
Decentralized Composite Access Control

Petar Tsankov, Srdjan Marinovic, Mohammad Torabi Dashti, and David Basin

Institute of Information Security, ETH Zurich
{ptsankov,srdanm,torabidm,basin}@inf.ethz.ch

Abstract. Formal foundations for access control policies with both
authority delegation and policy composition operators are partial and
limited. Correctness guarantees cannot therefore be formally stated and
verified for decentralized composite access control systems, such as those
based on XACML 3. To address this problem we develop a formal pol-
icy language BelLog that can express both delegation and composition
operators. We illustrate, through examples, how BelLog can be used to
specify practical policies. Moreover, we present an analysis framework for
reasoning about BelLog policies and we give decidability and complexity
results for policy entailment and policy containment in BelLog.

1 Introduction

We present the first formal language for specifying and reasoning about decen-
tralized composite access control policies, which are policies that require both
authority delegation and policy compositions. Below, we illustrate these con-
cepts, and motivate the need for their formal study.

Consider a simple grid system. The grid owner allows privileged clients to issue
access control policies for the grid’s storage space by delegating the authority
over the storage resources to them. Privileged clients issue policies, and may
also further delegate this authority. To decide who can access storage resources,
the grid owner composes the collected policies using different composition op-
erators, such as permit-override (permit if at least one client grants access),
majority voting (permit if most clients grant access), etc. This example demon-
strates how modern access control systems require both authority delegation and
policy composition features, hence going beyond composition-only systems, e.g.
those based on XACML 2, and delegation-only systems, such as KeyNote 2 [1].
Real-world examples include grid resource sharing systems [2], electronic health
record management [3] and highly distributed Web services [4]. To cater for
such decentralized composite access control systems, the industry has recently
released the XACML 3 standard.

The need for a formal foundation is evident: Without it, one cannot precisely
define how existing and future decentralized composite access control systems
should behave (e.g. the ones built upon XACML 3 implementations). Further-
more, formal guarantees about the correctness of decentralized composite poli-
cies, e.g. by answering policy entailment and containment questions, cannot be
derived. The existing formal access control languages fall short in this regard.

M. Abadi and S. Kremer (Eds.): POST 2014, LNCS 8414, pp. 245–264, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

246 P. Tsankov et al.

They either express authority delegation or policy composition, but not both
together; see the related work.

Contributions. We are the first to address the problem of formally specifying
and reasoning about decentralized composite policies. We develop a novel logic
programming language, dubbed BelLog, for constructing decentralized com-
posite policy languages. BelLog is an extension of Datalog [5], where the truth
values come from Belnap’s four-valued logic [6]. All delegation languages based
on Datalog can therefore be mapped to BelLog. Furthermore, BelLog is more
expressive than the existing multi-valued policy algebras, such as PBel [7] and
PTaCL [8].

Through examples, we illustrate how decentralized composite policies can
be encoded in BelLog. We also present syntactic extensions of BelLog that
ease the specification of common policy composition and authority delegation
idioms, for instance: permit-override, only-one-applicable, agreement, hand-off
trust application, transitive delegation, etc.

We present a policy analysis framework for verifying policies written in Bel-
Log, and demonstrate how different policy analysis questions are used to reason
about a policy’s behavior in some or all system configurations. We show that
verifying BelLog policies for a given system configuration is in ptime, and
verification for all possible system configurations of a finite domain of subjects
and objects is in co-np-complete. We furthermore identify a useful fragment
of BelLog where verification for all possible system configurations for infinitely
many subjects and objects belongs to co-nexp.

Finally, BelLog can be used as a four-valued logic programming language for
reasoning with inconsistent and incomplete knowledge. BelLog and its decision
procedures are therefore of independent interest.

Related Work. The closest related works to BelLog are policy algebras, for-
mal delegation languages, and XACML 3, which is an informal policy language.

Policy algebras—such as PBel [7], PTaCL [8], and D-Algebra [9]—are lan-
guages for composing a set of policies. A composite policy is a tree, where the
internal nodes are composition operators, and the leaf nodes are core policies.
Existing policy algebras cannot express arbitrarily long delegation chains and
therefore cannot be used for decentralized composite access control. Moreover,
they lack operators for composing intensionally defined policy sets, i.e. policy
sets that are not fixed at the policy specification time; see §4.

Delegation languages—such as KeyNote2 [1], DKAL [10], SecPAL [11], RT [12],
GP [13], and DCC [14]—allow a policy writer to delegate to other principals
authority over attributes and policy decisions. In contrast to BelLog, these
languages support only the permit-override operator for composing policies. Al-
though the permit-override operator is sufficient in their access control setup,
this is not the case for decentralized composite policies. Most existing delegation
languages are founded on logic programming. We remark that although many-
valued extensions for logic programming exist [15–17], they also cannot express

Decentralized Composite Access Control 247

PDP

SubjectsPrincipals

Policies, Request,
AttributesAttributes PEP

Attributes

Fig. 1. The system model with the Policy Enforcement Point (PEP), Policy Decision
Point (PDP), principals, subjects, requests, and attributes

all composition operators found in policy algebras, e.g. the only-one-applicable
operator; that is, they are functionally incomplete.

XACML 3 is currently the only access control language supporting decentral-
ized composite access control. Similarly to BelLog, XACML 3 has four policy
decisions and operators for encoding delegation and policy composition. In con-
trast to BelLog, XACML is informal and some aspects are underspecified; for
example, loop handling in delegation chains is left to implementations. More-
over, XACML 3 has a fixed set of composition operators and new operators
cannot be added as syntactic extensions. Kolovski et al. [18] give a formalization
of XACML 3 which focuses on delegations and supports only three composition
operators. BelLog, in contrast, supports all finitary composition operators.

Finally, we remark that BelLog is not meant to be an all-encompassing policy
specification language. For example, the constraint-based conditions of [11] are
not expressible in BelLog.

Organization. In §2, we introduce our system model. In §3, we define our
logic programming language BelLog and define the main decision problems
for BelLog programs. In §4, we illustrate the specification of decentralized
composite policies in BelLog. In §5, we present our policy analysis framework.
We conclude the paper in §6. Note that proofs and technical details can be found
in the extended version of the paper [19].

2 System Model and the Running Example

A Policy Decision Point (PDP) maps access requests to policy decisions and
a Policy Enforcement Point (PEP) enforces the policy decisions made by the
PDP. We consider an open distributed system, as illustrated in Figure 1, where
there are multiple principals that may issue policies and attributes and store
them at the PDP. One principal is designated as the PDP’s administrator. The
administrator writes the policy against which all requests are evaluated.

Subject and object attributes are issued and signed by principals. Authority
over attributes can be delegated to other principals. An attribute issued by a
principal is either stored at the PDP, or given to the subject, who may provide
it to the PDP together with a request. Attributes that are not explicitly commu-
nicated to the PDP are assumed not to have been issued, as is the case in other
decentralized systems [1]. A policy domain database contains the identifiers of
objects such as roles, file names, etc. Both the administrator and authorized
principals can extend this database.

248 P. Tsankov et al.

To illustrate our system model, consider a grid system that stores files for
multiple research projects. Each project has one or more project leaders. The
grid system has one PDP that decides access for all files. The PDP’s policy,
inspired by policies in the Swedish Grid Initiative (SweGrid) system [2], is:

R1: A project leader controls access to the project’s files and folders, and can
delegate these rights.

R2: If there is a conflicting decision among the project leaders for a given request,
then grant access only to requests made by the project leaders.

R3: If no policy applies to a given request, then grant the request if its target
is a public project folder, otherwise deny it.

R4: Access rights are recursively extended to sub-folders.

This policy exemplifies the tight coupling between the use of delegation and
composition in decentralized composite policies. The PDP must first compute
the delegations for each folder according to R1, then compose the access rights
for each folder according to R2 and R3, and finally extend the policy decisions
to sub-folders according to R4. Note that R4 can be encoded as delegation from
a parent folder to its children. Such couplings of delegation and composition
idioms prevent the decentralized composite policies from being split into and
evaluated as two independent, delegation and composition, parts.

3 BelLog

In this section, we define the syntax and semantics of BelLog and study the
time complexity of its decision problems. BelLog builds upon the syntax and
semantics of stratified Datalog [5], and extends it over a four-valued truth space.
We see BelLog as a foundation for constructing high-level access control lan-
guages, and we therefore present BelLog as a generic many-valued logic pro-
gramming language. In §4, we illustrate how BelLog can be used to specify
practical access control policies.

Syntax. We fix a finite set P of predicate symbols, where D4 = {f4,⊥4,�4, t4} ⊆
P , along with a countably infinite set C of constants, and a countably infinite
set V of variables. The sets P , C, and V are pairwise disjoint. Each predicate
symbol p ∈ P is associated with an arity and we may write pn to emphasize that
p’s arity is n. The predicate symbols in D4 have zero arity. As a convention, we
write P to denote a BelLog program and use the remaining uppercase letters
to denote variables. Predicate and constant symbols are written using lowercase
italic and sans font respectively.

A domain Σ is a nonempty finite set of constants. We associate a domain Σ
with a set of atoms AΣ(V) = {pn(t1, · · · , tn) | pn ∈ P , {t1, · · · , tn} ⊆ Σ ∪ V}.
A literal is either a, ¬a, or ∼a, for a ∈ AΣ(V), and LΣ(V) denotes the set of
literals over Σ. We refer to ¬a as negative literals and to a and ∼a as non-
negative literals. The function vars : AΣ(V) �→ 2V maps atoms to the set of
variables appearing in them. An atom a is ground iff vars(a) = ∅, and AΣ(∅)
denotes the set of ground atoms. We extend vars to literals in the standard way.

Decentralized Composite Access Control 249

⊥ �
t

f

�

�k

Fig. 2. BelLog’s truth space

¬ ∼
f t f
⊥ ⊥ �
� � ⊥
t f t

∧ f ⊥ � t
f f f f f
⊥ f ⊥ f ⊥
� f f � �
t f ⊥ � t

∨ f ⊥ � t
f f ⊥ � t
⊥ ⊥ ⊥ t t
� � t � t
t t t t t

Fig. 3. Truth tables of BelLog’s operators

A BelLog program, defined over the domain Σ, is a finite set of rules of the
form:

p ← q1, . . . , qn ,

where n > 0, p ∈ AΣ(V), {q1, · · · , qn} ⊆ LΣ(V), and vars(p) ⊆
⋃

1≤i≤n vars(qi).
We refer to p as the rule’s head and to q1, . . . , qn as the rule’s body.

The predicate symbols in a BelLog program P are partitioned into inten-
sionally defined predicates, denoted idbP , and extensionally defined predicates,
denoted edbP . The set idbP contains all predicate symbols that appear in the
heads of P ’s rules, and the set edbP contains the remaining predicate symbols.
We write AedbP

Σ(V) (LedbP
Σ(V)) and AidbP

Σ(V) (LidbP
Σ(V)) to denote the sets of atoms (literals)

constructed from predicate symbols in edbP and idbP respectively.
A rule p ← q1, · · · , qn is ground iff all the literals in its body are ground. The

grounding of a BelLog program P is the finite set of ground rules, denoted by
P ↓, obtained by substituting all variables in P ’s rules with constants from Σ in
all possible ways.

A BelLog program P is stratified iff the rules in P can be partitioned into
sets P0, · · · , Pn called strata, such that: (1) for every predicate symbol p, all rules
with p in their heads are in one stratum Pi; (2) if a predicate symbol p occurs as
a non-negative literal in a rule of Pi, then all rules with p in their heads are in
a stratum Pj with j ≤ i; (3) if a predicate symbol p occurs as a negative literal
in a rule’s body in Pi, then all rules with p in their heads are in a stratum Pj

with j < i. The given definition of stratified BelLog extends with non-negative
literals that of stratified Datalog [20].

Semantics. The truth space of BelLog is the lattice (D,,∧,∨), where D =
{f,⊥,�, t}, is the partial truth ordering on D, and ∧ and ∨ are the meet and
join operators. Figure 2 shows the lattice’s Hasse diagram, where is depicted
upwards. We adopt the meaning of the non-classical truth values ⊥ and � from
Belnap’s four-valued logic [6]: ⊥ denotes missing information and � denotes
conflicting information. We define the partial knowledge ordering on D, denoted
with k, and depict it in Figure 2 rightwards. We denote the meet and join
operators on the lattice (D,k) by ⊗ and ⊕, respectively. The truth tables of
the unary operators ¬ and ∼ are given in Figure 3, where we also depict the
truth tables for the operators ∧ and ∨ for convenience.

An interpretation I, over a domain Σ, is a function I : AΣ(∅) → D, mapping
ground atoms to truth values, where I(f4) = f, I(⊥4) = ⊥, I(�4) = �, and
I(t4) = t. Fix a domain Σ, and let I be the set of all interpretations over Σ.

250 P. Tsankov et al.

We define a partial ordering � on interpretations: given I1, I2 ∈ I, I1 � I2 iff
∀a ∈ AΣ(∅). I1(a) I2(a). We define the meet � and join � operators on I as:
I1 � I2 = λa. I1(a) ∧ I2(a) and I1 � I2 = λa. I1(a) ∨ I2(a). The structure (I,�
,�,�, If, It) is a complete lattice where If = λa.f is the least element and It = λa.t
is the greatest element. Given a continuous function Φ : I → I, we write �Φ� for
the least fixed point of Φ. The interpretation �Φ� is calculated, using the Kleene
fixed point theorem, as Mω where M0 = If, and M i+1 = Φ(M i) for i ≥ 0.

We extend interpretations over the operators ¬ and ∼ as I(¬a) = ¬I(a) and
I(∼a) = ∼I(a) respectively, where a ∈ AΣ(∅). We also extend interpretations
over vectors of literals as I(l) = I(l1) ∧ · · · ∧ I(ln) where l = l1, · · · , ln and
{l1, · · · , ln} ⊆ LΣ(∅). We write

∨
{v1, · · · vn} for v1 ∨ · · · ∨ vn. For the empty set

we put
∨
{} = f.

An interpretation I is a model of a given program P iff ∀(a ← l) ∈ P ↓. I(a) �
I(l). A model therefore, for every rule, assigns to the head a truth value no
smaller, in , than the truth value assigned to the body. A model I is supported
iff ∀a ∈ AΣ(∅). I(a) =

∨
{I(l) | (a ← l) ∈ P ↓}. Note that the definition

of supported models for BelLog programs extends that of stratified Datalog.
Intuitively, a model I is supported if it does not over-assign truth values to
head atoms. In contrast to stratified Datalog, BelLog’s truth values are not
totally ordered; therefore, a supported model I of a BelLog program P does
not guarantee that for an atom a there is a rule (a ← l) ∈ P ↓ such that I(a) =
I(l). For example, for the program P = {a ← �4, a ← ⊥4} the interpretation
I = {a �→ t} is a supported model; note that {a �→ ⊥} and {a �→ �} are not
models of P .

We associate a BelLog program P with the operator TP : I �→ I:

TP (J)(a) =
∨

{J(l) | (a ← l) ∈ P ↓}

Lemma 1. Given a BelLog program P , an interpretation I is a supported
model iff TP (I) = I.

The proof follows immediately from the definition of TP .
In general, a program P may have multiple supported models. For instance,

any interpretation is a supported model for the program {p ← p}. For BelLog’s
semantics we choose a minimal supported model: a supported model I is minimal
iff there does not exist another supported model I ′ such that I ′ � I. For a
program P where only non-negative literals are in its rules, TP is monotone,
hence continuous due to the finiteness of I, and has a unique minimal supported
model. In contrast, if a program P contains negative literals in its rules, then the
operator TP is not monotone, and there could be multiple minimal supported
models. For example, the program P = {a ← ¬b} has more than one minimal
supported models, e.g. {a �→ f, b �→ t} and {a �→ t, b �→ f}.

For a stratified BelLog program P , we construct one minimal supported
model by computing, for each strata of P , the minimal supported model that
contains the model of the previous stratum. This construction is analogous to
that of stratified Datalog given in [21]. To define the model construction, we
introduce the following notation. We write (P ↓) � I for the program obtained by

Decentralized Composite Access Control 251

replacing all literals in P ↓ constructed with edbP predicate symbols with their
truth values according to I. Formally,

(P ↓) � I = {p ← q′1, · · · , q′n | (p ← q1, · · · , qn) ∈ P ↓,

q′i = I(qi) if qi ∈ LedbP
Σ(∅), otherwise q′i = qi} .

Note that all negative literals in a stratum Pi of a stratified BelLog program
are constructed with predicate symbols in edbPi . Given an interpretation I, the
program P ↓

i � I therefore contains only non-negative literals, and the operator
TP↓

i �I is monotone.
We now define the model semantics of a stratified BelLog program:

Definition 1. Given a stratified BelLog program P , with strata P0, · · · , Pn,
the model of P , denoted [[P]], is the interpretation Mn, where M−1 = If, and
Mi = �TP↓

i �Mi−1
� �Mi−1 for 0 ≤ i ≤ n.

Each Mi, for 0 ≤ i ≤ n, is well-defined because the operators TP↓
i �Mi−1

are
monotone, and therefore continuous because the lattice (I,�,�,�) is finite.

Theorem 1. Given a stratified BelLog program P , [[P]] is a minimal supported
model.

For the previous example P = {a ← ¬b}, the given construction results in
[[P]] = {a �→ t, b �→ f}. For details on our choice of semantics see [19].

We remark that a BelLog program P that does not use the predicates �4,
⊥4, and the operator ∼ in its rules is a syntactically valid stratified Datalog
program. Furthermore, stratified BelLog subsumes stratified Datalog; see [19].
In particular, this means that BelLog can express all policy languages based
on stratified Datalog.

The input to a BelLog program P is an interpretation I ∈ I, where all
atoms from AidbP

Σ(∅) are mapped to f. For a program P and the input I, we write
[[P]]I as a shorthand for [[P ∪ P ′]], where P ′ = {a ← v4 | I(a) = v} and v ∈ D.

From the definition of stratification, it is immediate that given a stratified
program P with strata P0, · · · , Pn, and an input I, the program P ∪ P ′ can be
stratified into strata P ′, P0, · · · , Pn.

We finally remark that the semantics of a BelLog program is independent
of the given stratification. The proof can be found in [19].

Decision Problems. We define BelLog’s decision problems. In §5, we reduce
the decision problems within our policy analysis framework to BelLog’s decision
problems.

Let P be a stratified BelLog program, Σ be a domain of constants, and q
be a ground atom. For a given input I, the query entailment decision problem,
denoted P |=I

Σ q, asks whether [[P]]I(q) = t. The general case of [[P]]I(q) = v,
with v ∈ D, is immediately reducible to the query entailment problem. The
query validity decision problem, denoted P |=Σ q, asks whether for all inputs I
defined over Σ, P |=I

Σ q. Similarly to the data complexity of Datalog [22], we
study the complexity of the given decision problems when the maximum arity of

252 P. Tsankov et al.

predicates in P and the set of variables that appear in P are fixed. The input size
for BelLog’s decision problems is thus determined by the number of predicate
symbols in P , the number of rules in P , and the number of constants in the
domain Σ.

Theorem 2. The query entailment problem and the query validity problem be-
long, respectively, to the complexity classes ptime and co-np-complete.

We next consider a generalization of the query validity problem. Let ΣP de-
note the set of constants that appear in P . The all-domains query validity deci-
sion problem, denoted P |= q, asks whether P |=Σ′ q for all domains Σ′ ⊆ C that
contain ΣP and the constants in q; recall that C is the infinite set of constants.
The problem of all-domains query validity is in general undecidable for BelLog
programs, because the problem of query validity in Datalog, which is undecid-
able [23], can be reduced to this problem. We show, however, that all-domains
query validity is decidable for any stratified BelLog program P that has only
unary predicate symbols in edbP . We call those unary-edb programs. We show
in §5 that the unary-edb BelLog programs capture a useful class of policies.
Namely, those policies where the set of principals is finite.

Theorem 3. The all-domains query validity problem for a unary-edb BelLog
program belongs to the complexity class co-nexp.

Note that the input for the all-domains query validity problem is determined
only by the number of predicate symbols in P and the number of rules in the
program P .

Syntactic Extensions. We now present a set of syntactic extension to Bel-
Log to ease the specification of complex rules. In §4, we use them for writing
decentralized composite policies.

We extend the syntax for writing policy rules to

rule ::= p ← body

body ::= q1, · · · , qn | ¬body | ∼body | body ∧ body ,

where n > 0, p ∈ AΣ(V), and {q1, · · · , qn} ⊆ LΣ(V). We call the rules of the form
p ← q1, · · · , qn basic rules and the remaining rules composite rules. Similarly
to basic rules, we require that for any composite rule p ← body , vars(p) ⊆
vars(body).

We define the translation function T that maps a basic rule r to the set {r}:
T (p ← q1, · · · , qn) = {p ← q1, · · · , qn} ,

and maps a composite rule p ← body to a set of basic rules:

T (p ← ¬body) = {p ← ¬pfresh(X)} ∪ T (pfresh(X) ← body)

T (p ← ∼body) = {p ← ∼pfresh(X)} ∪ T (pfresh(X) ← body)

T (p ← body1 ∧ body2) = {p ← pfresh1(X1), pfresh2(X2)}
∪ T (pfresh1(X1) ← body1) ∪ T (pfresh2(X2) ← body2)

Decentralized Composite Access Control 253

p ∨ q := ¬(¬p ∧ ¬q) p⊗ q := (p ∧ ⊥) ∨ (q ∧ ⊥) ∨ (p ∧ q)

p⊕ q := (p ∧ �) ∨ (q ∧ �) ∨ (p ∧ q) p = t := p ∧ ∼p
p = f := ¬(p ∨ ∼p) p = ⊥ := (p
= f) ∧ (p
= t) ∧ ((p ∨ �) = t)

p = � := (p
= f) ∧ (p
= t) ∧ ((p ∨ ⊥) = t) p
= v := ¬(p = v)

Fig. 4. Derived connectives for combining composite rule bodies. Here p, q, and c denote
rule bodies and v ∈ D.

In these rules pfresh, pfresh1, pfresh2 are predicate symbols that do not appear in P ,
X = vars(body) and Xi = vars(body i) for i ∈ {1, 2}. Note that the recursive
function T terminates for any composite rule and yields a set of basic rules;
see [19]. The size of the set is linear in the number of nested bodies in the
composite rule.

The meaning of a BelLog program P with composite rules is that of the
BelLog program P ′ =

⋃
r∈P (T (r)). For example, consider the composite rule:

p(X) ← ¬∼q(X,Y) .

The function T translates this composite rule into a set of basic rules:

{p(X) ← ¬pfresh(X,Y), pfresh(X,Y) ← ∼q(X,Y)} .

A BelLog program P with composite rules is well-formed iff its rules can
be partitioned into sets P0, · · · , Pn such that: (1) for every predicate symbol p,
all rules with p in their heads are in one stratum Pi; (2) if a predicate symbol
p occurs as a non-negative literal in a basic body in Pi, then all rules with p
in their heads are in a stratum Pj with j ≤ i; and (3) if a predicate symbol p
occurs in the body of a composite rule in Pi or as a negative literal in a basic
rule in Pi, then all rules with p in their heads are in a stratum Pj with j < i.
Note that well-formed BelLog extends stratified BelLog with the condition
that if a predicate symbol p occurs in the body of a composite rule in Pi, then
all rules with p in their heads are in a stratum Pj with j < i. This is a sufficient
but not necessary condition that any composite rule of a well-formed program
is translated into a stratified set of basic rules.

Theorem 4. The translation of a well-formed BelLog program with composite
rules is a stratified BelLog program.

In Figure 4, we derive additional connectives using syntactic combinations
of ¬, ∼, and ∧. The binary connective _ ∨ _ corresponds to the join operator
on the lattice (D,), and the binary connectives _ ⊗ _ and _ ⊕ _ correspond
to the meet and join operators on the lattice (D,k), respectively; for details
see [6]. The unary connective _ = v, where v ∈ D, indicates whether the truth
value assigned to the atom is v. The result of p = v is t if p’s result is v, and f
otherwise. The composition p �= v returns t only if p’s result is not v, otherwise
it returns f. Furthermore, we formally establish that BelLog can represent any
n-ary operator Dn → D:

254 P. Tsankov et al.

Theorem 5. Given an operator g : Dn → D and a list of n rule bodies q1, · · · , qn,
there exists a body expression φ for a BelLog composite rule p ← φ such that

[[P]]I(p) = g([[P]]I(q1), . . . , [[P]]I(qn)) ,

for all inputs I, and programs P where {p ← φ} ⊆ P and p is not the head of
any other rule.

4 Decentralized Composite Policies in BelLog

We first introduce the basic building blocks, namely attributes and delegations,
and then we demonstrate how to encode decentralized composite policies in Bel-
Log, including the grid policy from §2. We conclude with a discussion of Bel-
Log’s more intricate features for policy specifications.

We assume that the PDP’s domain database contains all constants that ap-
pear in the policies, attributes, and access requests, as well as any other addi-
tional constants which may denote roles, file names, etc.

Attributes and Delegations. We represent attributes with attribute_name(·)
predicate symbols. We take the first argument of an attribute as the issuing
principal’s identifier. For example, hr(ann, fred) denotes that, according to Ann,
Fred works in the Human Resources department. To highlight the attribute’s
issuer, we may write hr(fred)@ann instead of hr (ann, fred).

The truth value of an attribute a is t if it is either stored at the PDP or
provided by the subject; otherwise it is f. In short, the attributes are by default
assumed not to exist if they are not present. For some policies it may however
be more appropriate to assume that a given attribute (e.g. an attribute that is
provided by the subject) is missing (⊥) rather than non-existent (f). BelLog
can accommodate for such policies too. For example, given an attribute a, we
can define its assume-missing counterpart a⊥ with the rule a⊥ ← a ∨ ⊥.

Attribute delegations are specified with BelLog rules where the rule’s head
is the delegated attribute and the rule body is the delegation condition. For
example, with the rule

researcher (S)@ann ← hr (S′)@ann, labcard(S)@S′ ,

Ann asserts that a subject S is a researcher if a subject S′ with the attribute hr
asserts that S is a researcher. That is, Ann delegates the attribute researcher to
subjects that have the attribute hr . For example, if Fred has the attribute hr
and issues labcard(dave)@fred, then the PDP derives researcher (dave)@ann.

Delegations may require non-monotonic operators. Imagine that Ann stores
at the PDP a list of revoked subjects, and she will not accept delegations of the
attribute researcher for revoked subjects. We extend her delegation rule as

researcher (S)@ann ← hr(S′)@ann, labcard(S)@S′,¬revoked(S)@ann .

Non-monotonic operators must be used with caution when applied to the
attributes that subjects supply. This is because a subject may gain access if she
can withhold the attribute revoked from the PDP; cf. [8]. In §5, we return to this

Decentralized Composite Access Control 255

issue and show how one can verify whether a policy is monotone with respect to
the attributes provided by the subject.

BelLog’s composite rules can be used to express more complex delegation
conditions. In our grid example, the administrator may for instance require two
project leaders—Ann and Fred—to agree on the pub file attribute, denoting that
a file is public. This is written as

pub_agree(F)@admin ← pub(F)@ann⊕ pub(F)@fred ,

where ⊕ is the maximal agreement operator. Note that the administrator derives
a conflict if the principals disagree whether a file is public, because f⊕ t = �.

As illustrated, BelLog can specify standard attribute delegations, as well as
non-monotonic delegation idioms which cannot be captured in existing Datalog-
based languages. There are other delegation idioms that BelLog can express,
but we omit their presentation due to space constraints. For example, the hand-
off idiom [14], where a principal delegates authority over all attributes, can be
expressed in BelLog by representing attributes with a predicate says where
one of the arguments denotes an attribute name.

Policy Decisions. We take the t, f,⊥, and � elements as, respectively, grant,
deny, gap, and conflict policy decisions. The gap decision indicates that a policy
neither grants nor denies a request, and conflict indicates that a policy can
both grant and deny a request. The partial ordering in Figure 2 defines the
permissiveness of policy decisions. The meet ∧ and join ∨ operators on the
lattice (D,) correspond to the standard deny-override and permit-override
operators for composing policy decisions. The meet ⊗ and join ⊕ operators on
the lattice (D,k) correspond to the maximal agreement and minimal agreement
composition operators; see [15].

Policies. A principal can issue multiple policies for different subjects and re-
sources; we insist however that each principal has one designated root policy. A
root policy combines all of the principal’s sub-policies and possibly other princi-
pals’ policies. In our grid scenario, we use the atom pol_name(Sub,File)@Prin
to denote the decision of the policy name, issued by Prin , for Sub accessing File .
We fix the atom pol (Sub,File)@Prin to denote Prin ’s root policy. For example,
when the PDP derives t for the atom pol (fred, foo.txt)@piet, the PDP interprets
this as “Piet’s root policy grants Fred access to the file foo.txt”. Principals may
choose any other predicate symbols to denote decisions of their sub-policies.

Policies are encoded as BelLog rules where the head of a policy rule is a
policy name atom. For example, the project leader Piet may issue the policy

pol(S, F)@piet ← researcher (S)@piet, prj_file(F)@piet ,

which grants his researchers S access to any project files F . Similarly, Ann, who
is a project leader, may issue the policy

pol (ann, F)@ann ← prj_file(F)@ann

pol (S, F)@ann ← pol (S′, F)@ann, give_access(S, F)@S′ ,

256 P. Tsankov et al.

p � c � q := ((c = t) ∧ p) ∨ ((c
= t) ∧ q) p
v�→ q := q � (p = v) � p

p �� q := p � (q = ⊥) � (q � (p = ⊥) �⊥) p � q := q � (p = t) �⊥

Fig. 5. Conditional and override policy composition operators

where the first rule grants Ann access to any project file F , and the second
rule states that any subject S′ with access to F may delegate this access to
any subject S by issuing a give_access attribute. Then, Ann may provide
access to Fred by issuing give_access(fred, foo.txt)@ann; Fred too may issue
give_access(dave, foo.txt)@fred to further delegate to Dave access to foo.txt.

A policy can also combine the decisions of a set of sub-policies; we call these
composite policies. A composite policy encoded with a basic BelLog rule, for
example, implicitly combines the sub-policies’ decisions using the deny-override
∧ operator. Composite policies that combine their sub-policies’ decisions with
more complex composition operators, such as the gap- and conflict-override op-
erators, are encoded with BelLog composite rules.

In addition to ∧, BelLog’s operators ¬, ∼, ∨, ⊗, ⊕ can also be employed
as composition operators. To complement these operators, in Figure 5 we define
further conditional and override operators for composing policies. The ternary
operator _ � _ � _ is the if-then-else operator. The result of the composition
p � c � q is p’s decision only if c’s result is t, otherwise q’s decision is taken.

The binary operator _ v�→ _ represents the v-override operator, where v ∈ D.
The result of the composition p

v�→ q is q if p’s decision is v, otherwise it results in
p’s decision. The operators ⊥�→ and 	�→ correspond to the gap-override and conflict-
override operators, respectively. Given a list of policies p1, · · · , pn, we encode the
operator first-applicable as p1

⊥�→ (p2
⊥�→ (· · · ⊥�→ pn)), i.e. the composition takes

the decision of the first policy in the list whose decision is not ⊥.
The binary operator _ �� _ is the only-one-applicable operator, i.e. the com-

position p �� q results in ⊥ if both policy decisions are not ⊥ or both decisions
are ⊥, otherwise the result is the policy decision that is not ⊥.

The binary operator _ � _ is the on-permit-apply-second1 operator. The
composition p � q returns q only if the decision of p is t, otherwise it returns
⊥. The operator � is useful for specifying policies that either (1) grant or pro-
vide no decision, or (2) deny or provide no decision. For example, the policy
researcher (Sub) � t grants access only if the subject Sub is a researcher; other-
wise, the policy returns ⊥. In contrast, the policy revoked(Sub) � f denies access
if the subject Sub is revoked, and provides no decision otherwise. We also use the
operator � for specifying policies with policy targets, which define the requests
that are applicable to a policy. Given a policy p and its target ptarget, ptarget � p
results in ⊥ if ptarget does not evaluate to t, otherwise it results in p’s decision.

1 The on-permit-apply-second operator has been recently proposed as an additional
operator for the XACML 3 standard. See [24] for full description.

Decentralized Composite Access Control 257

We finally remark that BelLog can express any four-valued policy composi-
tion language, such as PBel [7]. This is a corollary of Theorem 5.

Grid Policy. We now exercise these operators in our grid scenario. The admin-
istrator may compose the policies issued by the project leaders Piet and Ann
with the maximal agreement operator:

pol_leaders(S, F)@admin ← pol (S, F)@piet⊕ pol(S, F)@ann .

For brevity, we have not specified the policies of Piet and Ann. The composition
of their policies may result in conflicts and gaps. According to requirements R2
and R3 (see §2), the administrator must resolve conflicts by granting requests
made by project leaders, and resolve gaps by granting access only to public
folders. The pol_root policy encodes these requirements:

pol_root(S, F)@admin ←

(pol_leaders(S, F)@admin
	�→ prj_leader (S)@admin)

⊥�→ pub(F)@admin .

The composite policy pol_leaders considers the decisions of Piet’s and Ann’s
policies for all requests. The administrator may, however, want to consider the
decisions of Piet’s policy only for the files contained in the folder prj1. This can
be encoded by defining a policy with an explicit policy target:

pol_piet(S, F)@admin ← contains(prj1, F)@admin � pol(S, F)@piet ,

where the attribute contains(F1, F2)@admin indicates that the folder F1 contains
F2. The attribute is transitively assigned to sub-folders:

contains(F1, F2)@admin ← subfolder (F1, F2)@fs ,

contains(F1, F3)@admin ← contains(F1, F2)@admin, contains(F2, F3)@admin ,

where the attribute subfolder (F1, F2)@fs is provided by the file system fs and
indicates that F1 is directly contained in F2. Note that the policy pol_piet results
in ⊥ for any request to a file not contained in the folder prj1.

The administrator must also encode the requirement R4, which states that
any access right to a folder is transitively extended to sub-folders. Namely

pol_root(S, F)@admin ← contains(F ′, F)@admin, pol_root(S, F ′)@admin .

Note that the policy decision for a folder is extended to sub-folders with the
permit-override operator. This is because instantiating the variable F ′ results in
multiple rules with the same head atom, which are combined with the operator ∨
according to BelLog’s semantics. To illustrate this, consider the folder f3, where
f3 is contained in f2, which in turn is contained in f1. Instantiating the variable
F ′ and simplifying the instantiated rules result in the following rule:

pol_root(S, f3)@admin ← pol_root(S, f1)@admin ∨ pol_root(S, f2)@admin .

Alternatively, the administrator may want to combine the instantiated rule bod-
ies with deny-override, maximal agreement, or minimal agreement. We show how
this can be done with BelLog’s intensional operators, defined below.

258 P. Tsankov et al.

Intensional Compositions. So far, we have presented extensional policy com-
position operators that compose a fixed, explicitly given list of sub-policies. For
example, we used

pol_leaders(S, F)@admin ← pol(S, F)@piet⊕ pol (S, F)@ann

to combine policies of two project leaders, one from Piet and one from Ann,
with the maximal agreement operator. Such extensional encodings are tediously
“static”, because if new project leaders are added to or removed from the PDP,
then the administrator must explicitly change the policy rule. Alternatively, the
administrator may write a rule that composes the policies that are issued by any
principal who is a project leader. One attempt to do this is:

pol_leaders(S, F)@admin ← pol (S, F)@P, prj_leader (P)@admin ,

where the set of composed policies is intensionally defined as those issued by
project leaders. This attempt however fails because the project leaders’ policies
are implicitly combined with the permit-override operator, instead of the maxi-
mal agreement operator ⊕. This is because BelLog’s semantics, much like other
logic programs, uses the join operator ∨ when combining rule bodies with the
same head atom.

We extend BelLog’s syntax with additional operators to account for inten-
sional compositions:

rule ::= p ← [
∨

|
∧

|
⊕

|
⊗

] body ,

where p ∈ AΣ(V), body is a composite rule body, as defined in §3, and vars(p) ⊆
vars(body). We refer to the operators written in front of body as intensional com-
position operators. Intuitively, the intensional operator

⊕
combines all grounded

bodies of rules with the same head atom with the ⊕ operator. For example,
grounding the simple rule p(a) ←

⊕
q(X) over the domain Σ = {a, b} results

in two grounded bodies, q(a) and q(b), with the same head atom p(a). The
grounded bodies are combined with ⊕; the meaning of p(a) ←

⊕
q(X) is there-

fore p(a) ← q(a) ⊕ q(b). Other operators behave similarly with respect to their
syntactic counterparts. The formal translation of the intensional operators to
BelLog’s core syntax is given in [19]. We remark that the intensional operators∧
,
⊕

, and
⊗

cannot have the head atom appear in the rule body because their
encoding uses composite rules.

We can now encode the intensional composition of the project leaders’ policies
with the maximal agreement operator as

pol_leaders(S, F)@admin ←
⊕

(pol (S, F)@P � prj_leader (P)@admin � ⊥) .

Note that the policies that are not issued by a project leader are replaced with ⊥,
and the composition “ignores” such policies, because v ⊕⊥ = v for any v ∈ D.

Intensional compositions are also useful for specifying policies that propa-
gate policy decisions over hierarchically structured data, such as file systems,
role hierarchies, etc. To illustrate, we extend our grid example with Piet’s pol-
icy that by default permits a subject S to access a folder F , unless Piet issues

Decentralized Composite Access Control 259

the attribute deny(S, F). In contrast to the requirement R4, he uses the deny-
override operator to propagate deny decisions over the sub-folders:

pol_fold(S, F)@piet ← ¬deny(S, F)@piet

pol (S, F)@piet ←
∧

(pol_fold(S, F ′)@piet � contains(F ′, F)@admin � t) .

The last rule replaces the policy decisions for folders F ′ that do not contain F
with t, since for any v ∈ D we have v ∧ t = v.

We summarize the key difference between intensional and extensional oper-
ators as follows. The intensional operators reflect changes in the domain (e.g.
addition and removal of principals, files, etc.) through changes in the policy in-
put. The extensional operators require explicit modification of the policy rules
to reflect such changes.

5 Analysis

Writing a correct policy, i.e. one that grants and denies requests as intended by
the policy writer, is often challenging in practice. This is both because policies are
often initially given informally and imprecisely and because the policy writer can
err in their formalization. In particular, a policy writer must foresee all possible
policy inputs, understand how the delegation rules, the sub-policies, and their
compositions influence the policy’s behavior, and verify that the policy does not
exhibit any unintended decisions. As a first step towards verifying the policy’s
behavior, the policy writer specifies the high-level requirements as formal policy
analysis questions. Second, a decision procedure is used to check, in an automated
manner, whether the analysis questions are answered positively, or not.

Below we present our framework for analyzing policies written in BelLog. A
policy set is a set of delegations and policies, which are encoded as BelLog rules
and collectively define a BelLog program. Every policy set has a designated
root policy. The decision of a policy set for a given request is the decision of
the policy set’s root policy. We fix the predicate pol (Subject ,Object) to denote
a root policy’s decisions. For brevity, we omit writing the issuer of policies and
attributes. We use the terms input and (policy) context interchangeably.

Policy Entailment. Policy entailment answers whether a policy set entails a
given permission in a given policy context.

Definition 2. (Policy Entailment) Given a policy set P and a policy context I,
P entails the request pol (S,O) iff P |=I

Σ pol (S,O).

Policy entailment analysis is akin to software testing in that the policy writer
checks the policy set for unintended grants and denies in specific policy contexts
(i.e. test scenarios). Although limited in its scope, since the policy writer must
give a specific context, determining policy entailment scales with the size of the
domain, unlike the policy containment problem which we define shortly. Note
that policy entailment can also be used for constructing PDPs.

260 P. Tsankov et al.

To illustrate policy entailment, consider the following policy set P :

{ pol(S,O) ←(pol_leaders(S,O)
	�→ prj_leader (S))

⊥�→ pub(O) } .

For simplicity we do not specify the policy pol_leaders . One requirement for P ,
which is derived from the requirement R2 given in §2, may be to deny access to
subjects who are not project leaders whenever the policy pol_leaders returns a
conflict. To check this property, we may ask whether the policy set entails the
permission pol(fred, foo.txt) in the context:

I = {pol_leaders(fred, foo.txt) �→ �, prj_leader (fred) �→ f} ,

where the remaining atoms are mapped to f. For this context the policy set does
not entail the permission, as expected.

Because the guarantees provided by entailment analysis are limited to the
context provided by the policy writer, the requirement may not hold for other
policy contexts. For example, the given policy set P violates its requirement for

I ′ = {pol_leaders(fred, foo.txt) �→ �, prj_leader (fred) �→ ⊥, pub(foo.txt) �→ t} ,

because the policy set entails pol (fred, foo.txt), although pol_leaders results in
a conflict and the PDP does not know whether Fred is a project leader.

Deciding policy entailment is reducible to query entailment; see §3. Policy
entailment can be therefore decided in time polynomial in the size of the context.

Policy Containment. Policy containment thoroughly analyzes a policy set
against all policy contexts. It can be used to answer questions such as: “Do all
requests in all policy contexts evaluate to a conclusive policy decision, i.e. grant
or deny? ” Containment analysis is done either for a particular policy domain or
for all possible policy domains. In more detail, the domain policy containment
answers whether a policy set P1 is more permissive than another policy set P2

for all policy contexts for a given domain. The all-domains policy containment
answers whether a policy set P1 is more permissive than another policy set P2 for
all policy contexts for all possible domains. Even though all-domains evaluations
imply those for one domain, checking for all domains is decidable only for a
fragment of BelLog, as we later show.

Many analysis questions require that only specific subsets of policy contexts
and requests are considered for comparisons. For example, to verify that the
policy set P correctly encodes our requirement derived from R2, the policy writer
may ask whether P denies all requests made by subjects who are not project
leaders, for all contexts where the policy pol_leaders results in a conflict. We
encode such analysis questions with a condition that constraints the contexts and
requests where the policy sets are compared. Formally, the syntax for writing
containment questions is

cond ⇒ P1 P2 .

The symbols P1 and P2 are policy sets and cond is inductively defined as

cond ::= ∀X.cond | attr v | v attr | ¬cond | cond ∧ cond | t
v ::= ⊥ | � ,

Decentralized Composite Access Control 261

where X ∈ V , attr ∈ AedbP
Σ(V), i.e. attr is an input attribute. Note that the at-

tributes in a condition may contain variables. We write fv(cond) for the set of
variables in cond that are not in the scope of ∀. We fix the variables S and O to
denote the subject and the object in the request pol (S,O). A policy containment
question cond ⇒ P1 P2 is well-formed iff fv(cond) ⊆ {S,O}.

We define the satisfaction relation �Σ between a policy context I, a condition
cond of a well-formed policy containment question, and a policy domain Σ:

I �Σ t
I �Σ q v if I(q) v

I �Σ v q if v I(q)

I �Σ ¬cond if I ��Σ cond

I �Σ cond1 ∧ cond2 if I �Σ cond1 and I �Σ cond2

I �Σ ∀X.cond(X) if ∀X ∈ Σ. I �Σ cond(X)

As a shorthand, in the following we write q = v for (q v) ∧ (v q) where
v ∈ {⊥,�}, q = f for (q ⊥) ∧ (q �), and q = t for ¬(q ⊥) ∧ ¬(q �).
Given two conditions c1 and c2 we define their disjunction c1∨c2 in the standard
way as ¬(¬c1 ∧ ¬c2). To compare the truth values of any two attributes p and
q, we write p = q as a shorthand for (p = f ∧ q = f) ∨ (p = ⊥ ∧ q = ⊥) ∨ (p =
� ∧ q = �) ∨ (p = t ∧ q = t).

Definition 3. (Domain Policy Containment) Given a question cond ⇒ P1
P2, and a domain Σ, then P1 is contained in P2 for all policy contexts over Σ
that satisfy cond , denoted by �Σ cond ⇒ P1 P2, iff

∀I ∈ I, ∀S,O ∈ Σ. (I �Σ cond) → ([[P1]]I(pol (S,O)) [[P2]]I(pol (S,O))) ,

where I is the set of all policy contexts defined over the domain Σ.

Note that we overload the relation �Σ .
In practice, the policy domain may change over time, e.g. subjects and objects

are added to and removed from the system. After changes to Σ, domain policy
containment may no longer hold. As mentioned, a stronger policy containment
guarantee is thus to verify that P1 is contained in P2 for all domains Σ′.

Definition 4. (All-domains Policy Containment) Given a question cond ⇒
P1 P2, P1 is contained in P2 for all policy contexts in all policy domains,
denoted � cond ⇒ P1 P2, iff �Σ cond ⇒ P1 P2 holds for all domains Σ.

To illustrate how containment questions are specified and used, we start with
the previously given question: “Do all requests in all policy contexts evaluate to
a conclusive policy decision”. To encode this question for the policy set P , we
construct a policy set P ′ by first renaming the predicate symbol pol in P to pol ′

and then adding the rule

pol(S,O) ← (pol ′(S,O)
	�→ f) ⊥�→ f .

By construction, the policy set P ′ denies all requests that are evaluated to gap
or conflict by the policy set P . Therefore, |=Σ t ⇒ P P ′ holds iff the policy

262 P. Tsankov et al.

set P is conclusive. We set the condition to t because we must check containment
for all requests and for all policy contexts.

As a second example, we use policy containment to encode the requirement
that the policy set P denies access to subjects who are not project leaders
whenever the policy pol_leaders results in a conflict:

(pol_leaders(S,O) = �) ∧ ¬(prj_leader (S) = t) ⇒ P Pf ,

where Pf is the policy set that denies all requests. This asks whether P denies
pol(S,O) in all contexts where the policy pol_leaders results in a conflict for the
request pol (S,O) (pol_leaders(S,O) = �) and the subject S is not a project
leader (¬(prj_leader (S) = t)). Both domain and all-domains containment eval-
uations give negative answers; see the counterexample above. The policy set,
however, satisfies the requirement if the attribute prj_leader is either t or f. We
can easily encode this assumption as

(pol_leaders(S,O) = �) ∧ (prj_leader (S) = f) ⇒ P Pf .

Domain and all-domains containment evaluations answer this question positively.
Policy containment is also useful for comparing a policy set’s behavior in one

context to its behavior in a different policy context. Consider a scenario where
a subject can push some attributes to the PDP. An important property for the
policy set is that a subject cannot influence the policy set to grant a request by
withholding attributes. We refer to such policy sets as push-monotonic: whenever
a subject provides fewer attributes to the PDP, the policy set results in a less
permissive decision. Consider the policy set P :

{ pol(S,O) ← researcher (S), prj_file(O)

researcher(S) ← hr(S′), labcard(S′, S),¬revoked(S) }
The policy writer may formulate the question: “Is the policy set more restrictive
when the subject provides fewer (pushed) attributes? ” To answer this question,
one must compare the policy set to itself in all policy contexts that are identical
except for the attributes pushed by the subject. To encode this question, we first
construct a policy set P ′ by renaming every predicate symbol p that appears in
edbP to p′, where edbP = {revoked(·), labcard(·, ·), hr (·), revoked(·), prj_file(·)}.
Suppose the attribute revoked is locally stored at the PDP and the remaining
attributes are pushed by the subject. The analysis question is encoded as

∀X. (revoked(X) = revoked ′(X)) ∧ ∀X,Y. (labcard(X,Y) labcard ′(X,Y))

∧ ∀X. (hr (X) hr ′(X)) ∧ ∀X. (prj_file(X) prj_file ′(X)) ⇒ P P ′ .

This analysis problem asks whether P is less permissive than P ′ in all policy
contexts that are identical for the stored attribute and all pushed attributes to
P are also pushed to P ′. The question indeed holds for the policy set P .

The problems of deciding domain and all-domains policy containment are
reducible to domain and all-domains query validity, respectively.

Theorem 6. Policy containment is polynomially reducible to query validity.

Decentralized Composite Access Control 263

Table 1. Complexity of BelLog’s policy analysis problems

Analysis problem Entailment Domain All-domains All-domains
containment containment containment�

Complexity ptime co-np-complete undecidable co-nexp

� For policies that belong to the unary-edb BelLog fragment.

Corollary 1. The problem of domain policy containment belongs to the com-
plexity class co-np-complete. The problem of all-domains policy containment
for unary-edb policy sets belongs to the complexity class co-nexp.

If a policy set has attributes associated to a single user, group, resource,
etc. and there are finitely many principals, then the policy set can be writ-
ten in the unary-edb fragment. This is because all attributes have the form
attr_name(Issuer ,Object) can be re-encoded as attr_nameIssuer (Object) since
there are finitely many principals.

6 Conclusions

In this paper we present BelLog, a formal language for specifying access con-
trol policies that require both authority delegation and policy composition. This
sets BelLog apart from the existing formal access control languages, which sup-
port either authority delegation or policy composition. BelLog can therefore
specify decentralized composite policies, which thus far have lacked formal seman-
tics; examples include policies based on the XACML 3 standard [25] and policies
for large-scale distributed systems, such as [2–4,26]. We present an analysis frame-
work for reasoning about BelLog policies and give complexity bounds for decid-
ing policy entailment and policy containment in BelLog, summarized in Table 1.

We see BelLog as a foundation for constructing high-level policy languages
for decentralized composite access control, much like Datalog is the foundation
for delegation languages such as RT [12] and SecPAL [11]. We plan to build
implementations of BelLog and apply them in practice. In particular we will
focus on algorithms for fast evaluation of practically-relevant policies, and sound
approximation techniques for deciding the policy analysis problems efficiently.

References

1. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: The KeyNote Trust-
Management System Version 2. RFC 2704 (Informational) (September 1999)

2. SNIC: SweGrid: e-Infrastructure for Computing and Storage,
http://www.snic.vr.se/projects/swegrid/

3. Axiomatics: Policy Decision Points (September 2013)
4. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,

G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing.
Commun. ACM 53(4), 50–58 (2010)

5. Ceri, S., Gottlob, G., Tanca, L.: What You Always Wanted to Know About Datalog
(And Never Dared to Ask). IEEE Trans. on Knowl. and Data Eng., 146–166 (1989)

http://www.snic.vr.se/projects/swegrid/

264 P. Tsankov et al.

6. Belnap, N.D.: A Useful Four-Valued Logic. In: Modern Uses of Multiple-Valued
Logic. D. Reidel (1977)

7. Bruns, G., Huth, M.: Access Control via Belnap Logic: Intuitive, Expressive, and
Analyzable Policy Composition. ACM Trans. Inf. Syst. Secur., 1–27 (2011)

8. Crampton, J., Morisset, C.: PTaCL: A Language for Attribute-Based Access Con-
trol in Open Systems. In: Degano, P., Guttman, J.D. (eds.) POST 2013. LNCS,
vol. 7215, pp. 390–409. Springer, Heidelberg (2012)

9. Ni, Q., Bertino, E., Lobo, J.: D-Algebra for Composing Access Control Policy De-
cisions. In: Proceedings of the 4th International Symposium on Information, Com-
puter, and Communications Security, ASIACCS 2009, pp. 298–309. ACM (2009)

10. Gurevich, Y., Neeman, I.: DKAL: Distributed-Knowledge Authorization Language.
Computer Security Foundations Symposium, 149–162 (2008)

11. Becker, M.Y., Fournet, C., Gordon, A.D.: SecPAL: Design and semantics of a de-
centralized authorization language. Journal of Computer Security, 619–665 (2010)

12. Li, N., Mitchell, J., Winsborough, W.: Design of a Role-based Trust-management
Framework. In: IEEE Symposium on Security and Privacy, pp. 114–130 (2002)

13. Garg, D., Pfenn, F.: Non-Interference in Constructive Authorization Logic. In: Pro-
ceedings of the 19th IEEE Workshop on Computer Security Foundations, CSFW
2006, pp. 283–296. IEEE Computer Society, Washington, DC (2006)

14. Abadi, M.: Access Control in a Core Calculus of Dependency. Electronic Notes in
Theoretical Computer Science 172, 5–31 (2007)

15. Fitting, M.: Bilattices in Logic Programming. In: Proceedings of the Twentieth
International Symposium on Multiple-Valued Logic, pp. 238–246 (1990)

16. Marinovic, S., Craven, R., Ma, J., Dulay, N.: Rumpole: A Flexible Break-glass
Access Control Model. In: Symposium on Access Control Models and Technologies,
SACMAT 2011, pp. 73–82. ACM (2011)

17. Dong, C., Dulay, N.: Shinren: Non-monotonic Trust Management for Distributed
Systems. In: Nishigaki, M., Jøsang, A., Murayama, Y., Marsh, S. (eds.) IFIPTM
2010, vol. 321, pp. 125–140. Springer, Heidelberg (2010)

18. Kolovski, V., Hendler, J., Parsia, B.: Analyzing Web Access Control Policies. In: Pro-
ceedings of the 16th International Conference on WWW, pp. 677–686. ACM (2007)

19. Tsankov, P., Marinovic, S., Dashti, M.T., Basin, D.: Decentralized Composite Ac-
cess Control. Technical report, ETH Zurich (2014),
http://dx.doi.org/10.3929/ethz-a-010045530

20. Apt, K.R., Blair, H.A., Walker, A.: Towards a Theory of Declarative Knowledge.
In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming,
pp. 89–148. Morgan Kaufmann Publishers Inc. (1988)

21. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

22. Vardi, M.Y.: The Complexity of Relational Query Languages (Extended Abstract).
In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Com-
puting, STOC 1982, pp. 137–146. ACM, New York (1982)

23. Shmueli, O.: Decidability and Expressiveness Aspects of Logic Queries. In: Pro-
ceedings of the ACM Symposium on Principles of Database Systems. ACM (1987)

24. Rissanen, E.: XACML 3.0 Additional Combining Algorithms Profile Version 1.0.
Technical report, Axiomatics

25. OASIS: eXtensible Access Control Markup Language,
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

26. Seitz, L., Rissanen, E., Sandholm, T., Firozabadi, B.S., Mulmo, O.: Policy Admin-
istration Control and Delegation Using XACML and Delegent. In: Proceedings of
the International Workshop on Grid Computing, pp. 49–54. IEEE (2005)

http://dx.doi.org/10.3929/ethz-a-010045530
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

	Decentralized Composite Access Control
	Introduction
	System Model and the Running Example
	BelLog
	Decentralized Composite Policies in BelLog
	Analysis
	Conclusions

