1

Reflective Metalogical Frameworks*

David Basin
Department of Computer Science,
ETH Zurich

Manuel Clavel
Facultad de Informdtica,
Universidad Complutense de Madrid, Spain

José Meseguer
Computer Science Department,
University of Illinois at Urbana-Champaign, USA

April 8, 2003

Abstract

A metalogical framework is a logic with an associated methodology
that is used to represent other logics and to reason about their metalogi-
cal properties. We propose that logical frameworks can be good metalog-
ical frameworks when their theories always have initial models and they
support reflective and parameterized reasoning.

We develop this thesis both abstractly and concretely. Abstractly,
we formalize our proposal as a set of requirements and explain how any
logic satisfying these requirements can be used for metalogical reason-
ing. Concretely, we present membership equational logic as a particular
metalogic that satisfies these requirements. Using membership equational
logic, and its realization in the Maude system, we show how reflection can
be used for different, non-trivial kinds of formal metatheoretic reasoning.
In particular, one can prove metatheorems that relate theories or establish
properties of parameterized classes of theories.

Introduction

Metalogical Reasoning

A logical framework is a logic with an associated methodology that is employed
for representing and using other logics, theories, and, more generally, formal

*Supported by DARPA through Rome Laboratories Contract F30602-C-0312, by DARPA
and NASA through Contract NAS2-98073, by Office of Naval Research Contract N00014-99-
C-0198, by National Science Foundation Grant CCR-9900334, and by Spanish CICYT Project

TIC2002-01167.

systems. A number of logical frameworks have been proposed and in order to
compare them and analyze their effectiveness, it is helpful to distinguish be-
tween their intended applications. In particular, we can distinguish between
logical frameworks, where the emphasis is on reasoning in a logic, in the sense
of simulating its derivations in the framework logic, and metalogical frameworks
[6, 9], where the emphasis is on reasoning about logics and even about relation-
ships between logics. For example, in a logical framework one might establish
the provability of some formula ¢ or check that a putative proof of ¢ is an
actual proof, whereas in a metalogical framework one might show that some
logic, or family of related logics, has some proof-theoretic property, such as
cut-elimination. Metalogical frameworks are more powerful, as they include the
ability to reason about a logic’s entailment relation (or other proof-theoretic or
semantic properties), as opposed to merely being adequate to simulate entail-
ment.

Induction plays a central role in distinguishing logical frameworks from their
metalogical counterparts. In a logical framework, representations of proof rules
are used to construct derivations of (object logic) entailments. This approach
is taken in logical frameworks like Isabelle [60] and the Edinburgh LF [37].
There, one may formalize logics and theories where induction is present within
particular theories (e.g., Peano Arithmetic), but induction is not present over
the theories. That is, the framework does not support induction over the terms
and proofs of a theory. In contrast, in a metalogical framework, it is essential
to have induction over theories. Standard proof-theoretic arguments usually
require induction over the formulae or derivations of the object theory. Inductive
reasoning is also important in computer science applications, e.g., reasoning
about data types, recursive programs, operational semantics, and the like.

The importance of induction for metareasoning is well understood. Less
explored, but also important, is the role of parameterization. Many kinds of
metatheorems are statements not about a single logic, but about multiple logics
(or theories), i.e., families of related formal systems. Perhaps the simplest ex-
ample of this is the deduction theorem for minimal logic (of implication). This
metatheorem states that for all formulae A and B of minimal logic,

if '_M[A]B then Fpf A — B,

where ¢ denotes provability in minimal logic and 4] denotes provability
in the logic consisting of minimal logic extended by the additional axiom A.
Since A is an arbitrary formula, this (standard) statement of the deduction
theorem is a statement about the relationship between a family of pairs of logics.
Semantically, it constitutes a statement about a family of pairs of models, the
initial models corresponding to the proofs in the two respective logics.

A second example, which suggests the wide scope of these concepts, comes
from a rather different domain: functional programming. There researchers have
developed language mechanisms to formalize polytypic functions [43]. These
are functions like map and fold that operate recursively over inductively defined
data types. Polytypic functions are defined to behave uniformly over members

of different data types. For example, map operates in a similar way over lists,
trees, etc. Whereas one would traditionally define a different map function
over each of these types, in the polytypic setting one instead writes a single
function that operates over elements of all of these types. The recent work of
[17] on developing a methodology for defining and reasoning about polytypic
functions can be seen as an instance of the general methodology proposed in
this paper: establishing general facts about polytypic functions amounts to
proving inductive properties about families of theories, namely that some desired
property holds of the initial algebra of each extension of an inductive data type
with the corresponding polytypic function.

Reflective Metalogical Frameworks

The question we address in this paper is how to design a metalogic tailored
to support both inductive and parameterized reasoning. Our answer is moti-
vated by the following observation. A logic’s syntax and proofs are inductively
built from syntax and proof constructors. A logical framework and a meta-
logical framework can share these as a common basis. However, whereas for
a logical framework the application of these constructors suffices to simulate
derivations of the object logic, for a metalogical framework the representation
must additionally preserve the inductive nature of the syntax and proof con-
structors. Model-theoretically, this means that a formalization in the metalogic
should have an initial model, which corresponds to the syntax and proofs of the
formalized object logic.

Our proposal is that for some logical frameworks—namely, those that are
reflective and whose theories have initial models—we can take the step from a
logical framework to a metalogical framework by reflecting at the metalevel the
induction principles for the formalized logics. Moreover, when the metalogic
has an associated notion of a parameterized theory, which can also be metarep-
resented and reasoned about, then we can use reflection and induction to prove
metatheorems about families of theories. We sum this up with the slogan “log-
ical frameworks with reflection, initiality, and parameterization are metalogical
frameworks.” !

We proceed in several steps. First, we formalize our proposal by giving
three abstract requirements, which are sufficient for such a metalogical frame-
work. The three requirements—initiality, reflection, and reflected parameterized
induction—leave open the possibility of different metalogics, including first-
order and higher-order ones. Second, we give a nontrivial instance of these re-
quirements by presenting a concrete realization of these ideas using membership
equational logic. Although membership equational logic is not the only candi-
date for a reflective metalogical framework, we believe it is a good one. Mem-
bership equational logic is balanced on a point where it is expressive enough

1This slogan should not be construed as a definition of a metalogical framework. Logics
not meeting some of our requirements may still have useful metalogical framework appli-
cations. However, we argue in this work that the combination of reflection, initiality, and
parameterization makes a logic ideally suited as a metalogical framework.

to naturally formalize different entailment systems, but it is weak enough so
that its theories always have initial models. Moreover, membership equational
logic has a formal metatheory that can be used for formalizing parameteriza-
tion and for reflective inductive reasoning. As we will see, together this means
that membership equational logic provides an instance of our requirements. Fi-
nally, we show how these ideas are concretely applied on examples, including
the deduction theorem.

Overall, we see our contributions as both theoretical and practical. Theo-
retically, our work contributes to answering the question “What is a metalogical
framework?” by proposing reflective logical frameworks, as defined by our re-
quirements, as a possible answer. Moreover, our work illuminates the interrela-
tionship between logical and metalogical frameworks, and the roles of induction,
reflection, and parameterization as key ingredients for turning a logical frame-
work into a metalogical one. Practically, we provide evidence that membership
equational logic, combined with reflection, is an effective metalogical framework
that can be used for nontrivial kinds of metatheoretic reasoning.

Organization

Our paper is organized in three parts. In the first part, Sections 2-3, we for-
malize our abstract requirements for a reflective metalogical framework. In the
second part, Sections 4-10, we present membership equational logic as a con-
crete instance of our requirements and present a case study. Finally, in Sections
11-12, we discuss tradeoffs and limitations, survey related work, and draw con-
clusions. We also include an appendix, where we relegate some of the technical
details.

2 Logics and Theories

As we aim to give general requirements for reflective metalogical frameworks,
we begin with background material that provides a general account of logics,
theories, reflection, and parameterization. Most of the material is standard
[33, 34, 54] and only summarized here, but the material in Sections 2.5 and 2.6
develops some further model-theoretic requirements on quantification and sat-
isfaction needed for our purposes.

2.1 Entailment Systems

We shall assume that logical syntax is given by a signature Y that provides a
grammar for building sentences. For first-order logic, a typical signature consists
of a collection of function and predicate symbols, each with a prescribed number
of arguments, which are used to build sentences by means of the usual logical
connectives. For our purposes, it is enough to assume that for each logic there
is a category Sign of possible signatures, and a functor sen assigning to each
signature X the set sen(X) of its sentences.

For a given signature ¥ in Sign, entailment (also called provability) of a
sentence ¢ € sen(X) from a set of axioms I' C sen(X) is a relation I' by ¢
that holds if and only if we can prove ¢ from the axioms I' using the rules of
the logic. We define this relation relative to a signature and independent of the
details of a particular logic or deductive system. In what follows, |C| denotes
the collection of objects of a category C.

Definition 1 [54] An entailment system is a triple £ = (Sign, sen,F) such that
e Sign is a category whose objects are called signatures,

e sen : Sign — Set is a functor associating to each signature ¥ a corre-
sponding set of Y-sentences, and

e | is a function associating to each ¥ € |Sign| a binary relation Fx C
P(sen(X)) x sen(X) called X-entailment such that the following properties
are satisfied:

1. reflexivity: for any ¢ € sen(X), {p} Fs ¢,
2. monotonicity: if U'bx ¢ and TV D T, then I bx ¢,

3. transitivity: if T bs @;, for alli € I, and TU{y; |i € I} Fx 1, then
r |_E ¢;

4. F-translation: if T bx @, then for any H : ¥ — Y/ in Sign,
sen(H)(T') bsv sen(H)(p), where sen(H)(T') = {sen(H)(p) | ¢ €
T'}, as is standard.

Except for the explicit treatment of syntax translations, the axioms are
essentially Scott’s axioms for a consequence relation [68].

2.2 Theories and Parameterization

Definition 2 [54] Given an entailment system &, its category Th of theories?
has as objects pairs T = (3,T), with ¥ a signature and T' C sen(X). A theory
morphism (also called a theory interpretation) H : (X,T) — (X, TV) is a
signature morphism H : ¥ — ¥ such that if ¢ € T, then I s sen(H)(y).

By composing with the forgetful functor sign : Th — Sign, with sign(X,T') =
Y, we can extend the functor sen : Sign — Set to a functor sen : Th — Set,
i.e., we define sen(T) £ sen(sign(T)).

To make specifications of theories more modular, it is useful to parameterize
theories. For example, the theory Vect of vector spaces is parameterized by
the theory Field for the field of coefficients. This general notion can then be
specialized by instantiating the parameter Field with a more concrete instance
satisfying the requirements of Field, for example with the theory Field, of fields
of characteristic p, or OrdField, of ordered fields.

2Theories in this axiomatization are sometimes called theory presentations in the literature.

As pointed out by Goguen and Burstall [34], a parameterized theory can be
defined for logics in general as a pair of theories: the parameter P and the body
T, which are related by a theory map J : P — T, which is typically a theory
inclusion. To instantiate such a parameterized theory, the key data needed is
a theory morphism H : P — @ from the parameter theory to another theory
Q (for example, from Field to Field, or to OrdField in the case of Vect param-
eterized over Field). The instantiation by H is then defined as the pushout
commutative diagram

in the category Th of theories, when such a pushout exists. Being a pushout
means that for any other pair of theory maps H' : T — S, J' : Q — S
to another theory S such that H o J = J' o H, there exists a unique theory
morphism F : T[H] — S such that F o H' = H' and F o J? = J'. In what
follows we shall denote a parameterized theory J : P — T by the notation
T[P], and, as suggested in the above diagram, for each H : P — Q, T[H| will
then denote the instance of T' defined by H.

2.3 Institutions and Logics

The axiomatization of model theory we employ is that of Goguen and Burstall
on institutions [33, 34].

Definition 3 [33] An institution is a 4-tuple T = (Sign, sen, Mod, =) where
e Sign is a category whose objects are called signatures,

e sen : Sign — Set is a functor associating to each signature ¥ a set of
Y.-sentences,

e Mod : Sign — Cat? is a functor that gives for each signature ¥ a
category whose objects are called ¥-models, and

e = is a function associating to each ¥ € |Sign| a binary relation =5 C
[Mod(X)| x sen(X) called S-satisfaction satisfying the following satisfac-
tion condition for each H : ¥ — X/ in Sign: for all M’ € |Mod(Y')|
and all ¢ € sen(X),

M’y sen(H)(p) < Mod(H)(M') ks o.

The satisfaction condition just requires that, for any syntax translation be-
tween two signatures, a model of the second signature satisfies a translated
sentence if and only if the translation of this model satisfies the original sen-
tence. Note that Mod is a contravariant functor, that is, the translation of
models goes “backwards”.

Given a theory T' = (X,T"), we define the category Mod(T') as the full
subcategory of Mod(X) determined by those models M € [Mod(X)| that satisfy
all the sentences in T, i.e., M =5 ¢ for each ¢ € T'. We say that the theory T'
has an initial model if there is a model, denoted Z(T'), with Z(T) € |[Mod(T)|,
such that for each M € |[Mod(T)| there is a unique morphism Z(7') — M in
Mod(T), that is, Z(7T') is an initial object in the category Mod(T).

Defining a logic is now simple.

Definition 4 [54] A logic is a 5-tuple £ = (Sign, sen, Mod, -, |=) such that
e (Sign, sen,t) is an entailment system,
e (Sign, sen, Mod, |) is an institution,

and the following soundness condition is satisfied: for all ¥ € |Sign|, T' C
sen(X), and ¢ € sen(X),

FFE@ = F'ZE%

where, by definition, the relation T’ s ¢ holds if and only if M =5 ¢ holds for
any model M that satisfies all the sentences in I.
The logic is called complete if the above implication is in fact an equivalence.

The following definition of sublogic is a special case of the more general
definition of sublogic in [54].

Definition 5 A logic £ = (Sign, sen, Mod, -, |E) is a sublogic of a logic L' =
(Sign’, sen’, Mod', ', ') iff the following conditions hold:

e Sign C Sign’, that is, Sign is a subcategory of Sign’, and Mod is the
restriction of Mod' to the subcategory Sign, i.e., Mod'|sijgn = Mod.

e For each ¥ € |Sign| there is an inclusion sen(X) C sen’(X) giving rise to
a natural transformation a : sen = sen’|5ign.

e For each ¥ € |Sign|, I' C sen(X), and ¢ € sen(X) we have
Ik p =Tk p.
e For each ¥ € |Sign|, M € Mod(X), and ¢ € sen(X) we have
MEs ¢ = MES .

We use the notation £ C L' to denote that L is a sublogic of L', and call L' a
superlogic of L.

2.4 Reflection

For our abstract requirements, we will require the existence of certain theories
that can represent, and formalize statements about, other theories. In particu-
lar:

Definition 6 [20, 13] Given an entailment system & and a nonempty set of
theories C in it, a theory U is C-universal if there is an injective function, called
a representation function,

(L) U ({T} x sen(T)) — sen(U),

TeC

such that for each T € C,p € sen(T),
T |_sign(T) p <~ U |_sign(U) Tk ® -

If, in addition, U € C, then the entailment system & is called C-reflective.
Finally, o reflective logic is a logic whose entailment system is C-reflective for
C the class of all finitely presentable theories in the logic.

2.5 Universal and Existential Quantification

To reason about parametrically specified families of theories it is important that
the metalogic used supports quantification so that we can make universal (or ex-
istential) statements about parameter instances. Here we proceed semantically
and state general model-theoretic conditions for institutions having universal
and existential quantification in their sentences. The key idea is to consider a
subcategory Var C Sign, whose objects stand for sets of variables. In a first-
order language, an object X € |Var| corresponds to a signature having only
constants, but in a higher-order language X € |Var| could also involve function
and predicate symbols. We further require an operator j mapping each signa-
ture ¥ and X € |Var| to the signature ¥ @ X such that there are two signature
morphisms jx : X — Y& X and jy : ¥ — Y@ X. Furthermore, if Z € |Var]|
is a coproduct (i.e., the categorical generalization of a disjoint union) of the
form Z = X &Y, then we require the existence of an isomorphism

SeZ~(SeX)aeY.

For example, in first-order logic, ¥ & X can be defined as the disjoint union
> 4+ X that adds the variables in X as new constants to X.

We can extend the above notation to theories T' = (X,T') by defining T' @
X = (¥ @ X,T'). Assume that we have an institution satisfying the above
requirements. Then given a signature ¥ and X € |Var|, we define the set
form x (2) (and its extension form y (T')) of X-formulae with variables in X as the
set sen(X @ X) of sentences in the extended signature ¥ & X. We then say that
an institution Z with the above requirements has universal quantification if for
each ¥ € |Sign| and X € |Var| there is a function VX._: formx (Z) — sen(X)

(respectively 3X._ : form x(X) — sen(X)) such that for each A € |Mod(X)]
and ¢ € form y(3) we have

AEsVX. ¢ <= VA € [Mod(2® X)|. (Mod(js)(A) = A= (A Fsax ¢)).
Similarly an institution has ezistential quantification when

A ‘:E JX. ¢ 34 € |M0d(2 &) X)| (MOd(]z;)(A/) =AA (A/):ZGBX ¢)) .

2.6 Tarskian Semantics

In our abstract requirements for logics £ having good properties as metalogical
frameworks we will also find it useful to assume that £ is a sublogic of a logic
S whose underlying institution has a Tarskian semantics.

We say that an institution (Sign, sen, Mod, |=) has a Tarskian semantics if
for each ¥ € |Sign| the set sen(X) has two operations, = : sen(X) — sen(X),
and _A _: sen(X) x sen(X) — sen(X), such that, for all ¢,¢p € sen(X) and
M € |Mod(X)| we have

o M sy —¢ < M [£x ¢, and
° M|:E¢A¢<:>M':g¢andM':2¢.

As usual, we can define other Boolean connectives in terms of = and A. Hence,
given any Boolean expression b(x1,...,x,) and sentences ¢y, ..., ¢, € sen(X),
for all M € Mod(X) we also have

d M':E b(¢1a7¢n)<:> b(M }:E d)lv"'»M):E d)n)

3 Abstract Requirements

In this section we motivate and formalize our abstract requirements for reflective
metalogical frameworks. These requirements provide a formal account of our
slogan “logical frameworks with reflection, initiality, and parameterization are
metalogical frameworks.”

3.1 Motivation

To motivate our abstract requirements for reflective metalogical frameworks
we return to the deduction theorem, which will be the running example in
this paper. Full details for this example will be given later in Section 10; for
the moment it suffices to point out that the minimal logic of implication can
be specified by a Horn theory M = (X, T'aq) with two unary predicates,
_: Formula and _: Theorem, classifying which expressions are formulae and
theorems. In fact, the theorems of M are exactly the expressions ¢ such that ¢ :
Theorem holds in the initial model Z(M) of the Horn theory M. We can then
understand the deduction theorem as a statement involving two parameterized

theories extending M and having the same parameter theory P. The theory P
is of the form

P=(XEma{A B}, TpmU{A: Formula, B : Formula}),

i.e., we add to M the variables A and B as constants, which we will call param-
eters, as well as the axioms stating that A and B are formulae.

The two parameterized theories T7[P] and T3[P] involved in the deduction
theorem are, respectively:

1. the extension of P by the extra axiom A : Theorem, with J; : P — T}
the obvious theory inclusion (this captures the idea of assuming A as an
extra axiom, but A for the moment is a parameter), and

2. the trivial extension of P by itself, that is, we do not add anything else.
So Js is the identity map 1p : P — P.

Under this view, the deduction theorem becomes a theorem about a family of
theory instantiations for both T3 [P] and T5[P], namely those associated to the
family V of all theory morphisms H : P — (M @ {A, B}) U E such that H is
the identity signature morphism, and £ = {A = H(A),B = H(B)} is a set of
axioms that assign non-parameterized expressions (i.e., ground expressions that
do not contain A and B) H(A) and H(B) to the parameters A and B in P.
Moreover, since the axioms of P must be satisfied by such an H, we must also
have that (M@ {A, B})UE - H(A) : Formula and M &{A, B})UE - H(B) :
Formula. That is, the family V formalizes all the different ways of assigning two
formulae in minimal logic to the parameters A and B. The deduction theorem
can then be expressed as a metatheoretic statement relating the initial models
I(Ti[H]) and Z(T»[H]) of the different instantiations T31[H] and T»[H] for all
such H, as follows:

VH € V.I(T\[H]) = H(B) : Theorem =
I(T»[H]) E H(A — B): Theorem. (1)

Taking stock, the deduction theorem makes a semantic statement about a
family of pairs of parameterized theories, namely all parameter instances H € V
of the two parameterized theories T1[H] and T»[H]. Its formal statement pre-
supposes a metatheory in which parameterized theories are “first class objects,”
i.e., we can build sentences from them, and its proof requires the ability to
reason inductively about such theories and their relationships. Hence, the key
idea is to require a class C of theories in our logic £ such that there is a uni-
versal theory U (so we can formalize and reason about other theories) and all
theories T' € C have initial models (so inductive consequence is well-defined).
Moreover, when conducting proofs, we want not only the possibility of having
induction principles to reason about truth in such initial models Z(T), but also
a way of extending U to a theory with reflected parameterized induction princi-
ples (in the sense made precise in Section 3.2 below), so as to be able to reason
metatheoretically about properties of families of parameterized theories.

10

3.2 Requirements

By formalizing the above ideas for a general logic, we arrive at our abstract
requirements for reflective metalogical frameworks. In order to specify these re-
quirements, we first define two notions, related to theory morphisms introduced
in Section 2.2. Let T[P] be a parameterized theory where the signature of P
is of the form X @ V, for V' a signature whose symbols stand for parameters.
Then, given a family of theory morphisms V = {H; : P — S, }icr, we define
the restriction of V to ¥ as the family

VI, £ {Hiojs: % — Si}ier,

where X/ is the signature of S;. Similarly, given a signature map K : ¥ — 3,
we define the extension of K to V as the family

Exty,(K)2{HcV|Hojs=K}.

We now state our three abstract requirements for a logic £ to be a metalogical
framework.

1) Reflection. L has a class C of finitely presentable theories such that there
is a theory U in C that is C-universal.

2) Initiality. Each T € C has an initial model Z(T') € [Mod(T)|.

3) Reflected parameterized induction. This requirement has three parts.

(i) £ has a superlogic S which has a Tarskian semantics and admits both
universal and existential quantification.

(ii) For P = (X @ V,T') a parameter theory in C, P = {T;[P]}ics a family
of parameterized theories in C such that P € P (i.e, for some i € I,
T;[P] = P[P] = P),and V = {H; : P — S,},;es a family of theory
morphisms with the S; theories in C of the form S; = (£ ¢ V,T;), and
with each H; the identity signature morphism, there is a theory extension
U C Ind(U)in S, aformulaT" € formy (Ind(U)) representing the axioms
T" of P, and a representation function

GV : Hsen(Ti[P]) — formy, (Ind(U)),3
icl

where], ; sen(T3[P]) is the disjoint union of all the sets of sentences for
all theories in P. For ¢ € sen(T;[P]) we denote by ¢7:I¥ the corresponding
copy of ¢ in the i-th component of such a disjoint union.

3Note that objects in V stand for parameters when occurring in sentences in sen(T;[P]),
while they stand for variables, and therefore can be quantified over when occurring in formulae
in formy, (Ind(U)).

11

(iii) Under the same conditions of (ii), if V' can be decomposed as a coproduct
V =V1@...@V,, then for all finite multisets of theories {T1[P], ..., Tx[P]}
in P, and all finite multisets of sentences {¢1, ..., ¢} with ¢; € sen(T;[P]),

1<1<k,if
. —V —V
d(U) bs Q1Vi. QaVa. - QuVi. (T = b(oT 1 ol Py (2)
then
K, eV .Q2(Ky € Ext)? K1) ... Qu(K, € Ext¥" (K,_1)).
Qu(K1 € Vg g 1) QK2 xv‘z@vl@w(1)) - Qnl wty” (Kp-1))

b(IZ(Th[Kn]) e sen(Kn)(¢1), - T(Tk[Kn]) e sen(Kn)(or)), (3)

where Fs and |=, denote, respectively, the entailment relation in S and
the satisfaction relation in £, each Q; is either V or 3, and b is a Boolean ex-

——V —V
pression in k arguments such that b(¢; P f"" (7]) € formy, (Ind(U)).

Although the formalization of reflected parameterized induction looks com-
plex, the idea behind it is straightforward. Condition (3i) expresses a rela-
tionship between the framework logic £, which is used to represent families of
logics as families of parameterized theories, and a superlogic S, which includes
a theory Ind(U), that can be used to reason about families of parameterized
theories in £. For simplicity, we require the relationship between S and L to
be the superlogic relation, but one could generalize this in various directions.
For example, S could be a superlogic in the more general sense of [54], or even
just a logic S together with a conservative map of logics mapping £ to S, as in
[54]. Similarly, one could investigate weaker versions of the Tarskian semantics
requirement for S.

To reason in Ind(U) about families of parameterized theories in £, we reflect
parameterization over sentences as quantification over the Gv—representation of
those sentences, where Gv is the representation function required in (3ii). Here,
the idea is that parameters are represented as variables in Ind(U). Since, by the
definition of theory morphisms, all theory instantiations § : P —) must be
such that @) satisfies the axioms I' of the parameter theory P, the quantification
over the Gv—representation of sentences is conditional on the satisfaction of the
GT—representation of those axioms. Finally, (3iii) requires that Ind(U) is a
theory formalizing parameterized induction in the sense that (2) implies (3).

Note that the metatheoretic statement (1) of the deduction theorem is a
special case of (3) where V is not decomposed, @1 = V, and b is an implica-
tion. Hence, if we can formalize this in a logic £ meeting our requirements,
we can reduce the problem of establishing (1) to establishing the corresponding
instance of (2). In Section 9 we will examine these requirements in detail in
the context of membership equational logic (using many-kinded first-order logic
with equality as its superlogic) and in Section 10 we will give a concrete example
of inductive meta-reasoning about families of parameterized theories using this
form of reflected parameterized induction.

12

Since an unparameterized theory can be viewed as a special case of a pa-
rameterized theory, the above principle of reflected parameterized induction
can be specialized to a principle by which we can reason about (finite) fami-
lies of unparameterized theories. The idea is that, to reason in Ind(U) about

families of unparameterized theories in £, we reflect sentences using their (,)V—
representations. But, since sentences are not parameterized, we must neither
quantify over parameters nor make the sentences’ Gv—representations condi-
tional on the satisfaction of the axioms of a parameter theory. More formally,
whenever the category Th of theories for £ has an initial object @ such that
() € C N |Var|, then we can view each theory T € C as a theory parameterized
over), i.e., as T = T[], so that for P=0, P=C, and V = {1y : 0 — 0}, we
have T[1g] = T for each T' € C. Hence we obtain as a special case the following
requirement:

3’) Reflected Induction. For {T7,...,T;} a finite multiset of theories in C,
and ¢; € sen(T}), for 1 <1 < k, and each Boolean expression b in k arguments,
such that

b7 ... o7) € sen(Ind(U)),
if —V —V
Ind(U) ks b(é1* ..., 60"),
then
WZ(Th) Er é1, .-, I(Th) e ¢n) -

In particular, for £ = 1 and b(¢) = ¢, this provides a reflective alternative to
usual approaches to induction in which the theory T itself is augmented with
inductive reasoning principles. Namely, for all T € C, and ¢ € sen(T),

if Ind(U) Fs T then Z(T) ¢ ¢.

4 Background on Membership Equational Logic

In the following sections we will show how membership equational logic can
serve as a concrete instance of our abstract requirements. In this section we
review standard background material on membership equational logic and the
Maude language. We postpone discussion of the reflective aspects to Section 8.

4.1 Membership Equational Logic

Membership equational logic is an expressive version of equational logic. A full
account of its syntax and semantics can be found in [10, 56]. Here we define the
basic notions needed in this paper.

A signature in membership equational logic is a triple Q = (K, X, S), with
K a set of kinds, ¥ a K-kinded signature ¥ = {Xy 1 }(w kek-xx, and S =
{Sk}kek a pairwise disjoint K-kinded family of sets. We call S, the set of sorts

13

of kind k. The pair (K,3) is what is usually called a many-sorted signature of
function symbols; however we call the elements of K kinds because each kind
k now has a set Sj of associated sorts, which in the models will be interpreted
as subsets of the carrier for the kind. As usual, we denote by T3 the K-kinded
algebra of ground Y-terms, and by Tx(X) the algebra of ¥-terms on the K-
kinded set of variables X.

The atomic formulae of membership equational logic are either equations
t = t/, where t and t' are X-terms of the same kind, or membership assertions
of the form ¢:s, where the term ¢ has kind k£ and s € Si. Sentences are Horn
clauses on these atomic formulae, i.e., sentences of the form

V(J}l,...,mm).Al/\.../\An:>A0,

where each A; is either an equation or a membership assertion, and each z; is
a K-kinded variable. A theory in membership equational logic is a pair (2, E),
where E is a finite set of sentences in membership equational logic over the
signature).

For example, Figure 1 gives a set of membership equational axioms specify-
ing minimal logic of implication (by formalizing its presentation as a Hilbert sys-
tem). Here we assume that there is one kind, Expression, and that SentConstant,
Formula, and Theorem are sorts belonging to this kind. These sorts formalize
the notion of an expression being a sentential constant, a formula, or a theo-
rem. Implication, —, is an infix binary symbol that takes two terms of kind
Expression and returns a term of the same kind. Finally, A, B, and C are
variables of the kind Expression. We will consider this example in more detail
in Section 7.

The proof theory of membership equational logic is developed in [10]. For the
purposes of this paper it is sufficient to observe that membership equational logic
is a sublogic of many-kinded first-order logic with equality (namely, the many-
kinded Horn clause fragment obtained by requiring that all predicate symbols
other than equality are unary) and first-order calculi can be used to establish the
provability of a formula ¢ relative to a membership equational theory (Q, E),
ie, (Q E)F ¢, for ¢ a first-order sentence in the language of Q.

We employ standard semantic concepts from many-sorted logic. Given a
signature Q = (K,%,5), an Q-algebra is a many-kinded ¥-algebra A (a K-
indexed-set {Ay},c i together with a collection of appropriately kinded func-
tions interpreting the function symbols in ¥J) and an assignment that associates
to each sort s € Sy a subset A; C Ay. Hence, sorts can be thought of as unary
predicates that semantically denote subsets of the appropriate kind. An algebra
A and a (kind-respecting) valuation o, assigning to variables of kind k values
in Ay, satisfy an equation t = ¢’ iff o(t) = o(¢'), where we overload notation
by identifying o with its unique homomorphic extension to X-terms. We write
A,o E t = t' to denote such a satisfaction. Similarly, A,o | ¢: s holds iff
o(t) € As.

Note that an Q-algebra is nothing but a K-kinded first-order model with
function symbols ¥ and an alphabet of unary predicates {Si}rcx. Therefore,

14

VA. A:SentConstant = A:Formula,
V(A, B). A:Formula A B:Formula => A— B:Formula,
V(A, B). A:Formula A B:Formula =—> A—(B—A):Theoren,
V(A,B,C). A:Formula A B:Formula A C':Formula
= (A—B)—((A—(B—(C))—(A—C)):Theoremn,
V(A, B). A:Formula A B:Formula A (A— B):Theorem A A:Theorem
— B:Theoren

Figure 1: Membership equational axioms for minimal logic.

the satisfaction relation can be extended to Horn and to first-order formulae ¢
over these atomic formulae in the standard way. We write A = ¢ when the
formula ¢ is satisfied for all valuations o, and then say that A is a model of
¢. Similarly, a theory (Q, E) in membership equational logic is simply a Horn
theory for the associated signature, when 2 is viewed as a first-order K-kinded
signature. As usual, for ¢ a first-order sentence in the language of 2, we write
(Q, E) = ¢ when all the models of the set E of sentences are also models of ¢.

Theories in membership equational logic have initial models [56]. Given a
theory (2, E), we denote its initial model by Tq/g. In particular, when E = ()
we obtain the term algebra T, and for X a K-kinded set of variables the
free algebra To(X). This provides the basis for reasoning by induction, as is
explained in Section 6. We write (€2, E') = ¢ to denote that the initial model of
the membership equational theory (€2, E) is also a model of ¢, that is, that the
satisfaction relation T/ 5 = ¢ holds.

4.2 The Maude System

The Maude system [14, 18] implements rewriting logic [55, 50] and member-
ship equational logic, and has been designed with the explicit aims of support-
ing executable specification and reflective computation.* Theories are speci-
fied in Maude by modules of two kinds: functional modules and system mod-
ules. Maude’s functional modules are theories in membership equational logic.
Equations in Maude’s functional modules are assumed to be Church-Rosser
and terminating; they are executed by the Maude rewrite engine according to
the rewriting techniques and operational semantics developed in [10]. Maude’s

4Rewriting logic is a simple logic whose sentences are sequents of the form t — t/, with ¢
and t' Q-terms on a given signature 2. Theories in rewriting logic are triples (2, E, R), with
Q a signature of function symbols, E a set of Q-equations, and R a collection of (possibly
conditional) Q-rewrite rules. The inference rules of rewriting logic allow the derivation of
all rewrites possible in a given theory. Since a rewrite theory (2, E, R) has an underlying
equational theory (2, E), rewriting logic is parameterized by the choice of the equational
logic. An attractive choice in terms of expressiveness is membership equational logic. This is
the choice made in Maude.

15

fmod MINIMAL is

kind Expression[SentConstant Formula Theorem]

op -—_ : Expression Expression -> Expression .

vars A B C : Expression .

cmb A : Formula if A : SentConstant

cmb A — (B — A): Theorem if A : Formula and B : Formula .

cmb (A —- B) - ((A —-(B — (O)) — (A — (C)): Theorenm
if A : Formula and B : Formula and C : Formula .

cmb B : Theorem if A : Formula and B : Formula
and A : Theorem and (A—B) : Theorem .

endfm

Figure 2: The theory MINIMAL.

system modules are rewrite theories. The rules in a system module are not
necessarily Church-Rosser or terminating.

The semantics of a functional (respectively, system) module is initial, i.e.,
such a module denotes the initial model in membership equational logic (respec-
tively, rewriting logic) of the specified theory. The syntax for functional modules
is of the form fmod (2, F) endfm, with (2, E) a membership equational theory
meeting the requirements mentioned above. Figure 2 gives the representation
in Maude of the membership equational theory presented in Figure 1.° The
syntax is mostly self-explanatory: kind introduces kinds along with their sorts;
op introduces symbols in the many-kinded signature, where underscores indi-
cate mixfix notation, e.g., ~—_ is an infix operator; vars introduces variables
with their kinds; and finally, mb and cmb precede, respectively, membership ax-
ioms and conditional membership axioms in membership equational logic. To
simplify the exposition, here and in the rest of the paper we assume that an
infinite supply of terms having sort SentConstant has already been specified
in a previous subtheory. Since their particular representation (as identifiers,
numbers or whatever) is immaterial for our purposes, we omit the details.

For convenience, we will henceforth use Maude’s syntax to present member-
ship equational theories.

5 Parameterized Membership Equational The-
ories

In Section 2.2 we used the pushout construction to give a general definition
of parameterized theories and their instantiations. Now we specialize this con-

5We have taken slight liberties with the representation. Namely, INTEX symbols are used
instead of ASCII characters to improve readability. For increased clarity we have also explicitly
named kinds. (The Maude system can infer kind information automatically; kinds are not
named but denoted using the name of their sorts enclosed in square brackets. However, we
will use Maude’s convention for kinds later in the paper.)

16

struction to define, for each appropriate theory P, a class Pp of membership
equational theories parameterized by P and a class Vp of theory morphisms that
instantiate parameterized theories in Pp. We will use these classes in Section 9
to define reflected parameterized induction for membership equational logic.
Recall that a parameterized theory is given by a theory map from a param-
eter theory P to a theory T. We consider parameter theories P of the form

P=(QaV,EUMbV)).

P’s signature is built from a finite signature Q = (K, X, S) and a finite signature
of parameters V = (K,{Vii}trek,S) that consists of a pairwise disjoint K-
kinded family of constants, which satisfies that, for all k € K, £y x N Vi = 0.5
P’s axioms consist of a finite set of sentences E over the signature €2, and a
finite set of membership axioms Mb(V') that specify a sort for each v in V. For
each T[P] € Pp the theory map P — T will be an inclusion. Specifically, the
parameterized theories T[P] € Pp have the form

TPl=Qa&V,EUGUMbV)),

where G is a finite set of additional axioms (which extend P’s axioms).
Recall also that an instance of a parameterized theory is given by a theory
map from P to another theory Q. We define Inst(P) as the class of theories

Q=QaV,EUEV)),

where Fq(V) is a finite set of equations of the form {v; = ¢; | v; € V} such
that Eq(V) assigns to each constant v; € V' a ground term t; € Tq, such that
Q F t;:s;, where s; is the sort assigned to v; in Mb(V'). We then define Vp as
the class of theory morphisms §: P — @, such that Q € Inst(P) and § is the
signature identity morphism. Note that the set Vp is in bijective correspondence
with the set Inst(P).

The above defines a notion of instantiation for parameterized theories that,
for all T[P] € Pp and 3 € Vp, specializes the pushout construction to

TP] ——=TI[g]

|

P

where T3] = (@ V,EUG U Eq(V)).

Figures 3 and 4 provide examples using Maude syntax. Figure 3 gives a
parameter theory MINIMAL-P. Here the signature of parameters V' consists of
the constants AA and BB of kind Expression, and Mb(V') consists of the mem-
bership axioms AA:Formula and BB:Formula. Figure 4 gives a parameterized
theory MINIMAL-DT[MINIMAL-P] in Pyrymmar-p, which extends MINIMAL-P with
axioms G, in this case the extra (parametric) axiom AA:Theorem.

17

fmod MINIMAL-P is

kind Expression[SentConstant Formula Theorem]

op AA : -> Expression .

op BB : -> Expression .

op -—_ : Expression Expression -> Expression .

vars A B C : Expression .

cmb A : Formula if A : SentConstant .

cmb (A — B): Formula if A : Formula and B : Formula .

mb AA: Formula .

mb BB: Formula .

cmb A — (B — A): Theorem if A : Formula and B : Formula .

cmb (A —- B) - ((A —-(B — C)) — (A — (C)): Theorem
if A : Formula and B : Formula and C : Formula .

cmb B : Theorem if A : Formula and B : Formula
and A : Theorem and (A — B): Theorem .

endfm

Figure 3: The parameter theory MINIMAL-P.

fmod MINIMAL-DT[MINIMAL-P] is
including MINIMAL-P .

mb AA:Theorem .

endfm

Figure 4: The parameterized theory MINIMAL-DT [MINIMAL-P].

One of the key ideas behind our use of theory morphisms is the following.
Although (is the identity morphism on signatures, it identifies terms in Q,
and hence in T[3], by adding equations of the form v; = ¢;. This has an effect
equivalent to mapping constants to terms. More formally, suppose T[P] € Pp,
P=(QaV,EUMb(V)),and B € Vp, : P — Q. For all terms t € Togv (X),
considering the equations Eq(V) = {v; =t; | v; € V'} in Q, we denote by ts the
term in T (X) that results from replacing each v; (if any) in ¢ with the ground
term t;. Note first that for all such ¢,

(tg)s =1g. (4)

We can extend this notion of term replacement to atomic formulae in the stan-
dard way: (t:s)g = (t)g:s and (t = t')g £ tg = ti3. Note then that for all
atomic formulae ¢ over the signature of T[P], ¢ = sen(5)(¢). But, whenever
some v; occurs in ¢, sen(B)(¢) # ¢3. However, in all cases, due to the equations

6Note that Q @ V is not really a coproduct but rather a union, since the kinds of the
constants in V' are already kinds in €2, and we do not make disjoint copies of those kinds.

18

Eq(V),

TP+ ¢ <= TI[6] |+ ¢ <= T[B] = sen(B)(¢) <= TIf] = ¢p <= TIB] - ¢€ -)
5
Finally, note that for all parameter theories P = (Q @& V, E U Mb(V)), there
is a trivial extension P[P] of P, i.e. where P[P] = P.

6 Induction Principles for Membership Equa-
tional Theories

Given that membership equational logic s a sublogic of Horn logic with equality
(indeed, they can be shown to be equivalent [56]) it follows immediately that any
theory (€2, E') has a unique (up to isomorphism) initial model [35]. Hence our
second abstract requirement, initiality, is fulfilled. The following is an induction
principle for reasoning about properties of sorts, with respect to the initial
model. As syntactic sugar, we shall write Vz : s.¢(z) as shorthand for the
formula Vz.2z:s = ¢(x), for & a variable of kind k and s € Si. Moreover, for
the formula z:s = ¢(z), we will say that “z is of sort s (in ¢).”

Definition 7 (Induction over sort definitions) Let T = (2, E) be a theory
in membership equational logic and let s be a sort in some Sy. Let Cipq =
{C4,...,C,} be those sentences in E that specify the sort s € Sy for k a kind,
i.e., those C; of the form

V(Z‘l,...,xpi).Al/\.../\14(11,:>A()7 (6)

where, for some term t of kind k, Ag is t:s.
For 7 a first-order formula with free variable x of sort s over the signature €2,
an induction principle for (2, E'), with respect to z:s and 7(z), is the formula

1AL Aty = Vais.7() (7)
where, for 1 < i <n and C; of the form (6), v; is
V(@1 2p)- [AL]r A A [Ag]r = [Ao)r (8)
and, for 0 < j < g,

[A]] A{ T(u) if Aj = u:s, for u of kind k
J1T

| 4; otherwise.

For each membership equational theory (Q, E), (7) defines an induction
schema in many-kinded first-order logic over the signature 2. As we will see
on examples, for C;, each [A,], contributes to either an induction hypothesis
(for 7 > 0) or the induction conclusion (for j = 0) to the ith premise. Note
that for ¢; = 0, the nullary conjunction in the antecedent of (8) is ¢true and the
implication can be replaced with the succedent.

19

In the initial model of a membership equational theory, sorts are interpreted
as the smallest sets satisfying the axioms in the theory, and equality is inter-
preted as the smallest congruence satisfying those axioms. Alternatively, the
sets interpreting sorts can be characterized as being inductively generated in
stages. This corresponds to the fixedpoint characterization of the least Her-
brand model of a collection of Horn clauses [79], and the induction principle we
have given formalizes induction over the stages in which the set is inductively
defined [2]. By induction over the stages of the inductive definition of a sort s,
which amounts to an induction over the proof that some ground term of kind
k is of sort s, we can establish that reasoning in the membership equational
theory (€, E'), augmented by (7), is sound.

Theorem 1 (Soundness) Let (2, E) be a membership equational theory. If
ind(Q, E) F 71, then (Q, E) = 7, where ind(Q, E) is the theory (0, E) extended
with the induction schema (7).

As an example, consider the membership equational theory for minimal logic
previously given in Figure 1. The above definition gives rise to the following
induction principles over the sorts Formula and Theorem with respect to this
theory. For induction over formulae, the corresponding instance of (7) is

[VA. (A:SentConstant = 7(A)) A V(A4, B).(7(4A) A7(B) = 7(A—B))]

=
VA:Formula.7(A).

In the case of Theorem, the corresponding induction schema is

[V(A, B). (A:Formula A B:Formula = 7(A—(B—A4))) A
V(A,B,C).(A:Formula A B:Formula A C:Formula

= 7((A=B)—= (A= (B—=C))=(A=C))) A
V(A, B).(A:Formula A B:Formula A 7(A—B) A 7(A) = 7(B))]
=
VA:Theorem.7(A),

which formalizes induction over the structure of proofs in minimal logic.

7 Membership Equational Logic as a Logical Frame-
work

We can use membership equational logic to represent theoremhood in a logic
as the property that some terms representing formulae have a given sort in
a membership equational theory (2, F). Conditional membership axioms then
directly support the representation of rules as schemas, which is typically used in
presenting logics and formal systems. Note that membership equational logic is

20

noncommittal about the structure and properties of the formulae represented by
Q-terms. They are user-definable as an algebraic data type satisfying equational
axioms.”

Similarly, we can represent theoremhood in a parameterized family of logics
as the property that some formula-representing terms have a given sort in a
parameterized membership equational theory.® The ability to represent param-
eterized families of logics is important for using membership equational logic
also as a metalogical framework, and we will give an example of this in the
experimental work reported on in Section 10.

We shall now illustrate the above ideas, using minimal logic as a running
example. Representing minimal logic in membership equational logic entails
defining a theory T that conservatively represents minimal logic’s theoremhood.
The formulae of minimal logic correspond to members of the set built from
the binary connective — (written infix, associating to the right) and sentential
constants. Theorems correspond to members of a second set, and are either
instances of the standard Hilbert axiom schemata K,

A—B— A,

or S,
(A= B) = (A= B—C) = (A—C),

or are generated by applying the rule modus ponens,

A A—B
— 5

Of course, we want our representation to preserve the inductive nature of
the set of theorems and proofs in minimal logic. The module MINIMAL, pre-
sented previously in Figure 2, illustrates one way of representing minimal logic
in membership equational logic using this idea. A formula A is a theorem in
minimal logic if and only if A is a term of sort Theorem in MINIMAL.

The module MINIMAL-PF in Figure 5 illustrates another alternative. This
module represents both the theorems and proofs in a Hilbert system for minimal
logic as members of a sort Proof. The axioms and rules manipulate judgments
consisting of a formula and its proof tree and having the form [PS]/A, with
A a formula and [PS] a list of judgements [PS1]/Az1, ..., [PSy]/A, containing

7This ecumenical neutrality is inherited by rewriting logic and has been applied effectively
in its uses as a logical framework. In [16, 49, 48, 57, 76, 77, 50|, many examples of logic
representations in membership equational logic and in rewriting logic are given, including first-
order linear logic, sequent presentations of modal and propositional logics, Horn logic with
equality, the lambda calculus, and higher-order pure type systems, among others. In all such
examples, representations are direct (syntactically similar to their textbook counterparts).

8A sort in a parameterized membership equational theory can be used to represent theo-
remhood in a family of logics if and only if (1) there is a one-to—one correspondence between
logics in the family and instances of the parameterized membership equational theory, and
(2) this correspondence is such that theoremhood in a logic in the family can be represented
as membership in this sort in the corresponding instance of the parameterized membership
equational theory.

21

fmod MINIMAL-PF is
kind Expression[SentConstant Formula]
kind Proof?[Proof Proofs]

op -—_ : Expression Expression -> Expression .
op nil : -> Proof? .

op -,- : Proof? Proof? -> Proof? [assoc id: nil]
op []/_ : Proof? Expression -> Proof? .

vars A B C : Expression .
vars PS QS : Proof? .
cmb A : Formula if A : SentConstants .
cmb (A — B) : Formula if A : Formula and B : Formula .
mb nil : Proofs .
cmb PS : Proofs if PS : Proof
cmb (PS, @QS): Proofs if PS : Proofs and QS : Proofs .
cmb [nill]/A — (B — A) : Proof
if A : Formula and B : Formula .
cmb [nil]/(A — B) — ((A - (B — ()) — (A — (C)) : Proof
if A : Formula and B : Formula and C : Formula .

cmb [([PS]1/A),([QS1/(A — B))1/B : Proof

if PS : Proofs and)S : Proofs and A : Formula and B : Formula

and [PS1/A : Proof and [QS]/(A — B) : Proof
endfm

Figure 5: The module MINIMAL-PF.

antecedent formulae Aq,..., A, establishing A, and their corresponding proof
subtrees PSy,..., PS,. Lists of judgements are built with the binary construc-
tor _,_ which is declared associative and has nil as its identity element. No
subproofs are needed to prove an instance of the two axioms. The rule for modus
ponens constructs a proof of B from a proof of A and a proof of A— B.

Which representation one chooses depends, in part, on how it is to be used.
MINIMAL represents theorems as members of an inductive set, and is well-suited
for metatheoretic reasoning about theoremhood. MINIMAL-PF represents mini-
mal logic proofs themselves as formal objects and can be used, for example, to
prove metatheorems about the structure of minimal logic proofs.

Finally, to illustrate the use of parameterized modules, consider the task of
representing not just minimal logic, but the family of logics that consists of all
extensions of minimal logic with a new axiom. A solution to this was given pre-
viously in Figure 4, namely, the parameterized theory MINIMAL-DT [MINIMAL-P].
This parameterized theory represents the family that consists of all extensions
of minimal logic with a new axiom in the following sense: a formula B is a
theorem in minimal logic extended with a new axiom A if and only if B is a
term of sort Theorem in MINIMAL-DT[3], where (AA)s = A and (BB)g = B.

22

8 Reflection in Membership Equational Logic

A universal theory MB-META for membership equational logic is introduced in [22],
along with a representation function (_F _) that encodes pairs consisting of a
membership equational theory 7" and a sentence in it, as sentences in MB-META.°
Thus, membership equational logic is a reflective logic in the precise sense of
Definition 6, and our first abstract requirement for reflective metalogical frame-
works, namely, reflection, is fulfilled.

The signature of MB-META contains constructors to represent operations,
variables, terms, kinds, sorts, signatures, axioms, and theories. In particu-
lar, the signature of MB-META includes the sorts Theory, Signature, AxiomSet,
Equation, MembAxiom, Term, and Sort, for terms representing, respectively,
theories, signatures, sets of axioms, equations, membership axioms, terms, and
sorts. In addition, it contains three Boolean operations

op wit_in_ : [Term] [Signature] -> [Booll]
op _:_in_ : [Term] [Sort] [Theory] -> [Bool]
op _=_in_ : [Term] [Term] [Theory] -> [Bool]

to represent, respectively, that a term is well-formed in a membership equational
signature, and that a membership assertion or an equation hold in a member-
ship equational theory. Note that here, and in what follows, we use Maude’s
convention for naming kinds: kinds are not named but are denoted using the
name of one of their sorts enclosed in square brackets.

The representation function (_F _) is defined in [22] as follows: for all mem-
bership equational theories T', and atomic formulae ¢ over the signature of T',

T)=true if ¢ = (t:5s)
inT) =true ifgp=(t=1t),

(t:s

Tuz)é{ é

where 6 is a representation function defined recursively over theories, signa-
tures, axioms, and so on. Under this representation function, a membership
equational theory T' = (€2, E), with E' = (¢1,. .., $y), is represented in MB-META
by the ground term T = (€, E) of sort Theory, where Q is a term of sort
Signature and £ = (¢;...¢,) is a term of sort AxiomSet!'®; a term ¢ in a
membership equational theory T is represented in MB-META by a ground term ¢
of sort Term; a sort s is represented by a ground term 5 of sort Sort; an equation
t = t' is represented by a ground term (eq # = t’.) of sort Equation; and, finally,
a membership axiom ¢ : s is represented by a ground term (mb ¢:3.) of sort
MembAxiom. Conditional equations and memberships are represented similarly.

The following propositions state the main properties of MB-META as a uni-
versal theory:

in
i

9To avoid unnecessary technical details, we present here a simplified version of the reflective
results provided in [22]. Also, for notational convenience, we name differently the universal
theory and we use a slightly different syntax for some of the metalevel operations involved in
its definition.

10Note that although E is a set, its presentation in Maude is as an ordered sequence (of
text). Here, and elsewhere, we will assume we can order sets based on their presentation.

23

Proposition 1 For all finitely presentable membership equational theories with
nonempty kinds T = (Q, E), with Q = (K, %, S), terms t in (Tq)k, and sorts s
m Sk, .
ThHt:s < MB-METAF ({:5in T) = true.
Similarly, for all terms t, t' in To(X),
Tht=t <= MB-METAF ({=*#inT) = true.

Proposition 2 For all finitely presentable membership equational signatures €2
and terms t in Tq -
MB-META F (wft 7 in) = true.

9 Reflected Parameterized Induction

In this section we show how the induction principles introduced in Section 6
for reasoning in membership equational theories can be uniformly reflected for
reasoning, at the metalevel, about families of theories. In doing so, we show how
our third abstract requirement for a reflective metalogical framework, namely,
reflected parameterized induction, is fulfilled.

We restrict ourselves to classes of the form Pp of membership equational the-
ories parameterized by P and their associated classes Vp of theory morphisms
as defined in Section 5. First, in Section 9.1, we define a representation function
for parameterized theories in Pp. Then, in Section 9.2, we define a represen-
tation function for atomic formulae over parameterized membership equational
theories. Afterwards, in Section 9.3, we define a representation function for ax-
ioms of parameter theories. Finally, in Section 9.4, we show that parameterized
induction can be reflected in a theory extension of MB-META.

To simplify our presentation, we omit the full definitions of the represen-
tation functions that we use to reflect parameterized induction principles and
instead we just state the properties that they satisfy. ([13, 21, 22] can be con-
sulted for a full definition of analogous representation functions.) Despite this
simplification, the material presented here is admittedly still rather technical,
as a number of such functions are required. As an aid for the reader, Figure 6
provides an overview of the notation used in this section and in the appendix.
We also summarize in this figure the representation functions introduced in
Section 8.

9.1 Representing Parameterized Theories

We first introduce some preliminary notation. For P = (2@ V, EU Mb(V')) and
T[P] a parameterized membership equational theory in Pp, and for all terms
t € Togy (X), we will denote by 7™ the reflective representation of ¢ defined in
Section 8, except that now parameters v € V' and variables x € X are replaced
by (meta-)variables v and z of the kind [Term].!! For ¢ a ground term, we

1 The key difference between 7 and £V~ is that 7 is a ground term of sort Term, whereas
71V"* is a term with (meta-)variables of the kind [Term].

24

N

The representation function for membership equational theories T’
it returns a ground term in MB-META of sort Theory.

T(P]

The representation function for parameterized theories T[P] in Pp;
it returns a term in MB-META of the kind [Theory] containing (meta-
)variables of the kind [Term] that correspond to the parameters in
P.

—B(T[P],X)

%]

B(T[8),X)

The representation functions for atomic formulae ¢ (respectively
¢s, for B a theory morphism in Vp) over parameterized theories
T[P] in Pp (respectively over theories T'[3]), which may contain
variables in X and parameters in P (respectively variables in X);
it returns an equality in MB-META between the constant true and
a term of the kind [Bool] containing (meta-)variables of the kind
[Term] that correspond to the variables in X and/or the parame-
ters in P occurring in ¢ (respectively in ¢g).

c(P)

EU Mb(V)

The representation function for axioms of parameter theories P
in Pp; it returns, essentially, the conjunction of the equalities
in MB-META that result from representing the atomic formulae in
Mb(V).

The representat

ion functions below are used to define the functions above

Q,E 1,53

The representation functions for signatures €2, sets of axioms F,
terms t (maybe containing parameters and/or variables), and sorts
s of membership equational theories; they returns ground terms
in MB-META of sort, respectively, Signature, AxiomSet, Term, and
Sort.

t

v, x1 vl ZIx]
, T

The representation functions for terms ¢ that may contain parame-
ters in V and/or variables in X; they return terms in MB-META of the
kind [Term] containing (meta-)variables of the kind [Term] that
correspond to the parameters in V and/or variables in X occurring
in t.

W(Q,V)

The representation function for assertions of well-formedness rela-
tive to Q for terms ¢ in membership equational signatures (2@ V);
it returns an equality in MB-META between the constant true and
a term of the kind [Bool] containing (meta-)variables of the kind
[Term] that correspond to the parameters in P occurring in t.

The representat

ion functions below are used to state the propositions satisfied by

the functions above

]

v

The representation function for sets of parameters V' C V; it re-
turns a set of (meta-)variables of the kind [Term] in MB-META.

B

The representation function for theory morphisms 3 in Vp, (8 :
P—Q,P=(QaV,EUMb(V)), it returns a ground substitution
that assigns to each (meta-)variable in V" the terms of sort Term
in MB-META that result from representing the term to which the
corresponding parameter is instantiated by (.

Figure 6: Representation functions.
25

shall simply write 7", Similarly, if ¢ € T (X) we shall write 2. In addition,
we will denote by V' the set V"' 2 {#") | v € V}. Finally, for all theory
morphisms § € Vp, §: P — @, we will denote by the ground substitution
B: V"' — [Terml, defined as follows: 3(v")) 2%, if v € V and vg = t.

Proposition 3 For P = (Q @ V,E U Mb(V)) a parameter theory in Pp, for
all parameterized membership equational theories T[P] € Pp, theory morphisms
BEVp, B:P— Q, and terms t € Tagyv (X), it holds that

B(E[V’X]) _ %[X] .

Proof By structural induction on t. a
) . . TP .
We now define a generic representation function (-) for parameterized mem-
bership equational theories. For P = (Q & V, E U Mb(V)), T[P] € Pp, with
TPl=QaV,EUGUMbV)), and Mb(V) ={v1:51,...,Vn:Sn},

TP 2 QaV,EG (equr=1". - eq v, =1,".)).

Note that the class Pp is itself “parameterized” by the choice of P. However, the
—P
definition of the representation function (_) does not depend on this choice, and,

therefore, the representation function GP is generic in P. Note also that m@
and T'[P] are not equal: the former contains (meta-)variables while the latter is a
ground term of sort Theory. This difference is due to the fact that, in the former
the membership axioms for parameters, Mb(V'), are not represented but instead
they are first transformed into identity equations between parameters that are
treated in a special way: the right-hand side of each equation is represented by
a (meta-)variable of the kind [Term], with the same name as the corresponding
parameter, while the left-hand side is represented as usual.

As an example, consider the parameterized theory MINIMAL-DT [MINIMAL-P]
given in Figure 4. Note that the terms of sort Theory that result from applying

the representation functions G and Gp to this theory are identical except for
the fact that the former has as subterms the terms of sort MembAxiom

mb AA : Formula., mb BB : Formula., (9)

which represent the membership axioms for the parameters AA and BB, while
the latter has instead the terms of sort Equation

eq AA= AA. eq BB= BB., (10)

where the second occurrence of AA and BB in the terms in (10) are (meta-)variables
of the kind [Term].

Proposition 4 For T[P] = (Q@®V,EUGUMb(V)) a parameterized theory in
Pp, for all theory morphisms 3 € Vp, B: P — Q, it holds that

P —

B(TIP]) =T[8].

26

Proof The only variables in [P]P appear in its subterms (eq v; = v."'.).

Therefore, by the definition of substitution application, we have

}7’

BITP) = M6V, EG (eam=h. - eqtn =F.)),
which, by the definition of T'[g], yields the desired result. |

9.2 Representing Atomic Formulae

We now define a generic representation function GB(H for atomic formulae
over parameterized membership equational theories. This function constitutes
the representation function Gv mentioned in part (ii) of our third abstract
requirement for classes of the form Pp of parameterized theories. For P = (Q @
V, E U Mb(V)), for all parameterized theories T[P] € Pp, with Q = (K, X, 5),
and membership assertions t:s, with ¢ in Togy (X) and s in some Sk,

Trst 02 GV s g i [P]P) = true.

Similarly, for all equalities t = ¢/, with ¢, ¢’ in Togv (X),

T B(TIPLX) A (*[V‘X] _ glvix

t=t 7 7 in T[P]) = true.

Note that the representation function (7,)8(7” is generic in P: it is defined for all
atomic formulae over all parameterized theories T[P] € Pp, independently of
the choice of P. This representation function satisfies the following proposition,
where, as explained in Section 4.1, |~ denotes satisfaction in the initial model
of the given theory.

Proposition 5 For P = (@ V,EU Mb(V)) a parameter theory in Pp, for
all parameterized membership equational theories T[P] € Pp, atomic formulae
¢ over the signature of T[P], and theory morphisms 8 € Vp, 8 : P — @, it
holds that

MB-META [~ B(6) <= TIA] F 5.

Proof Let ¢ =t:s (the proof is analogous for ¢ = (¢t = t')). First, notice that
by the definition of substitution application and Propositions 3 and 4,

BEs"""") = (BE" :5in T[P]) = true)
= (BE":5in B(T[P]) = true)

— (5 in T[F] = true).

Thus, since (g ¢+ 5 in T[5]= true) is a ground atomic formula, we can reduce
the problem to proving that

MB-META |= (tg : 5 in T'[3]) = true <= T[] - ¢g,

which, by soundness and completeness of membership equational logic, is equiv-
alent to

MB-META b ({3 : 5 in T[f]) = true <= T[3] + ¢3.
Then, by Proposition 1, we obtain the desired result. a

27

Proposition 6 For P = (Q &V, EU Mb(V)) a parameter theory in Pp, with
Mb(V) = {v1:51,...,0n:8n}, for all theory morphisms 8 € Vp, 3: P — Q,
for 1 < i <mn, it holds that

MB-META b B(v;75;°%?).

Proof First, by the definition of substitution application and Propositions 3
and 4,

Recall that, by definition, @ F (v;)g: s;. Therefore, by Proposition 5 (where
T[P] is in this case P[P] = P, and T[] is then P[] = Q), we obtain the desired
result. a

In Appendix A we will also use the following representation function. For
P = Qe V,EUMHV)), all parameterized theories T[P] € Pp, with Q =
(K,X%,S), all theory morphisms § € Vp, §: P — @, and all membership
assertions t:s, with ¢t € Togy and s in some Sk,

B(T[B],X

(t:s)s)é(ﬁm:§inm):true.

Similarly, for all equalities t = ¢/, with ¢, ¢’ in Togy (X),

B(T(6LX) p (X e

(t=1t)g ™ = ty in T[f]) = true.

9.3 Representing Axioms of Parameter Theories

. . 7e . .
Next, we define a representation function (-) for axioms of parameter theories.

This function constitutes the representation function (,)T mentioned in part (ii)
of our third abstract requirement for classes of the form Pp of parameterized
theories.

We first define a representation function for assertions of well-formedness
relative to an unparameterized membership equational signature. For all mem-
berships equational signatures (2 @ V), and terms ¢ in Togv (X),

Y 2 (wie 11 in Q) = true.

Then, for P = (Q@V, EUMb(V)) in Pp, with Mb(V) = {v1:81,...,0n:8n},

C(P) A

EUuMb(V) = @Y A A5V A B seps P 5D A A T, 8,500 .

Proposition 7 For P = (Q @V, E U Mb(V)) a parameter theory in Pp, with
Mb(V) = {v1:81,...,0n:8,}, for all theory morphisms B € Vp, f: P — Q,
for 1 < i <mn, it holds that

——W(Q,V)

MB-META 3((v;)).

28

Proof By the definition of substitution application and Proposition 3,

W(Q,V)

) = (wft B((vi)

= (wft (v;)g in Q = true).

B((vi)

Recall that, by definition, (v;)s is a term in Tq. Thus, since (wft (v;)g in Q =
true) is a ground atomic formula, we can reduce the problem to proving that,

MB-META = (wft (v;)g in Q) = true,

which by soundness and completeness of membership equational logic, is equiv-
alent to -
MB-META F (wft (v;)s in Q) = true.

By Proposition 2, we obtain the desired result. a

9.4 Reflecting Parameterized Induction

We now show how parameterized induction can be reflected in a theory exten-
sion of MB-META. This extension constitutes the theory Ind(U) mentioned in
part (ii) of our third abstract requirement. We will use many-kinded first-order
logic with equality as the superlogic mentioned in part (i) of the third abstract
requirement. First, we introduce an inference rule that reflects induction prin-
ciples for parameterized membership equational theories. This inference rule is
based on the soundness of the induction schema given by (14) in Definition 8
below.

To understand in which way (14) reflects the induction principles for param-
eterized membership equational theories, the key observation is the following.
Let s be a sort in a membership equational theory T = (2, E) defined by the
set of sentences {C4,...,C,} in E. Consider then the set of terms of the form
u =t, for t a term of sort s in T. We can show that this set of terms is induc-
tively defined by a set of sentences over the signature of MB-META that reflect
{C1,...,C,}. Hence, to derive the induction schema (14), we can use the set of
sentences that reflect {C4,...,C,}, analogously to how we use {C1,...,C,} to
derive the induction schema (7) in Definition 7. Note, in particular, that the in-
duction hypothesis schema given by (15) in Definition 8 is completely analogous
to the induction hypothesis schema given by (8) in Definition 7.

Since the induction schema (14) reflects induction principles for parame-
terized membership equational theories, it can only be used to prove certain
first-order formulae over the signature of MB-META, namely, those that formalize
relationships among the initial models of instances of parameterized member-
ship equational theories which are parameterized by the same parameter theory.
This restriction is formalized in Definition 8 by limiting the applicability of (14)
to first-order formulae over the signature of MB-META of the form (13).

Finally, to simplify the soundness proof of the induction schema (14), we
impose an extra condition on the first-order formulae of the form (13) to which

29

(14) can be applied. Namely, that among the parameterized membership equa-
tional theories whose initial models are related by the formula, the one that
is used to generate the inductive cases must be “equationally generic”, in the
sense that if an equality holds in all of its instances, then it also holds in the
corresponding instances of all the other parameterized theories. This condi-
tion is formalized in Definition 8 by requiring that property (11) is satisfied by
the parameterized membership equational theories mentioned in the formula to
which (14) is applied.'?

In what follows, for all atomic formulae ¢ over a signature Q2@ V', parameters
v €V, and terms t € Tagy (X), we will denote by (¢)(v — t) the formula that
results from replacing in ¢ each occurrence of v by t. When the parameter v is
clear from the context, we shall simply write ¢(t).

Definition 8 (Reflected parameterized induction over sort definitions)
Let P=(Qa V,EUMb(V)) be a parameter theory in Pp, with Q = (K, %, S),
and let {To[P], T1[P],...,Tx[P]} be a finite multiset of parameterized theories
in Pp that satisfies the following property: for all theory morphisms B in Vp,
B:P— Q, and terms t and t' in Tagv(X), for 1 <1<k,

TlBlrt=t =T[p|-t=t". (11)

Let To[P] = Q@ V,E U Gy U Mb(V)), let s be a sort in some Sk, and let
Ciroip),s) = {C1, ..., Cn} be those sentences in (E U Go) specifying the sort s,
i.e., those C; of the form

V(x1,. . @) AL AL A Ay, = Ag, (12)

where, for some term t of kind k, Aqg is t:s. Finally, for all sentences C; in
(E U Gy) of the form (12), let X, be the set of variables {x1,...,xp,}, where
XinXEZaeV)=0.

Then, for all finite multisets of ground atomic formulae {¢1,...,¢r}, with
@1 € sen(Ti[P]), 1 <1 < k, parameters v; € V, Boolean expressions b, and
first-order formulae T(v;!""), of the form

c(P)

YOV (o) (B U Mb(V) (13)
——B(T1[P],0) ——B(Ty[P],0)

— (’UiZSB(TO[P]’m - (b(¢1 ey Ok)))),
with free variable ;") of the kind [Term], an induction principle for MB-META,
with respect to v;:8°7019 and 7(7;1), is the formula

c(P)

WV EOTMY V) = (AL AY))] = Yo @), (14)
where, for 1 <i<mn and C; in (EUGy) of the form (12), v; is

V@ EX) (A, A A Ay] = [Aoly (15)

1P

12In [19] this condition has been relaxed, making it possible to apply (a modified version
of) the induction schema (14) to a broader class of metatheorems.

30

and713 fO’I" 0< J < qi,

s b(@r(vs—u) ko) Y i Ay = s
[4;]- = A B TolPl XD ,
j otherwise.
For a given finite multiset {To[P],T1[P],...,Tx[P]} of parameterized theories

in Pp, the above defines an induction schema given by (14), in many-kinded,
first-order logic over the signature of MB-META. We prove the soundness of this
induction schema in Appendix A. In Section 10 we show how this induction
schema can be used to give a metalogical proof of the deduction theorem.

Next, we show that meta-ind(MB-META), i.e., the theory MB-META extended
with the induction schema (14), satisfies part (iii) of our third abstract require-
ment in Section 3.2 for universally quantified inductive theorems over families
of parameterized membership equational logics.'4

By Remark (5), we can state this requirement as follows: for P = (Qa@V, EU
Mb(V)), for all finite multisets of ground atomic formulae ¢; € sen(T;[P]),1 <
I < k, with T}[P] € Pp, whenever we have

meta-ind(MB-META) - YV (EU Mb(V)

——B(T1[P],0

:>b(¢1 ,...,%

(16)

B(Ty, [P],0)

))7

then we also have

VB € Ve b(T1[8] k= (91)ps - -+, Tk [B] = (dx)5) - (17)

To prove that (16) implies (17), first note that, by the soundness of the
induction schema (14), (16) implies that

C(P) B(T,[P],0

MB-META) vV (B U MB(V) ™" = b),

which implies that, for all ground substitutions A : v [Term],

(P) —B(T1[P],0 ——B(T [P],0)

MB-META ~ h(E U Mb(V) = b(¢r R),

which, by Propositions 7 and 6, implies, in particular, that for all theory mor-
phisms 3 € Vp, 6: P — Q,

MB-META I~ b(3(h1 "), ... Blor). (18)

To complete the proof, notice that, since (¢;)s is a ground atomic formula,
for 1 <1<k, (17) is equivalent to

VB € Vp.b(T1[B] = (¢1)s, - - Tk[B] = (¢k)s) - (19)

13Note that in the representation of formulae at the metalevel in (15), we require that object
variables are represented using variables instead of constants.

14The proof of the corresponding result for the general case of inductive theorems with
multiple-quantifiers requires considerable additional technical details, which we omit here.

31

Now, by the soundness and completeness of membership equational logic, (19)
is equivalent to

VB € Vp.b(T[B] F (¢1)p, - Tkl F (d1)5) - (20)
Finally, by Proposition 5, (18) implies (20). O

10 The Deduction Theorem for Minimal Logic

In this section we give an example that illustrates how membership equational
logic can be used as a reflective metalogical framework. Our example is a
standard one in metareasoning, namely, the deduction theorem.

The deduction theorem is interesting for several reasons. To begin with,
it is a central metatheorem that holds for Hilbert systems for many logics and
justifies proof under temporary assumption in the manner of a natural deduction
system. Moreover, although relatively simple, it illustrates some subtle aspects
of formal metareasoning. As previously observed, it is a metatheorem that
relates different deduction systems: one in which A — B is proved, and a
second (which is obtained from the first by adding the axiom A) in which B is
proved, in symbols

if l_M[A] B then Fy A— B.

Moreover, since A is an arbitrary formula (as is B), the standard statement of
the deduction theorem is actually a statement about the relationship between
a family of pairs of deduction systems.

10.1 Formalization

Consider the representation of minimal logic in membership equational logic
provided by MINIMAL in Figure 2. Recall that MINIMAL represents minimal logic
in the sense that a formula A is a theorem in minimal logic if and only if A is a
term of sort Theorem in MINIMAL. Consider also the parameter theory MINIMAL-P
introduced in Figure 3, its parameterized extension MINIMAL-DT [MINIMAL-P],
introduced in Figure 4, and its trivial extension by itself, which we will also
denote MINIMAL-P. In addition, let us denote by Vpr the set of parameters
of MINIMAL-P, Vpr = {A4A, BB}, and by Xpr its set of variables, Xpr =
{A, B,C}. Recall that MINIMAL-DT [MINIMAL-P] represents the family of logics
that consists of all extensions of minimal logic with a new axiom in the sense
that a formula B is a theorem in minimal logic extended with a new axiom A
if and only if B is a term of sort Theorem in the corresponding instantiation of
MINIMAL-DT [MINIMAL-P]. Note that MINIMAL-P and MINIMAL-DT [MINIMAL-P]
are in the class Pymymmr-p of theories parameterized by MINIMAL-P for Pyrymuar-p
as defined in Section 5. Finally, let SIG-MINIMAL denote the signature of
MINIMAL, and let AX-MINIMAL-P denote the axioms of MINIMAL-P. Note that
AX-MINIMAL-P is the union of Mb({AA, BB}) and the set of axioms E formed
by the three membership axioms formalizing the axiom schemata K and S and
the rule modus ponens.

32

The deduction theorem can then be expressed as a metatheoretic statement
relating the initial models of all the different instantiations of MINIMAL-DT [MINIMAL-P]
and MINIMAL-P as follows:

VB S VMINIMAL-F.I(MINIMAL'DT [5]) ’: ﬂ(BB) :Theorem —-
T(MINIMAL-P[f]) = B(AA—BB):Theorem. (21)

Using the results of Section 9 we can formalize the above metatheoretic state-
ment as a theorem about meta-ind(MB-META) as follows:

v(m[vmﬂ)) (mc (MINIMAL-P)

1B (MINIMAL-DT [MINIMAL-P], ()
= (

AA—BB: Theorems(mlm*’m)))

— (BB:Theoren .
(22)

Since meta-ind(MB-META) satisfies part (iii) of our third abstract requirement,
(22) implies (21).

10.2 Proof of the Deduction Theorem

We sketch here how we prove (22). To begin with, this formula is equivalent to

V(AA, BB""™). ((wtt AA"" in STG-MINIMAL = true A
wit BB P in STG-MINIMAL = true A

AA""™ : Formula in MINIMAL-P = true A 23)

BB""" : Formula in MINIMAL-P = true)

— (BB"™"' : Theorem in MINIMAL-DT [MINIMAL-P] = true

— (AASBB"™" : Theoren in MINIMAL-P = true))).

We can now prove (23) mirroring the standard proof of the deduction theorem:
induction on the structure of derivations in minimal logic extended with the
axiom A.

First, we apply the reflected version of the induction principle for the sort
Theorem in the parameterized theory MINIMAL-DT[MINIMAL-P], that is, the cor-
responding instance of the inference rule (14), where P is the set formed by the
parameterized theories MINIMAL-DT [MINIMAL-P] and MINIMAL-P, and Tp[P] is
the parameterized theory MINIMAL-DT [MINIMAL-P].'® This reduces proving (23)
to proving the formula given in Figure 7. Notice that the four conjuncts corre-
spond to the cases involved in proving the deduction theorem by induction over

15Since MINIMAL-DT [MINIMAL-P] does not contain any equations, for all theory morphisms
B in Vp, the only equations in MINIMAL-DT[(] are equations of the form eq AA = wu. and
eq BB ='., with u and v/ two arbitrary ground terms in SIG-MINIMAL. Therefore, for all
theory morphisms 3 in Vp and terms ¢, ¢’ in MINIMAL-DT [MINIMAL-P],

MINIMAL-DT[3] -t =t = MINIMAL-P[B] Ft=1¢'.

33

the proof that B is a theorem in minimal logic extended with a new axiom A.
The first formalizes the case when B is A. The next two conjuncts formalize the
cases where B is either an instance of the K or S axiom schemata. The final
conjunct formalizes the case of B being proved by an instance of modus ponens.
Finally, we can apply the equations in MB-META to prove each of the resulting
conjuncts. Given our specification of MB-META, these proofs mirror the proofs of
the corresponding cases in the standard inductive proof of the deduction theo-
rem. For example, the proof of the third conjunct reflects the proof that, for all
formulae D, A, B, and C,

D—>((A—>B)—>((A—>(B—>C))—>(A—>B))) (24)

is a theorem in minimal logic; in particular, this proof mirrors proving (24) by
modus ponens, using the following instance of the S axiom

(A—=B)— (A= (B—C))—(A—=0))
and the following instance of the K axiom

(A—-B)— (A= (B—-0))— (4A—0))]
- D—=[A=B)= (A= (B—=C) = (A=0)]).

11 Discussion and Related Work

In this section, we discuss our general experience in using our approach. We
also consider tradeoffs and limitations, and survey related work.

11.1 Experience

We have used membership equational logic as a reflective metalogical framework
to carry out a number of proofs in formal metatheory based on more sophisti-
cated versions of the deduction theorem for minimal logic. In particular, we have
proved results similar to those of Basin and Matthews [7, 8], who have shown
how metatheorems that are parameterized by their scope of application can be
proved using a theory of parameterized inductive definitions as a metatheory.
For example, they present a generalized version of the deduction theorem that
can be applied to all extensions of the language and axioms of minimal logic.
From their theorem it follows that the deduction theorem holds for the minimal
logic of implication and for all propositional extensions of it, but not necessar-
ily for extensions to modal logics (which would require adding new rules, as
opposed to new axioms). Although membership equational logic is based on a
rather different foundation than those considered in [8], our representation of
the object logic is quite similar and—abstracting away from the details involved
in moving between levels of representation—the basic structure of the proofs is
also similar.

One promising area to apply our results is program transformation and
metaprogramming. From a reflective declarative point of view, programs that

34

V(AA, BB""™).[((wtt AA"" in STG-MINIMAL= true) A
wit BB'P" in SIG-MINIMAL= true) A

AA"™™ : Formula in MINIMAL-P = true) A

(
(
(
(BB""" : Formula in MINIMAL-P = true))
_—

((AA—>AAWDT] : Theorem in MINIMAL-P = true)
N

(V(A,B[XDT]).
((A™"" : Formula in MINIMAL-DT [MINIMAL-P] = true) A

(B""" : Formula in MINIMAL-DT [MINIMAL-P] = true))
—

(AA=(A=(B—A))) """ : Theorem in MINIMAL-P = true))
A

(V(4,B,C""").
(A""™ : Formula in MINIMAL-DT [MINIMAL-P] = true) A

(B""" : Formula in NINIMAL-DT [MINIMAL-P] = true) A

(C™"™ : Formula in MINIMAL-DT [MINIMAL-P] = true))
—

((AA—>((A—>B)—>((A_>(B_,0))_>(A_>C)))){VDT,XDT]
: Theorem in MINIMAL-P = true))

A
(V(A, B™"™).
((A”"™" : Formula in MINIMAL-DT [MINIMAL-P] = true) A

(B""" : Formula in MINIMAL-DT [MINIMAL-P] = true) A

(AA=(A—B) """ : Theorem in NINIMAL-P = true) A

(AA—)A[VDT’XDT] : Theorem in MINIMAL-P = true))
=

(AASB"P**°*) ;: Theorem in MINIMAL-P = true)))].

Figure 7: Goal resulting after induction

35

transform other programs are first-order functions acting on terms that metarep-
resent theories, and the properties that they satisfy are metatheorems, as they
are understood in this paper. This reflective declarative methodology has been
used in [17] to specify polytypic programs like map and cata in Maude. Ac-
cordingly, polytypic programs are specified as metalevel functions that add to
a module the equations defining the desired object function by structural in-
duction over the sort definitions. Properties of polytypic programs, like the
functoriality of map, are then metatheorems that can be proved, as it is shown
in [17], using the corresponding reflected induction rule (Definition 14).

Another area of application is formal metareasoning about semantic relations
between equational specifications. As it is well-known, equational specifications
can be related in different ways, and these relations can be informally formulated
as metatheorems of equational logic. The semantic relations between different
equational specifications are key conceptual tools in the stepwise specification
methodology, and different techniques and criteria have been proposed to met-
alogically prove them [28]. Using membership equational logic as a reflective
metalogical framework, [19] shows that some of these semantic relations can be
formalized as theorems of the universal theory of membership equational logic
and that they can be logically proved in a way that mirrors their corresponding
proofs at the metalogical level.

Here we would also like to comment on our experience in proving these the-
orems and on the issue of managing proofs that combine reasoning at different
levels of reflection. To the working logician or computer scientist, reflective met-
alogical frameworks may seem complicated and not particularly user-friendly,
since there is quite a bit of encoding involved in stating a metatheorem and in
carrying out its proof. In particular, reasoning can involve three or more levels
(object, meta, meta-meta, etc.).!6

In our case, we have been able to avoid many of the practical problems of
working with a reflective hierarchy by exploiting the reflective capabilities of
Maude to build tools and suitable interfaces that hide levels of reflection. As
part of our work, we have built an interface—fully specified in Maude—to in-
teract with the ITP inductive theorem prover [15, 13]. The ITP automatically
extracts from a theory the induction principles for reasoning over its sorts (Def-
inition 7), and (in its metaprover extension) the induction rules that correspond
to reflecting those induction principles at the metalevel when the task at hand
is to prove a metatheorem (Definition 8). Proving an inductive theorem then
amounts to computing a strategy at the meta-metalevel, or at the meta-meta-
metalevel if the theorem is, as in the case of (22), a metatheorem about the
initial model of MB-META. Fortunately, the interface we use hides all these levels
of encoding from the user. Hence the user can actually abstract away many of
the metarepresentation details and focus on the essential structure of proofs of
theorems.

16 Although note that reasoning about a logic encoded as an inductive definition in a logical
framework like Isabelle also involves multiple levels, e.g., the framework’s metalogic, the theory
of inductive definitions, and the object logic. Moreover, there is often an additional language
for writing tactics.

36

11.2 Tradeoffs and Limitations

Our thesis in this paper is that metalogical reasoning based on a metalogic
supporting reflection, initiality, and parameterization, offers an interesting and
effective possibility for formal metatheory. We have given abstract requirements
for a general logic to be a metalogical framework in this sense and have presented
membership equational logic as a nontrivial instance of the proposed approach.

We neither prejudge nor preclude other possibilities. One could use, as an
alternative instance, stronger higher-order metalogics, provided they also sat-
isfy our requirements, perhaps in some weakened, relativized sense. However,
in higher-order settings, both reflection and initiality can be problematic. It
is difficult to be more general and still have initial models.!” There has been
some work on reflection for typed higher-order theories like Nuprl [4, 41, 46]
and the calculus of constructions [64], but results there are difficult and partial.
Difficulties arise in typing a self-interpreter, which is a function that associates
metalevel representations with the object level values they denote, in particular
reasoning about its domain of termination and the types of values it computes.
Combining induction and reflective aspects in higher-order type theories is dif-
ficult and, as far as we know, has not yet been done.

There are, of course, tradeoffs involved and the use of a stronger logic, where
possible, might ease certain kinds of metatheoretic arguments. The tradeoffs are
very similar to those which have been observed when using a logical framework,
as opposed to a metalogical framework. There is a wide spectrum of possi-
ble logical frameworks with different strengths, weaknesses, and domains where
they excel. Although all logical frameworks are (or should be) capable of formal-
izing, in some way, the same consequence relations (as recursively enumerable
sets), there is tension in balancing simplicity, representational flexibility, and
generality against strength and specialization. A stronger metalogic provides
more structure, but this additional structure makes more representational com-
mitments. These commitments may help in formalizing some logics, e.g., for
certain kinds of consequence relations one can directly utilize the properties
of intuitionistic (or linear) implication in the metalogic to formalize structural
properties of the object logic. However this works best for logics whose con-
sequence relations are close to those of the framework logic, and this lack of
flexibility can be problematic when this is not the case (witness the develop-
ment of increasingly specialized metalogics for representing “difficult” object
logics, and the negative results on lack of adequate representations for linear
and relevance logics in LF-style frameworks [31]). Similarly, when carrying out
metatheoretic reasoning, support for, e.g., higher-order abstract syntax is useful
in “internalizing” operations like substitution, equivalence under the renaming
of bound variables, and the like. However, this internalization is problematic if

171n first-order logic, Horn logic with equality is the most general sublogic whose theories
always have initial models [47]. In higher-order logic, the existence of initial models depends
crucially on the notion of model adopted (e.g., set theoretic, domain-theoretic, realizability,
etc.); initiality can usually be achieved if one adopts a categorical logic approach, but generally
not in other cases.

37

one wants to reason, for example, about the names of bound variables.

Membership equational logic provides an alternative way of formalizing op-
erations based on reasoning modulo an equational theory. In this approach,
properties of contexts, sequents, substitutions, quantification, etc., can easily be
incorporated as equational theories. For example, if one needs a sequent (hyper-
sequent, context, etc.) with particular properties, one can simply state them
algebraically. Afterwards, one can use support provided by an implementation
of membership equational logic for reasoning modulo equational theories to in-
ternalize standard operations (e.g., structural reasoning, substitution and bind-
ing operators [75], reduction, etc.) and one can use well-developed equational
reasoning techniques and tools to establish important meta-theoretic properties
of the relevant structure so axiomatized. There are a number of papers docu-
menting the flexibility and power of this approach in the context of rewriting
logic [16, 49, 48, 57, 75, 76, 77].

11.3 Alternative Approaches to Induction

Various approaches have been considered in the past to strengthen logical frame-
works so that they can function as metalogical frameworks. All of these differ
significantly from our proposal both in their logical basis and in the role of
reflection in metareasoning.

One approach is to formalize theories in a framework logic supporting some
notion of module, where each module is explicitly equipped with its own induc-
tion principle. For example, in [6], theories were formalized by collections of
parameterized modules (X-types) within the Nuprl type theory (a constructive,
higher-order logic), and each module included its own induction principle for
reasoning about terms or proofs. This approach is powerful and can be used,
for example, to relate different theories formalized in this way.

An alternative approach is to formalize theories directly using inductive def-
initions in a framework logic or framework theory that is strong enough to
formalize the corresponding induction principles. A simple example of this is
the first-order theory F'Sy of [29], which has been used to carry out experi-
ments in formal metatheory [52]. In F'Sy, inductive definitions are terms in the
framework theory, which has an induction rule for reasoning about such terms.

Another common choice is to formalize theories as inductive definitions in
strong “foundational” framework logics like higher-order logic or set-theory [36,
59], or in a type theory like the calculus of constructions with inductive defi-
nitions [58]. In higher-order logic and set theory one can internally develop a
theory of inductive definitions, where inductive definitions correspond to terms
in the metatheory (e.g., formalized as the least fixedpoint of a monotonic func-
tion) and, from the definition, induction principles are formally derived within
the framework logic. Alternatively, in the calculus of constructions, given an
inductive definition, induction principles are simply added, soundly, to the met-
alogic. Current research in this area focuses on appropriate induction principles
for logics that support higher-order abstract syntax [26, 53, 67].

38

11.4 Alternative Approaches to Reflection

A formal system can be viewed from a logical viewpoint, or from a computational
one. Being reflective makes a formal system particularly flexible and expressive
from both viewpoints. Logically, reflection means that the formal system can en-
code important aspects of its own metalanguage, so that, for example, theories,
proofs, or provability become expressible at the object level. Computationally,
reflection typically means that programs can become data that can be manipu-
lated by other programs (usually called metaprograms) and, furthermore, that
the computational engine executing the programs can be modified and extended
in flexible ways, including ways that can take account of the runtime state of a
computation.

In logic, reflection has been vigorously pursued by many researchers since the
fundamental work of Godel and Tarski (see the surveys [72, 73]). In computer
science it has been present from the beginning in the form of universal Turing
machines. Many researchers have recognized its great importance and usefulness
in programming languages [25, 40, 45, 71, 74, 78, 80], in theorem-proving [3, 11,
32, 38, 42, 51, 63, 69, 81], in concurrent and distributed computation, and in
many other areas such as compilation, programming environments, operating
systems, fault-tolerance, and databases (see [23, 44, 70] for recent snapshots of
research in reflection).

The very success and extension of reflective ideas underscores the need for
conceptual foundations. This need is real enough, because what we have at
present are specific instances of reflection, each explained in terms of the partic-
ular concepts available for it, such as lambda expressions, Horn clauses, Turing
machines, objects and metaobjects, and so on. We need a general theory of
reflection capable of unifying and interrelating all the instances.

Metalogical foundations of reflection that make the particular logic of choice
an easily changeable parameter can be very useful, because we can then capture
in a precise and formalism-independent way the essential features of reflection
that intuitively appear to be shared by quite disparate languages and systems.
In [20], Clavel and Meseguer proposed metalogical axioms for reflection based
on the theory of general logics [54], and explained how reflection in a number
of well-known formal systems such as the lambda calculus, Turing machines
and rewriting logic, as well as reflective phenomena in declarative programming
languages, can be unified and understood in the light of those axioms. The key
axiomatic ideas are centered around the notion of a universal theory, that is, a
theory U that can simulate the metalevel of all other theories in a class C of theo-
ries of interest. In particular, if U is one of the theories in the class C, then U can
simulate its own metalevel at the object level, and this process can be iterated ad
infinitum, giving rise to a “reflective tower.” Although the metalogical axioms
for reflection proposed in [13, 20] are of course closely related to the reflective
ideas at the core of Godel’s incompleteness theorem (see the surveys [72, 73])
the key difference is that in [13, 20] the reflective properties are generalized
along several dimensions by: (1) allowing general notions of metarepresentation
instead of, say, Godel numbering; (2) relating general classes of theories instead

39

of just one or a restricted class of theories; and (3) making the underlying logic
a parameter, instead of relying on standard first- and second-order frameworks.
Also, the intention is much more on characterizing positive uses of reflection, as
opposed to negative impossibility results. In this sense, the uses of set-theory
as a universal theory for formalized mathematics are much closer to our goals
and intentions than the work on incompleteness. The difference with set theory,
which can indeed be viewed as a universal theory in our sense, is that we do not
insist on a single universal theory for everything. Instead, the focus is on in-
vestigating and characterizing universal theories for different logics, particularly
for computational ones such as equational, Horn, rewriting logic, and lambda
calculi. In the context of computational logics, the axioms in [13, 20] are also
useful for supporting essential distinctions between reflective artifacts such as
metacircular interpreters, and the metalogical properties that such artifacts may
satisfy only in part.

Of course, reflective phenomena exhibit different degrees of reflection, in
that some languages may choose to represent only certain metalevel aspects
of interest, and may do so in weaker or stronger ways. Thus, in a weaker
axiomatization, a universal theory may not belong to the class of theories that it
represents, so that the full power of having a reflective tower is lost. For example,
the untyped A-calculus is reflective in the strong sense of expressing its own
universal theory and admitting a tower, whereas typed A-calculi typically have
eval functions that, although terminating, cannot be typed in the given type
discipline; this yields a weaker form of reflection that requires either relaxing the
type discipline or putting bounds on the reflective computations (see [63] for a
careful treatment of this problem for the calculus of constructions, and [42, 3, 24]
for the treatment of reflection in Nuprl’s constructive type theory).

Reflective phenomena also differ with respect to which metalevel aspects are
represented. For example, theories, the entailment relation, the notion of proof,
and inductive reasoning are different metalevel aspects which can be potentially
metarepresented in a reflective logic. In a weaker axiomatization, only the
entailment relation, holding between the axioms of a theory and the theorems
it proves, may be represented. With stronger axioms, the actual proof calculus
of the logic, which associates to each object theory a “structure” of proofs that
use axioms of that theory as hypotheses, may be represented as well (see [54] for
axiomatic definitions of entailment system and proof calculus, and its related
notion of proof subcalculus, in the theory of general logics). In the same spirit,
Section 3.2 includes an even stronger axiomatization to formalize a different
reflective property, namely, the capacity of a logic to represent at the object-
level the induction principles for reasoning about its object theories, and uses
this formalization to clarify the interrelationship between logical and metalogical
frameworks, and the roles of induction, reflection, and parameterization as key
ingredients for turning a logical framework into a metalogical one.

The gradation of strength in the reflective axioms provides formalism-independent
criterion to understand and compare the reflective power exhibited by different
logics and declarative languages, even when the corresponding formalisms differ
greatly from each other. To this end, [13] provides increasingly stronger axiom-

40

atizations to formalize the notions of reflective entailment systems (Definition 6
in this paper), reflective proof calculus, and reflective proof subcalculus, and
uses those formalizations to axiomatize the notions of reflective declarative lan-
guages and of metainterpreters for declarative programming languages. These
axiomatizations use the notion of a program that is universal for the set of pro-
grams of the language but only relative to the proof subcalculus corresponding
to the language’s operational semantics'®.

12 Conclusion

We have presented a new approach to metatheoretic reasoning in terms of ab-
stract requirements based on reflection, initiality, and parameterization, and we
presented a concrete instance of a metalogic that satisfies these requirements.
Our initial theorem proving experiments demonstrate that the machinery for
reflective deduction in membership equational logic provides a rich foundation
for formalizing and proving metatheorems. These experiments show, for ex-
ample, that one can prove metatheorems similar to those provable in logical
frameworks based on parameterized inductive definitions, and that one has con-
siderable flexibility in moving between theories and proving theorems that re-
late theories or establish properties of parameterized classes of theories. In
essence, we can do this because the requirements that such metatheorems pose
on the metatheory—mnamely, that one can build families of sets using parame-
terized inductive definitions and that one can reason about their elements by
induction—are realizable in membership equational logic using reflection.

There are a number of directions for further work. One concerns generalizing
our notion of a parameterized membership equational theory and of its instanti-
ations. Currently we can reason at the metalevel about families of theories that
are parameterized by sets of new constants (that stand for parameters), and
by sets of new axioms, which may make use of the new constants. For prov-
ing other metatheorems it would be useful to develop a more general notion
of parameterization, where one could reason at the metalevel about families of
theories that are parameterized by arbitrary sets of new sorts, function symbols,
and axioms. In particular, this would allow us to prove metatheorems involving
the more general parameterized modules of Full Maude [14, 27].

Also, our example illustrates how it is possible to carry out proofs similar to
those possible in stronger framework logics. However, it would be interesting to
have a more formal comparison of the relative strengths of membership equa-
tional logic with reflection versus stronger metalogics like higher-order logic or

18There is a long tradition of metacircular interpreters and metaprogramming in Prolog,
as shown in the papers collected in [1, 12, 61, 30, 5], and the references there. This work
strongly suggests that a more declarative variant of Prolog can be made reflective in the sense
of Definition 6. A systematic effort to carefully represent metalevel concepts and to give a
declarative semantics for Horn logic interpreters using a typed version of the logic has been
undertaken by Hill and Lloyd [39]; their work seems a good basis for defining and proving
correct a universal theory for Horn logic. A universal theory for Horn logic with equality is
discussed in [22].

41

set theory. For example, it would be quite useful to compare in more detail the
ideas presented here with the inductive reasoning principles for higher-order en-
codings developed by Schiirmann in [66, 65] and added to the Twelf system [62],
and also to compare experimental results on how meta-theoretic properties re-
quiring inductive reasoning can be established in both approaches. Finally,
related to this is the question of how easy it is to reflect induction principles
other than structural induction, e.g., induction over an arbitrary, user-definable
well-founded order.

Acknowledgments

We thank Narciso Marti-Oliet and Miguel Palomino for their careful reading of
a draft of this paper and their detailed suggestions for improving the exposition.
We also thank the anonymous referees for their helpful comments and urging
us to find a more abstract framework for presenting our ideas.

References

[1] H. Abramson and M. Rogers, editors. Metaprogramming in Logic Program-
ming. MIT Press, 1989.

[2] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor,
Handbook of Mathematical Logic, pages 739-782. North-Holland, Amster-
dam, 1977.

[3] W. E. Aitken, R. L. Constable, and J. L. Underwood. Metalogical frame-
works II: Developing a reflected decision procedure. Journal of Automated
Reasoning, 22(2(2)):171-221, 1999.

[4] S. F. Allen, R. L. Constable, D. J. Howe, and W. am E. Aitken. The
semantics of reflected proof. In Symposium on Logic in Computer Science.
Computer Society Press of the IEEE, 1990.

[5] K. Apt and F. Turini, editors. Meta-Logics and Logic Programming. Logic
Programming Series. MIT Press, 1995.

[6] D. Basin and R. Constable. Metalogical frameworks. In G. Huet and
G. Plotkin, editors, Logical Environments, pages 1-29. Cambridge Univer-
sity Press, 1993.

[7] D. Basin and S. Matthews. Scoped metatheorems. In Second International
Workshop on Rewriting Logic and its Applications, volume 15 of Electronic
Notes in Theoretical Computer Science, pages 1-12. Elsevier, 1998.

[8] D. Basin and S. Matthews. Structuring metatheory on inductive definitions.
Information and Computation, 162(1-2):80-95, October/November 2000.

42

[9]

[19]

D. Basin and S. Matthews. Logical frameworks. In D. Gabbay and F. Guen-
thner, editors, Handbook of Philosophical Logic, 2nd. Edition, volume 9,
pages 89-164. Kluwer Academic Publishers, Dordrecht, 2002.

A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in
membership equational logic. Theoretical Computer Science, 236:35-132,
2000.

R. S. Boyer and J. S. Moore. Metafunctions: Proving them correct and
using them efficiently as new proof procedures. In R. S. Boyer and J. S.
Moore, editors, The Correctness Problem in Computer Science, pages 103—
185. Academic Press, 1981.

M. Bruynooghe, editor. Proc. Second Workshop on Meta-programming in
Logic. K. U. Leuven, 1990.

M. Clavel. Reflection in Rewriting Logic: Metalogical Foundations and
Metaprogramming Applications. CSLI Publications, 2000.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and
J. F. Quesada. Maude: Specification and programming in rewriting logic.
Theoretical Computer Science, 285(2):187-244, 2002.

M. Clavel, F. Duréan, S. Eker, and J. Meseguer. Building equational proving
tools by reflection in rewriting logic. In K. Futatsugi, A. T. Nakagawa, and
T. Tamai, editors, CAFE: An Industrial-Strength Algebraic Formal Method,
pages 1-31. Elsevier, 2000.

M. Clavel, F. Duran, S. Eker, J. Meseguer, and M.-O. Stehr. Maude as a
formal meta-tool. In J. Wing and J. Woodcock, editors, FM’99 — Formal
Methods, volume 1709 of Lecture Notes in Computer Science, pages 1684—
1703. Springer-Verlag, 1999.

M. Clavel, F. Duran, and N. Marti-Oliet. Polytypic programming in Maude.
In K. Futatsugi, editor, Third International Workshop on Rewriting Logic
and its Applications, volume 36 of Electronic Notes in Theoretical Computer
Science, pages 339-360. Elsevier, 2000.

M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude.
In J. Meseguer, editor, First International Workshop on Rewriting Logic
and its Applications, volume 4 of FElectronic Notes in Theoretical Computer
Science, pages 65—89. Elsevier, 1996.

M. Clavel, N. Marti-Oliet, and M. Palomino. Formalizing and proving se-
mantics relations between specifications by reflection. Manuscript, Univer-
sidad Complutense de Madrid, http://www.ucm.es/info/dsip/clavel,
April 2003.

43

[20]

[21]

22]

[26]

[27]

[28]

M. Clavel and J. Meseguer. Axiomatizing reflective logics and languages.
In G. Kiczales, editor, Proceedings of Reflection’96, pages 263—-288, San
Francisco (California), April 1996. Xerox PARC.

M. Clavel and J. Meseguer. Reflection in conditional rewriting logic. The-
oretical Computer Science, 285(2):245-288, 2002.

M. Clavel, J. Meseguer, and M. Palomino. Reflection in membership equa-
tional logic, many-sorted equational logic, Horn logic with equality, and
rewriting logic. In F. Gadducci and U. Montanari, editors, Fourth Inter-
national Workshop on Rewriting Logic and its Applications, volume 71 of
Electronic Notes in Theoretical Computer Science, pages 63-78. Elsevier,
2002.

P. Cointe, editor. Proc. Reflection’99, volume 1616 of LNCS. Springer-
Verlag, 1999.

R. L. Constable. Using reflection to explain and enhance type theory. In
H. Schwichtenberg, editor, Proof and Computation, volume 139 of Com-
puter and System Sciences, pages 109-144. Springer-Verlag, 1995.

F.-N. Demers and J. Malenfant. Reflection in logic, functional and object-
oriented programming: a short comparative study. In Proc. IJCAI’'95 —
Workshop on Reflection and Metalevel Architectures and their Applications
in Al pages 29-38, 1995.

J. Despeyroux, F. Pfenning, and C. Schiirmann. Primitive recursion for
higher-order abstract syntax. In Proceedings of the 3rd International Con-
ference on Typed Lambda Calculi and Applications (TLCA’97), volume
1210 of Lecture Notes in Computer Science, Nancy, France, April 1997.
Springer-Verlag.

F. Durdn. A Reflective Module Algebra with Applications to the Maude
Language. PhD thesis, University of Malaga, 1999.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1, volume 6
of EATCS Monographs on Theoretical Computer Science. Springer-Verlag,
1985.

S. Feferman. Finitary inductively presented logics. In Logic Colloguium
’88. North-Holland, 1988.

L. Fribourg and F. Turini, editors. Logic Program Synthesis and
Transformation—Meta-programming in Logic, volume 883 of LNCS.
Springer-Verlag, 1994.

P. Gardner. Representing logics in type theory. PhD thesis, University of
Edinburgh, 1992. Also published as ECS-LFCS-92-227.

44

[32]

[44]
[45]

F. Giunchiglia, P. Traverso, A. Cimatti, and P. Pecchiari. A system for
multi-level reasoning. In IMSA’92 — International Workshop on Reflec-
tion and Meta-Level Architecture, pages 190-195. Information-Technology
Promotion Agency, Japan, 1992.

J. Goguen and R. Burstall. Introducing institutions. In E. Clarke and
D. Kozen, editors, Logic of Programming Workshop, volume 164 of Lecture
Notes in Computer Science, pages 221-256. Springer-Verlag, 1984.

J. Goguen and R. Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the ACM, 39(1):95-146, 1992.

J. Goguen and J. Meseguer. Models and equality for logical programming.
In H. Ehrig, G. Levi, R. Kowalski, and U. Montanari, editors, Proceedings
TAPSOFT’87, volume 250 of Lecture Notes in Computer Science, pages
1-22. Springer-Verlag, 1987.

M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
J. ACM, 40(1):143-184, January 1993.

J. Harrison. Metatheory and reflection in theorem proving: a survey and
critique. Technical Report CRC-053, SRI Cambridge, Cambridge UK, 1995.

P. Hill and J. Lloyd. Analysis of meta-programs. In H. D. Abramson and
M. H. Rogers, editors, Meta-Programming in Logic Programming, pages
23-52. MIT Press, 1989.

P. Hill and J. Lloyd. The Godel Programming Language. MIT Press, 1994.

D. J. Howe. Computational metatheory in Nuprl. In 9th International
Conference On Automated Deduction, pages 238257, Argonne, Illinois,
1988.

D. J. Howe. Reflecting the semantics of reflected proof. In P. Aczel, H. Sim-
mons, and S. Wainer, editors, Proof Theory, pages 229-250. Cambridge
University Press, 1990.

J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury,
E. Meijer, and T. Sheard, editors, Proc. Second Int. Summer School on Ad-
vanced Functional Programming Techniques, volume 1129 of LNCS, pages
68-114. Springer-Verlag, 1996.

G. Kiczales, editor. Proc. Reflection’96. Xerox PARC, 1996.

G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, 1991.

45

[46]

T. B. Knoblock and R. L. Constable. Formalized metareasoning in type
theory. In Proc. of the First Annual Symp. on Logic in Computer Science.
IEEE., 1986.

J. J. A. Makowsky. Model theoretic issues in theoretical computer science,
part I: Relational data bases and abstract data types. In Logic Colloquium
’82, pages 303-343, Florence Italy, 1984. North Holland.

N. Marti-Oliet and J. Meseguer. General logics and logical frameworks.
In D. Gabbay, editor, What is a Logical System?, pages 355-392. Oxford
University Press, 1994.

N. Marti-Oliet and J. Meseguer. Rewriting logic as a logical and seman-
tic framework. In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, 2nd. Edition, pages 1-87. Kluwer Academic Publish-
ers, 2002. First published as SRI Tech. Report SRI-CSL-93-05, August
1993.

N. Marti-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliogra-
phy. Theoretical Computer Science, 285:121-154, 2002.

S. Matthews. Reflection in logical systems. In Smith and Yonezawa [70],
pages 178-183.

S. Matthews, A. Smaill, and D. Basin. Experience with FSy as a framework
theory. In G. Huet and G. Plotkin, editors, Logical Environments, pages
61-82. Cambridge University Press, 1993.

R. McDowell and D. Miller. A logic for reasoning with higher-order abstract
syntax. In Twelfth Annual IEEE Symposium on Logic in Computer Science,
June 1997.

J. Meseguer. General logics. In H.-D. Ebbinghaus et al., editor, Logic
Collogquium’87, pages 275—-329. North-Holland, 1989.

J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73-155, 1992.

J. Meseguer. Membership algebra as a semantic framework for equational
specification. In F. Parisi-Presicce, editor, Proceedings of WADT’97, vol-
ume 1376 of Lecture Notes in Computer Science, pages 18-61. Springer-
Verlag, 1998.

J. Meseguer. Research directions in rewriting logic. In U. Berger and
H. Schwichtenberg, editors, Computational Logic, NATO Advanced Study
Institute, Marktoberdorf, Germany, July 29 - August 6, 1997 Springer-
Verlag, 1998.

46

[58]

[65]

[66]

C. Paulin-Mohring. Inductive Definitions in the System Coq — Rules and
Properties. In M. Bezem and J.-F. Groote, editors, Proceedings of the
conference Typed Lambda Calculi and Applications, volume 664 of Lecture
Notes in Computer Science, 1993. LIP research report 92-49.

L. C. Paulson. A fixedpoint approach to implementing (co)inductive defi-
nitions. In Proceedings of the 12th International Conference on Automated
Deduction (CADE-12), volume 814 of Lecture Notes in Artificial Intelli-
gence, Nancy, France, June 1994. Springer-Verlag.

L. C. Paulson. Isabelle : a generic theorem prover; with contributions by
Tobias Nipkow, volume 828 of Lecture Notes in Computer Science. Springer,
Berlin, 1994.

A. Pettorossi, editor. Proc. Third Workshop on Meta-programming in
Logic, volume 649 of LNCS. Springer-Verlag, 1992.

F. Pfenning and C. Schiirmann. System description: Twelf — a meta-
logical framework for deductive systems. In H. Ganzinger, editor, Proceed-
ings of the 16th International Conference on Automated Deduction (CADE-
16), volume 1632 of LNAI, pages 202-206. Springer-Verlag, 1999.

H. RueB. Formal Meta-Programming in the Calculus of Constructions. PhD
thesis, Universitdt Ulm, Germany, 1995.

H. Ruefl. Computational reflection in the calculus of constructions and
its application to theorem proving. In R. Hindley, editor, Proceedings for
the Third International Conference on Typed Lambda Calculus and Appli-
cations (TLCA’97), Lecture Notes in Computer Science, Nancy, France,
April 1997. Springer-Verlag.

C. Schiirmann. Automating the Meta Theory of Deductive Systems. PhD
thesis, Carnegie Mellon University, 2000. Also published as CMU-CS-00-
146.

C. Schiirmann. A type-theoretic approach to induction with higher-order
encodings. In Proceedings of Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR 2001), volume 2250 of Lecture Notes in Computer
Science, pages 266—281. Springer, 2001.

C. Schiirmann and F. Pfenning. Automated theorem proving in a simple
meta-logic for LF. In C. Kirchner and H. Kirchner, editors, Proceedings
of the 15th International Conference on Automated Deduction (CADE-15),
volume 1421 of Lecture Notes in Computer Science, pages 286-300, Lindau,
Germany, July 1998. Springer-Verlag.

D. Scott. Completeness and axiomatizability in many-valued logic. In
L. H. et al., editor, Proceedings of the Tarski Symposium, pages 411-435.
American Mathematical Society, 1974.

47

[69]

[70]

[71]

N. Shankar. Metamathematics, Machines, and Gddel’s Proof. Cambridge
University Press, 1994.

B. Smith and A. Yonezawa, editors. Proc. IMSA’92 — International Work-
shop on Reflection and Meta-Level Architecture. Information-Technology
Promotion Agency, Japan, 1992.

B. C. Smith. Reflection and semantics in Lisp. In Proc. POPL’8/, pages
23-35. ACM, 1984.

C. Smorynski. The incompleteness theorems. In J. Barwise, editor, Hand-
book of Mathematical Logic, pages 821-865. North-Holland, 1977.

R. M. Smullyan. Diagonalization and Self-Reference. Oxford University
Press, 1994.

G. L. Steele, Jr. and G. J. Sussman. The art of the interpreter or, the
modularity complex. Technical Report AIM-453, MIT Al-Lab, 1978.

M.-O. Stehr. CINNI — A generic calculus of explicit substitutions and its
application to A-, ¢- and w-calculi. In K. Futatsugi, editor, Third Inter-
national Workshop on Rewriting Logic and its Applications, volume 36 of
Electronic Notes in Theoretical Computer Science, pages 71-92. Elsevier,
2000.

M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic. In
Proc. of LEM’99: Workshop on Logical Frameworks and Meta-languages,
Paris, France, 1999. http://www.cs.bell-labs.com/ " felty/LFM99/.

M.-O. Stehr, P. Naumov, and J. Meseguer. A proof-theoretic ap-
proach to the HOL-Nuprl connection with applications to proof transla-
tion. Manuscript, SRI International, http://www.csl.sri.com/"stehr/
fi_eng.html, February 2000.

V. F. Turchin. The concept of a supercompiler. ACM Transactions on
Programming Languages and Systems, 8(3):292-325, 1986.

M. van Emden and R. Kowalski. The semantics of predicate logic as a
programming language. J. ACM, 23:733-42, 1976.

M. Wand and D. P. Friedman. The mystery of the tower revealed. Lisp
and Symbolic Computation, 1(1):11-38, 1988.

R. W. Weyhrauch. Prolegomena to a theory of mechanized formal reason-
ing. Artificial Intelligence, 13:133-170, 1980.

48

A Soundness Theorem

In the proof of our main theorem we will use the following two propositions
about the Boolean function (wft _in _) in MB-META.

Proposition 8 For all membership equational signatures Q0 and terms t in
To(X), o
MB-META + (wft ¢ in) = true.

Proposition 9 For all membership equational signatures Q and ground terms

u in MB-META, if B
MB-META - (wft v in) = true,

then there is a ground term t in Tq such that, t = u.

We now prove two propositions that we will use in our proof of the main
theorem.

Proposition 10 For P = (Q® V,EU Mb(V)) a parameter theory in Pp, with
Mb(V) = {v1 : $1,...,0n : su}, for all ground substitutions h, h : V' —
[Term], such that

MB-META |k~ h(E U Mb(V)),
there is a theory morphism 8 € Vp, f: P — Q, Q = (Q®V, EU Eq(V)), such
that 3 is the ground substitution h.
Proof First, by the definition of substitution application,

hEU M) ")
_ h(v—lw(n,v) A A mw(n,w A Wza(P,(z)) A-er A mE(P,@))
= (hEVEV) A A R@YOV) A RETTSTEEO) A A BT).

C(P)

Now, by the definition of substitution application, for 1 < i < n,
h(@¥ V) = (h(wft 7'V in Q) = true)
= (wft h(7;"")) in O= true).

Note that, by Proposition 9, using completeness of membership equational logic,
and the fact that (77" is a ground atomic formula, if

MB-META |~ h(7;"W“")

then there is a ground term t; € T such that ¢; = h(7;'"!). Hence, by the
definition of substitution application, for 1 < i < n,
h(v;75;57")
= (W(®"":5 in P
= (h(@m¥):sin (Q @
= (#;:35in (Q@V,E eqvy =*t.---eq 0, =1,.)= true).

Let Q = Q@ V,EU{vy =t1,...,0, = t,}). Note that, by Proposition 1, using
completeness of membership equational logic, and the fact that h(7;75;°?) is
a ground atomic formula, if

MB-META |~ h(v;:5;°7%)

then @ F ¢;:s;. Finally, let 3 be the theory morphism 3 € Vp, 8: P — Q,
such that, for 1 <4 <n, (v;)g = t;. By definition, § is the ground substitution
h. a

Proposition 11 Let P = (Q& V,EU Mb(V)) be a parameter theory in Pp,
and let {To[P], T1[P],...,Tk[P]} be a finite multiset of parameterized theories
in Pp that satisfies the following property: for all theory morphisms B in Vp,
G:P — Q, and terms t and t' in Togyv (X), for 1 <1<k,

To[BlFt=t =T[Brt=t". (25)

For all ground atomic formulae ¢ € sen(Ti[P]), 1 <1 < k, parameters v € V,
and terms t, t' in Tagev(X) of the same kind as v, if

Bl Ft=1t, (26)

then

B(T[8],0 B(T;[B],0)

MB-META b~ (¢(v — 1))5 ' = MB-META I~ (¢(v — t'))5 (27)

Proof By soundness and completeness of membership equational logic, and

the fact that

B(T;[B],0) B(T;[B],0)

(6(t)s and (¢(t'))s
are both ground atomic formulae, (27) is equivalent to

B(Ty[8],0 B(T;[8],0)

MB-META I ((£))5 " = MB-META + ($(¥))5

Let ¢ = (u:s) (similarly for ¢ = (u = u')). By definition,

(@(t)s

Thus, by Proposition 1,

B(Ty[8],0)

— ((u(D)s : 5 in Ti[F]= true).

MB-META F(u(t))g ¢ § in T;[f]= true

holds if and only if T;[5] F (u(t))s: s also holds. However, assuming (25) and
(26), by Remark (5), this holds if and only if T[5] F (u(t'))s: s holds as well.
But, by Proposition 1, T;[5] F (u(t'))s:s holds if and only if

MB-META F(u(t'))s ¢ § in T;[3]= true,

and, by definition,

(o(t"))s

B(T;[8],0)

= ((u(t'))p ¢ 5 in T;[f]= true).

50

Theorem 2 Let P = (Q@V, EUMb(V)) be a parameter theory in Pp, with Q =
(K, %, S), and let {Ty[P], T1[P], ..., Tk[P]} be a finite multiset of parameterized
theories in Pp that satisfies the following property: for all theory morphisms (3
inVp, B: P — Q, and terms t and t' in Togv(X), for 1 <1<k,

TflFt=t =Tp)rt=1t".

Let To[P] = Q@ V,E U Gy U Mb(V)), let s be a sort in some Sk, and let
Cinyip),s) = 1C1, ..., Cn} be those sentences in (E U Go) specifying the sort s,
i.e., those C; of the form

V(l’l,...,.%'pi).Al/\.../\Aqi:>A0, (28)

where, for some term t of kind k, Ay is t:s. Finally, for all sentences C; in
(E U Gy) of the form (28), let X; be the set of variables {x1,...,xp,}, where
XinXZaeV)=0.

Then for all finite multisets of ground atomic formulae {¢1,..., o} with
¢ € sen(Ti[P]), 1 <1 < k, parameters v; € V, Boolean expressions b, and
first-order formulae T(7;11) of the form

c(P)

YV {uh) - (EUMb(V)
— (mB(To[P]@) — (b(aB(Tl[P]’w)7 o ’@Buﬂk[lz’]vm))))) ,

with free variable 7,11 of the kind [Term], if

C(P)

MB-META WV (EUMb(V)" = (W1 A...A)), (29)

then

MB-META p~ Vo;'" .7 (7;1")) (30)
where, for 1 < i < n and C; in (EUGy) of the form (28), ¢; is defined as in
Definition 8.
Proof (29) implies that for all ground substitutions h, h : VY — [Term],

C(P)

MB-META I~ h(E U Mb(V) = (Y1 A...APp)).

By Propositions 7 and 6, this in turn implies that, for all theory morphisms

/6 € VPa ﬂ P — Qa
MB-META p~ B(1 A ... Aty,). (31)

Observe that by the definition of substitution application, (31) implies that for
1<i<mnandC;in (FUGjy) of the form (28),

MB-META 2 V(700 ..., 7). (A1) A . A B(Ag]r) = BllAol)

Now notice that proving (30) is equivalent to proving that for all ground sub-
stitutions h, h : v [Term], such that

Cc(P)

MB-META [~ h(E U Mb(V) A 7;:85(T0lP10),

o1

it holds that er Lo mer P
MB-META [~ h(b(gy % G)
By Proposition 10, this can be reduced to proving that for all theory morphisms

B8 €Vp, B: P — @, such that

MB-META p~ B(v;755 01719, (32)
it holds that
MB-META ~ B(b(d1(vi) " ()). (33)
Notice that, by the definition of substitution application, (33) is equivalent to
MB-META ~ b(B(dr(vs)) Blak(o)), (34)

where, for 1 < 1 < k and ¢; = (¢; :) (similarly for ¢; = (¢, = t])), by
Propositions 3 and 4, and by Remark (4),

Blen(vi)) =

B(T;(P).0) —B(7,(P).0)

ti(vi): s

~—

= (Bti(v;)) :5 in B(T)[P])= true)
= ((ti(vy))p ¢ 5 in T}[B]= true)
= ((ti((vi)p))p * 31 in T}[B]= true)
— Go))s B(Ty(8],0)
= @@eys "
Thus, (34) is equivalent to
MB-META |~ b(mB(lew)a - ’mswkwm)) .

Notice also that, by Proposition 5, (32) is equivalent to Tp[0] F (v;):s. Recall
now that (v;)s can be any ground term ¢ in T. Thus, to complete the proof
we show that for all terms ¢ in Tagy (X) that have sort s in Tg[g], if (31) holds,
then

Ty B(T118],0 TN B(Tk[81,0)

MB-META ~ b((¢1(1))5 L (D)s), (35)

also holds. We prove this by induction on the proof that ¢ has sort s in Tp[3].
Let C; be a sentence in Tp[F] of the form

V(z1,. .y 2p,) AN N Ay, = WS,

and let o be a substitution, o : X; — T(X),! such that

19Note that we do not have to consider substitutions o’ : X; — Tagv (X), since, for all
such substitutions, if To[B] F t = o’(w), then there is a substitution o : X; — T (X), with
o(x) = (0'(x))g, for all z € X;, such that, by Remark (5), T[] F t = o(w), and, more
generally, for all atomic formulae ¢,

To[B] o' (¢) <= To[B] - o(¢) -

92

e TH[0l Ft =0(w), and
o TH[Bl F o(4A;), for 1 < j <g,.

Let @ be the ground substitution, & : Yi[x” — [Term], where for all z € X,
7(z™) = o(z). Note that for all terms t € Togv (X;),

o) = 7(0)
Since C; is a sentence in (E U Gyp), by (31), we have that
MB-META P~ (B([A1]7)) A ... AT(B([Ag,])-)) = (
where, by the definition of substitution application,
a(B([w:s]r)) = TF(B(b(g1(w) - (W)
= b(@(B(¢1(w)) -+, 7 (B(dn(w))

and, for 1 <! < kand ¢; = (t;:5;) (similarly for ¢; = (t; = t})), by the definition
of substitution application, Propositions 3 and 4, and Remark (36),

v (36)

=

([w:s]7)), (37)

B(T1[P],X;) B(Ty, [P, X;)

)

B(T1[P],X;) B(Ty[P], X;)

B(Ty[P],X;) B(Tz [P],X;)

7(B(du(w)) = o(Bti(w):s))
= (BHw) "+ 5 in TIP] = tue))
= @@Btw) ") 5 in BTP])= true)
= @(WW))s ")+ 5 in T[F]= true)
= (o((t:(w))p) : 5 in Ti[5]= true)
= ((t(o(w)))p 2 57 in Ti[3]= true)>
= (Wlo))ss 7
= Gl 7.

Notice then that, by Proposition 11, using the initial assumption Ty[8] F ¢ =
o(w), (35) holds if and only if

MB-META ~ &(B([w:s],)).
Therefore, given (37), we can reduce proving (35) to proving that, for 1 <
j < qis o
MB-META b= 7(B([4;],))
We proceed by cases:

20By the definition of substitution application, given the assumptions that ¢; is a ground
term, o is a substitution, o : X; — T (X), and S is a theory morphism B €V, : P — Q.
Recall that, for all terms ¢ € Tog v (X), considering the equations Eq(V) = {v; =t; | v; € V}
in Q, we denote by tg the term in To(X) that results from replacing each v; (if any) in ¢ with
the ground term ¢; in Tq.

93

o A; =u:s. By the definition of substitution application,

7B(u:sl) = FBO@ @) " e w)” T Y))
— T B(T1[P],X;) — /T 7 N B(T[Pl,X;)

= b(@(B(d1(u))5, (B(n(u))

and, for 1 < [< k and ¢; = (t; : §;) (similarly for ¢, = (¢ = ¢])),
by the definition of substitution application, Propositions 3 and 4, and
Remark (36),

N

B(T;[P],X;) B(Ty[8],0)

7 (B(u(u)) = (dulo(w))s)

(The proof is analogous to the one above.) From the assumption Ty[3] -
o(u):s, we can use the induction hypothesis to obtain the desired result.

o Aj =u:s', s’ # s (similarly for A; = (u = u’)). By the definition of
substitution application, Propositions 3 and 4, and Remark (36),

o(B([u:s')) = F(Bs" ")

Blo()") : & in B(To[B]")= true)

From the assumption Tp[0] F o(u) : ¢/, To[0] F (o(uw))s : s follows by
Remark (5). Hence we can apply Proposition 5 to obtain the desired
result.

o4

