On Real-time Monitoring with
Imprecise Timestamps™*

David Basin!, Felix Klaedtke?, Srdjan Marinovic!, and Eugen Zalinescu'

! Institute of Information Security, ETH Zurich, Switzerland
2 NEC Europe Ltd., Heidelberg, Germany

Abstract. Existing real-time monitoring approaches assume traces with
precise timestamps. Their correctness is thus indefinite when monitoring
the behavior of systems with imprecise clocks. We address this problem
for a metric temporal logic: We identify classes of formulas for which we
can leverage existing monitors to correctly reason about observed system
traces.

1 Introduction

Existing runtime-verification approaches for real-time logics, e.g., [1,2,5,6], assume
that the monitored system emits events with precise (i.e. exact) timestamps. This
assumption however does not hold for real-world systems, and thus monitors
may produce incorrect outputs. To account for the clocks’ imprecision, an error
may be associated with events’ timestamps. For instance, Google’s distributed
database Spanner [3] associates a time interval with each event, and Spanner
guarantees that each event happened at some point in its associated interval.

This paper poses and explores the problem of whether existing monitoring
approaches for real-time logics can account for timestamp imprecision, and thereby
provide correctness guarantees for the monitors’ outputs. In our study, we focus
on the real-time temporal logic MTL [4] over a continuous dense time domain, for
which we propose a monitoring approach that accounts for imprecise timestamps.
For monitoring, we (a) first modify the specification by syntactically rewriting
the MTL formula and (b) use an existing monitor for precise timestamps on
the modified specification over one precisely timestamped trace that is obtained
from the given imprecisely timestamped one. We identify MTL formulas for
which conformance with the modified specification implies conformance with
the given specification of all possible precise traces corresponding to the given
imprecise trace. We also identify formulas for which the approach provides a
weaker—but still a useful—guarantee that there is some precise trace satisfying
the specification.

In summary, our contributions are the following. (1) We raise the problem
of imprecise timestamps in runtime verification with respect to specifications in

* This work was partially supported by the Zurich Information Security and Privacy
Center (www.zisc.ethz.ch).

2 D. Basin et al.

real-time logics. (2) We provide correctness guarantees for the use of existing
monitors over imprecise traces for certain MTL fragments.

Related to this work are the results of Zhang et al. [8] and Wang et al. [7].
Zhang et al. [8] explore the issue of imprecise timestamps in data-stream pro-
cessing. In contrast to our approach, their solution is for a more restrictive
specification language, relies on a discrete time domain, and outputs probabilistic
verdicts. In runtime verification, Wang et al. [7] explore trace imprecision due to
an unknown ordering between events. Events do not have explicit timestamps and
thus only linear time properties (in LTL) are considered. In contrast, we monitor
real-time properties (expressed in MTL). Furthermore, they propose a specialized
monitoring algorithm, while we leverage existing monitoring algorithms.

2 Preliminaries

Let T := R be the time domain and let P be a nonempty finite set of atomic
propositions. A timeline is a function 7 : T — 2¥ in which values do not change
infinitely often over bounded intervals. That is, for any bounded nonempty
interval I C T, there is a partition of I into nonempty intervals I1,..., I, for
some n > 1 such that 7 is constant on each I;.

MTL formulas are given by the grammar

pu=pleleneleSieleUrye,
where p ranges over P and I over the intervals of T with rational endpoints or
oo as a right endpoint. Given a timeline 7, a time ¢ € T, and a formula ¢, the
satisfaction relation |= is defined as follows.

mtEp iff pen(t)
Tt = e ifft m it
mtEeAY il mtEeand 7w, tEY
mtE@Sry iff there is some ¢ € T with ¢t — ¢’ € I such that
mt' = and m,t" | @, for all t” € T with ¢/ <t” <t
mtE@eUry iff there is some ¢’ € T with ¢/ —t € I such that
m,t' E and m,t" = @, for all ¢ € T with ¢t <’ <t/

Note that MTL’s time domain is dense and its semantics is continuous. We
use standard syntactic sugar. For instance, we define ¢ Ty := —(—p Sy —)),
YR :==(—pUr), @@ :=trueSyp, By :=false T; p, O := true Uy o,
and Oj ¢ := false Ry ¢, with true := p V —p and false := p A —p, for some p € P.

A timed word is a sequence (a;, T;)ien of tuples with a; € 27 and 7; € T, for
any ¢ € N, such that the sequence (7;);en is non-strictly ascending and progressing.
Intuitively, a timed word represents the observed, imprecisely timestamped trace,
while a timeline represents the real system behavior. In the following, we assume
a timestamp imprecision of § > 0, which we fix for the rest of the paper. For
an “observed” timed word (a;, 7;);en, it would be natural to additionally assume
that the 7;s are from a discrete infinite subset of T, in which all elements have
a finite representation. However, our results are valid without this additional
assumption.

On Using Real-time Monitoring Tools 3

Given a timed word & = (a,7), the set of possible timelines of 7, de-
noted TL(7), is the set of functions 7 : T — 2F with

. . _1 _ . .
(t) = {al if ts~(t) = {i} for some i € N,

0 otherwise,
for any ¢ € T, where ts : N — T is an injective function such that ts(i) €
[1;i — 8,7 +], for any ¢ € N. We remark that the progress condition on (7;);en
ensures that the elements of TL(5) are indeed timelines. Furthermore, note that
the requirement that ts is injective corresponds to the assumption that, in reality,
no two events happen at the same point in time.

Ezample 1. Given ¢:=1 and the time word 6:=({p},1)({¢}, 1){r},2)({s},5) ...,
one of the timelines in TL(F) is m where 7(0.6) = {q}, 7(1.2) = {r}, 7(1.3) = {p},
and 7(t) = 0 for t € [0,4) \ {0.6,1.2,1.3}. Note that the ordering of events in &
differs from that in 7.

3 MTL Monitoring of Imprecisely Timestamped Traces

Informally, we are interested in what can be said about the conformance of
the possible timelines of an observed timed word & with respect to a given
formula ¢, where & is observed incrementally. Formally, we focus on the following
problems, where a problem instance consists of a formula ¢, a timed word &,
and a time t € T. For £ € {3,V}, the question is whether 7,t |=; ¢ holds, where
we write (i) 7,t =3 ¢ if m,t = ¢, for some m € TL(d), and (ii) 7,t v ¢ if
7, t = @, for all m € TL(G). We focus on answering these questions online, using
monitoring.

Given a formula ¢ and an iteratively presented timed word &, our monitoring
approach is the following, where formal definitions are given below:

1. Transform the formula ¢ into the formula tf(ep).
2. Transform at runtime the timed word & into the timeline p;.
3. Monitor the timeline ps; with respect to the formula tf ().

The transformed formula tf(y) accounts for timestamp imprecision by relaxing
the implicit temporal constraints on atoms, that is, relaxing “atom p holds now”
to “atom p holds within a +¢ interval”. Formally, for p € P, we define tf(p) :=
(®10,61P) V (0,5 p) and extend tf homomorphically to non-atomic formulas.

The timeline pz is obtained by simply ignoring timestamp imprecision. For
the timed word & = (a,T), we define the monitored timeline ps as ps(t) :=
Uienlai | i = t}, for any ¢t € T. Note that the timeline p, is easily built at
runtime from the timed word &. In fact, if ¢ € T is the current time, then the
value of p; at t can be obtained as soon as a tuple (a;, 7;) of elements of the
timed word & with 7; > t arrives.

The following theorem states the guarantees provided by our monitoring
approach. Concretely, for each of the two posed questions, we identify two classes
of formulas for which the approach provides correct answers. We define these
formula classes syntactically using the rules in Figure 1. We say that a formula ¢
in negation normal form is labeled by (£) with £ € {3,V} if ¢ : (¢) is derivable

4 D. Basin et al.
p: (V) ¢:(V)
true: (V) false: (V) p:(3) -p: (V) popp: (V)

e (@ i) 0@ v:@) e (V) v:() o ()
PYXTRIE) oV () popv:@ PEGTURE TG

Fig. 1. Labeling Rules.

op € {A,V,Sr,Tr,Ur,Rr}

using the rules in Figure 1. For the negation normal form, we assume that the
formulas true and false, and the connectives V, T, and R are language primitives,
while the connectives ¢, B, &, and O are still syntactic sugar. We denote by
nnf (¢) the negation normal form of ¢.

Theorem 2. Let ¢ be a timed word, £ € {3,V}, and ¢ a formula with nnf (o)
labeled by (¢). For any t € T, if ps,t = tf(p), then 7,t =4 .

Due to space limitations, we omit the theorem’s proof, which is by induction
over the formula structure, and give instead the intuition behind the theorem
and some of the rules in Figure 1. The true and false formulas can be labeled
by (V) as their satisfaction does not depend on the trace. Positive literals p can
only be labeled by (3). If tf(p) is satisfied at t, then p is satisfied at some ¢’
within the interval [t — §,¢ + d], and thus there is a possible timeline for which p
is satisfied at ¢t. However, in general the other possible timelines do not satisfy p
at t. In contrast, negative literals —p can be labeled by (V). If p is not satisfied
on the interval [t — §,¢ + d] on the monitored timeline, then there is no possible
timeline satisfying p at t. Any formula of the form ¢ op ¢ can be labeled by (V),
as long as ¢ and v can both be labeled by (V). That is, the (V) fragment consists
of those formulas in which atomic propositions occur only negatively. The last
rule expresses that if all possible timelines satisfy ¢ at ¢ then there is a possible
timeline satisfying ¢ at t. Thus the (V) fragment is included in the (3) fragment.

By monitoring ps; with respect to tf(¢) and using Theorem 2, we may obtain
correctness guarantees about whether some or all timelines in TL(5) satisfy ¢.
This depends on whether the negation normal form of ¢ or =@ can be labeled,
and on the monitoring result for tf(¢) on ps at ¢t. To clarify when guarantees are
obtained, we consider the following cases.

— Neither nnf (@) nor nnf (—p) can be labeled. Then we cannot apply Theorem 2
to obtain the guarantees.

— Only nnf (o) is labeled. If the monitoring result is positive, i.e. ps,t = tf(p),
then we simply apply Theorem 2 to obtain the guarantees. If however ps,t =
tf(¢), then nothing can be concluded about the system’s conformance with
respect to ¢.

— Only nnf(—p) is labeled. This case is similar to the previous one, and we
only obtain the guarantees if the monitoring result is negative. That is, when
P55t = tf(p), we can apply Theorem 2 to . This is because tf(—p) = —tf(p),
and thus ps,t = tf () iff ps,t | tf(—p).

— Both nnf(p) and nnf(—p) are labeled. We obtain the guarantees regardless
of the monitoring result. If ps,t = tf(¢) then we apply Theorem 2 to ¢;
otherwise, we apply it to —¢.

On Using Real-time Monitoring Tools 5

The last case is illustrated through the following example.

Ezample 3. Let ¢ := —p — Opq. We have that nnf(p) = p V (trueSyq) : (3)
and nnf(—p) = —p A (false Ty =q) : (V). According to Theorem 2, the guarantees
that we obtain by monitoring p; with respect to tf(y) are as follows. For any
t €T, (1) if ps,t = tf(p), then there is a m € TL(5) with 7,t = ¢, and (2) if
Ps,t E tf(p), then m,t & ¢, for all 7 € TL(7).

We remark that one can build the monitored timeline pz in different manners.
Instead of taking the middle of the “uncertainty” intervals [1; — 0, 7; + 0] as the
representative point in the monitored timeline, one could take another point
as representative, provided that subsequent points have the same offset to the
middle of the corresponding interval. The formula transformation must then be
adjusted accordingly. However, monitoring such other timelines does not result in
new conformance (with respect to the given property) guarantees as the following
proposition demonstrates. In other words, it is sufficient to monitor the timeline
considered in Theorem 2.

We first generalize the formula transformation. Given e € [0, 6] and * € {+, —},
let tf.c(p) := (@054 P) V (Opo,6%¢), for any p € P, where switches * to its
dual value. For instance, tfo(p) = tf(p) and tf_5(p) = (®[0,0/p) V (Opo,25)). As
before, tf..(-) is extended homomorphically to non-atomic formulas.

Proposition 4. Let § € T, €1,e5 € [0,0], #1,%2 € {+,—}, a timed word 7 =
(ai, 7i)ien, and the timelines py and pa be given with p;(t) := U;endai | i =
txje;}, for anyt € T and j € {1,2}. For any formula ¢ and any t € T, we have
that p17t ': t{:*161 (<P) Zﬂ p27t): tf*zéz (@)

4 Discussion

Fragments. The (3) fragment is practically relevant because the negation normal
form of various common specifications patterns are included in it. For instance,
consider the common specification pattern O with ¢ = (p A a) — ®1(q A 8),
for some p, ¢ € P and some formulas o and 8. When nnf(—«) is labeled by (3)
and nnf(8) is labeled by (V), then nnf(p) is labeled by (3). Similarly, when
nnf (a) is labeled by (V) and nnf (=) is labeled by (V), then nnf(—¢) is labeled
by (3). Observe that nnf(y) and nnf(—p) can both be labeled only in some
special cases, for instance, when both nnf(a) and nnf(—«) can be labeled and
when 8 = true. Furthermore, the (3) fragment is limited in that conformance
guarantees are given for only one possible timeline. In contrast, the (V) fragment
offers strong conformance guarantees; however, it is practically less relevant. Note
that a formula in the (V) fragment requires that all propositions occur negatively
in . This is a strong restriction on the form of .

We do not, however, see how to extend the fragments in any significant
way. For instance, the given rules cannot be strengthened by using stronger
labels. This is illustrated by the following example, which shows that a rule
that labels ¢ A ¢ by (3) whenever ¢ and v are labeled by (3) is not sound.

6 D. Basin et al.

Let ¢ := p A ®p1yq and ¢ := p A q- Let 6 := 2 and consider the timed
word & = ({p},2)({q},3)({r},10).... We have p5(2) = {p}, ps(3) = {q},
and pg(t) = 0, for any ¢t € [0,5] \ {2,3}, and tf(p A) = (@021 Cpo,21P) A
(®10,3Cr0,119) N (®10,1] 0,31 9)- Clearly ps,2 [= tf(o Av) but 7,2 = o A, for
any m € TL(5).

Point-based Monitoring. It is appealing to monitor directly the observed timed
word & using a monitor for the more prevalent point-wise semantics of MTL.
See [1] for a comparison of the two semantics with respect to monitoring. However,
it is harder to obtain correctness guarantees for such a setting because one must
use two different MTL semantics, the point-wise one for the monitored traces and
the continuous one for the possible timelines. Note that monitoring precise traces
with respect to a point-wise semantics is inappropriate as there is no reference
evaluation point for comparing the evaluation of the observed trace with the eval-
uation of the precise traces. Recall that, under a point-wise semantics, evaluation
points are event indices and these depend on the events’ occurrence times.

Conclusions. The previous discussion motivates the need for alternative ap-
proaches. We are investigating a quantitative MTL monitoring approach along
the lines explored in [8]. However, the raised problem may require not only new
algorithmic solutions, but also specification languages that allow for the explicit
reasoning about timestamp imprecision.

References

1. D. Basin, F. Klaedtke, and E. Zalinescu. Algorithms for monitoring real-time prop-
erties. In Proceedings of the 2nd International Conference on Runtime Verification,
volume 7186 of LNCS, pages 260-275. Springer, 2012.

2. A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology, 20(4), 2011.

3. J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. C. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s globally
distributed database. ACM Transactions on Computer Systems, 31(3):8, 2013.

4. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255-299, 1990.

5. O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In
Proceedings of the Joint International Conferences on Formal Modelling and Analysis
of Timed Systems and on Formal Techniques in Real-Time and Fault-Tolerant
Systems, volume 3253 of LNCS, pages 152—166. Springer, 2004.

6. P. Thati and G. Rogu. Monitoring algorithms for metric temporal logic specifications.
In Proceedings of the 4th Workshop on Runtime Verification, volume 113 of ENTCS,
pages 145-162. Elsevier, 2005.

7. S. Wang, A. Ayoub, O. Sokolsky, and I. Lee. Runtime verification of traces under
recording uncertainty. In Proceedings of the 2nd International Conference on Runtime
Verification, volume 7186 of LNCS, pages 442-456. Springer, 2012.

8. H. Zhang, Y. Diao, and N. Immerman. Recognizing patterns in streams with
imprecise timestamps. Proceedings of the VLDB Endowment, 3(1-2):244-255, 2010.

On Using Real-time Monitoring Tools 7

A Proof Details

A.1 Proof of Theorem 2

We prove the theorem by induction on the height of the derivation tree. We
distinguish cases based on the rule applied at the root of the derivation tree.
Assume that p,t = tf(p).

— :(3) is derived from ¢ : (V).

From the induction hypothesis, we get 7,t =y . That is, for all 7 € TL(5)
we have 7,t = ¢. As TL(5) is a non-empty set, there is a 7 € TL(5) such
that m,t = . That is 7,t =3 ¢.

p = false or ¢ = true. These cases are trivial.

@ = p. Then p : (3) is derivable.

We have that p,t’' |= p, for some ¢ € [t — d,¢+ 6]. Thus p € p(t’). As p(t') is
non-empty, it follows that there is an 7 € N such that ¢ = 7; and p € a;. Since
t € [r; — 9,7 + 9], there is a w € TL() such that «,t = p. Hence 7,t =3 p.
@ = —p. Then —p: (V) is derivable.

Suppose, by absurdity, that 7,t j~y —p. Then there is a 7 € TL(5) such
that 7,¢ = p. Therefore, p € m(t) and there is an i € N such that p € q;
and t € [1; — 6, 7; + d]. It follows that p € p(7;). Hence p,7; = p and thus
p,t = tf(p). This is a contradiction.

© =1 A g and @ : (3) is derivable from ¢; : (3) and @9 : (V).

We have that p, ¢ = tf(¢1) A tf(¢2). From the induction hypothesis, we get
that &,t =3 @1 and 7,t =y @o. That is, there is a m; € TL(&) such that
m1,t = 1 and for all mo € TL(G) we have o, t |= ¢o. In particular 71, ¢ = ¢a.
Hence m1,t = @, that is 7,t =3 ¢.

© =1 Apa and @ : (V) is derivable from ¢4 : (V) and @9 : (V).

From the induction hypothesis, we get that 7,t v ¢1 and 7,¢ v ¢a. That
is, m,t = @1 for all m € TL(G), and 7,t = s for all m € TL(5). It follows
that 7,t = ¢ for all # € TL(5). That is, 7,t v ¢.

© =1V and @ : (3) is derivable from ¢; : (3) and @9 : (3).

We have that, say, p,t = tf(p1). By the induction hypothesis, 7,t =3 ;. It
follows that ,t =3 ¢.

© =1V and @ : (V) is derivable from ¢; : (V) and @9 : (V).

We have that, say, p,t = tf(¢1). By the induction hypothesis, 7,t = ¢ for
all m € TL(5). It follows that m,¢ |= ¢ for all 7 € TL(G). That is, 7,t =y ¢.
© = 1S 2 and ¢ : (3) is derivable from 1 : (V) and @2 : (3).

As p,t = tf(p1) Sy tf(p2), we have that there is a to <t such that ¢t —ts € I,
p,ta = tf(pe), and p,t1 = tf(p1) for all ¢ € (to,t]. By the induction
hypothesis, there is a m € TL(G) such that m,t2 & 2. Furthermore, for
every n’ € TL(5) and t1 € (to,t], we have 7', ¢1 = 1. In particular, we have
m,t1 = 1, for every ¢, € (to,t]. Hence, 7, t |= 1 Sy pa. That is, 7,t =3 ¢.
© = ¢1Srp2 and ¢ : (V) is derivable from ¢; : (V) and ¢ : (V). This case is
similar with the previous one.

8 D. Basin et al.

— =1 Trp2 and @ : (3) is derivable from ¢; : (3) and p2 : (V).
We have that p,t = tf(p1) Trtf(e2). Then either p,ta = tf(p2) for all t2 <,
or there is a t; < t such that t —t; € I, p,t; E tf(p1), and p, ta = tf(p2) for
all ty € [ty, 1].
Consider the first case. By the induction hypothesis, we have that 7, ts = @9
for all to <t and m € TL(5). That is, m,t |= 1 T1 @2 for all 7 € TL(7) and
thus o,t lzg @Y.
Consider now the second case. By the induction hypothesis, we have that there
is a my € TL(5) such that 71,t1 = v1. And we also have that ma,ts | @2
for all ty € [t1,t] and all mo € TL(5), hence in particular for ;. That is,
m1,t = @1 Tr @2 and thus 7,t =3 ¢ also in this case.

— @ =1 Trys and ¢ : (V) is derivable from ¢ : (V) and ¢ : (V). This case is
similar with the previous one.

— @ =p1 U@y or o =¢1 Ry, and s : (V), and ¢; : (3) or ¢ : (V). These
cases are similar to the analogous cases for the dual past operators.

A.2 Proof of Proposition 4

The proof is by structural induction on the form of . We only present the base
case, as the inductive steps are straightforward.

Let ¢ = p € P. Suppose that x; = %9 = 4. The other cases are similar. Let
t € T such that p1,t = tf, (p). That is, thereis t; € [t — (0 +¢€1),t+ (§ —€1)] such
that p € p1(t1). The time constraint on t; is equivalent with [t — (¢t; + €1)| < 6.
From p € p1(t1) it follows that there is ¢ € N such that p € a; and 7; = t1 + €;.
Let ty :=t1 + €1 — e2. We have that 7; = to + €3, thus p € pa(t2). Furthermore,
t—(t1+e€)=t—(t2+e€2), hence ta € [t — (§ + €2),t + (0 — €2)]. It follows that

p2,t ': tf62 (p)

