ⇒ M ⊢ {| t1 |}
s

t2

M ⊢ t1 ∧M ⊢ t2 ⇒ M ⊢ {| t1 |}
a

t2

M ⊢ {| t1 |}
s

t2
∧M ⊢ t2 ⇒ M ⊢ t1

M ⊢ {| t1 |}
a

t2
∧M ⊢ (t2)

−1 ⇒ M ⊢ t1
∧

0≤i≤n

M ⊢ ti ⇒ M ⊢ f(t0, . . . , tn)

Subterms t of a term t′, written t ⊑ t′, are defined as the syntactic subterms of
t′, e. g., t1 ⊑ {| t1 |}st2 and t2 ⊑ {| t1 |}st2. We write FV (t) for the free variables of
t, defined as FV (t) =

{

t′
∣

∣ t′ ⊑ t∧ t′ ∈ Var ∪{v♯tid | v ∈ Var ∧ tid ∈ TID}
}

.
An agent can engage in the following events.

Definition 3. Events

Event ::= create(Role,Sub) | send(Term) | recv(Term)

24.3 Formal model 11

Note that the send and receive events do not include explicit sender or re-
cipient fields. The messages sent or received can, of course, include subterms
identifying the sender and the intended recipient, although this information
is not a priori authentic. As is standard, the adversary receives all messages
sent, independent of the intended recipient.

We will explain the interpretation of the events shortly. Here we note
that the events are conventional and are given a standard interpretation in
a setting with concurrently executing, communicating processes: starting a
thread, sending a message, and receiving a message.

We extend the domain of substitutions over events and sequences of events
in the standard way, i. e., σ(send(m)) = send(σ(m)).

24.3.3 Protocols and threads

A protocol is a mapping from role names to event sequences, i. e., Protocol :
Role 7→ Event∗. We require that no thread identifiers occur as subterms of
events in a protocol definition. The following is a very simple example of a
protocol with two roles: an initiator and a recipient.

pk(Recp), sk(Init)

Init

pk(Init), sk(Recp)

Recp

generate key

Init,Recp, {| {|Recp, key |}ask(Init) |}
a

pk(Recp)

Fig. 24.3. Simple protocol

Example 1 (Simple protocol). Let {Init,Recp} ⊆ Role, key ∈ Fresh, and x ∈
Var . Let P be the protocol defined as follows.

P (Init) = 〈send(Init,Recp, {| {|Recp, key |}ask(Init) |}
a

pk(Recp))〉

P (Recp) = 〈recv(Init,Recp, {| {|Recp, x |}ask(Init) |}
a

pk(Recp))〉

The message sequence chart for this protocol is shown in Fig. 24.3. Here, the
initiator generates a key and sends it (together with the recipient’s name)
signed and encrypted, along with the initiator and recipient names. The re-
cipient expects to receive a message of this form.

Protocols are executed by agents who execute roles, thereby instantiating role
names with agent names. Agents may execute each role multiple times. We

12

distinguish between the fresh terms and variables of each thread by assigning
them unique names, using the function localize : TID → Sub. Note that we
abuse notation and extend the domain of substitutions to Var ∪Role ∪Fresh.

Definition 4 (Localize). Let tid ∈ TID . Then

localize(tid) =
⋃

cv∈Fresh∪Var

[cv♯tid/cv].

We define a function thread : (Event∗ ×TID ×Sub) → Event∗ that yields the
sequence of agent events that may occur in a thread.

Definition 5 (Thread). Let l be a sequence of events, tid ∈ TID , and let σ
be a substitution. Then

thread(l, tid, σ) = σ(localize(tid)(l)).

Example 2. Let P be the protocol from Example 1, t1 ∈ TID , and {A,B} ⊆
Agent . For a thread t1 performing the Init role we have localize(t1)(key) =
key♯t1 and

thread(P (Init), t1, [A,B/Init,Recp]) =

〈send(A,B, {| {|B, key♯t1 |}
a

sk(A) |}
a

pk(B))〉 .

24.3.4 Initial adversary knowledge

We assume that the adversary initially knows all agent names and can gener-
ate an unbounded set of constants AdvConst , where AdvConst ⊂ Func and no
protocol description contains elements of AdvConst . The set AdvConst repre-
sents the set of fresh values that are generated by the adversary. The adversary
additionally knows the long-term public keys of all agents. We also assume
that the adversary has compromised the long-term private keys of some of the
agents. We model this by partitioning the set Agent into the honest agent set
Honest and the compromised agent set Compromised . Moreover, we include
the long-term private keys of the compromised agents in the initial knowledge
of the adversary.

The long-term secret keys of an agent a are defined as

LongTermKeys(a) = {sk(a)} ∪
⋃

b∈Agent

{k(a, b), k(b, a)}.

We define the initial adversary knowledge IK 0 as

IK 0 = Agent ∪AdvConst ∪
⋃

a∈Agent

{pk(a)}∪
⋃

a∈Compromised

LongTermKeys(a).

24.3 Formal model 13

R ∈ dom(P) σ ∈ dom(P) → Agent tid 6∈ dom(th)

(tr, IK , th) −→ (trˆ〈(tid, create(R,σ))〉, IK , th[tid 7→ thread(P (R), tid, σ)])
[createP]

th(tid) = 〈send(m)〉̂ l

(tr, IK , th) −→ (trˆ〈(tid, send(m))〉, IK ∪ {m}, th[tid 7→ l])
[send]

th(tid) = 〈recv(pt)〉̂ l IK ⊢ σ(pt) dom(σ) = FV (pt)

(tr, IK , th) −→ (trˆ〈(tid, recv(σ(pt)))〉, IK , th[tid 7→ σ(l)])
[recv]

Fig. 24.4. Execution-model rules

24.3.5 Execution model

We define the set Trace as (TID×Event)∗, which represents possible execution
histories. Using this set, we define the set State of system states as Trace ×
P(Term) × (TID 7→ Event∗). The components of a state (tr, IK , th) ∈ State
are (1) a trace tr, (2) the adversary knowledge IK , and (3) a partial function
th mapping thread identifiers of initiated threads (executing or completed) to
event traces. Note that in conventional model checking approaches, (1) would
not be part of the state but would be defined over runs of the transition
system. We include the trace as part of the state to facilitate defining the
partner function later.1

The initial system state sinit is defined as

sinit = (〈〉, IK 0, ∅) ,

where IK 0 is the initial adversary knowledge as defined above.
The semantics of a protocol P ∈ Protocol is defined by a transition system

whose transitions are given by the rules in Fig. 24.4. Each rule describes how
the execution of one of the three events causes a state transition. We describe
each rule in turn.
Execution-model rules. The create rule starts a new instance of a protocol
role R (a thread). In the premises, the substitution σ associates the role names
dom(P) with agents, and tid is a fresh thread identifier. In the state transition
in the conclusion, the successor state’s trace is extended, reflecting that the
thread identified by tid executed the create event, and the thread mapping
(“thread pool”) is extended with the thread assigned to tid.

The send rule sends a message m to the network. The premise refers to a
thread identified by tid, whose next event is to send the message m. In the
conclusion, the trace is updated with this event, the adversary knowledge is
updated with m, and thread for tid is updated.

Finally, the receive rule models an agent, running a thread, receiving a
message from the network. The message must match the message pattern pt

1 Actually there are a number of representation options here. For example, IK and
th can be computed directly from tr. We explicitly include them in the state to
improve the readability of our operational semantics.

14

under a substitution σ, where pt is a term that may contain free variables. Note
that by the second premise, the adversary must be able to infer σ(pt) from
his current knowledge IK . One can see this as formalizing that the adversary
controls the network and effectively determines who receives which messages.
In our model, recipients accept all messages that match the message pattern
pt, and block on any other messages. The resulting substitution σ is applied
to the remaining protocol steps l.

Definition 6 (Transition relation). Let P be a protocol. We define a tran-
sition relation →P using the execution-model rules from Fig. 24.4. For states
s and s′, s →P s′ iff there exists an execution-model rule with the premises
Q1(s), . . . , Qn(s) and the conclusion s → s′ such that all of the premises hold.

Given a protocol P and a set of states T , let PostP and PreP denote the
successors and predecessors of T , respectively, i. e.,

PostP (T) = { s′ ∈ State | ∃s ∈ T . s →P s′}
PreP (T) = { s ∈ State | ∃s′ ∈ T . s →P s′}.

Definition 7 (Reachable states). Let P be a protocol. We define the set
of reachable states of P as

Reachable(P) =

∞
⋃

n=0

PostnP ({sinit}) .

We will see Pre and Post again when we discuss model checking algorithms
in Sect. 24.4.

24.3.6 Property specification

We focus on basic security properties that can be expressed as reachability
properties, i. e., properties of reachable states. Because the adversary knows
the long-term private keys of the compromised agents, protocol sessions that
involve compromised agents cannot guarantee the secrecy of data such as
shared keys or exchanged terms. This is reflected in the definition of most
security properties by considering only those threads that do not involve com-
promised agents.

We introduce an auxiliary predicate HT (for honest thread) that identifies
completed threads that do not involve compromised agents.

Definition 8 (HT). Let s = (tr, IK, th) be a state, tid a thread identifier,
and σ a substitution. We write HT(s, tid, σ) to denote

∃R . (tid, create(R, σ)) ∈ tr ∧ th(tid) = 〈〉 ∧ ran(σ) ∩ Compromised = ∅ .

24.3 Formal model 15

For example, let s = (tr, IK, th) be the state reached after the attack trace
represented in Fig. 24.2. We have that both thread 1 and 2 are completed,
i. e. th(1) = th(2) = 〈〉, and the trace tr contains (1, create(A, [a, i/A,B])) and
(2, create(B, [a, b/A,B])). Hence we have that HT(s, 2, [a, b/A,B]) but there
exists no σ such that HT(s, 1, σ), because a in thread 1 starts a thread to
communicate with the compromised agent i.

Definition 9 (Secrecy). Let t ∈ Fresh. We say that a state s = (tr, IK , th)
satisfies secrecy of t if and only if

∀tid, σ . HT(s, tid, σ) ⇒ ¬(IK ⊢ (t♯tid)) .

We say that a protocol P ensures secrecy of t if and only all reachable states
of P satisfy secrecy of t.

For example, the protocol in Fig. 24.3 ensures secrecy of the initiator’s key.
In contrast, the Needham-Schroeder protocol from Fig. 24.1 does not ensure
secrecy of the nonces.

Authentication is an important property for many security protocols, and
numerous notions of authentication have been proposed in the literature. As
a simple example, consider weak aliveness. This weak form of authentica-
tion guarantees only that if a non-compromised agent completes a thread of
the protocol under the assumption that he is communicating with a non-
compromised agent a executing role R, then it is indeed the case that a pre-
viously started a thread in role R.

Definition 10 (Weak Aliveness). Let R be a role. We say a state s =
(tr, IK , th) satisfies weak aliveness of R if and only if

∀tid′, σ′ . HT(s, tid′, σ′) ⇒ ∃tid, σ . (tid, create(R, σ)) ∈ tr∧σ′(R) = σ(R) .

We say that a protocol P ensures weak aliveness if and only if all reachable
states of P satisfy weak aliveness of all roles R ∈ dom(P).

For example, the Needham-Schroeder protocol from Fig. 24.1 satisfies weak
aliveness.

Stronger forms of authentication (see e. g., [Low97]) impose additional re-
quirements on the state. For example, they require that the threads’ assump-
tions on agents match, e. g., by requiring σ = σ′, or they place additional
requirements on the exchanged messages or the instantiation of variables, or
they require that messages are recent. Some of these properties require instru-
menting the model with additional markers, such as labeling communications
or introducing signal events to simplify expressing agreement on the contents
of variables.

16

24.3.7 Alternatives

We have intentionally kept our formalism simple to highlight the main ideas.
At each step along the way there are design options, reflecting the class of
protocols and adversaries one intends to capture.

To begin with, we have formalized cryptographic messages using a free
term algebra, where term equality is therefore just syntactic equality. Addi-
tional cryptographic operators can be added, but this requires formalizing
how the adversary can construct and reason about terms built from them. In
Sect. 24.6 we describe how this can be done for operators formalized by sets
of equations.

Our protocol roles are specified by straight-line sequences of events, with-
out control flow primitives such as branching or loops. This is sufficient to
model many security protocols, provided we ignore error cases, for example
where a thread receives an unexpected message. Such cases are handled implic-
itly: no transition is enabled and hence the thread simply does not progress.
In contrast, a richer execution model would be needed to fully model proto-
cols that support multiple options and subprotocols, such as the Internet Key
Exchange (IKE) [HC+98], or that require loops, such as the stream authen-
tication protocol TESLA [PT02, HL04]. It is not difficult to add control flow
primitives or alternatively to base the execution model on a process calculus
or some transition-system formalism. We will give examples of tools whose
input languages are based on such formalisms in Sect. 24.5.

The simplicity and power of the Dolev-Yao adversary model has made
it extremely popular. However, for many real-world scenarios an adversary
who has complete control of the network may be unrealistic, and therefore
protocols that offer weaker security guarantees may be preferred for efficiency
reasons. At the other end of the spectrum, assuming that the adversary can
learn nothing about encrypted data unless he obtains a decryption key may be
unrealistic in other scenarios. We will consider alternative adversary models
in Sect. 24.6.

24.4 Issues in developing model checking algorithms for

security protocols

Here we present a number of issues that arise in model checking security proto-
cols, and the approaches that have been taken to address them. In particular,
we indicate various design decisions, such as forward or backward search, state
representations, and bounding the state space.

24.4.1 Forward versus backward search

We consider security properties that can be expressed as reachability proper-
ties, i. e., as a set of states S. We say that a protocol P satisfies the property
S if and only if

24.4 Issues in developing model checking algorithms for security protocols 17

Reachable(P) ⊆ S. (24.1)

Let S = State\S be the property’s complement, representing possible attacks.
For example, for the secrecy of a term t as in Definition 9, S is defined as:

{

s ∈ State
∣

∣ ∃tid, σ . HT(s, tid, σ) ∧ IK ⊢ (t♯tid)
}

.

Using the complement S, Formula 24.1 can be rewritten as

Reachable(P) ∩ S = ∅. (24.2)

Then, we can rewrite Formula 24.2 either as

(

∞
⋃

n=0

PostnP ({sinit})
)

∩ S = ∅ (24.3)

or alternatively as

sinit /∈
∞
⋃

n=0

PrenP (S). (24.4)

Algorithms that iteratively compute a representation of (all, or some subset of)
PostnP ({sinit}), as in Formula 24.3, are said to use forward search. If, for some
n, an element is found that is also in S, a counterexample can be constructed
representing an attack. Alternatively, if there is an n where we reach a fixpoint,
i.e. PostnP ({sinit}) = Postn+1

P ({sinit}), and additionally PostnP ({sinit})
)

∩ S =
∅, then the property holds of the protocol. A fixpoint will be reached, in
general, only in finite-state models.

In contrast, backward search iteratively constructs PrenP (S), as in For-
mula 24.4. Similar observations hold as for the forward search, except that we
check whether sinit occurs in the constructed set.

In the analysis of security protocols, the set of reachable states is infinite,
as new threads can always be created. Hence the closure in forward search
contains infinitely many states. Similarly, the closure in backward search con-
tains infinitely many states, but for a different reason: for the properties we
consider here, S contains infinitely many states.

The main idea behind searching infinite sets of states is to use finite repre-
sentations of the infinite sets. The selection criteria for such a finite representa-
tion include the complexity of computing PreP or PostP , and the complexity
of evaluating whether or not all elements of the represented set satisfy the
property S.

When exploring infinite state spaces, it is often efficient to use as much
information as possible about the states. In general, the negation S of the
security property provides more information about the states than the initial
state {sinit}. For example, the negation will specify that particular events
must have occurred or that the adversary knows certain terms. As a result,
backward search is often employed when exploring infinite sets of states.

18

A simpler case occurs if the number of reachable states is restricted to
a finite set, for example, by limiting the number of threads or sessions that
can be created. In this case, forward search for violations of secrecy or au-
thentication properties can be trivially implemented: checking that a given
state satisfies these properties can be done using either Definition 9 or 10. A
bounded backward search starts from the finite set of attack states S, from
which PrenP (S) can be computed. Depending on the property and the (finite)
size of the set of states, the size of (the representation of) S can be significant.
In practice, forward search is commonly used to explore finite sets of states.

24.4.2 Bounded instances

The execution model presented in Sect. 24.3 gives rise to an infinite-state
transition system. Infinitely many states arise in two distinct ways. First, the
create rule may start unboundedly many new protocol threads. Second, under
the receive rule, there are unboundedly many different messages that a thread
could receive from the network. This is modeled by the rule’s second premise,
which formalizes that a thread can be updated with any message σ(pt) that
is in the closure of the adversary knowledge.

The first source of infinity is a fundamental problem. As mentioned in
Sect. 24.2, even relatively simple properties such as secrecy are undecidable
for security protocols formalized using operational semantics similar to ours
[DLM04]. If we restrict the number of sessions (or threads), then the problem
becomes NP-complete [RT01], provided messages are formulated as terms in a
free term algebra. Note that in practice, when analyzing real-world protocols,
it is usually only necessary to consider a small number of threads. If there is
an attack on the protocol, then there is normally an attack where the number
of threads is at most a small factor more than the number of roles, e. g., twice
the number of roles, which allows for messages from one protocol session to
be replayed in another session. For a class of protocols where attacks require
arbitrarily many threads, see [Mil99].

The second source of infinity, an infinite space of messages, turns out not
to be a problem. The NP-completeness result of Rusinowitch and Turuani
[RT01] establishes that if there is an attack, then there is one where the size
of the messages involved is polynomially bounded in the size of the protocol
and the number of threads, provided messages are represented by directed
acyclic graphs. As a result, assuming a finite number of threads, and hence
fresh data, one can bound a priori the messages that must be considered
in protocol analysis. We will see below how both bounds on the number of
threads and messages have been used by different protocol analysis tools.

24.4.3 Representing states

The Equations 24.3 and 24.4 can be directly used for forward or backward
model checking after fixing a representation of states for which one can ef-

24.4 Issues in developing model checking algorithms for security protocols 19

fectively compute successors or predecessors. There are different options here
depending on whether states are explicitly or symbolically represented.

It is simple to turn the operational semantics given in Sect. 24.3 into an
explicit state model checker. As defined in Sect. 24.3.5, a state is just a triple,
all of whose components can be finitely encoded. The problem in practice is
efficiently representing large sets of states, i. e., reducing the impact of state-
space explosion. An example of a model checker for security protocols based
on forward search using explicit state enumeration is Murphi [SD95]. This tool
uses techniques inspired by explicit state model checkers like SPIN [Hol02],
such as hash tables and hash compaction, to improve its efficiency. Another
example of an explicit state coding is implemented by Lowe’s Casper system
[Low98], which encodes the operational semantics of the protocol and the
adversary as a (finite state) CSP process and uses the FDR model checker
to either identify attacks or verify the protocol for instances with a bounded
number of threads and messages.

The second possibility is to encode sets of states using formulas as in
symbolic model checking. Many tools take this approach. Here terms, in par-
ticular messages, are represented by non-ground terms (cf. message patterns
in Sect. 24.3.5) which contain variables. These variables may be instantiated
during search. For example, under our operational semantics, this instanti-
ation would occur when applying the rules using unification. In approaches
based on rewriting, such as Maude-NPA, instantiation occurs during rewriting
by narrowing.

When working with symbolic representations, unification is often com-
bined with constraint solving. In the formal model we have given, the need for
constraint solving arises from the second premise of the recv rule, IK ⊢ σ(pt).
When applying rules of the operational semantics backwards (either in forward
or backward search), this gives rise to a subgoal often called the intruder de-
duction problem. The simplest version of this problem is to determine whether
IK ⊢ m, for a ground message m using the rules formalizing the Dolev-Yao
adversary given in Sect. 24.3.2. This problem is often decidable, which can
be shown by using the notion of locality [BG01, CT03] to bound the size of
terms occurring in derivations. During symbolic reasoning, the non-ground
problem arises: determining whether there exists a substitution σ such that
σ(IK) ⊢ σ(pt). The ground problem can be tackled by considering a restricted
class of normal form derivations [CLT04]. The non-ground problem is gener-
ally solved either by unification-based procedures or specialized constraint
solvers such as those used in OFMC or CL-Atse.

An alternative symbolic approach is that of bounded model checking. In
the simplest case, the closure specified in Equation 24.3 is simply unrolled
some bounded number of times k, thereby specifying the existence of an attack
given by k or fewer applications of rules from the operational semantics. If this
finite unrolling is combined with a bound on the number of messages that may
appear (and the result of Rusinowitch and Turuani gives us an exponential
bound), then the resulting formula can be encoded within propositional logic

20

and SAT solvers can be used to search for attacks, as shown in Chap. 5.
Different encodings and optimizations for using SAT-based model checking
for security protocols have been explored by Armando and Compagna and
implemented in the model checker SAT-MC [AC08].

Symbolic representations of terms can be combined with partially-ordered
finite sets of events to represent (possibly infinite) sets of states or traces.
Such a partially-ordered set E is used to represent all traces of the protocol
that contain an instance of E as a substructure. By applying the operational
semantics backwards to the events in E, additional constraints on its traces
can be derived from E, such as adding preceding events, unifying messages,
or adding constraints on the adversary knowledge. This process can either
lead to a contradiction, in which case E represents no traces of the protocol,
or to a witness trace of the protocol that contains an instance of E. Such
representations form the basis of Athena, Scyther, and Tamarin.

24.4.4 Partial Order Reduction

Partial order reduction, as discussed in Chap. 11B, is a natural optimization
technique in the context of model-checking security protocols. The reasons
for this are twofold. First, separate threads are largely independent processes,
which communicate only through a single shared channel. Second, secrecy
(Definition 9) depends only on the adversary knowledge and, in our definition,
on the communication partners of completed threads.

Example 3 (POR). As a simple example, consider a state s with two threads
identified by tid1 and tid2. Assume that the next actions of both threads are
respectively the receive events e1 and e2 of the patterns pt1 and pt2, and that
there exist messages in the adversary knowledge such that both e1 and e2 can
be executed. More formally, consider the state s = (tr, IK , th), two sequences
l1, l2, and two substitutions σ1, σ2, such that for all i ∈ {1, 2},

ei = recv(pti) ∧ th(tidi) = 〈ei〉̂ li ∧ IK ⊢ σi(pti) ∧ dom(σi) = FV (pti),

and where FV (pt1) ∩ FV (pt2) = ∅.
Observe that in this state, e1 and e2 can be executed in any order. This

results in either s1 or s2, where

s →∗
P s1 , and s1 = (trˆ〈(tid1, σ1(e1))〉̂ 〈(tid2, σ2(e2))〉, IK , th′),

s →∗
P s2 , and s2 = (trˆ〈(tid2, σ2(e2))〉̂ 〈(tid1, σ1(e1))〉, IK , th′),

and where th′ = th[tid1 7→ σ1(l1)][tid2 7→ σ2(l2)]. Observe that s1 is identical
to s2 except for its trace component. Because the premises of the transition
rules do not depend on a state’s trace component, the successor states of s1
are identical to those of s2 except for the traces.

To simplify the example, we additionally assume that for i ∈ {1, 2},

∀tid, σ . HT(s, tid, σ) ⇔ HT(si, tid, σ).

24.4 Issues in developing model checking algorithms for security protocols 21

Hence, if the secrecy property is violated in state s1, then it is also violated
in s2, and vice versa. Thus, we can safely explore only one of these successor
states: if there is a state reachable from s1 that violates secrecy, then there will
also be a state reachable from s2 that is identical up to the trace component
and thus secrecy is violated, and vice versa.

Similarly, for secrecy properties, one can consider only paths in which threads
with send actions are executed first (and ignore paths in which these same
sends are executed later) as this will only provide the adversary with more
knowledge earlier.

For authentication properties, POR techniques are not necessarily sound:
authentication properties depend on the order in which events occur, and
therefore ignoring some orderings may cause attacks to be missed. For each
property (or class of properties), the soundness of a particular partial order
reduction scheme must be individually proven. The main proof obligation is
to show that if there is an attack in a state that is not explored by the POR
scheme, then there is also an attack on a state that is explored in the scheme.

POR techniques are used in several tools. Examples include Brutus [CJM00],
OFMC [BMV05b], and Maude-NPA [EMM07].

24.4.5 Handling equations

The formal model introduced in Sect. 24.3 uses a free algebra to represent
operations on data. Thus the adversary’s ability to perform encryption is
represented by the deduction rule stating that {| t1 |}at2 may be deduced from
t1 and t2, and his ability to perform decryption is represented by the deduction
rule stating that t1 may be deduced from {| t1 |}at2 and t−1

2 . This approach is in
general adequate for a large class of operators, but we run into trouble when
we include operations such as exclusive-or which obey different equational
theories. In this case, we need to include not only a rule such as

M ⊢ t1 ∧M ⊢ t2 ⇒ M ⊢ t1 ⊕ t2

But also the set of equations

t⊕ 0 = t t1 ⊕ t2 = t2 ⊕ t1

t⊕ t = 0 t1 ⊕ (t2 ⊕ t3) = (t1 ⊕ t2)⊕ t3

Similar problems arise when we introduce protocols based on Diffie-
Hellman exponentiation or protocols based on homomorphic encryption, such
as those involving blind signatures.

There are two ways of dealing with this problem. The first is to replace
the equational theory with a set of inference rules that is equivalent under
certain syntactic restrictions on the protocol. This is the approach followed in
the previously mentioned work on encryption-decryption [Mil03] and also by
Küsters and Truderung, who develop inference rules for the theory governing

22

exclusive-or [KT08] and a subtheory of the theory governing Diffie-Hellman
exponentiation [KT09]. This approach is most appropriate when one wishes
to use a tool that does not directly support reasoning about equational prop-
erties.

The second approach is to adapt the reasoning used by the tool to the
equational theory at hand. A substantial amount of work has been done in
this area. There are two main techniques that researchers have concentrated
on. One is an extension of the intruder deduction problem to include equa-
tional theories. Thus, we now ask: given a set of terms M , a term t, and
an equational theory E, is it possible to determine whether or not M ⊢ t
modulo E? The decidability of the intruder deduction problem in the free
theory was the main component of Rusinowitch’s and Turuani’s proof of de-
cidability of security in the bounded session model. Decision procedures have
been subsequently given for a large class of equational theories relevant for
model checking cryptographic protocols [AC06]. These theories include a class
of rewrite theories known as subterm-convergent (for which the intruder de-
duction problem is decidable in polynomial time), and other theories such as
homomorphic encryption and exclusive-or. Algorithms for verifying intruder
deduction modulo finite convergent rewrite theories have been implemented
in several tools [BCD09b, CDK09, CBC11].

The other technique is equational unification: given an equational theory
E and two terms t and s, find a complete description of all the substitutions
σ such that σ(s) = σ(t) modulo E. This is useful for determining which states
can immediately follow (or precede) a given state: one unifies the current state
with the output (or input) of a state transition. Equational unification was
a well-known technique long before it was applied to cryptographic proto-
col analysis. Indeed, anyone who has solved an arithmetic equation such as
x + 7 = 12 + y has applied equational unification. However, unification re-
search generally concentrated on algorithms for special-purpose theories. In
cryptographic protocol analysis, it is necessary to be able to apply unification
to a range of theories, and to different combinations of theories. Thus generic
approaches that apply to classes of theories that can be easily combined are
preferable to special purpose algorithms, even when the special purpose al-
gorithms may be more efficient. One technique that follows this approach is
the process known as variant narrowing [EMS09], which can be applied to a
class of theories that satisfy a property known as the finite variant property
[CLD05]. This is satisfied by a large number of equational theories of interest
for cryptographic protocol analysis, with the major exception being homo-
morphic encryption. A version of variant narrowing has been implemented in
the Maude-NPA protocol analysis tool, discussed in Sect. 24.5.1.

We note that although there is a large overlap between subterm conver-
gent and finite variant theories, the finite variant property does not imply
subterm convergence, since by definition no associative-commutative theories
are subterm convergent. Whether the converse holds is, to the best of our
knowledge, still an open problem.

24.5 Systems and algorithms 23

The most pressing open problem in the short term is how to extend the
available tools to handle additional theories. In some cases (e. g., the intruder
deduction problem for non-subterm-convergent theories) the exact complexity
is not known and needs to be understood better. In other cases (for example
some of the unification problems connected with different homomorphic en-
cryption theories), the problem is known to be intractable or undecidable, and
what instead needs to be investigated are (preferably syntactic) conditions on
cryptographic protocol specifications that make the problems tractable. There
is also the issue of combining theories. For example, in the case of unification,
general algorithms for combining unification algorithms for different theories
have been known for some time [SS89], but their generality forces them to be
highly nondeterministic, and thus they are usually too slow to be practical. It
may be possible to restrict ourselves to particular types of theories such that
practical algorithms can be developed. However, it is still unknown whether
such classes of theories contain the main theories of interest for cryptographic
protocol analysis.

More generally, there is the problem of determining what one actually
learns from an analysis with respect to an equational theory. For example,
Kremer et al. [KRS10] have been using subterm-convergent theories to analyze
voting protocols. However, the primitives that they describe with subterm-
convergent theories are implemented by algorithms satisfying richer equational
theories, usually involving Abelian groups. Are the higher-level descriptions in
terms of subterm-convergent theories safe approximations? Conversely, when
would a free theory be a safe approximation for a subterm-convergent theory?
This question has been answered for the subterm-convergent theories involving
both shared and public key encryption [Mil03]. Can this result be extended
to more general cases? Finally, when is any theory a safe approximation of a
computational theory of protocol correctness? Some initial work on this last
problem has been done by Baudet et al. [BCK09], but there is still much to
be learned.

24.5 Systems and algorithms

In this section, we give some representative examples of systems based on the
algorithmic approaches just presented.

24.5.1 NPA and Maude-NPA

The NRL Protocol Analyzer, or NPA, was one of the earliest tools for verify-
ing the security of cryptographic protocols. Although not originally designed
as a model checker, it later took on many of the features of one, including the
ability to check properties expressed in a temporal logic language, NPATRL
[MSC04]. In NPA, both the actions of honest agents and the adversary were
specified in terms of state transitions. Model checking employed backward

24

search, where the output of a state transition was unified with the current
state. NPA had limited support for equational unification and could, for ex-
ample, model properties such as the cancellation of encryption and decryption.

One of the most interesting properties of NPA was that it was an un-
bounded session model checker. It included built-in inductive techniques for
building grammars defining languages of infinite search paths. Once NPA
reached a state that contained a term in the grammar, it would not explore
beyond that state. This technique often allowed NPA to terminate after a
finite number of steps, although of course termination was not guaranteed.
It has been used to verify a number of protocols and protocol standards, in-
cluding the Internet Key Exchange Protocol [Mea99], the Group Domain of
Interpretation Protocol [MSC04], and the Simmons Selective Broadcast Pro-
tocol [Mea92].

Maude-NPA is a descendant of NPA, implemented in the Maude rewriting
language[CDE+07]. It shares many of NPA’s features, including the use of
unification to implement backward search and the reliance on grammars to
ensure termination. There are two main differences. First, it is implemented
in the Maude rewriting language, which gives it a formal basis in rewriting
logic. In particular, backward search in Maude-NPA is implemented via nar-
rowing over a simple transition model that is expressed via a small set of
rewrite rules. Narrowing is a technique for deduction using rewrite rules and
unification that given a term t, finds a substitution σ that unifies a subterm
with the left-hand side of a rewrite rule l → r. The subterm σ(l) of σ(t) is
replaced by σ(r). When the rewrite rules describe state transitions, narrowing
gives an algorithm for state space exploration. When the arrows are reversed,
as they are in Maude-NPA, narrowing can be used to implement backward
search from a final goal. A second difference is that Maude-NPA is devoted
to reasoning about the different equational theories that describe the behav-
ior of cryptographic algorithms. Maude-NPA makes use of unification modulo
different equational theories as the unification step in its narrowing algorithm.

Maude-NPA also incorporates two state space reduction techniques that
were originally used in NPA, but have been refined and extended in Maude-
NPA. The first is subsumption-based partial order reduction, in which the
unreachability of a Maude-NPA state description is implied by the unreach-
ability of another state description if a certain subsumption relation exists
between them. The second is a super-lazy intruder. This is similar to the
lazy intruder of the OFMC [BMV05b], except that it is adapted for backward
search. If a variable term or a term constructed out of variable terms appears
in the adversary knowledge part of the state, then this term is not searched
any further (that is, it is removed from the state), since the adversary should
be able to find it using arbitrary terms.2 However, it is not deleted entirely
but kept around in a ghost state. If any of the variables in the term are in-

2 Maude-NPA does not have secret types, so we assume that the adversary can
create at least one term of any type.

24.5 Systems and algorithms 25

stantiated, the ghost state is resuscitated. Among the equational theories that
Maude-NPA can currently handle are a subclass of subterm-convergent theo-
ries, as well as exclusive-or, Abelian groups, modular exponentiation, bounded
associativity and homomorphic encryption over a free operator. Work is on-
going on incorporating more general homomorphic encryption.

24.5.2 AVISPA and related tools

The AVISPA tool [ABB+05] is a model checker that integrates several dif-
ferent model-checking approaches. AVISPA provides a high-level specification
language, HLPSL, for specifying protocols and their properties. Protocols are
specified in HLPSL in terms of their roles, using control flow patterns, data
structures, alternative adversary models, as well as different cryptographic
primitives and their algebraic properties. HLPSL specifications have a declar-
ative semantics based on Lamport’s Temporal Logic of Actions [Lam94] and
an operational semantics defined in terms of a rewrite-based formalism called
the intermediate format, or IF. Different model-checking backends interpret
the IF and can be used for (bounded) verification or falsification.

The main backends in the AVISPA tool are the Constraint-Logic-based
Attack Searcher CL-Atse, the On-the-fly Model-Checker OFMC, and the
SAT-based Model-Checker SAT-MC. We previously discussed SAT-MC in
Sect. 24.4.3 and restrict our attention here to CL-Atse and OFMC.

Cl-Atse, like the other AVISPA backends, operates on IF specifications
of protocols. CL-Atse represents protocol states symbolically as collections of
non-ground facts, which record the states of different threads, the messages
sent to the network, and the adversary knowledge. In particular, constraints
are used to describe what the different agents know and a constraint calculus
is used to solve for what they can know, from messages previously exchanged,
i. e., the calculus is used to solve a variant of the non-ground intruder de-
duction problem. CL-Atse was designed to allow the easy integration of new
deduction rules and operator properties. In particular, CL-Atse integrates a
version of Baader and Schulz’s unification algorithm [BS96] with modules for
xor, exponentiation, and associative pairing.

OFMC combines a number of techniques to enable the efficient analysis of
security protocols. First, OFMC uses lazy data types (in a functional program-
ming setting) as a simple way of building efficient on-the-fly model checkers
for protocols with very large, or even infinite, state spaces. A lazy data type
is one where data constructors (such as cons for building lists or node for
building trees) build data without evaluating their arguments; this allows one
to represent and compute with infinite data (e. g., streams or infinite trees),
generating arbitrary prefixes of the data on demand. In [Bas99], lazy data
types are used to build, and compute with, models of security protocols: a
protocol and a description of the powers of an adversary are formalized as
an infinite tree. Lazy evaluation is used to decouple the model from search

26

and heuristics, building the infinite tree on the fly, in a demand-driven fash-
ion. Second, OFMC models the adversary in a lazy fashion (the so-called
“lazy intruder”), where adversary communication is represented symbolically
and solved during search. To this end, like CL-Atse, it integrates a constraint
solver for the non-ground intruder deduction problem. Effectively, OFMC per-
forms search at two levels: search in the space of symbolic states, and search
in the space of constraints. Third, while OFMC performs verification for a
bounded number of sessions, it works with symbolic session generation which
avoids enumerating all possible ways of instantiating possible sessions. Fourth,
OFMC exploits a state-space reduction technique, inspired by partial-order re-
duction, called constraint differentiation [MVB10]. Constraint differentiation
works by eliminating certain kinds of redundancies that arise in the search
space when using constraints to represent and manipulate the messages that
may be sent by the adversary. Namely, different symbolic states may describe
overlapping sets of ground states. Constraint differentiation essentially com-
putes a set-difference symbolically, to minimize these overlaps. This can be
seen as generalizing the kind of subsumption-based partial-order reduction
used in Maude-NPA. Finally, OFMC also provides some limited support for
handling different equationally specified operators on messages [BMV05a].

24.5.3 Athena, Scyther, and Tamarin

The Athena [Son99] and Scyther [Cre08] algorithms implement model check-
ing with respect to the unbounded model described in Sect. 24.3.5 by perform-
ing a backward-style search. For these methods, the model is extended with
adversary events for encrypting, decrypting, hashing, and knowing messages.
Infinite sets of states are represented by (trace) patterns : partially-ordered
sets of events that must occur in the traces, and whose messages may contain
variables. (In the Athena model, patterns are referred to as semi-bundles.)
The events in patterns must satisfy a number of criteria that follow from the
semantics. For example, if an event occurs in the pattern from a role R with
thread identifier tid, then (a) the pattern does not contain events from other
roles with thread identifier tid and (b) the event is preceded in the pattern by
all events that precede it in the role R, with identical substitutions and thread
identifier tid. However, it is not required for receive events in patterns that
the received term can be inferred from the union of the initial knowledge and
the messages that occur in preceding send events within the pattern. Patterns
allow for specifying properties such as secrecy.

Example 4 (Secrecy pattern). The following pattern PT specifies the violation
of secrecy of the nonce of the responder role of the Needham-Schroeder proto-
col, performed by b when trying to communicate with a, where X and tid are
variables. The AdversaryKnows event is used to encode the secrecy violation.

24.5 Systems and algorithms 27

e1 = (tid, recv(a, b, {| a,X |}a
pk(b)))

e2 = (tid, send(b, a, {|X,NB♯tid |}apk(a)))

e3 = (tid, recv(a, b, {|NB♯tid |}apk(b)))

e4 = AdversaryKnows(NB♯tid)

PT =
(

{e1, e2, e3, e4},
{

(e1, e2), (e2, e3)
}+

)

This pattern represents an infinite set of traces of the Needham-Schroeder
protocol, e. g., the attack from Fig. 24.2 and all traces that additionally include
arbitrarily interleaved threads. In contrast, the corresponding pattern for the
initiator role (also with agents a and b) represents the empty set of traces.

By introducing restrictions on variable instantiations into the algorithm,
and replacing a and b by variables that can only be instantiated by non-
compromised agents, we can faithfully represent all violations of the secrecy
property for the protocol in the above example.

During backward search, a case distinction on the source of messages is
used for branching and the patterns are extended by either adding events,
adding ordering constraints, or unifying terms. The search can terminate in
two ways. First, the pattern can be proven to be empty, i. e., it contains no
traces of the protocol. The main mechanism here is detecting cyclic dependen-
cies of the messages. Second, the receive events in the pattern meet all premises
of the receive event: the adversary can produce an appropriate message from
the preceding events. In such a case, the pattern is called realizable and it cor-
responds to an infinite set of actual traces; a representative trace (of minimal
length) from this set can be generated by linearizing the non-adversary events
and instantiating the remaining variables from the adversary knowledge.

Scyther differs from Athena in how it makes the case distinction and in
the possible outcomes of the analysis. With respect to the possible outcomes,
Scyther bounds the size of the patterns but detects whether the bound is
reached. By bounding the size of the patterns, termination is guaranteed and
one of three possible results occurs. First, if a realizable pattern is found, a
representative (attack) trace is constructed. Second, if no realizable patterns
are found, and the bound is not reached, no realizable patterns exist (for
any bound). In case of an attack pattern, this corresponds to the absence of
attacks. Third, if no realizable patterns are found but the bound is reached,
the result can be interpreted as verification with respect to a bounded number
of sessions and is similar to the guarantees provided by, e. g., OFMC or CL-
AtSe when they do not find attacks.

The Tamarin prover [SMCB12] is a generalization of the algorithms under-
lying Athena and Scyther. Tamarin uses a backward search that can handle
more expressive protocol and property specifications. Protocols and adver-
sary capabilities can be specified using multiset rewriting rules, allowing for
the specification of protocols with branching and loops. Tamarin provides
support for Diffie-Hellman exponentiations and a class of user-defined equa-
tional theories. Protocols can be analyzed with respect to properties specified

28

in a guarded fragment of first-order logic that supports quantification over
timepoints.

24.5.4 ProVerif

The ProVerif tool [Bla01] uses abstractions to obtain an efficient analysis
method. In particular, it employs two main abstractions compared to the
operational semantics presented before. First, individual fresh values are ab-
stracted into sets of fresh values. Second, each action of a thread can be
executed multiple times.

The abstracted protocol model can be represented as a set of Horn clauses.
These Horn clauses are analyzed using a two-phase resolution algorithm. In
the first phase, the Horn clauses are saturated in a forward fashion until a
fixpoint is reached. This phase combines multiple derivations into single rules,
thereby optimizing the rule set. Facts can be derived from the optimized rule
set if and only if they can be derived from the original rule set. In the second
phase, a backward depth-first search is used to try to establish that a fact
(usually representing the adversary knowing a message that is supposed to be
secret) cannot be derived from the saturated Horn clauses. If this cannot be
established because the fact can be derived, an attempt is made to reconstruct
a corresponding protocol trace.

If we assume that the fact represents a secret, we can interpret each of the
four possible results of running the tool in the following way. First, if the fact
cannot be derived, the over-approximation ensures that no protocol execution
will leak the secret, and hence the protocol satisfies secrecy. Second, if the
fact can be derived and the derivation can be translated into a correspond-
ing (attack) trace, the protocol does not satisfy secrecy, as witnessed by the
trace. Third, if the fact can be derived but no corresponding trace can be
reconstructed from the derivation, the result is inconclusive. Finally, either of
the two phases in the algorithm may not terminate and again no knowledge
is gained about the security of the protocol.

ProVerif can handle authentication properties formalized as correspon-
dence properties [Bla09]. These properties express that when event e1 occurs,
event e2 must have occurred earlier with related parameters ρ1 and ρ2. For
example ρ1 could be a nonce and ρ2 a variable that is supposed to be instan-
tiated with ρ1. In this case, it does not suffice to prove that the values of ρ1
and ρ2 abstract into the same set (i. e., they are in the same equivalence class
in the abstraction) and a finer abstraction is used. By introducing session
identifiers in the construction of ρ1 and ρ2, we increase the precision of the
verification at the cost of efficiency and termination.

24.6 Research problems 29

24.6 Research problems

Although the research community has come far in the past decades, many re-
search challenges remain. Below we describe some of the most pressing prob-
lems being tackled as well as open problems.

24.6.1 Link to computational soundness

The Dolev-Yao model, even when equational properties are added, treats cryp-
tosystems as black boxes. If the adversary possesses the appropriate key, he
can learn the contents of an encrypted term. Otherwise he is completely ig-
norant of the corresponding plaintext. Moreover he is only able to perform
the operations specified in the protocol. This is very different from defini-
tions used by cryptographers. In these definitions, the adversary is modeled
as a probabilistic polynomial time Turing machine. The security properties of
the cryptosystems themselves vary depending on what kinds of attacks they
are assumed to be secure against, e. g., chosen plaintext or chosen ciphertext.
Finally, secrecy is usually specified not in terms of the adversary not being
able to obtain a given secret, but in the indistinguishability between two dif-
ferent versions of the protocol, e. g., two versions with different secrets, or
one constructed using a secret and one constructed using random data, or
in the indistinguishability between the real secret and a random bit string.
Is it possible to come up with an approach to proving protocols correct that
combines the amenability to exhaustive search of the Dolev-Yao model with
the stronger requirements of cryptographic models?

There has been a substantial amount of work on this problem. The general
idea is to have two models, a symbolic model and a computational model, and
establish some sort of relationship between them, e. g., a simulation relation,
so that security in the symbolic model implies security in the computational
model. In some approaches, the symbolic specification is trivially secure, while
in others it is a Dolev-Yao style specification that can be verified with a model
checker. A survey of research in this area is given by Cortier et al. in [CKW10].

Although research in this area has been successful in establishing links
between the two models, the results have been criticized both for being so
complex as to detract from the advantage of being able to reason at the simpler
Dolev-Yao level, and for being too limited in the types of cryptosystems they
can handle. For example, the reactive simulatability framework of Backes et al.
[BPW07], one of the most prominent models in this area, has been shown to
be impossible to extend to include two standard items in the cryptographer’s
toolbox: one-way hash functions [BPW06] and exclusive-or [BP05]. This is
perhaps not surprising, given the divergence between the two models and the
difficulty of bringing the two together. Hence this is still an active area of
research.

30

24.6.2 Corruption models

In the basic Dolev-Yao model described in Sect. 24.3, the Dolev-Yao adver-
sary initially has the long term keys of some of the agents. This formalizes a
notion of static corruption where the adversary has compromised some of the
agents and can play as an “insider” during protocol execution. However, many
protocols are intended to be secure against much more sophisticated corrup-
tion models. [CK01, JV96, Sho99], for example, specify adversaries who can
dynamically corrupt long term secrets, session keys and other parts of the ses-
sion state, or even random number generators. For example, a Diffie-Hellman
key agreement protocol, where digital signatures are used to authenticate the
exchanged half-keys, provides perfect forward secrecy [MvOV96]: the result-
ing key remains secret even when the signature keys are later compromised
by the adversary.

Some of the earlier model checkers, such as the NRL Protocol Analyzer,
allowed for the dynamic corruption of keys. More recently in [BC10b, BC10a],
Basin and Cremers have examined this issue more thoroughly by formalizing
a hierarchy of corruption models. Their models extend the operational seman-
tics presented earlier and cover many aspects of the adversary models used
in cryptographic models. The Scyther tool supports the evaluation of proto-
cols with respect to these corruption models, which has led to the automatic
discovery of many attacks that previously could only be found by manual
analysis.

The additional complexity of richer corruption models significantly in-
creases the time required for verification. To make analysis of larger protocols
with respect to these models feasible, it would be useful to develop more
efficient dedicated model-checking algorithms. Furthermore, traditional com-
positionality results, e. g., [GT00, ACG+08], no longer hold under stronger
corruption models. Hence, another research challenge is to develop analogous
compositionality results for this purpose.

An alternative direction is to weaken the adversary models. In fact, in
many cases, protocols are designed under the assumption that adversaries
are not completely dishonest and for various reasons do not perform all the
activities available to the Dolev-Yao adversary. One example is the honest but
curious agent, who acts according to the rules of the protocol, but attempts to
learn secret information from the messages that it has received legitimately.
A related case is the passive adversary who does not even participate in the
protocol but simply observes passing traffic. Other protocols, including for
example many electronic commerce protocols, are based on the assumption
that an adversary will not take any action against its own best interests, such
as those that involve revealing its own secret information. Although a fair
amount of work has been done on model checking protocols with respect to
these various adversary models, a more comprehensive approach, in which the
user could specify which adversary model will be used, would be of benefit.

24.6 Research problems 31

24.6.3 Channel properties

The standard Dolev-Yao model gives the adversary control over all communi-
cation channels. The adversary sees all communication, and can block, alter,
and redirect traffic at will. Thus all an agent can conclude from receipt of
information sent along one of these channels is that somebody sent it. Assur-
ance of other properties must be gained by cryptographic means. But there
is a growing number of cryptographic protocols that either use channels with
special properties or rely upon assumptions about weaker adversaries. These
include anonymous routing protocols such as Tor, which assume an adversary
who is able to spy on only part of the network, distance bounding protocols
[BC94] and secure localization protocols [vH06], which rely on the use of timed
wireless communications to verify that a prover is within a certain range of
a verifier, and protocols that rely on human-verifiable channels [BSSW02],
such as a human reading a sequence of numbers off a computer screen, to
bootstrap key distribution in the lack of a public key infrastructure. Work
has been ongoing on developing methods for formal analysis of protocols that
use these channels, e. g., [SSBv09, BvSS09, MPP+06, TSG10], but most of it
has not yet been applied to model checking, concentrating more on theorem
proving or specialized logics. The problem of how best to model and reason
about these channels using a model checker is still open.

24.6.4 Other properties, including non-trace properties

The application of formal methods to cryptographic protocol analysis was
originally restricted to the study of various forms of secrecy and authentica-
tion. These are straightforward to formulate using temporal logics and analyze
using model checkers. However, there are other classes of properties that are
less straightforward. Often these are properties that are not trace properties
themselves, but can be approximated by trace properties such that if the trace
property holds, then so does the original property.

One of the earliest properties of this type is non-interference, which,
roughly speaking, is the property that events labelled “high” should have no
discernible effect on events labeled “low”. Non-interference is closely related
to the cryptographic notion of indistinguishability, mentioned in Sect. 24.6.1.
Indistinguishability formalizes that an adversary should be unable to distin-
guish between two protocols, usually either the same protocol using different
secrets, or a real protocol and a simulation of the protocol using random data.
This can be approximated by a trace-based notion called observational equiv-
alence, which has been implemented in ProVerif by running the two protocols
in tandem and checking for equivalence at each transition [BAF05].

Another property related to indistinguishability is static equivalence [AF01].
This notion is defined with respect to an underlying equational theory and,
roughly speaking, two terms are statically equivalent when they satisfy the
same equations. As noted in [BWA10], static equivalence is essentially a special

32

case of observational equivalence that does not allow for continued interaction
between a system and an observer: the observer gets data once and conducts
experiments on its own. Static equivalence has direct application to model-
ing off-line guessing attacks, which are attacks where the adversary tries to
guess a secret and verify his guess, without further communication. As shown
in [CDE05, Bau05], static equivalence may be used to specify the absence
of off-line guessing attacks by expressing that the adversary cannot distin-
guish between two versions of the same symbolic trace: one corresponding
to a correct guess and the other corresponding to an incorrect guess. Deci-
sion procedures for static equivalence have been implemented by the YAPA
[BCD09a], KISS [CDK09], and FAST [CBC11] tools. ProVerif also supports
the analysis of off-line guessing attacks, but based on a different formalization
of guessing due to [CDE05].

We see that there have been a number of individual solutions to reasoning
about special properties. But what would be useful to have is a more general
approach to such properties that could be tailored to specific instances. For
example, as we have seen from the above, many security properties are ex-
pressed in terms of some sort of equivalence between families of traces. One
might expect a general procedure to exist for such equivalences.

24.6.5 Probabilities

As noted previously, probabilities are part of standard cryptographic defini-
tions of security. Probabilities also arise when security protocols are based on
randomized algorithms or the protocol guarantees themselves are probabilis-
tic. Different options for augmenting transition systems and logics with proba-
bilities are discussed in Chap. 29 of this handbook. Probabilistic model check-
ing has been successfully applied to different kinds of security protocols. Ex-
amples include protocols for anonymity [Shm04], non-repudiation [LMST05],
and contract signing [NS06].

As an example, in [Shm04], Shmatikov models the protocol underlying
Crowds [RR98], which is a peer-to-peer group communication system based
on random message routing among members. He models the behavior of group
members and the adversary as a discrete-time Markov chain, and formalizes
the anonymity properties for the system in the probabilistic temporal logic
PCTL. Given this model, he can use the PRISM model checker [HKNP06]
to analyze the anonymity provided by the system, showing, for example, how
probabilistic anonymity degrades as the group size increases.

Until now, work on model-checking stochastic systems and model-checking
security has been disjoint. The problem of using off-the-shelf general model
checkers, whether for stochastic systems or other classes of systems, is that
they neither offer optimizations useful in the domain of security (e. g., for
handling the Dolev-Yao intruder) nor support cryptographic operators and
equational extensions. An open problem is how best to combine the models
and algorithms from these two areas.

24.7 Conclusions 33

24.7 Conclusions

We have shown in this chapter how to extend transition-system models of
concurrent computation to model cryptographic protocols. The main exten-
sions have been with a term language formalizing cryptographic messages and
a model of a network (Dolev-Yao) adversary. These extensions themselves are
fairly straightforward but they lead to two immediate challenges: the resulting
system has infinitely many states and the active adversary results in consid-
erable nondeterminism. Addressing these challenges has motivated a number
of specialized model-checking techniques.

The state-of-the-art methods and tools are able to handle classical au-
thentication and key-exchange protocols of realistic, but limited, complexity.
Abstract models of large protocol suites such as the Internet Key Exchange
protocol have been analyzed. However, an automatic analysis of the full pro-
tocol suite, with all its variations, Diffie-Hellman equational reasoning, and a
full model of its branching and looping behaviors, would lead to a state-space
explosion and is outside of the current state-of-the-art. A state-space explo-
sion arises due to a combination of the protocol’s size and the cryptographic
operators used. In the short-term, improved support for equational reason-
ing will make a difference; in the mid-term and long-term, better support for
reasoning using abstraction is required.

Security protocols go far beyond authentication and key-exchange in prac-
tice. We have sketched some of the challenges in handling more precise, crypto-
graphic notions of security as well as wider classes of cryptographic primitives
and properties. Interestingly, advances in other areas of model checking, such
as probabilistic model checking, may play an important role in enabling new
classes of applications.

References

[ABB+05] Alessandro Armando, David Basin, Yohan Boichut, Yannick Chevalier,
Luca Compagna, Jorge Cuéllar, Paul Hankes Drielsma, Pierre-Cyrille
Héam, Olga Kouchnarenko, Jacopo Mantovani, Sebastian Mödersheim,
David von Oheimb, Michaël Rusinowitch, Judson Santiago, Mathieu Tu-
ruani, Luca Viganò, and Laurent Vigneron, The AVISPA tool for the au-
tomated validation of internet security protocols and applications, CAV,
Lecture Notes in Computer Science, vol. 3576, Springer, 2005, pp. 281–
285.

[AC04] Alessandro Armando and Luca Compagna, SATMC: A SAT-based model
checker for security protocols, JELIA, Lecture Notes in Computer Science,
vol. 3229, Springer, 2004, pp. 730–733.

[AC06] Mart́ın Abadi and Véronique Cortier, Deciding knowledge in security pro-
tocols under equational theories, Theor. Comput. Sci. 367 (2006), no. 1-2,
2–32.

[AC08] A. Armando and L. Compagna, SAT-based model-checking for security
protocols analysis, International Journal of Information Security 7 (2008),
no. 1, 3–32.

[ACG+08] Suzana Andova, Cas Cremers, Kristian Gjøsteen, Sjouke Mauw,
Stig Frode Mjølsnes, and Sasa Radomirović, A framework for compo-
sitional verification of security protocols, Information and Computation
206 (2008), 425–459.

[AF01] M. Abadi and C. Fournet, Mobile values, new names, and secure commu-
nication, Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ACM, 2001, pp. 104–115.

[BAF05] Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet, Automated Verifi-
cation of Selected Equivalences for Security Protocols, 20th IEEE Sym-
posium on Logic in Computer Science (LICS 2005) (Chicago, IL), IEEE
Computer Society, June 2005, pp. 331–340.

[Bas99] David Basin, Lazy infinite-state analysis of security protocols, Secure Net-
working — CQRE [Secure] ’99 (Düsseldorf, Germany), Lecture Notes in
Computer Science, no. 1740, Springer-Verlag, November 1999, pp. 30–42.

[Bau05] M. Baudet, Deciding security of protocols against off-line guessing at-
tacks, Proceedings of the 12th ACM conference on Computer and com-
munications security, ACM, 2005, pp. 16–25.

36 References

[BC94] Stefan Brands and David Chaum, Distance-bounding protocols, EURO-
CRYPT ’93: Workshop on the theory and application of cryptographic
techniques on Advances in cryptology (Secaucus, NJ, USA), Springer-
Verlag New York, Inc., 1994, pp. 344–359.

[BC10a] David Basin and Cas Cremers, Degrees of security: Protocol guarantees
in the face of compromising adversaries, 19th EACSL Annual Conference
on Computer Science Logic (CSL) (Brno, Czech Republic), Lecture Notes
in Computer Science, vol. 6247, Springer-Verlag, 2010, pp. 1–18.

[BC10b] , Modeling and analyzing security in the presence of compromis-
ing adversaries, Computer Security — ESORICS 2010, Lecture Notes in
Computer Science, vol. 6345, Springer, 2010, pp. 340–356.

[BCD09a] M. Baudet, V. Cortier, and S. Delaune, YAPA: A generic tool for comput-
ing intruder knowledge, Rewriting Techniques and Applications, Springer,
2009, pp. 148–163.

[BCD09b] Mathieu Baudet, Véronique Cortier, and Stéphanie Delaune, YAPA: A
generic tool for computing intruder knowledge, RTA, Lecture Notes in
Computer Science, vol. 5595, Springer, 2009, pp. 148–163.

[BCK09] Mathieu Baudet, Véronique Cortier, and Steve Kremer, Computationally
sound implementations of equational theories against passive adversaries,
Inf. Comput. 207 (2009), no. 4, 496–520.

[BCM12] David Basin, Cas Cremers, and Simon Meier, Provably repairing the
ISO/IEC 9798 standard for entity authentication, Principles of Security
and Trust - First International Conference, POST 2012, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012, Proceedings
(Pierpaolo Degano and Joshua D. Guttman, eds.), Lecture Notes in Com-
puter Science, vol. 7215, Springer, 2012, pp. 129–148.

[BFCZ08] Karthikeyan Bhargavan, Cédric Fournet, Ricardo Corin, and Eugen Zali-
nescu, Cryptographically verified implementations for TLS, ACM Confer-
ence on Computer and Communications Security, ACM, 2008, pp. 459–
468.

[BFGS08] Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Nikhil
Swamy, Verified implementations of the information card federated
identity-management protocol, ASIACCS, ACM, 2008, pp. 123–135.

[BG01] David Basin and Harald Ganzinger, Automated complexity analysis based
on ordered resolution, Journal of the Association of Computing Machin-
ery 48 (2001), no. 1, 70–109.

[Bla01] Bruno Blanchet, An efficient cryptographic protocol verifier based on Pro-
log rules, CSFW, IEEE Computer Society, 2001, pp. 82–96.

[Bla09] , Automatic verification of correspondences for security protocols,
Journal of Computer Security 17 (2009), no. 4, 363–434.

[BMV05a] David Basin, Sebastian Mödersheim, and Luca Viganò, Algebraic in-
truder deductions, LPAR 2005, LNAI, vol. 3835, Springer-Verlag, De-
cember 2005, pp. 549–564.

[BMV05b] , OFMC: A symbolic model checker for security protocols, Int. J.
Inf. Sec. 4 (2005), no. 3, 181–208.

[BN98] Franz Baader and Tobias Nipkow, Term rewriting and all that, Cambridge
University Press, 1998.

References 37

[BP05] Michael Backes and Birgit Pfitzmann, Limits of the cryptographic real-
ization of Dolev-Yao-Style XOR, ESORICS, Lecture Notes in Computer
Science, vol. 3679, Springer, 2005, pp. 178–196.

[BPW06] Michael Backes, Birgit Pfitzmann, and Michael Waidner, Limits of the
BRSIM/UC soundness of Dolev-Yao models with hashes, ESORICS, Lec-
ture Notes in Computer Science, vol. 4189, Springer, 2006, pp. 404–423.

[BPW07] , The reactive simulatability (RSIM) framework for asynchronous
systems, Inf. Comput. 205 (2007), no. 12, 1685–1720.

[BS96] F. Baader and K. U. Schulz,Unification in the union of disjoint equational
theories: Combining decision procedures, J. Symbolic Computation 21

(1996), 211–243.
[BSSW02] Dirk Balfanz, D. K. Smetters, Paul Stewart, and H. Chi Wong, Talking

to strangers: Authentication in ad-hoc wireless networks, Proceedings of
Network and Distributed System Security Symposium 2002 (NDSS’02)
(San Diego, CA), February 2002.

[BvSS09] David Basin, Srdjan Čapkun, Patrick Schaller, and Benedikt Schmidt,
Let’s get physical: Models and methods for real-world security protocols,
22nd International Conference on Theorem Proving in Higher Order Log-
ics (TPHOLs) (Munich, Germany), Lecture Notes in Computer Science,
vol. 5674, Springer-Verlag, 08 2009, Invited paper, pp. 1–22.

[BWA10] M. Baudet, B. Warinschi, and M. Abadi, Guessing attacks and the com-
putational soundness of static equivalence, Journal of Computer Security
18 (2010), no. 5, 909–968.

[CBC11] Bruno Conchinha, David Basin, and Carlos Caleiro, Efficient decision
procedures for message deducibility and static equivalence, 7th Interna-
tional Workshop on Formal Aspects of Security and Trust - FAST 2010
(Pierpaolo Degano, Sandro Etalle, and Joshua D. Guttman, eds.), vol.
6561, Lecture Notes in Computer Science, 2011, pp. 34–49.

[CDE05] R. Corin, J. Doumen, and S. Etalle, Analysing password protocol secu-
rity against off-line dictionary attacks, Electronic Notes in Theoretical
Computer Science 121 (2005), 47–63.

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Mart́ı-Oliet, José Meseguer, and Carolyn L. Talcott, All about maude -
a high-performance logical framework, how to specify, program and verify
systems in rewriting logic, Lecture Notes in Computer Science, vol. 4350,
Springer, 2007.

[CDK09] S. Ciobâca, S. Delaune, and S. Kremer, Computing knowledge in secu-
rity protocols under convergent equational theories, Automated Deduc-
tion: 22nd International Conference on Automated Deduction, Montreal,
Canada, August 2-7, 2009. Proceedings, Springer-Verlag, New York, 2009,
pp. 355–370.

[CJM00] Edmund M. Clarke, Somesh Jha, and Wilfredo R. Marrero, Verifying
security protocols with Brutus, ACM Trans. Softw. Eng. Methodol. 9

(2000), no. 4, 443–487.
[CK01] R. Canetti and H. Krawczyk, Analysis of key-exchange protocols and their

use for building secure channels, EUROCRYPT, Lecture Notes in Com-
puter Science, vol. 2045, Springer-Verlag, 2001, pp. 453–474.

[CKW10] Véronique Cortier, Steve Kremer, and Bogdan Warinschi, A survey of
symbolic methods in computational analysis of cryptographic systems.,
Journal of Automated Reasoning. (2010), 1–35.

38 References

[CLD05] Hubert Comon-Lundh and Stéphanie Delaune, The finite variant prop-
erty: How to get rid of some algebraic properties, RTA, Lecture Notes in
Computer Science, vol. 3467, Springer, 2005, pp. 294–307.

[CLT04] H. Comon-Lundh and R. Treinen, Easy intruder deductions, Verification:
Theory and Practice (2004), 182–184.

[Cre08] Cas Cremers, The Scyther tool: Verification, falsification, and analysis of
security protocols, CAV, Lecture Notes in Computer Science, vol. 5123,
Springer, 2008, pp. 414–418.

[Cre11] , Key exchange in IPsec revisited: formal analysis of IKEv1 and
IKEv2, Proceedings of the 16th European conference on Research in
computer security (Berlin, Heidelberg), ESORICS, Springer-Verlag, 2011,
pp. 315–334.

[CT03] Hubert Comon-Lundh and Ralf Treinen, Easy intruder deductions, Veri-
fication: Theory and Practice, Essays Dedicated to Zohar Manna on the
Occasion of His 64th Birthday (Nachum Dershowitz, ed.), Lecture Notes
in Computer Science, vol. 2772, Springer, February 2003, pp. 225–242.

[DEK82] Danny Dolev, Shimon Even, and Richard M. Karp, On the security of
ping-pong protocols, Information and Control 55 (1982), no. 1-3, 57–68.

[DLM04] Nancy A. Durgin, Patrick Lincoln, and John C. Mitchell, Multiset rewrit-
ing and the complexity of bounded security protocols, Journal of Computer
Security 12 (2004), no. 2, 247–311.

[DLMS99] Nancy A. Durgin, Patrick Lincoln, John C. Mitchell, and Andre Sce-
drov, Undecidability of bounded security protocols, Workshop on Formal
Methods and Security Protocols, 1999.

[DR06] T. Dierks and E. Rescorla, The transport layer security (TLS) protocol
version 1.1, Tech. Report RFC 4346, Internet Engineering Task Force,
2006.

[DY81] Danny Dolev and Andrew Chi-Chih Yao, On the security of public key
protocols (extended abstract), FOCS, IEEE, 1981, pp. 350–357.

[DY83] , On the security of public key protocols, IEEE Transactions on
Information Theory 29 (1983), no. 2, 198–207.

[EGS85] Shimon Even, Oded Goldreich, and Adi Shamir, On the security of ping-
pong protocols when implemented using the RSA, CRYPTO, Lecture
Notes in Computer Science, vol. 218, Springer, 1985, pp. 58–72.

[EMM07] Santiago Escobar, Catherine Meadows, and José Meseguer, Maude-NPA:
cryptographic protocol analysis modulo equational properties, FOSAD,
Lecture Notes in Computer Science, vol. 5705, Springer, 2007, pp. 1–50.

[EMS09] Santiago Escobar, José Meseguer, and Ralf Sasse, Variant narrowing and
equational unification, Electr. Notes Theor. Comput. Sci. 238 (2009),
no. 3, 103–119.

[GT00] J.D. Guttman and F.J. Thayer, Protocol independence through disjoint
encryption, CSFW, IEEE Computer Society, 2000, pp. 24–34.

[HC+98] D. Harkins, D. Carrel, et al., The internet key exchange (IKE), 1998.
[HKNP06] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, PRISM: A tool

for automatic verification of probabilistic systems, Tools and Algorithms
for the Construction and Analysis of Systems (2006), 441–444.

[HL04] Philippa J. Hopcroft and Gavin Lowe, Analysing a stream authentication
protocol using model checking, Int. J. Inf. Sec. 3 (2004), no. 1, 2–13.

[Hol02] G.J. Holzmann, The model checker SPIN, Software Engineering, IEEE
Transactions on 23 (2002), no. 5, 279–295.

References 39

[JV96] M. Just and S. Vaudenay, Authenticated multi-party key agreement, ASI-
ACRYPT 1996, Lecture Notes in Computer Science, vol. 1163, 1996,
pp. 36–49.

[KHNE10] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen, Internet key exchange
protocol version 2 (IKEV2), Tech. Report RFC 5996, Internet Engineer-
ing Task Force, September 2010.

[KRS10] Steve Kremer, Mark Ryan, and Ben Smyth, Election verifiability in elec-
tronic voting protocols, ESORICS, Lecture Notes in Computer Science,
vol. 6345, Springer, 2010, pp. 389–404.

[KT08] Ralf Küsters and Tomasz Truderung, Reducing protocol analysis with xor
to the xor-free case in the horn theory based approach, ACM Conference
on Computer and Communications Security, ACM, 2008, pp. 129–138.

[KT09] , Using ProVerif to analyze protocols with Diffie-Hellman expo-
nentiation, CSF, IEEE Computer Society, 2009, pp. 157–171.

[Lam94] L. Lamport, The temporal logic of actions, ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 16 (1994), no. 3, 872–923.

[LMST05] R. Lanotte, A. Maggiolo-Schettini, and A. Troina, Automatic analysis
of a non-repudiation protocol, Electronic Notes in Theoretical Computer
Science 112 (2005), 113–129.

[Low96] Gavin Lowe, Breaking and fixing the Needham-Schroeder public-key pro-
tocol using FDR, Software - Concepts and Tools 17 (1996), no. 3, 93–102.

[Low97] , A hierarchy of authentication specifications, CSFW, 1997,
pp. 31–44.

[Low98] , Casper: A compiler for the analysis of security protocols, Journal
of Computer Security 6 (1998), no. 1-2, 53–84.

[LR92] Dennis Longley and S. Rigby, An automatic search for security flaws in
key management schemes, Computers & Security 11 (1992), no. 1, 75–89.

[MCF87] Jonathan K. Millen, Sidney C. Clark, and Sheryl B. Freedman, The Inter-
rogator: Protocol security analysis, IEEE Trans. Software Eng. 13 (1987),
no. 2, 274–288.

[Mea92] Catherine Meadows, Applying formal methods to the analysis of a key
management protocol, Journal of Computer Security 1 (1992), no. 1, 5–
36.

[Mea96] , The NRL Protocol Analyzer: An overview, J. Log. Program. 26
(1996), no. 2, 113–131.

[Mea99] , Analysis of the Internet Key Exchange protocol using the NRL
Protocol Analyzer, IEEE Symposium on Security and Privacy, 1999,
pp. 216–231.

[Mil99] Jonathan K. Millen, A necessarily parallel attack, In Workshop on Formal
Methods and Security Protocols, 1999.

[Mil03] Jonathan K. Millen, On the freedom of decryption, Inf. Process. Lett. 86
(2003), no. 6, 329–333.

[MMS97] John C. Mitchell, Mark Mitchell, and Ulrich Stern, Automated analysis
of cryptographic protocols using Mur-phi, IEEE Symposium on Security
and Privacy, IEEE Computer Society, 1997, pp. 141–151.

[MPP+06] Catherine Meadows, Radha Poovendran, Dusko Pavlovic, LiWu Chang,
and Paul Syverson, Distance bounding protocols: authentication logic
analysis and collusion attacks, Secure Localization and Time Synchro-
nization in Wireless Ad Hoc and Sensor Networks (R. Poovendran,
C. Wang, and S. Roy, eds.), Springer Verlag, 2006.

40 References

[MS01] Jonathan K. Millen and Vitaly Shmatikov, Constraint solving for
bounded-process cryptographic protocol analysis, ACM Conference on
Computer and Communications Security, 2001, pp. 166–175.

[MSC04] Catherine Meadows, Paul F. Syverson, and Iliano Cervesato, Formal spec-
ification and analysis of the Group Domain Of Interpretation Protocol
using NPATRL and the NRL Protocol Analyzer, Journal of Computer
Security 12 (2004), no. 6, 893–931.

[MVB10] Sebastian Mödersheim, Luca Viganò, and David Basin, Constraint dif-
ferentiation: Search-space reduction for the constraint-based analysis of
security protocols, Journal of Computer Security 18 (2010), no. 4, 575–
618.

[MvOV96] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of applied
cryptography, CRC Press, October 1996.

[NHR05] C. Neuman, S. Hartman, and K. Raeburn, The Kerberos network authen-
tication service (V5), Tech. Report RFC 4120, Internet Engineering Task
Force, July 2005.

[NS78] Roger M. Needham and Michael D. Schroeder, Using encryption for au-
thentication in large networks of computers, Commun. ACM 21 (1978),
no. 12, 993–999.

[NS06] G. Norman and V. Shmatikov, Analysis of probabilistic contract signing,
Journal of Computer Security 14 (2006), no. 6, 561–589.

[PT02] Adrian Perrig and J. D. Tygar, Secure broadcast communication in wired
and wireless networks, Kluwer Academic Publishers, Norwell, MA, USA,
2002.

[RR98] M.K. Reiter and A.D. Rubin, Crowds: Anonymity for web transactions,
ACM Transactions on Information and System Security (TISSEC) 1

(1998), no. 1, 66–92.
[RT01] Michaël Rusinowitch and Mathieu Turuani, Protocol insecurity with fi-

nite number of sessions is NP-complete, CSFW, IEEE Computer Society,
2001, pp. 174–.

[SD95] U. Stern and D. Dill, Improved probabilistic verification by hash com-
paction, Correct Hardware Design and Verification Methods (1995), 206–
224.

[Shm04] V. Shmatikov, Probabilistic analysis of an anonymity system, Journal of
Computer Security 12 (2004), no. 3, 355–377.

[Sho99] V. Shoup, On formal models for secure key exchange (version 4), Novem-
ber 1999, revision of IBM Research Report RZ 3120 (April 1999).

[SM96] Paul F. Syverson and Catherine Meadows, A formal language for crypto-
graphic protocol requirements, Des. Codes Cryptography 7 (1996), no. 1-2,
27–59.

[SMCB12] Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin, Auto-
mated analysis of Diffie-Hellman protocols and advanced security prop-
erties, Computer Security Foundations Symposium (CSF), 2012 IEEE
25th, june 2012, pp. 78 –94.

[Son99] Dawn Xiaodong Song, Athena: A new efficient automatic checker for
security protocol analysis, CSFW, 1999, pp. 192–202.

[SS89] Manfred Schmidt-Schauß, Unification in permutative theories is undecid-
able, J. Symbolic Computation 8 (1989), 415–421.

References 41

[SSBv09] Patrick Schaller, Benedikt Schmidt, David Basin, and Srdjan Čapkun,
Modeling and verifying physical properties of security protocols for wire-
less networks, 22nd IEEE Computer Security Foundations Symposium,
IEEE Computer Society Washington, DC, USA, 2009, pp. 109–123.

[TSG10] F. Javier Thayer, Vipin Swarup, and Joshua D. Guttman, Metric strand
spaces for locale authentication protocols, IFIPTM, IFIP Conference Pro-
ceedings, vol. 321, Springer, 2010, pp. 79–94.

[Tur06] Mathieu Turuani, The CL-Atse protocol analyser, RTA, Lecture Notes in
Computer Science, vol. 4098, Springer, 2006, pp. 277–286.

[vH06] S. Čapkun and J.P. Hubaux, Secure positioning in wireless networks,
Selected Areas in Communications, IEEE Journal on 24 (2006), no. 2,
221–232.

[Vig06] Luca Viganò, Automated security protocol analysis with the AVISPA tool,
Electr. Notes Theor. Comput. Sci. 155 (2006), 61–86.

Index

Adversary knowledge, 12
Adversary models, 30
Athena, 7, 20, 26
Authentication, 15
AVISPA, 7, 25

Backward search, 16
Bounded model checking, 19
Bounded sessions, 7, 18

CL-Atse, 7, 19, 25
Communication channels, 31
Complexity

of cryptographic protocols, 7
Compromised agents, 12
Computational soundness, 29
Constraint solving, 19
Corruption models, 30
Crowds, 32
Cryptographic protocols, 2

Complexity, 7
Equational reasoning, 21
Execution model, 13
Formal model, 8
Property specification, 14
Reachable states, 14
Semantics, 11
Transition relation, 14

Dolev-Yao model, 6, 10, 30

Events, 10
Exclusive-or, 21

FDR, 6, 19
Finite variant property, 22
Forward search, 16

Homomorphic encryption, 22
Honest thread, 14
Horn clauses, 28

IKE, 2
Intruder deduction, 19, 22
ISO/IEC 9798, 8

Kerberos, 2

Lazy data types, 25
Localize, 12

Maude-NPA, 19, 22, 23
Message patterns, 19

Needham-Schroeder Public Key
Protocol, 2

Non-interference, 31
NPA, 6, 23

Observational equivalence, 31
off-line guessing, 32
OFMC, 7, 19, 25

Partial order reduction, 20
PCTL, 32
PRISM, 32
Probabilistic model checking, 32
Protocol roles, 8
ProVerif, 7, 28

Reachable states

44 Index

for cryptographic protocols, 14
Roles

of cryptographic protocols, 8

SAT-MC, 7, 20, 25
Scyther, 7, 20, 26
Secrecy, 15
Secrecy pattern, 26
Security property specification, 14
Semantics

of cryptographic protocols, 11
Session, 7
SPIN, 19
SSL, 2
Static equivalence, 31

Subterm-convergent, 22
Symbolic session generation, 26

Tamarin, 20, 27
Terms, 9
Thread, 12, 13
Threads, 11
Traces, 13
Transition relation

for cryptographic protocols, 14

Variant narrowing, 22

Weak aliveness, 15

