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Abstract. When monitoring system behavior to check compliance
against a given policy, one is sometimes confronted with incomplete
knowledge about system events. In I'T systems, such incompleteness may
arise from logging infrastructure failures and corrupted log files, or when
the logs produced by different system components disagree on whether
actions took place. In this paper, we present a policy language with a
three-valued semantics that allows one to explicitly reason about incom-
plete knowledge and handle disagreements. Furthermore, we present a
monitoring algorithm for an expressive fragment of our policy language.
We illustrate through examples how our approach extends compliance
monitoring to systems with logging failures and disagreements.

1 Introduction

Laws, inter-business contracts, security policies, and similar normative regula-
tions define compliance requirements that I'T systems need to enforce. For exam-
ple, IT systems in US hospitals must enforce HIPAA [1], which regulates the dis-
semination of medical records and the subsequent obligations that medical staff
are expected to fulfill. For banks, separation-of-duty constraints should reduce
the risk of fraud [2]. Data-usage contracts between different businesses regulate
how sensitive documents are exchanged and subsequently disposed. Checking
whether implemented IT systems comply with a body of regulations or policies
is a problem of growing importance, since non-compliant behavior can lead to
serious security breaches, monetary penalties, and the erosion of stakeholder’s
internal standards and commitments.

Runtime-verification techniques [4,5,19,22-24] offer a promising approach for
automated compliance checking of IT systems. These techniques require logging
mechanisms for recording policy-relevant system actions (represented as events),
a suitable language for expressing policies and unambiguously defining permissi-
ble and prohibited system behavior, and a monitoring algorithm for determining
and reporting policy violations.

In complex IT systems, which are usually composed of numerous interact-
ing subsystems, the problem of incomplete knowledge about performed actions
arises. In particular, logs may contain gaps due to corrupted files, logging-
mechanism crashes, network failures, and so forth. Furthermore, when multiple
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logs are required to verify compliant behavior, they may disagree whether cer-
tain actions took place. For example, sharing a sensitive document between two
parties may require the recipient to fulfill certain obligations. Thus, when ana-
lyzing the recipient’s and the sender’s logs against this policy, we need to treat
all disagreements over the transfer of the document as incomplete knowledge,
since favoring one log over the other may result in missed violations or false
positives. Most runtime monitors, however, do not distinguish between a gap
and a non-occurrence of an event. Thus applying them to incomplete logs can
yield wrong results. For example, consider a policy like a subject can access a
document if the subject is not blacklisted. If it is unknown whether a subject is
blacklisted, then the subject is incorrectly reported as compliant.

In this paper, we present a policy language and an accompanying monitoring
algorithm that accounts for possibly incomplete and disagreeing logs. At the core
of our approach is a three-valued truth space [25]. In addition to the classical
Boolean values t (true) and f (false), which respectively represent the occurrence
and non-occurrence of an event, we represent a knowledge gap about an event’s
occurrence by the third truth value L. Furthermore, when evaluating policies,
their interpretation is as follows: the Boolean values t and f correspond to policy
compliance and policy violation and L represents an inconclusive answer, which
can be due to knowledge gaps of event occurrences or disagreeing events.

Our policy language is a variant of a first-order temporal logic [7,17]. First-
order temporal logics have been a good fit in various case studies for formally
expressing and monitoring compliance policies, see, e.g., [5,23]. Special care must
be taken when defining the semantics of a logic with additional truth values be-
sides the classical Boolean values. In particular, a vital requirement for monitor-
ing incomplete and disagreeing logs is to ensure that reported violations cannot
be retracted if or when the log is eventually completed, for example, by recover-
ing lost files. Otherwise, these results are of no value. More precisely, formalized
policies must be monotonic with respect to the underlying partial ordering on
knowledge, i.e., L is less than f and t, and f and t are incomparable [9, 10, 20].
Our policy language guarantees this monotonicity requirement. Furthermore,
the third truth value L is a first-class citizen at the object-level of our policy
language: the classical logical connectives are extended to the three-valued truth
space and there are specific connectives that guarantee expressive-completeness
with respect to the set of knowledge-monotonic operators. Such monotonic oper-
ators are needed in our application context to express at the logic’s object-level
how disagreements between logged events should be resolved.

The monitoring algorithm presented in this paper for this three-valued set-
ting is inspired by the one from [6, 7] for the standard Boolean setting. It iter-
atively scans the logged actions and soundly reports violations, i.e., whenever
a violation is reported, it indeed is a policy violation. It also soundly reports
potential violations, i.e., depending on how the knowledge gaps are filled, these
might turn out to be real policy violations. However, our monitoring algorithm
is not complete in the sense that some policy violations might not be reported.
This limitation stems from the expressivity of our policy language over infinite
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domains. Importantly, however, for an expressive fragment, which retains all the
language’s connectives but limits the usage of free variables within a formula,
we show that our monitoring algorithm guarantees completeness.

In summary, our main contribution is a solution to the problem of checking
policy compliance in the presence of logging failures and disagreements between
logged events. Our solution comprises a policy language and a monitoring al-
gorithm. The policy language supports reasoning with incomplete knowledge.
The monitoring algorithm may be used either off-line (for audit) or on-line (at
runtime), and reports all policy violations and potential policy violations for
an expressive fragment of our language. Although several features of our solu-
tion are present in related work—see Section 6 for a comparison—combining
them to solve the stated problem is novel. In particular, our language is the
first compliance language to consider three truth values at the object level, and
our monitoring algorithm is the first algorithm to guarantee both soundness and
completeness in a three-valued first-order setting.

The remainder of the paper is structured as follows. In Section 2, we describe
our abstract logging setting. In Section 3, we introduce our policy language. In
Section 4, we analyze our policy language with respect to monotonicity and
expressiveness. In Section 5, we present our monitoring algorithm. Finally, in
Sections 6 and 7, we discuss related work and draw conclusions. Technical details
are omitted due to space limitations. These are given in the full version of the
paper, which can be found on the authors’ web pages.

2 Logging Knowledge Base

We abstract from a particular physical log file structure, and view a logging
infrastructure as producing a single logging knowledge base, which is evaluated
against a compliance policy. A logging knowledge base uses the three-valued
truth space 3 := {t,f, L} to explicitly distinguish between what is known and
unknown regarding event occurrences.

To formally define a logging knowledge base over 3, we introduce a logging
signature S, which is a tuple (C, R, ¢), where C is a finite set of constant symbols,
R is a finite set of predicates disjoint from C, and the function ¢ : R — N assigns
each predicate r € R an arity ¢(r). Each predicate r denotes an action, and its
arguments a denote the action’s parameters, r(a) denoting an event. A logging
structure D over the signature S consists of a domain |D| # @ and interpretations
c® € |D|, and rP C DM and rP C |D|*("), for each ¢ € C and r € R, such
that r> and r? are disjoint. We let rP := |D|“(")\ (rP UrP). We define a logging
knowledge base over the signature S as a sequence D = (Dg, D1, ...) of logging
structures over S, with the following properties:

1. D has constant domains, that is, |D;| = |D; 1], for all i > 0. We denote the
domain by |D].

2. Each constant symbol ¢ € C has a rigid interpretation, that is, cPi = Pt
for all 7+ > 0. We denote ¢’s interpretation by ¢,
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We call the indices of the elements in the sequence D time points and denote
them with the Greek letter 7. We interpret a logging knowledge base D as follows:

—Iface rt 7, then the event r(a) happened at the time point 7.
—Ifae Tf 7, then the event r(a) did not happen at the time point 7.

—Ifaer? 7, then D contains a knowledge gap at the time point 7 with regard
to whether the event r(a) happened at 7. In practice, a gap is determined
by additional information about logging failures.

Thus a logging knowledge base states explicitly whether logging information is
complete at a time point 7. In case of incomplete knowledge, we have TJI_)T £ .

We extend the classical logging assumption, whereby there are only finitely
many events happening at each time point, to a three-valued setting.

Assumption 1. Let D be a logging knowledge base over the szgnatur e (C, )
For each r € R and T € N, either " is finite aner_ =0, orrJ_ =1D |

This assumption formalizes that as long as a particular logging process is run-
ning, it correctly records all events. If the process crashes, then nothing is
recorded until the process is restarted. In line with our model of a logging knowl-
edge base, this means that at each time point 7 and for each relation r either
rP =0 or ] =|D|).

Note that a logging knowledge base does not differentiate between multiple
instances of the same event happening at the same time point. To do so, one
would have to ensure that either the time points’ granularity is sufficient to
render this scenario impossible, or to add unique artificial parameters (such as
counters) for each such event instance.

3 Compliance Policy Language

In this section, we define our policy language L3 and illustrate with examples how
policies are formalized and evaluated in the presence of incomplete knowledge.
We also show how disagreements can be handled with L3’s operators.

Syntax and semantics. In the following, let S = (C, R,¢) be a signature and
let V' be a countably infinite set of variables, where V N (C'U R) = (). Also, let
I be the set of nonempty intervals over N. We often write an interval in I as
b,V):={aeN|b<a<V}, wherebe N, v e NU{co}, and b < ¥'.

Definition 2. The L3 formulas over the signature S are given by the grammar

pu=f|r(ty,....tym) [0l eNe @@ | V.o | @Sre | pUre,

where T ranges over the elements in R, the t;s over the elements in CUV, x
over the elements in V', and I over the elements in 1.
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(a) primitive operators

| ALt fL ®t fL V[t f L —|tf L
t|f t|t fL t|t L L tjtt t t|tf L
flt fifff fllLf L fltf L fltt t
1L 1L fL 10l 11 1ltl L IR

(b) derived operators

Fig. 1. Truth tables for three-valued operators (strong Kleene logic [25]).

Before formally defining the evaluation semantics, Figure 1(a) shows L3’s in-
terpretation of the logical connectives over 3. We mildly abuse notation and
use same symbols to denote logical connectives and their corresponding three-
valued operators. The classical connectives = and A retain their interpretation
when restricted to the Boolean values t and f. The ® connective does not have
a classical counterpart. Intuitively, it represents a consensus on how much truth
can be agreed upon and is useful for combining different sources of knowledge
when neither t nor f should be preferred over the other.

In the following, a valuation is a mapping 6 : V' — |D|. For a valuation 6,
the variable vector & = (x1,...,2,), and d = (di,...,d,) € |D|", 0]z d]
is the valuation mapping x; to d;, for i € {1,...,n}, and the other variables’
valuation is unaltered. We abuse notation by applying a valuation 6 also to
constant symbols ¢ € C, with 6(c) := ¢P.

Definition 3. Let D = (Dgy, D1, . ..) be a temporal structure over the signa-
ture S, 0 a valuation, and T € N a time stamp. We inductively define the map-
ping [[]2%7 from formulas over S to values in 3 as follows:

6\

207 = f
[t - TE[)%D = if (0(t1),...,0(tur))) ETP7, wherev €3
[—o] P07 = =[] P07
[o1 A 2] 07 = [p1] P07 A [a] 07
[[@1®902]]’D [[cm]]DeT@[[sD ]]’DOT
[Va. o] /\de\@\[[@ﬂD’e [ d].7

o1 S1 Wﬂ@ =V, _rer (L2l A Ao 1] 07)
2 Ur <P2ﬂ = V-r’—q—e[ ([[902]}@’0’7/ A AT"e[r,T')ﬂsﬁlﬂ@’e’TI/)

In this definition, A and \/ are respectively the (possibly infinitary) meet and
join over the ordering f < 1 < t. Note that they match the corresponding
operators in Figure 1. The temporal connectives are accompanied by intervals
and a formula of the form ¢ Sy 1) or ¢ Uy 9 is only satisfied in D at the time
point 7 if it is satisfied within the bounds given by the interval I of the respective
temporal operator. We may omit the interval I if it is [0, 00).

We introduce the following additional syntactic sugar. We write t for —f,
w Vi for =(—p A1), ¢ — ¢ for —p V1), and Jz. ¢ for —Vz. . For a vector of
variables T = (21, za,...,%,), with n > 0, we write VZ. p for Va1.Vay ... Va,. ¢.
Moreover, we define the temporal connectives €71 and <1 as tSy and tUg ),
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respectively. Intuitively, @, ;)9 is t at 7, if ¢ is t at least at one past time point
in the time interval [max(0,7 — & — 1),7 — b]. If ¢ is f at all these time points,
then @, ;) is f at 7. The presence of at least one L and no t results in the
truth value L for @)1 at 7, since depending on how the incompleteness is
resolved either outcome (t or f) is possible. The interpretation of Oy ) 4 is sim-
ilar for future time points. The dual temporal connectives are [y ¢ := =Op =
and M; ¢ := - @; . We use standard conventions concerning the binding
strength of connectives to omit parentheses. For instance, temporal connectives
bind weaker than the other connectives. Furthermore, — binds weaker than V,
which in turn binds weaker than A and ®.

Finally, we introduce some additional notation. Given a formula ¢, we denote
by fu(p) and fu(p) the set and respectively the vector of free variables of .
We call a formula ¢ closed if fu(e) = (). For a formula ¢ with fu(¢) = 7 =
(z1,...,7,), we define the set of elements of |D|" for which ¢ evaluates to v € 3
at a time point 7 € N as

[[(p]]?’T ={de|D|"| [[(p]]lb’e[f'_’d_]ﬁ = v, for some valuation 6} .

Compliance policies. Regardless of the policy language, compliance policies
are usually given as a set of regulative normative statements (norms), which
expess what an agent is obliged to do given some actions it has performed, or
which conditions need to hold (or to have held) for an agent to be permitted
to execute some actions. Norms are meant to be applied at all times within
a system, and it has also been argued [11,12] that deadlines are of essential
importance in regulating temporal norms. Following these notions, compliance
policies in L3 are formalized as follows:

Definition 4. A compliance policy represented in L3 is a closed formula of the
form OVZ. 1, where each future temporal connective in ¥ is bounded.

The outermost unbounded [ connective specifies that a policy must be fulfilled
at each time point. Bounded inner future temporal connectives guarantee that
each obligation has a deadline.

We map the truth values onto policy evaluations as follows: t/f denotes that
a policy is satisfied /violated, and L denotes that it is unknown whether a policy
is satisfied or violated. Furthermore, for a compliance policy [IVZ. ¢, it is often
useful to report additional information regarding its violations, which is given
by the aforementioned sets [[w]]fD’T, [[w]]f’T, and [¢]>"", for a time point 7. Their
interpretation is as follows:

— The elements in [[zb]]? '™ witness a policy violation at time point 7.

— For elements in [[@[J]]f’T, it is unknown whether they violate the policy at
time point 7. They are potential violations.

— The elements in [[@ZJ]]t93 '™ satisfy the policy at time point 7.

In Section 4, we show that all reported violations and satisfactions at 7 persist
regardless of how incompleteness is resolved.
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Examples. We begin with the following security policy requiring that if a
request is serviced at a web-server then it must not have been denied by a firewall.
In practice, this policy would be a part of a larger specification. However, this
excerpt is enough to illustrate how L3’s semantics deal with logging failures. We
formalize this policy as [1Vr. 1, where
1 1= service(r) — — ®g.4) deny(r) .

When there are no failures, then any serviced request that has previously been
D
f

denied violates the policy, and is contained in [¢1]; '". If the web-server’s logger

crashes at a time point 7, i.e. semice?* = |D|, then all requests that had been

denied at the previous four time points by the firewall potentially violate the
policy, i.e. [ f’T =U. denyy™ , where T — 4 < 7' < 7. If, however, there are

no denied requests in the designated interval, the set [[wl]]f’T is empty and the
policy is therefore satisfied. This shows that not all logging failures must result
in potential violations. We note that if all unknown events are treated as not to
have happened, then the policy would be wrongly reported as satisfied.

For our second example, we focus on formalizing inter-business contracts.
These contracts often specify obligations that the signing parties must enforce
regarding the treatment of sensitive documents used during the collaborations.
To ensure that each party complies with its obligations, a policy must specify how
events are combined from different logs belonging to different stakeholders. For
example, when two companies exchange sensitive information, the contract might
say that all received documents must be paid for within 5 days. A straightforward,
but naive, formalization of this policy is JVd. 12, where

g 1= receive(d) — Opo.6) pay(d) .
The receive event is taken from the receiving stakeholder’s log. This specification
assumes that the receiving stakeholder is honest, since if its IT system does
not log a received document, the stakeholder’s behavior is trivially compliant

according to the given specification. We can attempt to expand the formalization
to include the sender’s send event (from the sender’s log) as follows

Uy := send(d) V recewe(d) — o) pay(d) .

In this case, the receiver is obliged to pay if either it receives a document, or the
sender says that it has sent the document. However, this is also unsatisfactory, as
the sender can cheat and insert fictitious send events causing policy violations.
In £3 we can combine the logs with the ® operator and obtain!

Yy = send(d) ® receive(d) = o6y pay(d) .
! We assume that the time granularity is coarse enough to allow receive and send

happen at the same time point. If a receive can happen with a delay of, e.g., at most
one time unit after a send, a more elaborate formalization is required:

OVd. (send(d) A (send(d) @ o 2) receive(d)) — o6y pay(d)) A
(receive(d) A (receive(d) ® @ 2) send(d)) — Opo,5) pay(d)) .
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In this case, all disagreements at some 7 about payments are in [¢)§ f’T, since
1 — fis L. The specification no longer favors one stakeholder over the other.
This has the benefit of not requiring additional pre-processing of logs, which
would need its own language and semantics. We remark that the given spec-
ification cannot be directly expressed in existing compliance policy languages
because L does not exist at the object level in those languages.

For our third example, we consider a form of separation-of-duty constraint [2]:
a subject s may access an object o if it has not previously accessed some object
o', where 0'’s dataset conflicts with o’s. One possible formalization of this re-
quirement is

OVs.Vo.Vd. Yo' .Vd'. access(s,0,d) N (# access(s,0',d")) — =conflict(d,d") .

In this example, access(s, 0, d) records that s accessed o in a dataset d. The pred-
icate conflict does not correspond to an event; it describes a property of a system
state. When having the events conflict, and conflict; at hand, which mark the
start point and the end point of two datasets being conflicting, the formula
—conflict;(d, d") S conflict ((d,d’) can be used to describe this state property. For
the sake of brevity, we assume that an object belongs to at most one dataset. In
case s accessed an o, and it is unknown whether s had any other accesses, then
if there exists d’ in conflict with d, such an access is a potential violation.

Notice that the above formalization only considers whether the data items
are in conflict at the time point when o is accessed. This means that even if the
datasets are in conflict just before the access, the policy is not violated. With
respect to the separation-of-duty requirement, one may say that this behavior is
in a compliance gray area. In L3, we define the following temporal connective C;
that treats such gray areas as L, signaling that it is unclear whether the policy
is satisfied or violated:

Cryp:=(®1v) @ (M 9).

Intuitively, Crv insists that the truth value of ¢ does not change in the given
past interval I. Any change results in |, and otherwise the truth value is not
changed. We can define a similar temporal connective using [J and < to mark a
future gray zone. We make use of C; by changing the original formalization to

OVs.Yo.Vd.Yo'.Vd'. access(s,0,d) N\ (® access(s,0',d")) — Cpo .2y conflict(d,d’),

where [0,2) is a two-day gray zone interval.

4 Monotonicity and Compositional Expressiveness

A logging knowledge base may grow in knowledge by resolving missing informa-
tion about the occurrences and non-occurrences of events, i.e., moving elements
from T?T to the relations rtD T or rfD .

Definition 5. An extension of a logging knowledge base D = (Do, Dy, ... ) over
S = (C, R,¢) is a logging knowledge base D* = (D§, D7,...) over S with |D*| =

ID|, ¢® =P forallce C, and r;DT C TZD: forallb e {t,f}, 7 €N, andr € R.
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Under Assumption 1, an extension either does not alter a relation T?T or empties
r?’ by moving finitely many elements to rtD ™ and the remaining elements to TfD .

We say that a policy specification is monotonic if the t and f evaluations,
over a given logging knowledge base, can never be retracted for any of its ex-
tensions. In other words, regardless of how the logging base’s incompleteness is
resolved, the policy violations and satisfactions persist. Monotonicity is a vital
requirement for a compliance policy, because monotonic specifications prevent a
non-compliant behavior from being turned into a compliant behavior by holding
back information. In the following, we establish that for L3 all policy specifica-
tions are monotonic by construction. To formalize monotonicity, we first order
the truth values with a partial ordering <j as follows: 1 <j f, L <p t, and f
and t are incomparable. In short, f and t contain more knowledge than 1. The
following theorem states that the evaluations of L£3’s formulas do not reduce the
amount of knowledge, when incompleteness is resolved in a logging knowledge
base’s extension.

Theorem 6. Given an L3 formula ¢, a valuation 0, and a logging knowledge
base D, then [P0 <. [0]P"07, for all extensions D* of D and all T € N.

Proof. From the definition of a logging knowledge base’s extension, and by struc-
tural induction using the fact that all of £3 connectives’ corresponding operators
are <g-monotonic, including the infinitary operators for temporal connectives.

As a corollary, given a compliance policy (V. ¥, a logging knowledge base D,
a valuation #, and a time point 7, if [¢]P-%7 is t or f, then this evaluation

persists at 7, for all extensions D*. Moreover, we have [[w]};D T [[w]]?D '™ and
[v]? T []7, for all extensions D* and 7 € N. Therefore, even with incom-

plete knowledge it is sound to report the elements in [[w]];D '™ as policy violations
when monitoring D.

Given that all £3 policies are monotonic, an important question is: Can all
monotonic compositional operators for combining events from different logs be
defined as syntactic sugar in L3? If the answer is positive, then L3 does not
need to be further extended. An m-ary three-valued operator O : 3" — 3 is
representable using a set C of operators if O can be written as the functional
composition of operators in C. We utilize the following theorem to show that any
monotonic operator can be expressed in L.

Theorem 7 (Blamey [10]). For any n € N, every <y-monotonic n-ary opera-
tor over the 3 truth space is representable using the set {f,—=, A\, ®} of operators.

Blamey’s proof is constructive and yields a function that given a monotonic
operator produces an expression showing how to compose the operators f, =, A,
and ®. As L3 has all the corresponding connectives, such an expression can
be seen as a formula in £3. Hence L3 can express any n-ary three-valued <j-
monotonic operator, including those for combining different logs.
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5 Monitoring Algorithm

The input of our algorithm consists of a compliance policy VZ. ¢ and a logging
knowledge base D over a signature S = (C, R, ¢). The algorithm iteratively pro-
cesses the logging structures D, for each 7 € N. To process a structure D, for
formulas with bounded future operators, the algorithm might need to process
structures D, with 7/ > 7 as well. When run in the on-line mode, the algo-
rithm waits until such structures become available. For the rest of this section,
we fix the signature S, the logging knowledge base D, and the policy OVz.¢.
Furthermore, we assume that the domain |D| is infinite.

At each iteration 7, the algorithm outputs a triple (S7,S7,ST), where for
each v € 3, the element S is either Fin V, CoFin, or None, where Fin, CoFin,
and None are labels standing respectively for “finite set”, “cofinite set”, and
“inconclusive”, and V' is a finite set. )

Our algorithm is sound, i.e. if ST = Fin V then V = [p]27, for all v € 8 and
7 € N. However, our algorithm is not complete, where completeness means that
the algorithm always returns a value from which one can deduce all compliant
tuples ([o]™), all violations ([¢];7), and all potential violations ([¢]7"™).
Note that when ¢ has free variables, all these sets cannot be explicitly output, as
at least one is infinite. However, if two sets are finite, then the third one is cofinite,
and it is thus implicitly determined. Therefore our algorithm is complete when at
least two of the elements of the returned triples are of the form Fin V. When ¢ is
closed, completeness means that at each iteration a truth value is returned, as the
triples (Fin {()}, Fin 0, Fin @), (Fin 0, Fin {()}, Fin 0), and (Fin 0, Fin @, Fin {()})
correspond respectively with the truth values t, f, and L.

Incompleteness of our algorithm is rooted in the standard issues that arise
when dealing with infinite domains [3], which L3 inherits from first-order queries
in the Boolean setting. Consider for instance the formula ¢ = p(x)Vq(y) with z #
y and assume that ptD ™ and th ™ are finite and non-empty, and p?* = q?* = (),

for some 7 € N. Then [¢]¢"" and []7" are neither finite nor cofinite, hence
our algorithm cannot deal with it: at 7, it returns (None, None, Fin §)). Formulas
such as 1) are problematic in the Boolean setting, since their evaluation results
are domain-dependent [3]. In the three-valued setting, there are similar issues,
even for formulas that are non-problematic in the Boolean setting. Consider the
formula ¢’ = p(x) Aq(y) with p™ finite and non-empty and qff = |D|, for some
7 € N. Then both [']¢"" and [¢/ ﬂf’T are infinite and domain-dependent.

Even though the algorithm is incomplete on L3, we obtain completeness for
a fragment of L3, presented at the end of this section.

Algorithmic overview. We briefly describe the main ideas underlying the
algorithm. Due to space constraints, a detailed presentation is deferred to the
full paper.

The algorithm’s core is the procedure eval, whose arguments are a formula 1),
a finite set I' = {(r, E,) | r € R} representing the relations of the logging struc-
ture D,, and a time point 7. The values F,, i.e., the second component of
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proc init(p)
for each ¢ € sf(p) with ¢ = ¢ S; ¢’ do
Ly )

proc eval(p, I', 7)
case p = f

return (Fin @, Fin {()}, Fin 0) case p = @Y’
Ey < (¢, eval(y, I, 7))

case ¢ = r(f) Eyr +— (@', eval(y’, T', 7))

E, <+ get_value(r, I) return eval_times(Ey, E,/)

return eval_predicate(p, E,.)

case ¢ = VZ.9¢

case ¢ = ) Ey « eval(y, I', T)

return evalneg(eval(y, I', 7)) return eval_forall(Z, v, Ey)
case o =P A’ case ¢ = ¢ Sy 1’

Ey (¢7/9Va1(1/)7 r,)) Ey < eval(y, I', )

’
Eyr < (¥, eval(y’, I, 7)) Eyr + eval(y/, T, 7)
return eval-and(Ey, E,/) return evalsince(p, 7, Ey, E,/)

Fig. 2. The init and eval procedures.

elements in I, as well as the return value of the eval procedure, are triples of
the form (S, S, S1 ), where each S, with v € 3 is either Fin V', CoFin, or None.
Such values satisfy (either by Assumption 1 or by construction) the following
invariant with regard to some formula v and time point 7: if S, = Fin V/, then
[Y]2-7 is a finite subset of |D|*M and V = [y]27; if S, = CoFin, then [y]2
is a cofinite subset of |D|M*™| and the other two elements of the triple are of
the form S,» = Fin V’, for v’ € 3\ {v}. This invariant is denoted as Inv(y, 7, E),
where E = (S, S¢, S1). By Assumption 1, the values E,. from the set I" sat-
isfy the invariant Inv(r(Z), T, E,), where Z is a sequence of distinct variables of
length ¢(r). We prove in Theorem 9 that the return value E of eval(p, I, T) satis-
fies the invariant Inv(p, 7, E), thus establishing the correctness of our algorithm.

The eval procedure, given in Figure 2, is called recursively over ’s sub-
formulas. The procedure performs a case distinction on all possible top-level
connectives. Some of the sub-procedures used by eval are in Figure 3, while the
remaining the pseudo-code is given in the full paper.

Next, we sketch each case of the eval procedure. The simplest case is when 1) is
the truth value f. In this case we simply return the triple (Fin §, Fin {()}, Fin 0).
When ¢ is of the form r(¢) for some predicate r, we first retrieve the value E,
associated with r from the set I" of pairs. We then retrieve the sets [r(£)]2:"
from rP~ | for each v € 3, by filtering the relations 27 according to the implicit
constraints present in the sequence t of constants and variables.

To evaluate formulas ) whose top-most connective is a non-temporal connec-
tive, we first evaluate the direct sub-formulas of ¢ and then compute, whenever
possible, the sets [/]2™ for v € 3, using the equalities given in Lemma 8 be-
low. These equalities extend the standard equalities that express the relationship
between first-order logic and relational algebra, from the Boolean to the three-
valued setting. They use the relational algebra operators projection and join [3].
We refer to the full paper for their formal definitions, and here we proceed with
their intuitive description. As the temporal aspect is not relevant in this case of



12 D. Basin et al.

eval, we also fix the time point 7 and drop the superscript in [[w]]v@”7 i.e., we just
write [¢],, for v € 3 and a formula .

Given a formula ¢ and a truth value v € 3, we can see the set [¢], as a
named relation, where columns in [1/], are named by the free variables in fv(v)).
Given a free variable x of v, the projection of the tuples in the relation [¢],
on the columns corresponding to other free variables is denoted m;([+],). For
instance, if [p(z, y)]: = {(0,2), (1,2), (1, 3)}, then 7. ([p(z, y)]:) = {(2), (3)}. For
v,v" € 3, the natural join of the sets [¢], and [¢'],, denoted [¢], <t [¢]o, is
the set of tuples for which the projections on the columns, corresponding to v’s
and v"’s free variables, are in [¢], and respectively in [¢'],, and the fields of
which match on the common free variables. For instance, if [¢(y, 2)]t = {(2,4)},
then [p(x,y)]: < [q(y, 2)]: = {(0,2,4),(1,2,4)}. We adopt the convention that
> binds stronger than U.

Lemma 8. Let D be a logging knowledge base, T be a time point, and ¢ and 1’
be L3 formulas. The following equalities hold:

[[_‘1/}]]1) = [W]]w, ifv €3
[ AT =[] o [9' ]
[ AY'Te = []e U [W' ¢, if fo(i) = fo(y')
[ AT =l 9]0 U] o [9]e U [9]L o [¥] 0
[V @ ¢'To = [¥]6 > [¥']s, if b € {t,f}
[y e =[] [¥Te U [¥]es< [9Te U []f < [9']:
Va. ] = 0, if [¢]¢ is finite and x € fo(1)
V. Yls = 7o ([¥]f), if v € fo(y)
V. 9] = me([¥] L) \ ma([¥]5), if z € fo(y)

These equalities provide a method to compute, under the stated conditions,
the relations [¢], from the corresponding relations for ’s direct sub-formulas.
For instance, if ¢ = ¢ A2 and [11]t, [2]: are finite relations, then [¢]; is a
finite relation given by the join of the other two relations. Furthermore, when
[41]+ is finite, [w2]: is cofinite, and fv (1)) C fu(e)1), then [¢]; is a finite relation
that we can compute as [th]e < [thalle = 1] b (|DIF* DI ([eha]e U [ha] 1))
Note that the condition fu(12) C fu(1)y) is essential, as otherwise [¢1 ]t > 2]}
may be infinite. For example, if fu(y;) = (z) and fo(v2) = (z,y) with [¢1]: =
[} [l = {(1,2)}, and [l = {(3,4)}, then [ = {1} x (ID\{2,4}). The
same method is applied to each of the other sub-cases of the binary connectives.

The described approach is implemented through the procedures eval_neg,
eval_and, eval_times, and eval_forall, given in Figure 3. Each procedure returns
a triple (Ry, Rf, R ), where R, is a value computed based on the identities in
Lemma 8 using the procedures join and union, which are given in the full paper.
The join procedure takes as arguments tuples (¢, E) and (¢',E’), and truth
values v and v'. Provided that the invariants Inv(¢, 7, E) and Inv(y)’, 7, E') are
satisfied, the return value is either Fin ([¢], > [¢'],») or None, depending on
whether a finite relation can be computed. The union procedure has similar
arguments and return values. The auxiliary procedures update_cofin and update
from Figure 3 handle the following corner case: If two elements of the newly
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proc evaland(Hy, Hyr) proc eval_times(Hy, H,)
Ry «— join(H,/,, le, t, t) Ry jOin(Hw, H’l/”’ t, t)
R < union(Hw, I{w/7 f, f) R < jOil’l(Hw, le, f, f)
Ry < evaland | (Hy, Hyr) Ry < evaltimes (Hy, Hyr)
return update_cofin(¢ A 9’, Ry, Rf, R1) return update_cofin(y ® ¥, Ry, Rs, R,)
proc eval.and | (Hy, Hyr) proc eval_times | (Hy, Hyr)
Ry <« join(Hy, Hy, t, 1) R < union(Hy, Hyr, L, 1)
Ry  join(Hy, Hyr, L, t) Ry « join(Hy, Hy, t, f)
Rs jOin(Hw, Hw/, 1, J_) Rs _].Oin(Hw, Hw/, f, t)
case Rl, R27 R3 = Fin Vl, Fin VQ, Fin V3 case Rl, Rz, Rg = Fin Vl, Fin VQ, Fin V3
return Fin (V3 U Vo U V3) return Fin (V3 U V> U V3)
otherwise otherwise
return None return None
proc eval_neg(St, S¢, S1) proc update_cofin(vy, Ry, Rf, R)
return (Sf, Si, S1) R < update(y, Ry, Rf, R1)
R¢ <+ update(y, Rf, Ry, R1)
proc eval_forall(z, ¢, (S, Sf, S1)) R, < update(y, Ry, R, Ry)
(Ry, Rs, R1) < (None, None, None) return (R, Rf, R1)
case S; = Fin T
R; + Fin 0 proc update(vy, R1, R2, R3)
case S; = FinU case Ry = Fin _and R3 = Fin _
R, + Fin 0 if fu(¢)) # 0 then return CoFin
case Sf = Fin F else if Ry = Fin @) and R3 = Fin 0 then
§ < get_positions(Z, ) return Fin {()}
Rf < Fin (75(F)) else
case S| = Fin U return Fin ()
R, < Fin (75(U) \ 75(F)) otherwise
return update_cofin(VZz.y, Ry, R, R1) return R,

Fig. 3. The eval_neg, eval_and, eval_times, and eval_forall procedures.

formed triple (Ry, Rs, Ry ) are of the form Fin V and the remaining element is
None, then update_cofin(v), Ry, Rs, R ) changes None to either CoFin if fu(y) # 0,
or otherwise (when fu(y) = () to Fin {()} or Fin §) depending on the truth value
that should be returned. This ensures that the invariant Inv is preserved by the
return value of the eval_and, eval_times, and eval_forall procedures.

Finally, we consider the temporal operators. Let ¥ = a Sy 5. For efficiency,
eval maintains between iterations a sequence Ly, which is initialized by the init
procedure with the empty sequence. The sequence L, contains values E. that
satisfy the invariant Inv(a Siss) 8,7, E7r), where § = 7 — 7/ and 7' is such that
0 <7—7"<b, with I = [a,b). In this way, the sub-formulas o and S are not
re-evaluated at previous time points 7. Instead, the result of their evaluation is
stored in L. The return value is computed by iteratively calling eval_or on the
elements E/ of Ly, for which (7 —7’) € I. This last step reflects the equivalence
between a Sy 8 and \/5.; aSi55) 8. Given two formulas 9 and 12 and two values
E; and Es satisfying respectively the invariants Inv(y1, 7, F1) and Inv(vq, T, E2),
the procedure eval_or returns a value E that satisfies Inv(¢1 V g, 7, E).

The case for Until is analogous to Since. The only significant difference is
that the procedure must delay its answer until all relevant events have occurred.
Various optimizations, which we mention in the full paper, can further improve
the efficiency of handling temporal operators.
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The following theorem establishes termination and soundness of our algo-
rithm. To state it formally, we first explicitly define the relationship between the
arguments I of the eval procedure, and the logging structures D, of D. We let

triples(D-) := {(r, (val( (rP- val(r?*), val(r?*))) |7 € R},
where val (V) is Fin V if V is finite, and is CoFin otherwise. Thus Iy = triples(D.).

Theorem 9. Let D be a logging knowledge base, ¢ a formula in L3, and T € N
a time point. The procedure eval(p, Iy, T) returns a value E that satisfies the
invariant Inv(p, 7, E), whenever init(p), eval(p, Iy, 0), ..., eval(p, Ir—q1, 7—1)
were called previously in this order, where 'y = triples(D,/), for 7/ < 7.

A complete fragment. In general, our algorithm is incomplete. However, by
limiting the usage of free variables, we obtain the fragment L£§ for which we
guarantee completeness.

Definition 10. The set L§ of formulas is inductively defined:

—feLsandr(ty,... ,t,n) € LS,

— if o € L, then —p € L and Vx. ¢ € LS,

— if o, € L§ and either fu(p) = fo(¥), fu(p) = 0, or fu(v) = 0, then
pANYeL, oY e LS, S e L, and ¢ Ury € LS.

Note that £§ allows universal quantification and, by using -, also existential
quantification of free variables, and both quantifiers can be nested freely. But
if an £§ formula contains a sub-formula with no quantifiers and two or more
predicates, they must have the same free variables. As all of £3’s connectives are
retained and their application is not restricted, £§ can still express all monotonic
finitary operators. However, they cannot be used as liberally as in L3.

The first and second policy examples in Section 3 fall within £§. However,
due to the free-variable restriction, the following formula is not in £§:

OVs. Vr.Vm. send(s,r,m) — r authorize(m) .

It says that all messages m, sent by s to r must be subsequently authorized. This
is a typical compliance policy from the HIPAA Privacy Rule [1]. By pushing the
quantification of s and r inside the antecedent, we obtain a formula in £§:

OVm. (3s. 3r. send(s,r,m)) — Op authorize(m) .

One can check that evaluating V. p — ¢ and (Fz. ) — ¥, as well as Jz. p A9
and (Jz. ¢) A, where x & fu(), over an arbitrary logging knowledge base and
an arbitrary time point yields the same truth value.

It is not always possible to rewrite a formula such that the result falls into £§.
Recall the third example (the separation-of-duty requirement) from Section 3.
Clearly, it does not fall within £§. However, if there are finitely many datasets, we
can partially ground the formula, obtaining a family of formulas ¢q 4/, where d
and d’ range over the datasets. Each is in £§ after similar rewriting as above:

¢a,a =0 (3s. (Jo. access(s, 0,d)) A o'. ® access(s,o’,d’)) —
Cio,2)~conflict(d,d’).
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Syntactic rewriting and partial grounding cannot always be applied. Still, £§
is an expressive fragment that captures a wide-range of compliance policies.

Finally, we state our result on the algorithm’s completeness on L£f formu-
las. To do so, we define the stronger invariant Inv.(y, 7, E) which, in addi-
tion to Inv(p, T, E), requires that there are v’,v” € 8 with v/ # v” such that
Sy = Fin V' and S,» = Fin V" for some sets V', V" where E = (S, S, 51 ).

Theorem 11. Let D be a logging knowledge base, ¢ a formula in LS, and T € N
a time point. The procedure eval(p, Iy, 7) returns a value E that satisfies the
invariant Inv.(p, T, E), whenever init(y), eval(p, I, 0), ..., eval(p, I'h—1, 7—1)
were called previously in this order, where 'y = triples(D./), for 7/ < 1.

6 Related Work

The only work we are aware of that addresses the problem of compliance check-
ing with incomplete knowledge is Garg et al. [21]. Their policy language is a
restricted first-order logic. It has a more liberal usage of free variables compared
to L£§, but it does not consider L at the object-level and cannot express the
® operator. They adopt a weaker logging assumption, whereby a finite or an
infinite number of event occurrences can be unknown. However, their compli-
ance algorithm is not suitable for on-line monitoring and, more importantly, it
is incomplete, even with our logging assumption. Recall our first policy example
in Section 3. If the web-server’s logger crashes and there are no denials, their al-
gorithm does not report that there are no violations. Instead, it wrongly reports
that there may be potential violations, where in fact there are none. Similarly, it
may also fail to report violations. For example, given a specification of the form

Ovz. c(z) — 5. (7,9) AVz. (2,7, Z),

then all Z that violate the policy by making ¢ true and ¢ false, but for which
all ¢’ events are missing, are not reported. This is because their algorithm eval-
uates formulas in a top-down fashion: it first finds all  that satisfy ¢, then it
partially grounds? the consequent, then it finds all § that satisfy ¢, and then
partially grounds ¢, and so forth. However, if there are no partial groundings,
the algorithm stops further evaluations. In contrast, since our algorithm works
in a bottom-up fashion, it does not have this problem.

The problem of incompleteness and disagreements is also present in other
fields, and some approaches there are also based on many-valued logics. Some
access-control policy languages [15, 18] use multiple truth values to represent
different access-control decisions. These languages are propositional and do not
support temporal reasoning. Several model-checking approaches [13,14,16] also
consider a many-valued truth space. However, their many-valued semantics do
not guarantee policy-compliance monotonicity. Furthermore, their specification
languages only have the classical Boolean and temporal connectives.

2 Their logging assumption and language restrictions guarantee that there are always
only finitely many satisfying ground instances.
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Bauer et al. [8] extend the classical LTL semantics by also assigning non-
Boolean truth values to finite and complete prefixes of infinite traces. Their
semantics differentiate whether all or some extensions of a finite trace satisfy a
property. However, the Boolean and temporal operators are not extended over
the additional truth values. Furthermore, they do not consider the ordering <j
of the truth values in knowledge.

Another approach to dealing with incompleteness is to make quantitative
statements, e.g., how certain it is whether a property is violated. Stoller et al. [26]
present such an approach for monitoring traces with gaps. Their solution first
assigns probabilities to whether events happened during gaps, and then com-
putes the overall probability that a temporal property is violated. This solution
is orthogonal to ours. It requires a reliable training set to derive appropriate
probability assignments for different event occurrences.

7 Conclusions

In complex IT systems, logging failures happen and knowledge about the occur-
rence of system actions is incomplete when monitoring the system. Furthermore,
system components can disagree on whether actions took place. Approaches for
checking system compliance based on the classical Boolean setting are insuffi-
cient since they may incorrectly report policy violations. A three-valued truth
space allows us to correctly distinguish between violations and potential viola-
tions. The solution presented in this paper carefully adopts a three-value truth
space so that policy evaluations are correct regardless of how knowledge gaps
are resolved. The presented monitoring algorithm shows that policy violations
and potential violations can be soundly and completely determined.

As future work we will investigate how to efficiently resolve potential vio-
lations as prior knowledge gaps are incrementally resolved. We also plan case
studies to evaluate our monitoring algorithm in real-world settings. Finally, we
would like to explore different truth spaces to distinguish between different kinds
of knowledge gaps and disagreements.

Acknowledgments. We thank Germano Caronni and Matus Harvan for fruit-
ful discussions on this topic.
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