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Abstract

Balancing protection and empowerment is a central problem when specifying autho-
rizations. The principle of least privilege, the classical approach to balancing these two
conflicting objectives, says that users shall only be authorized to execute the tasks necessary
to complete their job. However, when there are multiple authorization policies satisfying
least privilege, which one should be chosen?

In this paper, we model the tasks that users must execute as workflows, and the risk and
cost associated with authorization policies and their administration. We then formulate the
balancing of empowerment and protection as an optimization problem: finding a cost-mi-
nimizing authorization policy that allows a successful workflow execution. We show that
finding an optimal solution for a role-based cost function is NP-complete. We support our
results with a series of examples, which we also use to measure the performance of our
prototype implementation.

1 Introduction

Authorizations, which govern users’ access to resources, have a dual nature: they express what
actions may occur and must not occur. In this way, they empower users to execute job-relevant
tasks while protecting the integrity and confidentiality of resources. The question naturally arises
as to how to best balance protection and empowerment.

The classical answer to this question is the principle of least privilege [20], which says that
users shall only be authorized to execute the tasks necessary to complete their job. However,
in an environment where business processes require the execution of multiple tasks by different
users, multiple authorization policies, representing different authorizations, may satisfy least
privilege. Furthermore, the choice of an authorization policy may be influenced by the cost
associated with the respective administrative change. Thus, although least privilege is a guiding
principle, it does not provide the final answer to the question of how to best strike a balance
between protection and empowerment.

In this paper, we present a new approach to answering this question by mapping authoriza-
tion administration to an optimization problem. Specifically, we model business activities as
tasks, structured as workflows. Authorizations then specify which users may execute which
tasks. We distinguish authorizations with respect to two criteria: their dependency on the work-
flow’s execution history and whether they can be administrated during workflow execution. In
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more detail, history-dependent authorizations constrain task executions based on past task exe-
cutions. Examples are Separation of Duty (SoD) and Binding of Duty (BoD). SoD, also known
as Four-Eyes-Principle, aims at preventing fraud and errors by requiring a set of critical tasks to
be executed by multiple users, whereas BoD requires a set of tasks to be executed by the same
user to limit the exposure of sensitive data and to reuse knowledge. In contrast, the evaluation
of history-independent authorizations is not influenced by the execution history. Examples of
policy models for history-independent authorizations are access control lists (ACLs), the Bell-
LaPadula (BLP) model [|6]], and Role-based Access Control (RBAC) [[12]] without sessions.

Administrable authorizations may change during workflow execution, i.e. the respective pol-
icy is edited to reflect organizational changes such as employees joining or leaving the company
or being promoted. In contrast, non-administrable authorizations do not change during work-
flow execution. However, if they are history-dependent, then their evaluation may change during
workflow execution, depending on who has previously executed which tasks.

In practice, e.g. [15]], authorization policies for workfows are often composed of different
(sub-)policies. We consider in this paper policies for history-dependent, non-administrable SoD
and BoD constraints and policies for history-independent, administrable authorizations. In par-
ticular, we model the cost of changing from one history-independent authorization policy to
another one by a binary function. This function may account for the cost of the administra-
tive activity associated with the change, the cost of maintaining the new policy, and the risk
associated with the new policy. We consider minimizing risk to be equivalent to maximizing
protection.

Let W be a workflow, H an execution history corresponding to an instance of W, ¢, a non-
administrable authorization policy, ¢, an administrable authorization policy, and cost a function
as described above. We investigate the problem

min {cost (¢, 0.) | (¢),0,) allows a successful completion of W after H} ,

a

where ¢/ ranges over all feasible, administrable authorization policies and (¢, ¢,) denotes the
composition of ¢, and ¢,. The requirement of “getting the job done” becomes the feasibility
condition and cost serves as the objective function of the optimization problem. Hence, we re-
duce the question of how to balance empowerment and protection to the problem of finding an
authorization policy that maximizes protection, minimizes the cost associated with the adminis-
trative change, and empowers users to do their job while satisfying the policy.

We proceed by formalizing workflows, their execution history, and authorization policies.
Workflows, also known as business processes, provide a realistic abstraction for capturing what
authorizations users need to get their work done, i.e. empowerment. As this paper’s focus is not
authorization-constrained workflows per se, we use the policy model that we previously devel-
oped in [3]]. In the interest of keeping our formalization concise and not letting the complexity
of deciding whether an authorization policy satisfies a workflow overshadow the optimization
problem’s complexity, we abstract from [3]]’s process algebraic models and build directly on
its graph-based approximations. Based on this formalization and a generic definition of a cost
function, we formally define the optimization problem sketched above.

In a second step, we refine our generic cost function using roles and demonstrate the applica-
bility of our general approach to a realistic scenario. The additional structure facilitates mapping
our optimization problem to the well-established Integer Linear Programming Problem (ILP).
A proof of our mapping’s soundness and completeness enables us to use off-the-shelf software
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for ILP to compute the optimal authorization policy that allows a successful execution of a giv-
en workflow. We use a running example to illustrate our results and to measure the performance
of our mapping’s implementation.

Our main contribution is to generalize the decision problem of whether a given authorization
policy allows a successful workflow execution to the notion of an optimal authorization policy
that satisfies this property. Our approach provides considerable modeling freedom in terms of
the notion of optimality used. For example, we may aim to minimize the cost associated with a
policy change or maximize the protection resulting from the new policy. We thereby facilitate
a fine-grained balancing of empowerment and protection with respect to various criteria. More-
over, we prove that finding a optimal, role-based authorization policy that allows a workflow
execution is NP-complete. Finally, our work shows how well-established results from optimiza-
tion theory can be applied to information security, in particular access control.

The remainder of this paper is structured as follows. In Section 2] we provide background on
ILP and graph coloring. In Section [3] we formalize workflows and authorizations that constrain
their execution. In Section ] we first present the general problem of finding an optimal autho-
rization policy that allows a workflow’s execution. Afterward we refine this problem, assuming
a role-based cost function. We present related work in Section [5]and conclude in Section[6] An
extended version of this paper is available as a technical report [4].

2 Background

We denote by N the set of natural numbers, by Z the set of integers, and by R the set of real
numbers.

Let two sets Z; and Z, be given with z; € Z; and zp € Z;. We may identify a function
Tt : Zy — Z, with its relation (graph) @ C Z; x Z,. For example if 7(z;) = z, we equivalently
write (z1,22) € 7. Given a relation 7w we refer to ©’s domain as dom(7x), to its range as ran(7m),

and to its inverse as w!.

2.1 Integer Linear Programming

Let m,n € N. We specify by A € R”™*" an m by n matrix A of real numbers. Furthermore, b € R”
is a (column) vector composed of m real numbers. Let A € R™*" b € R"”, ¢ € R”, and x € Z".
Forie{l,...,m}and je{1,...,n}, werefer to A’s ith row vector as a; and g;; is the jth element
in a;. Correspondingly, b; is b’s ith element. Moreover, Ax denotes matrix-vector multiplication
resulting in a vector d € R™ and ¢'x denotes vector multiplication Y7, c;x;, where ¢ is ¢’s
transposed. For b,d € R™, we writed < b if forall i € {1,...,m}, d; < b;.

We now recall basic definitions from integer linear programming.

Definition 1 (The Integer Linear Programming Problem ILP)

Input: A e R™" beR" and c € R", for m,n € N.
Output: miZn {c¢"x | Ax < b} or NO if the above set is empty.
xeZ"

Let A € R™" b € R™, and ¢ € R” be an ILP-instance, and let i € {1,...,m} and j €
{1,...,n}. We may refer to the output corresponding to the input (A,b,c) as ILP(A,b,c).
A variable x; is called a decision variable and ¢'x is called the objective function. Note that
Ax < b can be decomposed into m inequalities of the form a;x = Z;?: 1a;jx; < b;, each called a
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constraint. If x satisfies Ax < b, i.e. x satisfies all m constraints, it is called a feasible solution.
If there exists no feasible solution for a given ILP-instance, then the instance is infeasible. A
feasible solution that minimizes the objective function with respect to all feasible solutions is an
optimal (feasible) solution.

It is common practice to use shorthand notation for constraints. For example, the equality
a;x = b, is equivalent to the two constraints a;x < b; and —a,;x < —b;. If variables are not defined,
they are implicitly assumed to be zero. For example, the constraint a;1x; + apx; + a;3xz < b; is
equivalent to a;x < b; where ajy = ... = a;, = 0.

Integer linear programming is a specialization of linear programming in that decision vari-
ables assume only values from Z and not from R. This is necessary for modeling situations
where only a discrete set of states is possible. However, this restriction has substantial al-
gorithmic implications that are outside the scope of this paper. We simply note that ILP is
NP-complete [21].

2.2 Graph Coloring

We use the standard k-COLORING problem in Section [3.4] and briefly define it here. A graph
G is a tuple (V,E) where V is a set of vertices and E C {e CV |2 = |e|} is a set of 2-element
subsets of V, called edges.

Definition 2 (The k.-COLORING Problem)
Input: A graph G = (V,E) anda k € N.

Output:  YES if there exists a function col : V- — {1,... k} such that for all {vi,v,} € E,
col(vy) # col(vz), or NO otherwise.

If an algorithm for this problem returns YES for a graph G and an integer k, then the respec-
tive function col is called a k-coloring of G. The k-COLORING problem is NP-complete [7].

3 Authorization-Constrained Workflows

Our workflow terminology and formalization is based on [3]] but adapted to suit our transforma-
tion of a workflow-aware authorization administration to an optimization problem.

A task is a basic unit of work and may be executed multiple times. A task execution is
performed by a user and we call it a task instance. A workflow models the causal and temporal
dependencies between a set of tasks, whose execution fulfills a business objective. We call the
execution of a workflow a workflow instance.

At design time, a business expert designs a workflow using a modeling language such as
the Business Process Modeling Notation (BPMN) [[19] (see Figure m for an example). He may
additionally specify history-dependent authorizations, such as SoD and BoD constraints, which
are workflow-specific. Orthogonal to this, a security expert defines authorizations that are inde-
pendent of both the workflow and its execution history. At run time, the workflow specification
is deployed to a workflow engine, which schedules and instantiates tasks according to the work-
flow’s control-flow. For each task instance, the workflow engine determines the set of users
who are authorized to execute it with respect to both the history-dependent and the history-
independent authorizations. As motivated in the introduction, we assume that history-dependent
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authorizations are non-administrable whereas history-independent authorizations are adminis-
trable.

In this paper, we overapproximate a workflow’s control-flow and assume that a workflow
engine may eventually instantiate every task. This approximation imposes no constraints on
the workflow design and is compatible with all standard workflow patterns [23]]. We further
comment on this design decision in Section[3.4]

3.1 Workflows

For the remainder of this paper, let .7 be a set of rasks and % a set of users. We model a
workflow as a set of tasks T C .7, called a workflow task set. Furthermore, we model the
execution of a task ¢ by a user u, i.e. a task instance involving ¢ and u, as a tuple (¢,u) and
call it an execution event. Let " = 7 x % be the set of all execution events. Let T be the
workflow task set modeling a workflow W. We model an instance of W as a set of execution
events H C T x %, called a workflow (execution) history. Note that a workflow history does
not store how many times a user u# has executed a task ¢ but only whether u# has executed .
However, this is sufficient to decide whether the authorization policies that we introduce below
are satisfied.

Example 1 As a running example, consider the BPMN [19] model of a payment workflow
shown in Figure [} This workflow is sketched in a report on the harmonization of electronic
invoicing in the EU [11]. Ignoring the gray modeling elements for the moment, the workflow
describes the tasks that a customer (organization) executes to process an invoice received by
a supplier. Upon receipt of an invoice, a user checks whether the invoice is correct (t1). In
parallel, a user checks whether the goods corresponding to the invoice have arrived (¢,). If they
have not arrived yet and their arrival is not overdue, the user waits for three days and checks
again. Otherwise, the workflow proceeds. If inconsistencies have occurred, i.e. if the invoice is
incorrect or the arrival is overdue, a user sends a dispute case (#3) to the supplier and the workflow
terminates. If no inconsistencies have occurred, a user prepares the payment (#4). Afterward, the
payment is either approved (#s), issued (fg), and the workflow terminates, or the payment is not
approved (#5) and the workflow loops back to the start.

The payment workflow corresponds to the workflow task set {r1,...,%} and we consider the
set of users % = {Alice, Bob, Claire, Dave, Emma, Fritz}. Let H; = {(t,Alice), (t,,Bob), (2, Dave),
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(t4,Claire), (ts,Claire) } and Hy = {(11,Alice), (t2,Bob), (t4,Dave), (ts5,Claire) } be workflow histo-
ries. The workflow history H says that Alice executed t;, Bob executed 7, efc. We return to these
workflow histories below. *

3.2 History-dependent Authorizations

We consider two kinds of history-dependent authorizations: Separation of Duty (SoD) and Bind-
ing of Duty (BoD) constraints. Both are commonplace in regulated environments, such as the
financial industry, and also recommended by best-practice frameworks, e.g. [[16]], that give orga-
nizations guidance in complying with regulatory requirements.

Definition 3 An SoD constraint s is a tuple (Ty,T»), for two disjoint sets of tasks Ty and T,. A
workflow history H satisfies s, written H |=s, if =3u € % ,t) € Ty, tn € Tr {(t1,u), (t2,u)} C H.

In other words, H satisfies s if there is no user in H who executes tasks from both 77 and 75.
Thereby, s separates the duties associated with the tasks in 77 from those in 7.

Definition 4 A BoD constraint b is a set of tasks T. A workflow history H satisfies b, written
HED if|{u|JFteT.(t,uecH} <.

Informally, H satisfies b if there is not more than one user in H who executes the tasks in 7.
Thereby, b binds the duties associated with the tasks in 7. Note that according to Definition[d] H
satisfies b even if H contains no instance of a task in 7. We aggregate SoD and BoD constraints
in a history-dependent authorization policy, which we assume to be non-administrable, i.e. not
edited during workflow execution.

Definition 5 A (history-dependent) authorization policy ¢ is a tuple (S,B), for a set of SoD
constraints S and a set of BoD constraints B. A workflow history H satisfies ¢, written H |= ¢,
if H satisfies every s € S and every b € B.

Example 2 We return to our running example. Consider again Figure(l| in particular the gray
modeling elements. Using the visualization proposed in [3], we denote an SoD constraint (77, 73)
by identifying 77 and 7, with two dash-dotted boxes and link them with a dotted line and a node
labeled with the symbol “#£”. Similarly, we visualize a BoD constraint » by identifying the
respective set of tasks 7" with a dash-dotted box linked to a node labeled with the “="" symbol.
If a set contains only one task, we omit the dash-dotted box and link the task directly to the
respective node.

Figure 1] shows the SoD constraints s; = ({,},{t3}) and 5o = ({f1,2,14},{rs}) and the BoD
constraint b = {t, }. Our example authorization policy is thus ¢ = ({s1,s2},{b}). The SoD con-
straint s; ensures that a user cannot embezzle the received goods and later initiate a dispute case.
Similarly, the constraint s, ensures that any user who approves a payment did not execute one
of the preceding tasks. Therefore, the approval of a fraudulent payment requires the collusion of
at least two users. The BoD constraint b requires that only one user checks whether the goods
have arrived. This facilitates the reuse of knowledge and thereby increases efficiency if multiple
checks are required.

Consider again the workflow histories H; and H, from Example [I] The history H; does not
satisfy ¢ because the execution events (#,,Bob) and (f,,Dave) violate b (7, is executed by two
different users) and (z4,Claire) and (75, Claire) violate s, (z4 and 5 are executed by the same user).
However, H; satisfies ¢y because it satisfies sy, 57, and b. *
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Figure 2: Initial RBAC policy

3.3 History-independent Authorizations

In the interest of keeping the forthcoming definitions independent of particular authorization
models, we first formalize workflow-independent authorizations abstractly by a relation UT C
U x 7, called a user-task assignment. Afterward, we refine UT using roles and use this addi-
tional structure when modeling the cost of changing UT. For the remainder of this paper, let %
be a set of roles. We use the core idea of Role-based Access Control (RBAC) [12]], namely the
decomposition of UT into two relations.

Definition 6 An RBAC policy is a tuple (UR,RT ), where UR C % X X is a user-role assignment
and RT C % x 7 is a role-task assignment .

Given an RBAC policy (UR,RT), we can derive a user-task assignment UT by compos-
ing RT and UR with the composition operator “o”. Formally, UT = RT oUR = {(u,t) | Ir €
X.(u,r) € UR and (r,t) € RT }.

We use UT to define the workflow-independent assignment of users to tasks. Moreover, its
domain dom(UT) also represents the set of available users and, conversely, % \ dom(UT) is
the set of unavailable users, e.g. those users who are not ready to work or are not part of the
organization. We leave it up to an implementation to give these terms a concrete meaning.

Example 3 Figure [2] shows an RBAC policy (UR,RT) for the payment workflow. We re-
fer to the role Procurement Clerk as ry, Warehouse Clerk as rp, Procurement Manager as r3, and
Accountant as r4. The set of roles is thus Z = {ry,r2,r3,r4} and the user-task assignment UT =
RT o UR contains, for example, the tuple (Alice,7;). The set of available users is dom(UT) =
{Alice, Bob, Claire, Dave }, whereas Emma and Fritz are unavailable. *

3.4 Allocation

Given a workflow and an authorization policy, we now formalize the existence of an allocation
of users to the workflow’s tasks that allows a successful execution of the workflow, satisfying
the authorization policy.
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Definition 7 Let T be a workflow task set, H a workflow history, ¢ an authorization policy, and
UT a user-task assignment. An allocation for T, H, ¢, and UT is a (total) function alloc: T — %
that satisfies:

(1) alloc™! CUT and
(2) HUalloc = ¢.

We write alloc = (T,H,¢,UT) if alloc is an allocation for T, H, ¢, and UT, and we write
= (T,H,¢,UT) if there exists an allocation alloc such that alloc = (T,H, ¢,UT).

A workflow history is a record of past task instances and the users who executed them. An
allocation defines for every future task instance the user who will be assigned to execute the
respective task. Condition (1) requires that a user u is only allocated to a task ¢ if u is authorized
to execute ¢ with respect to UT. Condition (2) requires that future task executions satisfy the
history-dependent authorizations in @, also accounting for past task instances. A consequence
of Condition (2) is that there exists no allocation for T, H, ¢, and UT, if H [~ ¢. This is
consistent with our notion that it is impossible to find an extension of a workflow history H that
satisfies the history-dependent ¢, if H does not satisfy ¢.

The two conditions illustrate the fundamental difference between history-dependent and
history-independent authorizations. Deciding whether a task execution is authorized with re-
spect to a history-dependent authorization depends on past task instances. In contrast, deciding
whether a task execution is authorized with respect to a history-independent authorization can
be decided without knowing the workflow and its execution history. Hence, the two names.

An allocation instructs a workflow engine which users to assign to newly instantiated tasks.
Condition (2) ensures that no matter which tasks are instantiated in the future, there is always a
user who is authorized to execute them. Thus, the existence of an allocation guarantees that the
workflow engine can execute the respective workflow instance to completion.

Example 4 Consider again our example with the workflow task set 7" and the workflow history
H, from Example [I] the authorization policy ¢ from Example [2] and the user-task assignment
UT from Example 3| The function alloc = {(z;, Alice), (2, Bob), (3, Alice), (t4,Dave), (¢s, Claire),
(t6,Dave)} is an allocation for T, ¢, UT, and H,. *

This example also illustrates that our overapproximation of a workflow’s control-flow is
reasonable, in particular when the workflow contains loops. Even though almost all tasks of the
payment workflow have been executed in the workflow instance corresponding to H,, a workflow
engine may eventually schedule an instance of every task if the payment is not approved.

We now cast the existence of an allocation as a decision problem and analyze its complexity.

Definition 8 (The Allocation Existence Problem AEP)

Input: A workflow task set T, a workflow history H, an authorization policy ¢, and a
user-task assignment UT .

Output: YES if = (T,H,9,UT) or NO otherwise.
Lemma 1 AEP is NP-complete.

Proof. Let a graph (V,E) and an integer k be an instance of the NP-complete k-COLORING
problem, introduced in Section In the following, we present a polynomial reduction to
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AEP.LetT =V, H=2,% ={1,...,k},and UT = % x T. For every {vi,v2} € E, we add an
SoD constraint ({v; },{v2}) to the set of SoD constraints S and let ¢ = (S, 9).

Suppose an algorithm for AEP finds an allocation alloc such that alloc |= (T,H,¢,UT). We
show that alloc is a k-coloring for (V,E). By our construction and Definition (7} alloc: V —
{1,...,k}, i.e. alloc has the domain and range of a k-coloring for (V,E). Let H' = HU{(v,n) |
alloc(v) = n}. Consider an edge {vi,v2} € E and let s be the corresponding SoD constraint
({vi},{v2}) in S. By condition (2) of Definition {7, H' |= ¢ and therefore H' = 5. It follows
by Definition [3| that {u | Iv € {vi}.(vyu) € H'} N {u | Iv € {v2}.(v,u) € H'} = &. Because
(vi,alloc(vy)) € H' and (v,,alloc(v,)) € H' by the definition of H' it follows that alloc(v;) #
alloc(v2). Hence, alloc is a k-coloring for (V,E).

Conversely, let col : V — {1,...,k} be a k-coloring for (V,E). Because UT = {1,...,k} XV,
col satisfies Condition (1) of Deﬁnition By our construction, col |= s for every s € S. Because
B =@ and H = @, it follows that H U col |= ¢ by Deﬁnition i.e. col satisfies Condition (2) of
Deﬁnition Hence, col is an allocation for (7,H,¢,UT ) and AEP is NP-hard.

Given an instance (T,H,¢,UT) of AEP and a function alloc : T — %, one can check in
polynomial time whether alloc = (T,H,¢,UT) by verifying that alloc satisfies the two condi-
tions of Definition[7] Hence, AEP is in NP and thereby NP-complete. |

We do not provide an algorithm for AEP here. Instead, we show in Section [#.2] how to use
algorithms for problems that build on AEP to solve instances of AEP.
4 Optimal Administrative Changes
Our formal model for authorization-constrained workflows, in particular AEP, gives us a notion
of empowerment that is required for achieving a business objective. We now investigate the

counterpart of empowerment, namely protection, and the question of how to balance the two.
Consider the following motivational example.
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Example 5 Let UR, be the user-role assignment UR illustrated in Figure [2| and let RT be the
corresponding role-task assignment. Furthermore, let UT o = RT o URy. We concluded in Ex-
ample |4 that there exists an allocation for the workflow task set T, the workflow history H,, the
authorization policy ¢, and UT (called UT in Example [)). Suppose now that Alice and Dave
become unavailable, say they went on holiday. The new RBAC policy (UR,RT) is illustrated
in Figure [3] ignoring the dotted arrows for the moment. Note that RT did not change whereas
UR = URy \ {(Alice,r1), (Dave,r2), (Dave,r4) }. As a result, we get the new user-task assignment
UT =RT oUR.

It is easy to see that there exists no allocation for 7', H,, ¢, and UT . Only Claire is authorized
to execute ¢, and ¢4 with respect to UT. However, the SoD constraint s, in ¢ does not authorize
Claire to execute #; and #4 because according to H, she has already executed . *

To overcome the situation illustrated in this example, we must change UT by assigning more
roles to available users or making previously unavailable users available. However, this change
should incur minimal cost.

In this section, we introduce a cost function that models the administrative cost of changing
UT to UT' and the associated risks. We use this function to evaluate potential new user-task
assignments and to find the optimal assignment UT’ such that |= (T, H,, ¢, UT").

4.1 The General Problem

In the interest of keeping the general definition of the problem of balancing empowerment and
protection independent of particular authorization models, we start with a generic definition of
the cost function.

Definition 9 For a totally ordered set C, a cost function is a partial function cost : 2%*7 x

27x7 5 C.
We use a cost function for two purposes. For two user-task assignments UT and UT’
1. cost(UT,UT’) is the cost of changing UT to UT' and

2. dom(cost) defines the feasible changes, i.e. it is possible to change from UT to UT’ if
(UT,UT’) € dom(cost).

In this general setting, the cost of changing from a user-task assignment UT to a user-task
assignment UT’ can have many meanings and cost may satisfy different properties accordingly.
We give a few examples of potential costs that may be modeled using cost. A concrete example
for a role-based cost function follows in the next section.

Risk: By empowering users to execute tasks, a user-task assignment exposes the underlying
resources to risks, such as fraud, errors, and data leakage. There exist various methodologies
for performing a risk analysis [5/17]. We consider them outside the scope of this paper and
simply point out that the expected value computed by a quantitative risk analysis corresponds to
a cost [17]). If the cost function encodes only risks, the value of cost(UT,UT’) is independent
of UT. Additionally, if the risk quantifies only the misuse of authorizations, it is reasonable to
assume that cost(UT, ) < cost(UT,UT’) for all user-task assignments UT and UT’. In other
words, empowering no user to execute a task entails the least risk, i.e. maximizing protection.

10
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Administrative cost: The activities associated with changing an authorization policy are typi-
cally not for free. For example, recruiting a new employee, assigning her initial authorizations,
and training her to use them appropriately may be costly [18]]. Consequently, if cost encodes
only administrative costs, it is reasonable to assume that cost(UT,UT) < cost(UT,UT") for all
user-task assignments UT and UT’. In other words, it costs the least to make no changes at all.

Maintenance cost: Maintaining an authorization policy may involve costs such as salaries and
license fees required for task executions. Abstractly, a cost function only encoding maintenance
costs behaves the same way as a cost function only encoding risk: it is cheapest to maintain an
empty user-task assignment.

Using the existence of an allocation as the empowerment condition and a cost function as the
measure of protection, we now reduce the question of how to balance empowerment and protec-
tion to an optimization problem.

Definition 10 (The Optimal Workflow-Aware Authorization Administration Problem OWA)

Input: A cost function cost, a workflow task set T, a workflow history H, an authorization
policy ¢, and a user-task assignment UT .

Output: min{cost(UT,UT")| = (T,H,¢,UT") and (UT ,UT") € dom(cost)}
ur’
or NO if the above set is empty.

The Optimal Workflow-Aware Authorization Administration Problem OWA asks for a user-
task assignment that enables the successful completion of the given workflow instance and incurs
minimal cost.

Note that instead of using the domain of the cost function as a predicate for feasible autho-
rization policies, we could alternatively require cost to be a total function and define the cost of
infeasible policies to be infinite. However, this would lead to two case distinctions in OWA:: one
for the case that there exists no feasible policy and one for the case that there exists no allocation.

Without any assumptions about the structure of the cost function, it is impossible to make
statements about OWA'’s runtime or space complexity. The refined cost function that we propose
in the following chapter allows us to determine these complexities.

4.2 A Role-based Cost Function

To demonstrate the applicability of OWA to a realistic example, we refine OWA by decompos-
ing user-task assignments into RBAC policies and assume the cost function to be role-based. For
simplicity, we also assume that the totally ordered set C is R. Specifically, we define the cost
function in terms of the following auxiliary functions. For a role r € %:

* risk(r) € R models the risk associated with the assignment of a user to r,

* add(r) € R models the administrative cost of assigning a user to r,

* rm(r) € R models the administrative cost of removing a user’s assignment from r, and
* ma(r) € R models the maintenance cost of having a user assigned to r.

Using these functions, we define the cost of changing a user-role assignment.

11
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Definition 11 Given the auxiliary functions risk,add,rm ,ma : Z — R, a role cost function is a
function costR : 2% % x 2% *%# s R such that for two user-role assignments UR and UR’,

costR(UR,UR') = ¥ rcur (risk(r) 4+ ma(r))
+ Xy curur add(r)
+ X (uryevr\or M(r)

A role cost function defines the cost of changing from UR to UR’ simply as the sum of all
the risk and maintenance costs associated with UR’ and the administrative cost of adding and
removing assignments when changing from UR to UR'. We assume that the auxiliary functions
risk, add, rm, and ma are total and hence costR is total too. Instead of using costR’s domain
to determine feasible user-role assignment changes, we define a maximal user-role assignment
UR™ C % x % and assume that every user-role assignment UR C UR™ is feasible.

Example 6 Table[I]lists the risk, maintenance, and administrative costs associated with the four
roles of the payment workflow. We adopt the elementary approach that roles assigned to a large
number of tasks represent more responsibility and are therefore more costly [[14]]. Let costR be
the corresponding role cost function.

risk | ma | add | rm

Procurement Clerk (r) 5
Warehouse Clerk (r;) 3
Procurement Manager (r3) | 12

| Wl W
W]
—_— DN | |

Accountant (r4) 7

Table 1: Decomposition of the role cost function

Recall the RBAC policy (UR,RT) shown in Figure [3| and let the solid and dotted arrows
between users and roles be the maximal user-role assignment UR™* for the payment workflow.
For example, Emma is unavailable with respect to UT = RT o UR. Because (Emma,r3) € UR™,
we may change Emma’s availability by assigning her to r3, resulting in the user-role assignment
UR' = URU{(Emma,r3)}. The administrative activity of assigning Emma to r3 costs 3 and the
overall risk and maintenance cost rises by 12+ 5. Thus, costR(UR,UR’) — costR(UR,UR) =
3+1245=20. *

Using costR and UR™*, we now refine OWA to ROWA.

Definition 12 (The Role-Based Optimal Workflow-aware Authorization Administration Prob-
lem ROWA)

Input: A role cost function costR, a maximal user-role assignment UR™™, a workflow
task set T, a workflow history H, an authorization policy ¢, and an RBAC policy
(UR,RT), such that H |= ¢.

Output:  min {costR(UR,UR')| = (T,H,¢,RT oUR')} or NO if the above set is empty.
UR/QURmax

We refer to the output corresponding to the ROWA-instance rowa as ROWA (rowa). In
the following, we define a function ROWAtolLP that transforms a ROWA -instance to an ILP-
instance. We specify the matrix A and the vectors b, ¢, and x indirectly by defining the respective

12
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(ILP) constraints and the cost function in terms of sums. Furthermore, we index decision vari-
ables with a superscript, which should not be mistaken for an exponent. We thereby simplify
the forthcoming proofs. Transforming the constraints and variables to a matrix-vector form is
straightforward and therefore not shown in detail.

Definition 13 Let (costR,UR™™,T,H,¢,(UR,RT)) be a ROWA-instance, let costR be com-
posed of the auxiliary functions risk, add, rm, and ma, and let U = dom(UR"™) and R =
ran(UR™®). The function ROWAtolLP transforms (costR,UR™™ T ,H,¢,(UR,RT)) to an ILP-
instance as follows:
Decision variables:

X x e Zfor everyu € U,r €R, andt € T

Objective function:
Z X" (risk(r) +ma(r)) + Z x*"add(r) + Z (I —=x"*")rm(r)
(u,r)€UXR (u,r)e(UxR)\UR (u,r)€UR
Constraints:

VteT,ueU. Z{r|(r,t)eRT} x>y
Vit eT. Zueux’“ =1

(1)
(2)
(3) V1 eT Luevnufunypgerx™ =0

4) V(N,[)eS,nheT,heh,uclU X" +x*2 <1
(5)

(6)

(7)

VT' €B,t1,tp €T ,ucU.x"" = x»

Z(u,r)G(UxR)\UR’"‘”xu"r =0
YueU,reR.x*" >0andx*" <1
(8) YueU,teT .x*">0and x"" <1

Consider a ROWA-instance composed of costR, UR™, T, H, ¢, and (UR,RT), and let
(A, b, c) be the corresponding ILP-instance returned by ROWAtolLP. We refer to a constraint or
a set of constraints i in Definition[I3]as Ci. Next, we define a relation between feasible solutions
of ILP-instances generated by ROWAtolLP, and user-role assignments and allocations for their
corresponding ROWA -instances. Afterward, we use this relation to explain the constraints C1-
C8 and we prove the soundness and completeness of ROWAtolLP.

Note that a feasible solution x for (A, b, ¢) is composed of the decision variables x**" and x"*,
where u ranges over dom(UR™), r over ran(UR™), and ¢ over T. Because X is a feasible solu-
tion, the decision variables satisfy all constraints listed in Definition[I3] in particular C7 and C8.
Therefore, the decision variables assume either the value O or 1.

Definition 14 Let (costR,UR™™ T,H,$,(UR,RT)) be a ROWA -instance and (A,b,¢) the cor-
responding ILP-instance returned by ROWAtolLP. Furthermore, let X be a feasible solution for
(A,b,c), U = dom(UR™™), and R = ran(UR™™). For a user-role assignment UR' and an allo-
cation alloc, we say that x corresponds to (UR',alloc), written x ~ (UR',alloc), if

(1) UR' ={(u,r) €U xR | X" =1} and  (2) alloc={(t,u) e T xU |x*" = 1} .

13



D. Basin, S. J. Burri, and G. Karjoth

In other words, the decision variables of the form x*" determine UR’ and those of the form x**
determine alloc. More specifically, if x*" = 1, for a user u and a role r, then u is assigned to r
in UR'. Moreover, for a user u and a task 7, x* = 1 implies that alloc maps ¢ to u. Note that
the correspondence relation ~ uniquely determines a tuple (UR’, alloc) given a vector x and vice
versa.

We now informally describe the (ILP) constraints created by ROWAtolLP. We expand upon
this in the proof of Lemmal[2] C1 ensures that an allocation assigns a user « only to a task 7 if u is
assigned to arole r that is assigned to . C2 enforces that an allocation maps every task to exactly
one user. C3 ensures that an allocation’s assignments do not violate the given execution history.
C4 and C5 enforce that an allocation satisfies the given SoD and BoD constraints, respectively.
Finally, C6 restricts user-role assignments to subsets of the given maximal user-role assignment.
C7 and C8 were already explained above.

The following lemma, which we prove in [4], establishes that ROWAtolLP is both sound
and complete.

Lemma 2 Let (costR,UR™™ T,H,¢,(UR,RT)) be a ROWA-instance and (A,b,c) the corre-
sponding ILP-instance returned by ROWAtolLP. Let x be a vector, UR' a user-role assignment,
and alloc an allocation, such that x ~ (UR', alloc).

e Soundness: If x is a feasible solution for (A,b,¢) then UR C UR™™ and
alloc = (T,H,9,RT o UR').

 Completeness: If UR' C UR™ and alloc |= (T,H,¢,RT oUR') then x is a feasible solution
for (A)b,c).

Given the soundness and completeness of ROWAtolLP, we now show with Theorem [I] that
ROWAtolLP and algorithms for ILP can be employed to solve ROWA -instances.

Theorem 1 For every ROWA-instance rowa,

ROWA (rowa) = ILP(ROWAtolLP(rowa)) .

Proof. Let (costR,UR™*,T,H,¢,(UR,RT)) be a ROWA-instance and (A,b,¢) be the corre-
sponding ILP-instance returned by ROWAtolLP. Let U = dom(UR™), R = ran(UR™™), ¢ =
(S,B), and let costR be defined by the auxiliary functions risk, add, rm, and ma. Furthermore,
let UR' be a user-role assignment, alloc an allocation, and x a vector such that UR" C UR™*,
alloc = (T,H,9,RT o UR') and x ~ (UR',alloc). From Lemma [2] we have that x is a feasible
solution for (A,b,c¢).

14
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It follows from Definitions and [14] that
costR(UR,UR') = ¥, yycur (risk(r) + ma(r))
+ Y evrroradd(r) + X neuror rm(r)

= Y(ureur 1 (risk(r) + ma(r))
+ Ywrewxryor 0 (risk(r) + ma(r))
+ Ywrevr\or 12dd(r) + X re(wxr)\ury\ur0add(r)
+ Xwrevror 1 rm(r) + Xurevrnur 0rm(r)

= Z(u,r)eUxquJ(riSk(r) + ma(r))
+ Y(urewxrpor*"add(r) + X neur(l —x"")rm(r)

=c'x.
Assume that UR" minimizes costR with respect to all user-role assignments UR” C UR™* such
that = (T,H,9,RT oUR"), i.e. costR(UR,UR') = ROWA (costR,UR™ T .H,¢,(UR,RT)). To
derive a contradiction, assume that ILP(A,b,¢) # costR(UR,UR’). Because x is a feasible
solution for (A, b, ¢) and costR(UR,UR’) = ¢x, there must exist a feasible solution y for (A, b, ¢)
such that costR(UR,UR’) > ¢"y. Let UR" be a user-role assignment and alloc” an allocation such
that y ~ (UR",alloc’). Tt follows by Lemma [2] that UR” C UR™™ and alloc’ |= (T,H,,RT o
UR"). As reasoned before, we have costR(UR,UR") = ¢"y and therefore costR(UR,UR’) >
costR(UR,UR"). However, this violates our minimality assumption for costR(UR,UR'). Hence,
X is an optimal solution for (A, b, c) and the two outputs are equal. |

We now establish the space and runtime complexity of ROWAtolLP. Let
(costR,UR™ T H,¢,(UR,RT)) again be a ROWA-instance and (A,b,c) the corresponding
ILP-instance returned by ROWAtolLP. Furthermore, let U = dom(UR™), R = ran(UR™),
and ¢ = (S,B). The ILP-instance (A,b,c) ranges over |U||R| + |U||T| decision variables,
which corresponds to the same number of columns of the matrix A. There are |T||U| con-
straints of kind (1), |T'| constraints of kinds (2) and (3), O(|S||T|?|U|) constraints of kind (4),
O(|B||T*|U|) constraints of kind (5), there is one constraint of kind (6), |U||R| constraints
of kind (7), and |U||T| constraints of kind (8). Thus, the total number of constraints is in
O(|U|(IT*(|S| + |B|) + |R| + |T|)), corresponding to the same number of rows of A. For the
generation of constraints of kind (3), H U {(u,t)} F~ ¢ must be computed for every task 7 € T
and user u € U. However, by Definitions and[3] this computation has a polynomial runtime
complexity in the size of the ROWA-instance. Hence, ROWAtolLP is a polynomial reduction
from ROWA to ILP.

Solving ROWA requires solving AEP, which is NP-complete by Lemmal I] Therefore, the
following corollary is a direct consequence of Theorem [I|and the observation that ROWAtolLP
is a polynomial reduction from ROWA to the NP-complete problem ILP.

Corollary 1 ROWA is NP-complete.

We have thereby shown that finding an optimal RBAC policy that allows a successful com-
pletion of a given workflow instance is in the same complexity class as deciding whether the
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workflow instance can be successfully completed for a given RBAC policy. Furthermore, the
polynomial reduction from ROWA to ILP enables us to solve ROWA-instances using well-
established algorithms for ILP. An example follows in the next section.

Note that ROWAtolLP and an algorithm for ILP can also be used to solve
AEP. Let (T,H,9,UT) be an AEP-instance. Using a set of roles R, we decom-
pose UT into an RBAC policy (UR,RT) such that RT o UR = UT. Furthermore, let
UR™™ = UR, and costR be the role cost function composed of the auxiliary functions
risk(r) = ma(r) = 0 and add(r) = rm(r) = 1, for all r € R. ROWA(costR,UR™* T,
H,¢,(UR,RT)) = 0 if and only if = (T,H,¢,UT). This follows from the observation that
the minimal value of costR is 0, which is only possible for costR(UR,UR) = 0, implying that
= (T,H,9,RT oUR).

4.3 Experimental Results

We return to our running example and demonstrate how off-the-shelf software can be used to
solve ROWA -instances using our reduction to ILP. We implemented ROWAtolLP using the
numerical software MATLAB [22]].

Example 7 Recall the RBAC policy (UR,RT) shown in Figure [3|and our observation in Exam-
pleE]that there exists no allocation for 7', H,, ¢, and UT = UR o RT . Furthermore, recall the role
cost function costR and the maximal user-role assignment UR™* presented in Example [6]

Using our ROWAtolLP-implementation, we transform the ROWA-instance
(costR,UR™ T H,¢,(UR,RT)) to an ILP-instance (A,b,c) and compute an optimal
solution x, which corresponds by Definition (14| to the user-role assignment UR' = {(Bob, ),
(Claire,r3), (Emma,r3)} and the allocation alloc = {(#;,Emma), (t2,Bob), (3,Claire), (t4,Emma),
(s,Claire), (fg,Claire)}. The cost of changing from UR to UR’ is costR(UR,UR’) = 43. Hence
the optimal administrative change with respect to costR is to extend UR by assigning Emma to
the role Procurement Manager (r3). This empowers the users to complete the payment workflow,
without violating ¢ and respecting the execution history Hj.

Suppose now that the risk exposure changes in that the risk associated with an assign-
ment to role r3 increases by 3 to 15. The other numbers in Table |I| remain unchanged.
By running our program again, we see that this small change of cost results in a differ-
ent optimal solution. The optimal user-role assignment is now UR” = {(Bob,r2), (Bob,r2),
(Claire, r3), (Fritz,74) }, the respective allocation is alloc’ = {(;,Bob), (f2,Bob), (t3,Claire),
(t4,Fritz), (ts,Claire), (f6,Claire)}, and costR(UR,UR") = 46. Because the risk associated
with r3 increased, it is now cheaper, i.e. less risky, to assign Bob additionally to the role
Procurement Clerk (r;) and Fritz to Accountant (r4) instead of assigning Emma to the role
Procurement Manager (73). *

Computing optimal solutions for ILP-instances, such as the ones presented in the example
above, takes about 100 milliseconds on a standard PC conﬁguration[] We also experimented
with larger, randomly generated maximal user-role assignments. On our test system, we ob-
served an exponential increase of the running time in the size of the input, which is consistent
with our complexity analysis of ROWAtolLP and Corollary [} However, we did not investigate
optimizations of our prototype implementation.

IMac OS X, 2.5 GHz Intel Core 2 Duo, 2 GB RAM.
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5 Related Work

Crampton was the first to analyze the computational complexity of deciding for a given workflow
whether an allocation of users to tasks exists such that an authorization policy is satisfied [9]].
In [25]], Wang and Li call this decision problem the workflow satisfiability problem and prove
that it is NP-complete for their authorization model. AEP is an adaptation of the workflow
satisfiability problem to our authorization model from [3[] and serves as a building block for the
definition of OWA and ROWA.

Most papers on authorization-constrained workflows implicitly assume that authorizations
are non-administrable. One exception is the work on delegation in workflow systems. Building
on and extending the seminal work of Atluri etal. [1], different delegation models for workflows
have been proposed, e.g. [24]. Crampton and Khambhammettu [[10] were the first to check if
permitting a delegation request prevents the completion of a workflow instance. Another excep-
tion is the workflow resiliency problem introduced by Wang and Li [25]], which asks whether a
workflow can be executed successfully if a given number of users is unavailable. None of the
above consider the optimality of authorization policies. They just provide algorithms to deter-
mine whether a given authorization policy satisfies a workflow, i.e. algorithms for the problem
that we formalized as AEP.

Related work on SoD and BoD, e.g. [[13]], often uses the term dynamic for what we call
history-dependent and static for history-independent. However, because we distinguish autho-
rizations both with respect to their dependency on a workflow’s execution history and with re-
spect to whether they are administrable at run time, the term dynamic is not sufficiently refined.
Hence, we avoid it.

The notion of risk has been introduced into authorization models to adapt authorizations to
changing conditions. Methods to measure and quantify risks are given in [8l{17]]. Aziz etal. use
a risk semantics to transform policies with respect to operational, combinatorial, and conflict of
interest risks with the goal of minimizing the risk associated with a policy [2]. In contrast to
our work, they change role-task assignments, leaving the user-role assignment, where changes
occur in practice more frequently, untouched.

To quantify risk in role delegation, Han etal. consider the position of the role within the role
hierarchy, the number of permissions gained, and also associate workflow instances with a risk
based on the data they process [[14]]. However, risk is not linked to successful workflow termi-
nation. The cost drivers for authorization management identified by Casassa Mont et al. [18]
provide further metrics for defining role cost functions.

6 Conclusion and Future Work

We have presented the concept of a cost-minimizing authorization policy that empowers users
to execute a given workflow. Our approach comes with considerable modeling freedom. For
example, cost can model the risk associated with an authorization policy and hence the optimal
policy maximizes protection. By first introducing the generic OWA -problem and later refining it
to ROWA, we showed that our approach is both general and also applicable to concrete business
scenarios. Furthermore, we presented a mapping from ROWA to the optimization problem ILP,
which allows us to use of off-the-shelf software to solve ROWA.

The generality of our approach gives rise to many design decisions and consequently to
various directions for future work. For example, other workflow authorization models provide
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different features than [3]], e.g. support for delegation [10]. Similarly, user-task assignments can
be refined based on different authorization models and our role-based cost function could be
further refined to account for additional properties such as role hierarchies. Furthermore, the
predicate whether an authorization change is feasible could account for additional properties
such as time.

Meaningful risk metrics for authorization policies are a precondition for the effective use of
our approach. We pointed to various methods for quantifying the risk associated with authoriza-
tion policies. However, finding such metrics is challenging. This does not, of course, reduce
the importance of such metrics and we see our results as providing additional evidence for their
usefulness.
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Framework Project “PoSecCo” (IST 257129).
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