
FAST: An E�cient Decision Procedure for
Deduction and Static Equivalence
Bruno Conchinha

1
, David A. Basin

2
, and Carlos Caleiro

3

1 Information Security Group,
ETH Zürich, Zürich, Switzerland
bruno.conchinha@inf.ethz.ch

2 Information Security Group,
ETH Zürich, Zürich, Switzerland
basin@inf.ethz.ch

3 SQIG - Instituto de Telecomunicações, Department of Mathematics,
IST, TU Lisbon, Portugal
ccal@math.ist.utl.pt

Abstract
Message deducibility and static equivalence are central problems in symbolic security protocol
analysis. We present Fast, an e�cient decision procedure for these problems under subterm-
convergent equational theories. Fast is a C++ implementation of an improved version of the
algorithm presented in our previous work [10]. This algorithm has a better asymptotic complexity
than other algorithms implemented by existing tools for the same task, and Fast’s optimizations
further improve these complexity results.

We describe here the main ideas of our implementation and compare its performance with
competing tools. The results show that our implementation is significantly faster: for many
examples, Fast terminates in under a second, whereas other tools take several minutes.

Keywords and phrases E�cient algorithms, Equational theories, Deducibility, Static equivalence,
Security protocols

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.11

Category System Description

1 Introduction

Cryptographic protocols are widely used to provide secure network communication. It is
therefore important that such protocols are proven correct. Automated tools for this task
rely on symbolic protocol models, in which cryptographic primitives are modeled as function
symbols and messages exchanged over the network are represented by terms in a term algebra.
Properties of cryptographic primitives are represented as equational theories relating terms
in the term algebra.

Message deducibility and static equivalence are two important problems in the analysis
of security protocols. The deducibility problem consists of deciding whether an attacker can
use a set of messages (for instance, the messages exchanged over a network) to compute a
secret message. The knowledge of an attacker is often expressed in terms of deducibility,
i.e., the set of messages he can deduce, and most automated methods for protocol analysis
rely on this notion [5, 4]. Static equivalence is used to model the notion that an attacker
cannot distinguish between two sequences of messages [3]. It has been used to model several
indistinguishability related security properties, including security against o�-line guessing
attacks [12, 6, 2] and anonymity in e-voting protocols [13].

© B. Conchinha, D. A. Basin and C. Caleiro;

licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications.

Editor: M. Schmidt-Schauß; pp. 11–20

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

12 FAST: An E�cient Decision Procedure for Deduction and Static Equivalence

We present an implementation of the algorithm proposed in [10] for e�ciently deciding
deduction and static equivalence. Although existing tools [7, 9] solve these problems for more
general equational theories, our algorithm has significantly better asymptotic complexity for
the class of subterm-convergent equational theories. This class is general enough to model
many equational theories relevant in practice. Fast implements several optimizations to
the algorithm presented in [10], further improving our asymptotic complexity results. We
have analyzed its performance using as benchmarks di�erent practically relevant examples of
subterm-convergent theories. As expected, the results show that Fast is significantly faster
than other algorithms for the equational theories it handles.

In Section 2 we formally introduce the notions of message deducibility and static equiv-
alence. In Section 3 we describe our implementation and the improvements we made to
the algorithm given in [10]. In Section 4 we present our benchmark tests and compare the
performance of Fast with existing tools. We draw conclusions in Section 5.

2 Background and decision problems

We consider signatures � =
v

nœN �
n

consisting of finitely many function symbols, where �
i

contains the functions symbols of arity i. We also fix countably infinite, disjoint sets Var and
Name of variables and names.

Given a set X, T (�, X) is the set of �-terms over X, i.e., the smallest set such that
X ™ T (�, X) and f(t

1

, . . . , t

n

) œ T (�, X) for all t

1

, . . . , t

n

œ T (�, X) and all f œ �
n

. Given
t œ T (�, X), we define the set sub(t) of subterms of t as usual: if t œ X, then sub(t) = {t}; if
t = f(t

1

, . . . , t

n

) for some f œ �
n

and t

1

, . . . , t

n

œ T (�, X), then sub(t) = {t} fi t
n

i=1

sub(t
i

).
We denote by vars(t) = sub(t) fl Var the set of variables occurring in t. The size |t| of a term
t œ T (�, X) is given by |t| = 1 if t œ X and |t| = 1 +

q
n

i=1

|t
i

| if t = f(t
1

, . . . , t

n

).
We use the standard notion of substitution as a partial function ‡ : Var 9 T (�, X) with

a finite domain. We abuse notation by using the same symbol ‡ for a substitution and its
natural (homomorphic) extension to T (�, X), where dom(‡) ™ X. We write t‡ instead of
‡(t).

A frame is a pair (ñ, ‡), written ‚ñ.‡, where ñ ™ Name is a finite set of names and
‡ : Var 9 T (�, Name) is a substitution with a finite domain. The size |„| of a frame „ is given
by |„| =

q
xœdom(‡)

|x‡|. Given a frame „ = ‚ñ.‡, we define T

„

= T (�, (Name\ ñ)fidom(‡)).
We say that terms in T

„

are „-recipes. A term t can be constructed from „ if there is a
„-recipe t

Õ such that t‡ = t

Õ (syntactically). Frames are used to represent an attacker’s
knowledge: the names in ñ represent randomly generated nonces unknown to the attacker,
and the terms in ‡’s range represent the messages learned by the attacker, for instance, the
messages exchanged over a network.

A rewrite rule is a pair (l, r), written as l æ r, where l, r œ T (�, Var). A rewriting system
R over � is a set of rewrite rules. We always assume that rewrite systems are finite. Given a
rewriting system R, we define the relation æ

R

™ T (�, Name) ◊ T (�, Name) as the smallest
relation such that:

if (l æ r) œ R and ‡ : vars(l) æ T (�, Name) is a substitution, then l‡ æ
R

r‡, and
if t

1

, . . . , t

n

, t

Õ
i

œ T (�, Name), t

i

æ
R

t

Õ
i

, and f œ �
n

, then f(t
1

, . . . , t

i

, . . . , t

n

) æ
R

f(t
1

, . . . , t

Õ
i

, . . . , t

n

).

If the rewriting system æ
R

is convergent, then each term t has a unique normal form
t¿

R

œ T (�, Name). In this case, we define ¥
R

™ T (�, Name) ◊ T (�, Name) as the equational
theory such that t ¥

R

t

Õ if and only if t¿
R

= t

Õ¿
R

. As usual, we write t ¥
R

t

Õ instead of
(t, t

Õ)œ ¥
R

.

B. Conchinha, D. A. Basin and C. Caleiro 13

A rewriting system R is subterm convergent if æ
R

is convergent and, for each (l æ r) œ R,
r œ sub(l). It is weakly subterm convergent if, for each (l æ r) œ R, either r œ sub(l) or
r œ T (�, ÿ) is in normal form.

Deducibility and static equivalence

I Definition 2.1. Given a frame „ = ‚ñ.‡, a term t œ T (�, Name), and a rewriting system
R, we say that t is deducible from „ under R, and write „ „

R

t, if there is a „-recipe t

Õ such
that t

Õ
‡ ¥

R

t.

I Definition 2.2. Given two frames „ = ‚ñ.‡ and „

Õ = ‚ñ

Õ
.‡

Õ and a rewriting system R,
we say that „ and „

Õ are statically equivalent under R, and write „ ¥s

R

„

Õ, if T

„

= T

„

Õ (i.e.,
ñ = ñ

Õ and dom(‡) = dom(‡Õ)) and, for all t, t

Õ œ T

„

, t‡ ¥
R

t

Õ
‡ if and only if t‡

Õ ¥
R

t

Õ
‡

Õ.

The message deducibility problem is concerned with whether an attacker who has learned
the messages represented by the terms in the range of ‡ can use those messages to compute
(deduce) a secret message t without using the (secret) names in ñ. Static equivalence
formalizes that two sequences of messages are indistinguishable from an attacker’s point of
view. This is modeled as the condition that there are no two recipes that yield (equationally)
equal terms under the substitution ‡ but not under ‡

Õ (or vice-versa). This is useful, for
instance, in modeling o�-line guessing attacks [12, 10].

3 Fast algorithm

Fast is a C++ implementation of the algorithm described in [10]. It solves the message
deducibility and static equivalence problems for weakly subterm-convergent rewriting systems.
Such rewriting systems are su�ciently expressive to represent a standard Dolev-Yao equational
theory with one-way functions, pairing, projections and symmetric and asymmetric encryption
and decryption. They can also model idempotent functions and signature schemes, among
others.

Other existing tools for solving these two decision problem are Yapa [7], Kiss [9], and
ProVerif [8]. However, ProVerif is designed for solving the harder problem of protocol security
under active adversaries. Therefore, it is not surprising that it performs significantly slower
for these two problems. Moreover, ProVerif is not guaranteed to terminate even under
subterm-convergent equational theories, and Yapa claims a performance between one and
two orders of magnitude faster than ProVerif [7]. We thus compare our algorithm with Yapa
and Kiss.

Compared to Yapa and Kiss, Fast has a better asymptotic complexity, but a narrower
application scope. For instance, Yapa and Kiss can handle rewriting systems representing
blind signatures and homomorphic encryption. Kiss can also handle trapdoor committments.
Fast cannot handle these rewriting systems. We believe, however, that many of the techniques
and results that allow Fast to achieve a better asymptotic complexity do not depend on the
subterm-convergent hypothesis (cf. Section 5).

3.1 Procedures and complexity
Data structures

Fast represents terms as DAGs (Directed Acyclic Graphs). Each term is represented by a
C++ object which we call a term vertex. Term vertices contain as a class member a C++
object representing a recipe, which we will call a recipe vertex. Furthermore, each recipe

RTA’11

14 FAST: An E�cient Decision Procedure for Deduction and Static Equivalence

vertex contains as a class member an array of term vertices. These term vertices represent
the normal forms of the terms corresponding to the recipe in each of the input frames. These
normal forms are computed whenever a recipe vertex is created. Whenever a recipe is added
to a vertex v, all the parent vertices of v are checked; if all children of a parent vertex pv

have recipes, then a new recipe is computed and added to pv.

Saturation procedure

Similar to Yapa and Kiss, Fast relies on a frame saturation procedure. However, Fast’s
saturation procedure generates less terms and is therefore more e�cient than these other
procedures. Namely, Fast only adds to the saturated frame those terms that are instances
of right-hand sides of rules (rather than all deducible subterms). Furthermore, Fast only
instantiates a rule if there is some subterm of the left-hand side that is mapped to a term
already in the frame and each variable is mapped to either a subterm of a term in the original
frame or a fresh nonce. A more detailed description of the saturation procedure, as well as a
comparison with the procedures used in other tools, is given in [11].

Given a frame „ = ‚ñ.‡, Fast’s saturation procedure computes two sets �
s

and �
l

of
term vertices. �

s

represents a set of subterms in the range of ‡ that are deducible from
„. �

l

represents the set of instantiations l‡

l

of left-hand sides l of rewrite rules such that
‡

l

: vars(l) æ sub(ran(‡)) fi �, where � is a finite set of fresh nonces computed from the
rewrite system, and there is some s œ sub(l) such that s‡

l

œ �
s

.
�

s

is initialized as ran(‡). Recipes are added to each vertex representing a term in ran(‡)
and to each leaf vertex. The program then tries to create instances l‡

l

of left-hand sides
of rules which verify the conditions above. To do this, for each t œ �

s

, each rewrite rule
l æ r, and each s œ sub(l), Fast checks whether t and s can be unified, and then attempts
to extend the substitution unifying these terms to all the variables in l.

Whenever such an instance is found, the term vertices needed to represent that instance
are created, and the term vertex representing l‡

l

is added to �
l

. When a recipe ’ is added
to a term vertex in �

l

representing one such instance l‡

l

, if r‡

l

does not have a recipe yet,
then the recipe ’ is added to r‡

l

, and r‡

l

is added to �
s

. r‡

l

can then be used to find more
instances of left-hand sides of rules.

Deducibility and static equivalence

After obtaining the saturated frame „

s

, deciding whether a term is deducible from „ amounts
to deciding whether it can be constructed from the terms represented by term vertices in �

s

.
From �

s

and �
l

one also obtains a finite set Eq
„

of equations between „-recipes satisfied by
„ and such that, if another frame „

Õ with T

„

= T

„

Õ satisfies all equations in Eq
„

, then „

Õ

satisfies all equations satisfied by „. These sets of equations are the same as those tested
by the algorithm described in [10]. Therefore, given frames „ and „

Õ such that T

„

= T

„

Õ ,
one can decide whether „ ¥s

R

„

Õ by building the corresponding saturated frames, obtaining
the sets of equations Eq

„

and Eq
„

Õ described above, and then testing whether „ satisfies all
equations in Eq

„

Õ and vice-versa.

Improvements over [10]

Our implementation improves the algorithm described in [10] in several ways. The most
relevant improvement is that Fast only considers instances l‡

l

of left-hand sides of rules
if there is some s œ sub(l) such that s‡

l

is in the range of ‡

s

. This makes the saturation
procedure faster and also reduces the number of equations that the algorithm must check

B. Conchinha, D. A. Basin and C. Caleiro 15

to decide static equivalence. Another important improvement is that recipes are computed
at most once for each vertex. Furthermore, whenever a new recipe t œ T

„

is added, the
implementation creates a recipe object containing pointers to the vertices (t‡)¿ and (t‡Õ)¿.
The proof of correctness of the algorithm presented in [10] shows that one must only consider
instances l‡

l

of left-hand sides of rules if r‡

l

is in normal form; therefore, this only requires
matching the term resulting from the recipe with each left-hand side of a rule, discarding it
if the term obtained after one step of rewriting is not in normal form. This can be done in
constant time.

3.2 Asymptotic complexity
The above improvements reduce the asymptotic complexity of the algorithm for some
equational theories. For instance, consider the rewriting system

DY
asym

=
;

fi

1

(Èx, yÍ) æ x, fi

2

(Èx, yÍ) æ y,

Ó
{x}

y

Ô≠1

y

æ x,

Ó
{x}

ypub

Ô≠1

ypriv
æ x

<

used in [10] for comparing the asymptotic complexity of the algorithm introduced there
with Yapa and Kiss. The asymptotic complexity of Kiss is estimated in [10] to be O(|„|7)
under DY

asym

. For this rewrite system, Yapa has exponential complexity in the worst case
scenario, since it does not implement DAG representation of terms. Even if DAGs were
implemented, the asymptotic complexity of Yapa’s saturation procedure is estimated (again
in [10]) to be O(|„|7). The asymptotic complexity of the algorithm presented in [10] for this
rewrite system is estimated to be O((|„| + |„Õ|)3 log2(|„| + |„Õ|) for static equivalence. Given
that each recipe is associated with the normal forms of the terms represented by the recipe
in each frame (thus eliminating the overhead of computing normal forms), Fast’s complexity
for static equivalence under DY

asym

is only O((|t| + |„|)2 log2(|t| + |„|)). A detailed analysis
of Fast’s asymptotic complexity is given in [11].

4 Performance analysis

We have considered several families of interesting and practically relevant examples to
compare the performance of our algorithm with Yapa and Kiss. The results show great
disparities in the performance of the three algorithms. Neither Kiss nor Yapa show a
clear advantage over the other: depending on the example, either algorithm may perform
significantly faster than the other. As expected from the complexity results, Fast generally
performs much better than either of these algorithms, particularly for static equivalence.
Even for artificial equational theories designed to produce worst case performance for our
algorithm, Fast is still more e�cient for static equivalence, sometimes significantly so. For
message deducibility under such equational theories, Fast performs better in most examples;
however, in a few, it appears to be slower by a small constant.

All our tests were performed on a computer with an Intel Core 2 Duo processor running
at 2.53GHz and with 4Gb memory. In all our static equivalence tests, we consider two equal
frames. Similarly, in all our deduction tests, the input term is a secret that does not occur in
the range of the substitution of the input frame. Therefore, the result is positive in all static
equivalence tests and negative in all deducibility tests. This does not a�ect the algorithm’s
performance significantly, as both frames still have to be saturated in all implementations —
that is, deducible subterms must still be added to the saturation, and the sets of equations
which must be tested to check for static equivalence must still be generated (cf. Section 3).
Static equivalence takes a slightly longer time in this case because all equations must be

RTA’11

16 FAST: An E�cient Decision Procedure for Deduction and Static Equivalence

checked rather than stopping as soon as a counter-example is found. However, the di�erence
is minor. We present here an illustrative sample of the tests performed. For a more complete
report on our results, see [1].

4.1 Chained keys
This family of tests uses the signature �DY , with �DY

1

= {fi

1

, fi

2

} and �DY = {{·}· , {·}≠1

· ,

È·, ·Í}, and a rewriting system representing a standard Dolev-Yao intruder without asymmetric
encryption, specified by the set of rewrite rules

DY =
;

fi

1

(Èx, yÍ) æ x, fi

2

(Èx, yÍ) æ y,

Ó
{x}

y

Ô≠1

y

æ x

<
.

For n œ N, we define the frame „

ck

n

= ‚ñ

ck

n

.‡

ck

n

, where ñ

ck

n

= {k, k

0

, . . . , k

n

} and ‡ =)
x

1

‘æ {k

0

}
k1

, . . . , x

n

‘æ {k

n≠1

}
kn

, x

n+1

‘æ k

n

*
. For each parameter n, the deduction prob-

lem is to decide whether „

ck

n

„DY k, and the static equivalence problem is to decide whether
„

ck

n

¥s

DY „

ck

n

.
Fast has a much better performance than both Yapa and Kiss for these examples. Yapa

also performs much better than Kiss. Tables 1 and 2 illustrate these relationships.

Table 1 Performance on chained keys for deduction (time in ms)

Parameter 50 100 200 500 1000 2000 5000

Fast 11 20 40 143 224 474 1526

Kiss 259 1730 12655 288606 > 300000 > 300000 > 300000

Yapa 31 108 415 4624 11297 62457 > 300000

Table 2 Performance on chained keys for static equivalence (time in ms)

Parameter 50 100 200 500 750 1500 2500

Fast 20 41 88 247 424 1020 1546

Kiss 1341 12185 127828 > 300000 > 300000 > 300000 > 300000

Yapa 143 744 5516 18467 44451 197648 > 300000

4.2 Composed keys
This family of examples uses the same signature �DY and the same rewriting system DY
used in Section 4.1.

For n, s, i œ N, define t

i

n,s

recursively by

t

0

n,s

= {Èk
2s≠1

, k

2s≠2

Í}Èk2s,ks2+1Í ,

t

i

n,s

=
)Èti≠1

n,s

Èk
2s+1+2i(n≠1)

, k

2s+2i(n≠1)

Í, ,}Èk2s+2+2i(n≠1),k2s+3+2i(n≠1)Í.

For k > 0, the frame „

c

k

= ‚ñ

c

n

.‡

c

n

is such that ñ

c

n

= {k, k

0

, . . . , k

2n

2
+1

} and ‡

c

n

=)
x

1

‘æ t

n≠1

n,1

, . . . , x

n

‘æ t

n≠1

n,n

, x

n+1

‘æ k

2n

2
, x

n+2

‘æ k

2n

2
+1

*
. The deduction problem corre-

sponding to parameter n considered in our tests is to decide whether „

c

n

„DY k. The static
equivalence problem corresponding to parameter n is to decide whether „

c

n

¥s

DY „

c

n

.
This family of examples is particularly challenging because the decryption keys are pairs

of secrets. At each point of the algorithm’s execution, decrypting the right message yields

B. Conchinha, D. A. Basin and C. Caleiro 17

a pair of previously unknown secrets. This pair may then be used to compose the next
decryption key by exchanging the order of the terms in the pair. As illustrated in Tables 3
and 4, the di�erence in Fast’s performance is particularly marked in this example. Kiss
also performs much better than Yapa.

Table 3 Performance on composed for deduction (time in ms)

Parameter 3 4 5 7 9 10 20

Fast 7 11 17 34 61 126 945

Kiss 138 867 3760 46369 245207 > 300000 > 300000

Yapa 158 34118 > 300000 > 300000 > 300000 > 300000 > 300000

Table 4 Performance on composed for static equivalence (time in ms)

Parameter 3 4 5 6 8 10 20

Fast 12 21 28 48 92 148 1635

Kiss 469 2625 10428 252000 > 300000 > 300000 > 300000

Yapa 936 157358 > 300000 > 300000 > 300000 > 300000 > 300000

4.3 Denning-Sacco shared key protocol
The Denning-Sacco symmetric key protocol [14] is used to establish session keys in a network
with a single server and multiple agents. Each agent shares a (secret) symmetric key with
the server, but there are no shared keys between agents. In Alice&Bob notation, the protocol
is as follows.

1. A æ S : A, B
2. S æ A : {A, KA,B, T, {KA,B, A, T }KS,B }KS,A
3. A æ B : {KA,B, A, T }KS,B

Here, A and B are two participants, and S is the server. A requests from the server a session
key to communicate with B. The server generates a new session key, KA,B, and sends it
to A, encrypted with the (symmetric) key shared between A and S. This message also
contains a timestamp T , used to determine the validity of the new session key, and the ticket
{KA,B, A, T}

KS,B . A then forwards this ticket to B, who can decrypt it using the key KS,B
shared between B and S, to obtain the new session key KA,B, the name A of the intended
communication partner, and the time T of the request.

This example uses the result of executing multiple sessions of the Denning-Sacco protocol.
For the parameter n we assume a network with 3n participants, each of which initiates one
session with each other participant. We assume that one third of the shared keys between
the server and the agents are compromised, i.e., available to the attacker.

We will once again use the signature �DY and the rewriting system DY from Section 4.1.
For parameter n, we thus use the frame „

ds

n

= ñ

ds

n

.‡

ds

n

, with ‡

ds

n

= ‡

1

n

fi ‡

2

n

fi ‡

3

n

fi ‡

4

n

, where
‡

1

n

=
)

x

1

i

‘æ KS,i

| i œ {1, . . . , n}*
;

‡

2

n

=
)

x

2

i,j

‘æ ÈA
i

, A
j

Í | i, j œ {1, . . . , 3n} , i ”= j

*
;

‡

3

n

=
;

x

3

i,j

‘æ
Ó

ÈA
j

, ÈK
i,j

, ÈT
i,j

, {ÈK
i,j

, ÈA
i

, T

i,j

ÍÍ}
KS,j

ÍÍÍ
Ô

KS,i

| i, j œ {1, . . . , 3n} , i ”= j

<
;

‡

4

n

=
Ó

x

4

i,j

‘æ {ÈK
i,j

, ÈA
i

, T

i,j

ÍÍ}
KS,j

| i, j œ {1, . . . , 3n} , i ”= j

Ô
,

RTA’11

18 FAST: An E�cient Decision Procedure for Deduction and Static Equivalence

and ñ

ds

n

= {K

i,j

, T

i,j

, KS,i

| i, j œ {1, . . . , 3n}}.
Here, ‡

1

n

represents the keys compromised by the attacker and ‡

2

n

, ‡

3

n

, and ‡

4

n

represent
the messages exchanged as part of the execution of the first, second, and third steps of the
protocol, respectively. The deduction problem is to decide whether „

ds

n

„DY KS,3n

and the
static equivalence problem is to decide whether „

ds

n

¥s

DY „

ds

n

.
Yapa performs noticeably better than Kiss in this example. Fast, as before, is signifi-

cantly faster than both. The results are shown in Tables 5 and 6.

Table 5 Performance on Denning-Sacco for deduction (time in ms)

Parameter 5 7 9 11 12 14 24

Fast 337 768 1336 2588 2239 5083 20073

Kiss 6637 30195 91743 232093 > 300000 > 300000 > 300000

Yapa 2409 10320 30732 68845 74298 172249 > 300000

Table 6 Performance on Denning-Sacco for static equivalence (time in ms)

Parameter 3 5 7 9 11 13 20

Fast 181 585 1281 2300 6598 7507 24614

Kiss 1219 8543 34726 158717 > 300000 > 300000 > 300000

Yapa 446 2836 12300 52506 134391 269781 > 300000

4.4 Fast worst case

In this family of examples, for the parameter n, we use the signature �wc, where �wc

1

= {f}
and �wc

n

= {h}. The rewriting system is given by the set wc
n

= {h(f(x
1

), . . . , f(x
n

)) æ x

1

}.
We define the frame „

wc

n

= ñ

wc

n

.‡

wc

n

, where ñ

wc

n

= {k, k

1

, . . . , k

n

} and ‡

wc

n

= {x

1

‘æ f(k
1

),
. . . , x

n

‘æ f(k
n

)}. The deduction problem is to decide whether „

wc

n

„
wcn k and the static

equivalence problem is to decide whether „

wc

n

¥s

wcn
„

wc

n

.
This example is challenging because, to saturate this frame, Fast must instantiate each

element of the tuple with each of the secret names. Therefore, the asymptotic complexity of
Fast for this family is O(nn). Note that this does not contradict the fact that, for a given
rewriting system, Fast has polynomial-time complexity; the exponential complexity results
from the fact that the size of the rewriting system itself increases with the parameter n.

Table 7 Performance on worst case for deduction (time in ms)

Parameter 3 4 5 6

Fast 9 72 1192 32487

Kiss 10 47 866 21446

Yapa 11 161 6607 > 300000

None of the existing algorithms perform well on this example: Fast’s performance is
comparable to that of Kiss and Yapa performs significantly worse. This is illustrated in
Tables 7 and 8.

B. Conchinha, D. A. Basin and C. Caleiro 19

Table 8 Performance on worst case for static equivalence (time in ms)

Parameter 3 4 5 6

Fast 15 142 2199 56312

Kiss 16 146 2125 69533

Yapa 16 297 8862 > 300000

Nonlinear terms

It is interesting to note that Fast’s complexity depends chiefly on the number of di�erent vari-
ables in the rewriting system. Therefore, it’s performance is not significantly a�ected if the left-
hand sides of rewrite rules are non-linear. This is not the case for the other algorithms, whose
performance degrades when the complexity of the terms in the rewriting system increases,
even when the number of variables remains the same. Tables 9 and 10 illustrate this point.
Here, the rewriting system considered is wc2

n

= {h(f(x
1

), f(x
1

), . . . , f(x
n

), f(x
n

)) æ x

1

}.
The frames and problems considered here are the same as above.

Table 9 Performance on worst case 2 for deduction (time in ms)

Parameter 2 3 4 5 6

Fast 7 9 148 1567 43282

Kiss 9 99 4381 183236 > 300000

Yapa 45 > 300000 > 300000 > 300000 > 300000

Table 10 Performance on worst case 2 for static equivalence (time in ms)

Parameter 2 3 4 5 6

Fast 4 17 396 6197 47937

Kiss 10 292 16135 > 300000 > 300000

Yapa 56 > 300000 > 300000 > 300000 > 300000

5 Discussion and future work

Fast is an e�cient algorithm for deciding deduction and static equivalence under weakly
subterm-convergent rewriting systems. The implementation and our benchmarks are available
for download at [1]. Fast’s scope is narrower than that of other existing tools for these
problems, but is broad enough to represent many practically relevant theories. As expected
from the results in [10], Fast is significantly faster than both Yapa and Kiss in almost
all our tests. Even for the articial examples designed to degrade its performance, Fast
still compares favorably to other algorithms: it is either faster, or slower by only a small
constant. This constitutes a significant advantage since the problematic cases for Yapa and
Kiss degrade these algorithms’ performances dramatically.

We believe that many of the ideas and results that allow Fast to achieve better asymptotic
results may still be valid with weaker hypotheses on the rewriting system. Therefore, extending
the algorithm to handle more general equational theories without significantly degrading its
performance is an important research goal.

RTA’11

20 FAST: An E�cient Decision Procedure for Deduction and Static Equivalence

Acknowledgements This work was partly supported by FCT and EU FEDER, namely
via the project PTDC/EIA-CCO/113033/2009 ComFormCrypt of SQIG-IT and the project
UTAustin/MAT/0057/2008 AMDSC of IST. The first author acknowledges the support
of FCT via the PhD grant SFRH/BD/44204/2008 and the National Competence Center
in Research on Mobile Information and Communication Systems (NCCR-MICS), a center
supported by the Swiss National Science Foundation. We would also like to thank Mohammad
Torabi Dashti and Benedikt Schmidt for their helpful comments on this paper.

References
1 http://www.infsec.ethz.ch/people/brunoco, 2011.
2 Martin Abadi, Mathieu Baudet, and Bogdan Warinschi. Guessing attacks and the com-

putational soundness of static equivalence. Journal of Computer Security, pages 909–968,
December 2010.

3 Martín Abadi and Cédric Fournet. Mobile values, new names, and secure communication.
SIGPLAN Not., 36:104–115, January 2001.

4 Alessandro Armando, David Basin, Yohan Boichut, Yannick Chevalier, Luca Compagna,
Jorge Cuellar, Paul Hankes Drielsma, Pierre-Cyrille Heám, Jacopo Mantovani, Sebastian
Mödersheim, David von Oheimb, Michaël Rusinowitch, Judson Santiago, Mathieu Turuani,
Luca Viganò, and Laurent Vigneron. The AVISPA Tool for the Automated Validation of
Internet Security Protocols and Applications. In Kousha Etessami and Sriram K. Rajamani,
editors, Proceedings of the 17th International Conference on Computer Aided Verification
(CAV’05), volume 3576 of LNCS. Springer, 2005.

5 Charu Arora and Mathieu Turuani. Validating Integrity for the Ephemerizer’s Protocol
with CL-Atse. In Formal to Practical Security: Papers Issued from the 2005-2008 French-
Japanese Collaboration, volume 5458 of LNCS, pages 21–32. Springer, 2009.

6 Mathieu Baudet. Deciding security of protocols against o�-line guessing attacks. In Pro-
ceedings of the 12th ACM conference on Computer and communications security, CCS ’05,
pages 16–25, New York, NY, USA, 2005. ACM.

7 Mathieu Baudet, Véronique Cortier, and Stéphanie Delaune. YAPA: A generic tool for
computing intruder knowledge. In Ralf Treinen, editor, RTA, volume 5595 of Lecture Notes
in Computer Science, pages 148–163. Springer, 2009.

8 Bruno Blanchet. An e�cient cryptographic protocol verifier based on prolog rules. In
Proceedings of the 14th IEEE workshop on Computer Security Foundations, CSFW ’01,
pages 82–96, Washington, DC, USA, 2001. IEEE Computer Society.

9 Stefan Ciobâca, Stéphanie Delaune, and Steve Kremer. Computing knowledge in security
protocols under convergent equational theories. In CADE, pages 355–370, 2009.

10 Bruno Conchinha, David Basin, and Carlos Caleiro. E�cient algorithms for deciding de-
duction and static equivalence. In Proc. 7th Int. Workshop on Formal Aspects of Security
and Trust (FAST’10), 2010.

11 Bruno Conchinha, David Basin, and Carlos Caleiro. E�cient algorithms for deciding deduc-
tion and static equivalence. volume 680 of ETH Technical Reports. ETH Zürich, Information
Security Group D-INFK, September 2010.

12 Ricardo Corin, Jeroen Doumen, and Sandro Etalle. Analysing password protocol secu-
rity against o�-line dictionary attacks. Electron. Notes Theor. Comput. Sci., 121:47–63,
February 2005.

13 Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type properties of
electronic voting protocols. J. Comput. Secur., 17:435–487, December 2009.

14 Dorothy E. Denning and Giovanni Maria Sacco. Timestamps in key distribution protocols.
Commun. ACM, 24:533–536, August 1981.

