
Provably Repairing the ISO/IEC 9798 Standard
for Entity Authentication

David Basin, Cas Cremers, and Simon Meier

Institute of Information Security
ETH Zurich, Switzerland

Abstract. We formally analyze the family of entity authentication proto-
cols defined by the ISO/IEC 9798 standard and find numerous weaknesses,
both old and new, including some that violate even the most basic authen-
tication guarantees. We analyse the cause of these weaknesses, propose
repaired versions of the protocols, and provide automated, machine-
checked proofs of the correctness of the resulting protocols. From an
engineering perspective, we propose two design principles for security
protocols that su�ce to prevent all the weaknesses. Moreover, we show
how modern verification tools can be used for falsification and certified
verification of security standards. The relevance of our findings and rec-
ommendations has been acknowledged by the responsible ISO working
group and an updated version of the standard will be released.

Introduction

Entity authentication is a core building block for security in networked systems.
In its simplest form, entity authentication boils down to establishing that a
party’s claimed identity corresponds to its real identity. In practice, stronger
guarantees are usually required, such as mutual authentication, agreement among
the participating parties on the identities of their peers, or authentication of
transmitted data [27,32].

The ISO (International Organization for Standardization) and IEC (Interna-
tional Electrotechnical Commission) jointly provide standards for Information
Technology. Their standard 9798 specifies a family of entity authentication pro-
tocols. This standard is mandated by numerous other standards that require
entity authentication as a building block. Examples include the Guidelines on
Algorithms Usage and Key Management [13] by the European Committee for
Banking Standards and the ITU-T multimedia standard H.235 [24].

Analysis of previous versions of the ISO/IEC 9798 standard has led to
the discovery of several weaknesses [3, 8, 12]. The standard has been revised
several times to address weaknesses and ambiguities, with the latest updates
stemming from 2010. One may therefore expect that such a mature and pervasive
standard is “bullet-proof” and that the protocols satisfy strong, practically
relevant, authentication properties.

On request by CRYPTREC, the Cryptography Research and Evaluation
Committee set up by the Japanese Government, we formally analyzed the most

recent versions of the protocols specified in parts 1–4 of the ISO/IEC 9798
standard using the Scyther tool [9]. To our surprise, we not only found that
several previously reported weaknesses are still present in the standard, but
we also found new weaknesses. In particular, many of the protocols guarantee
only weak authentication properties and, under some circumstances, even no
authentication at all. For the majority of implementations of the standard where
only weak authentication is required, these weaknesses will not lead to security
breaches. However, our findings clearly show that the guarantees provided by
the protocols are much weaker than might be expected. Moreover, in some cases,
additional assumptions are required to ensure even the weakest possible form of
authentication.

We analyze the shortcomings in the protocols’ design and propose repairs.
We justify the correctness of our fixes by providing machine-checked proofs of the
repaired protocols. These proofs imply the absence of logical errors: the repaired
protocols provide strong authentication properties in a Dolev-Yao model, even
when multiple protocols from the standard are run in parallel using the same key
infrastructure. Consequently, under the assumption of perfect cryptography, the
repaired protocols guarantee strong authentication.

To generate the correctness proofs, we first extend the Scyther-Proof

tool [31] to handle bidirectional keys. We then use the tool to generate proof
scripts that are checked independently by the Isabelle/HOL theorem prover. As
input, Scyther-Proof takes a description of a protocol and its properties and
produces a proof in higher-order logic of the protocol’s correctness. Both the
generation of proof scripts and their verification by Isabelle/HOL are completely
automatic.

From an engineering perspective, we observe that applying existing principles
for constructing cryptographic protocols such as those of Abadi and Needham [2]
would not have prevented most of the discovered weaknesses. We therefore
additionally propose two design principles in the spirit of [2] whose application
would have prevented all of the weaknesses.

Based on our analysis, the ISO/IEC working group responsible for the 9798
standard will release an updated version of the standard, incorporating our
proposed fixes.

Summary of Contributions. First, we find previously unreported weaknesses in
the most recent version of the ISO/IEC 9798 standard. Second, we repair this
practically relevant standard, and provide machine-checked proofs of the correct-
ness of the repairs. Third, we propose two principles for engineering cryptographic
protocols in the spirit of [2] that would have prevented the weaknesses. Fourth,
our work highlights how modern security protocol analysis tools can be used for
falsification and machine-checked verification of security standards.

Organization. In Section 1, we describe the ISO/IEC 9798 standard. In Section 2,
we model the protocols and analyze them, discovering numerous weaknesses. In
Section 3, we analyze the sources of these weaknesses and present two design
principles that eliminate them. In Section 4, we explain how we automatically

2

generate machine-checked correctness proofs for these repaired protocols. We
describe related work in Section 5 and conclude in Section 6.

1 The ISO/IEC 9798 Standard

1.1 Overview

We give a brief overview of the standard, which specifies a family of entity
authentication protocols. We consider here the first four parts of the standard.
Part 1 is general and provides background for the other parts. The protocols are
divided into three groups. Protocols using symmetric encryption are described in
Part 2, those using digital signatures are described in Part 3, and those using
cryptographic check functions such as MACs are described in Part 4.

Because the standard has been revised, we also take into account the most
recent technical corrigenda and amendments. Our analysis covers the protocols
specified by the following documents. For the first part of the standard, we cover
ISO/IEC 9798-1:2010 [21]. For the second part, we cover ISO/IEC 9798-2:2008 [18]
and Corrigendum 1 from 2010 [22]. For the third part, we cover ISO/IEC 9798-
3:1998 [16], the corrigendum from 2009 [19], and the amendment from 2010 [23].
Finally, for the fourth part, our analysis covers ISO/IEC 9798-4:1999 [17] and
the corrigendum from 2009 [20].

Table 1 lists the 17 associated protocols. For each cryptographic mechanism,
there are unilateral and bilateral authentication variants. The number of messages
and passes di↵ers among the protocols as well as the communication structure.
Some of the protocols also use a trusted third party (TTP).

Note that there is no consistent protocol naming scheme shared by the di↵erent
parts of the ISO/IEC 9798 standard. The symmetric-key based protocols are
referred to in [18] as “mechanism 1”, “mechanism 2”, etc., whereas the protocols
in [16,20,23] are referred to by their informal name, e. g., “One-pass unilateral
authentication”. In this paper we will refer to protocols consistently by combining
the document identifier, e. g., “9798-2” with a number n to identify the n-th
protocol in that document. For protocols proposed in an amendment, we continue
the numbering from the base document. Hence we refer to the first protocol
in [23] as “9798-3-6”. The resulting identifiers are listed in Table 1.

Most of the protocols are parameterized by the following elements:

– All text fields included in the protocol specification are optional and their
purpose is application-dependent.

– Many fields used to ensure uniqueness or freshness may be implemented
either by random numbers, sequence numbers, or timestamps.

– Some protocols specify alternative message contents.
– Some identifier fields may be dropped, depending on implementation details.

1.2 Notation

We write X ||Y to denote the concatenation of the bit strings X and Y . We write
{|X |}enc

k

to denote the encryption of X with the symmetric key k and {|X |}sign
k

3

Protocol Description

Part 2: Symmetric-key Cryptography

9798-2-1 One-pass unilateral authentication
9798-2-2 Two-pass unilateral authentication
9798-2-3 Two-pass mutual authentication
9798-2-4 Three-pass mutual authentication
9798-2-5 Four-pass with TTP
9798-2-6 Five-pass with TTP

Part 3: Digital Signatures

9798-3-1 One-pass unilateral authentication
9798-3-2 Two-pass unilateral authentication
9798-3-3 Two-pass mutual authentication
9798-3-4 Three-pass mutual authentication
9798-3-5 Two-pass parallel mutual authentication
9798-3-6 Five-pass mutual authentication with TTP, initiated by A
9798-3-7 Five-pass mutual authentication with TTP, initiated by B

Part 4: Cryptographic Check Functions

9798-4-1 One-pass unilateral authentication
9798-4-2 Two-pass unilateral authentication
9798-4-3 Two-pass mutual authentication
9798-4-4 Three-pass mutual authentication

Table 1. Protocols specified by Parts 1-4 of the standard.

to denote the digital signature of X with the signature key k. The application of
a cryptographic check function f , keyed with key k, to a message m, is denoted
by f

k

(m).

In the standard, TVP denotes a Time-Variant Parameter, which may be a
sequence number, a random value, or a timestamp. TN denotes a time stamp
or sequence number. I

X

denotes the identity of agent X. Text
n

refers to a text
field. These fields are always optional and their use is not specified within the
standard. We write KAB to denote the long-term symmetric key shared by A
and B. If the key is directional, we assume that A uses KAB to communicate
with B and that B uses KBA. By convention, we use lower case strings for fresh
session keys, like kab.

1.3 Protocol Examples

Example 1: 9798-4-3. The 9798-4-3 protocol is a two-pass mutual authentica-
tion protocol based on cryptographic check functions, e. g., message authentication
codes. Its design, depicted in Figure 1, is similar to two related protocols based
on symmetric key encryption (9798-2-3) and digital signatures (9798-3-3).

The initiator starts in role A and sends a message that consists of a time
stamp or sequence number TN

A

, concatenated with an optional text field and a

4

1. A ! B : TNA || Text2 || fKAB (TNA || IB || Text1)
2. B ! A : TNB || Text4 || fKAB (TNB || IA || Text3)

Fig. 1. The 9798-4-3 two-pass mutual authentication protocol using a cryptographic
check function.

TokenPA = Text4 || {|TVPA || kab || IB || Text3 |}encKAP
|| {|TNP || kab || IA || Text2 |}encKBP

TokenAB = Text6 || {|TNP || kab || IA || Text2 |}encKBP
|| {|TNA || IB || Text5 |}enckab

TokenBA = Text8 || {|TNB || IA || Text7 |}enckab

1. A ! P : TVPA || IB || Text1
2. P ! A : TokenPA

3. A ! B : TokenAB

4. B ! A : TokenBA

Fig. 2. The 9798-2-5 four pass protocol with TTP using symmetric encryption.

cryptographic check value. This check value is computed by applying a crypto-
graphic check function to the key shared between A and B and a string consisting
of TN

A

, B’s identity, and optionally a text field Text
1

. When B receives this
message he computes the cryptographic check himself and compares the result
with the received check value. He then computes the response message in a similar
way and sends it to A, who checks it.

Example 2: 9798-2-5. Figure 2 depicts the 9798-2-5 protocol, which is based
on symmetric-key encryption and uses a Trusted Third Party. A first generates a
time-variant parameter TVP

A

(which must be non-repeating), and sends it with
B’s identity I

B

and optionally a text field to the trusted party P . P then generates
a fresh session key kab and computes TokenPA, which essentially consists of two
encrypted copies of the key, using the long-term shared keys between P and
A, and P and B, respectively. Upon receiving TokenPA, A decrypts the first
part to retrieve the session key, and uses the second part to construct TokenAB .
Finally, B retrieves the session key from this message and sends his authentication
message TokenBA to A.

1.4 Optional Fields and Variants

There are variants for each protocol listed in Table 1. Each protocol contains text
fields, whose purpose is not specified, and which may be omitted, giving rise to
another protocol variant. As can be seen in the previous examples, some of these
text fields are plaintext, whereas others are within the scope of cryptographic
operations (i. e., signed, encrypted, or cryptographically checked). Note that the
standard does not provide a rationale for choosing among these options.

In setups where symmetric keys are used, it is common that if Alice wants to
communicate with Bob, she will use their shared key, which is the same key that
Bob would use to communicate with Alice. Such keys are called bidirectional.

5

Alternatively one can use unidirectional keys where each pair of agents shares two
symmetric keys, one for each direction. In this case K

Alice,Bob

and K
Bob,Alice

are
di↵erent. For some protocols that employ symmetric keys, the standard specifies
that if unidirectional keys are used, some identity fields may be omitted from
the encrypted (or checked) payload. This yields another variant.

The two protocols 9798-3-6 and 9798-3-7 both provide two options for the
tokens included in their messages, giving rise to further variants. Note that in
Section 4 we verify corrected versions of all 17 protocols in Table 1, taking all
variants into account.

1.5 Threat Model and Security Properties

The ISO/IEC 9798 standard neither specifies a threat model nor defines the
security properties that the protocols should satisfy. Instead, the introduction
of ISO/IEC 9798-1 simply states that the protocols should satisfy mutual or
unilateral authentication. Furthermore, the following attacks are mentioned as
being relevant: man-in-the-middle attacks, replay attacks, reflection attacks, and
forced delay attacks. We note that the standard does not explicitly claim that
any of the protocols are resilient against the above attacks.

2 Protocol Analysis

We use two di↵erent analysis tools. In this section, we use the Scyther tool [9]
to find attacks on the ISO/IEC 9798 protocols. In Section 4, we will use the
related Scyther-Proof tool [31] to generate machine-checked proofs of the
corrected versions.

Scyther performs an automatic analysis of security protocols in a Dolev-Yao
style model, for an unbounded number of instances. It is very e�cient at both
verification and falsification, in particular for authentication protocols such as
those considered here. Using Scyther, we performed protocol analysis with
respect to di↵erent forms of authentication. We explain these forms below when
discussing particular protocols.

Our analysis reveals that the majority of the protocols in the standard ensure
weak entity authentication. However, we also found attacks on five protocols and
two protocol variants. These attacks fall into the following categories: role-mixup
attacks, type flaw attacks, multiple-role TTP attacks, and reflection attacks. In
all cases, when an agent finishes his role of the protocol, the protocol has not been
executed as expected, which can lead the agent to proceed on false assumptions
about the state of the other involved agents.

In Table 2 we list the attacks we found using Scyther. The rows list the
protocols, the properties violated, and any additional assumptions required for
the attacks. We have omitted in the table all attacks that are necessarily entailed
by the attacks listed. For example, since 9798-2-5 does not satisfy aliveness from
B’s perspective, it also does not satisfy any stronger properties such as (weak)
agreement. We now describe the classes of attacks in more detail.

6

Protocol Violated property Assumptions

9798-2-3 A Agreement(B,TNB,Text3)
9798-2-3 B Agreement(A,TNA,Text1)
9798-2-3-udkey A Agreement(B,TNB,Text3)
9798-2-3-udkey B Agreement(A,TNA,Text1)
9798-2-5 A Alive Alice-talks-to-Alice
9798-2-5 B Alive
9798-2-6 A Alive
9798-2-6 B Alive

9798-3-3 A Agreement(B,TNB,Text3)
9798-3-3 B Agreement(A,TNA,Text1)
9798-3-7-1 A Agreement(B,Ra,Rb,Text8) Type-flaw

9798-4-3 A Agreement(B,TNb,Text3)
9798-4-3 B Agreement(A,TNa,Text1)
9798-4-3-udkey A Agreement(B,TNb,Text3)
9798-4-3-udkey B Agreement(A,TNa,Text1)

Table 2. Overview of attacks found.

2.1 Role-Mixup Attacks

Some protocols are vulnerable to a role-mixup attack in which an agent’s as-
sumptions on another agent’s role are wrong. Many relevant forms of strong
authentication, such as agreement [27], matching conversations [4] or synchroni-
sation [10], require that when Alice finishes her role apparently with Bob, then
Alice and Bob not only agree on the exchanged data, but additionally Alice can
be sure that Bob was performing in the intended role. Protocols vulnerable to
role-mixup attacks violate these strong authentication properties.

Figure 3 on the following page shows an example of a role-mixup attack on
the 9798-4-3 protocol from Figure 1. Agents perform actions such as sending and
receiving messages, resulting in message transmissions represented by horizontal
arrows. Actions are executed within threads, represented by vertical lines. The
box at the top of each thread denotes the parameters involved in the thread’s
creation. Claims of security properties are denoted by hexagons and a crossed-out
hexagon denotes that the claimed property is violated.

In this attack, the adversary uses a message from Alice in role A (thread 1)
to trick Alice in role B (thread 3) into thinking that Bob is executing role A and
is trying to initiate a session with her. However, Bob (thread 2) is only replying
to a message provided to him by the adversary, and is executing role B. The
adversary thereby tricks Alice into thinking that Bob is in a di↵erent state than
he actually is.

Additionally, when the optional text fields Text
1

and Text
3

are used, the
role-mixup attack also violates the agreement property with respect to these
fields: Alice will end the protocol believing that the optional field data she receives
from Bob was intended as Text1, whereas Bob actually sent this data in the

7

thread 1

role A
executed by Alice
initiating with Bob

thread 2

role B
executed by Bob

responding to Alice

thread 3

role B
executed by Alice
responding to Bob

TNA || Text2 || fKAlice,Bob
(TNA || IBob)

TNB || Text4 || fKAlice,Bob
(TNB || IAlice)

TN
′

B || Text4 || fKAlice,Bob
(TN ′

B || IBob)

Agreement(Alice,Bob,TNB)

msc

Fig. 3. Role-mixup attack on 9798-4-3: when Alice finishes thread 3 she wrongly assumes
that Bob was performing the A role.

Text3 field. Depending on the use of these fields, this can constitute a serious
security problem. Note that exploiting these attacks, as well as the other attacks
described below, does not require “breaking” cryptography. Rather, the adversary
exploits similarities among messages and the willingness of agents to engage in
the protocol.

Summarizing, we found role-mixup attacks on the following protocols: 9798-
2-3 with bi- or unidirectional keys, 9798-2-5, 9798-3-3, and 9798-4-3 with bi- or
unidirectional keys.

2.2 Type Flaw Attacks

Some protocol implementations are vulnerable to type flaw attacks where data
of one type is parsed as data of another type. Consider, for example, an imple-
mentation where agent names are encoded into bit-fields of length n, which is
also the length of the bit-fields representing nonces. It may then happen that an
agent who expects to receive a nonce (any fresh random value that it has not
seen before), therefore accepts a bit string that was intended to represent an
agent name.

Scyther finds such an attack on the 9798-3-7 protocol, also referred to as
“Five pass authentication (initiated by B)” [23, p. 4]. In the attack, both (agent)
Alice and (trusted party) Terence mistakenly accept the bit string corresponding
to the agent name “Alice” as a nonce.

2.3 Attacks Involving TTPs that Perform Multiple Roles

Another class of attacks occurs when parties can perform both the role of the
trusted third party and another role. This scenario is not currently excluded by
the standard.

In Figure 4 we show an attack on 9798-2-5, from Figure 2. The attack closely
follows a regular protocol execution. In particular, threads 1 and 3 perform the
protocol as expected. The problem is thread 2. Threads 1 and 3 assume that the

8

thread 1

role P

executed by Pete
assumes Alice in role A

assumes Bob in role B

thread 2

role A

executed by Pete
assumes Alice in role P

assumes Bob in role B

thread 3

role B

executed by Bob
assumes Alice in role A

assumes Pete in role P

TVPA || IBob || Text1

TokenPA = Text4 ||
{|TVPA || k || IBob || Text3 |}

enc

KAP
||

{|TNP || k || IAlice || Text2 |}
enc

KBP

TokenPA

TokenAB = Text6 ||
{|TNP || k || IAlice || Text2 |}

enc

KBP
||

{|TNA || IBob || Text5 |}
enc

k

TokenAB

TokenBA

Aliveness of Alice

msc

Fig. 4. Attack on the 9798-2-5 protocol where the trusted third party Pete performs
both the P role and the A role. The assumptions of thread 1 and 3 agree. Bob wrongly
concludes that Alice is alive.

participating agents are Alice (in the A role), Bob (in the B role), and Pete (in
the P role). From their point of view, Alice should be executing thread 2. Instead,
thread 2 is executed by Pete, under the assumption that Alice is performing the
P role. Thread 2 receives only a single message in the attack, which is TokenPA.
Because the long-term keys are symmetric, thread 2 cannot determine from the
part of the message encrypted with KAP that thread 1 has di↵erent assumptions.
Thread 2 just forwards the other encrypted message part blindly to thread 3, as
it does not expect to be able to decrypt it. Finally, thread 3 cannot detect the
confusion between Alice and Pete, because the information in TokenAB that was
added by thread 2 only includes Bob’s name.

Summarizing, we found attacks involving TTPs that perform multiple roles
on the 9798-2-5 and 9798-2-6 protocol.

2.4 Reflection Attacks

Reflection attacks occur when agents may start sessions communicating with
the same identity, a so-called Alice-talks-to-Alice scenario. The feasibility and
relevance of this scenario depends on the application and its internal checks.

If an Alice-talks-to-Alice scenario is possible, some protocols are vulnerable to
reflection attacks. The Message Sequence Chart in Figure 5 shows an example for
the 9798-4-3 protocol from Figure 1. In this attack, the adversary (not depicted)

9

role A
executed by Alice

TNA || Text2 || fKAlice,Alice
(TNA || IAlice || Text1)

TNA || Text4 || fKAlice,Alice
(TNA || IAlice || Text1)

Agreement

msc

Fig. 5. Reflection attack on 9798-4-3.

reflects the time stamp (or nonce) and cryptographic check value from the message
sent by Alice back to the same thread, while prepending the message Text4. This
attack violates one of the main requirements explicitly stated in the ISO/IEC
9798-1 introduction, namely absence of reflection attacks.

Summarizing, we found reflection attacks on the following protocols: 9798-2-3
with bi- or unidirectional keys, 9798-2-5, 9798-3-3, and 9798-4-3 with bi- or
unidirectional keys.

3 Repairing the Protocols

3.1 Root Causes of the Problems

We identify two shortcomings in the design of the protocols, which together
account for all of the weaknesses detected.

1) Cryptographic Message Elements May Be Accepted at Wrong Positions. In
both the reflection and role mixup attacks, the messages that are received in a
particular step of a role were not intended to be received at that position. By
design, the protocol messages are all similar in structure, making it impossible
to determine at which point in the protocols the messages were intended to be
received.

As a concrete example, consider the reflection attack in Figure 5. Here, the
message sent in the protocol’s first step can be accepted in the second step, even
though this is not part of the intended message flow.

2) Underspecification of the Involved Identities and their Roles. As noted, the
symmetric-key based protocols with a TTP, 9798-2-5 and 9798-2-6, do not
explicitly state that entities performing the TTP role cannot perform other roles.
Hence it is consistent with the standard for Alice to perform both the role of the
TTP as well as role A or B. In these cases, the aliveness of the partner cannot
be guaranteed, as explained in Section 2.3. The source of this problem is that
one cannot infer from each message which identity is associated to which role.

10

For example, consider the first encrypted component from the third message
in the 9798-2-5 protocol with bidirectional keys, in Figure 2.

{|TN
P

|| kab || I
A

|| Text
2

|}enc
KBP

This message implicitly includes the identities of the three involved agents: the
identity of the agent performing the A role is explicitly included in the encryption,
and the shared long-term key KBP implicitly associates the message to the key
shared between the agent performing the B and P roles. However, because the
key is bidirectional, the recipient cannot determine which of the two agents (say,
Bob and Pete) sharing the key performed which role: either Bob performed the B
role and Pete the P role, or vice versa. Our attack exploits exactly this ambiguity.

3.2 Associated Design Principles

To remedy these problems, we propose two principles for designing security
protocols. These principles are in the spirit of Abadi and Needham’s eleven
principles for prudent engineering practice for cryptographic protocols [2].

Our first principle concerns tagging.

Principle: positional tagging. Cryptographic message components
should contain information that uniquely identifies their origin. In partic-
ular, the information should identify the protocol, the protocol variant,
the message number, and the particular position within the message,
from which the component was sent.

This is similar in spirit to Abadi and Needham’s Principle 1, which states that
“Every message should say what it means: the interpretation of the message should
depend only on its content. It should be possible to write down a straightforward
English sentence describing the content — though if there is a suitable formalism
available that is good too.” Our principle does not depend on the meaning of the
message as intended by the protocol’s designer. Instead, it is based solely on the
structure of the protocol messages and their acceptance conditions.

Note that we consider protocols with optional fields to consist of multiple
protocol variants. Thus, a message component where fields are omitted, should
contain information to uniquely determine which fields were omitted.

Our second principle is a stricter version of Abadi and Needham’s Principle 3.

Principle: inclusion of identities and their roles. Each crypto-
graphic message component should include information about the identi-
ties of all the agents involved in the protocol run and their roles, unless
there is a compelling reason to do otherwise.

A compelling reason to leave out identity information might be that identity
hiding is a requirement, i. e., Alice wants to hide that she is communicating with
Bob. However, such requirements can usually be met by suitably encrypting
identity information.

11

Contrast this principle with the Abadi and Needham’s Principle 3: “If the
identity of a principal is essential to the meaning of a message, it is prudent to
mention the principal’s name explicitly in the message.” The original principle is
only invoked when the identity is essential. Instead, we propose to always include
information on all the identities as well as their roles. This principle would have
prevented attacks on many protocols, including the attacks on the 9798-2-5 and
9798-2-6 protocols, as well as the Needham-Schroeder protocol [26].

For protocols with a fixed number of roles, this principle can be implemented
by including an ordered sequence of the identities involved in each cryptographic
message component, such that the role of an agent can be inferred from its
position in the sequence.

3.3 Proposed Modifications to the Standard

All the previously mentioned attacks on the ISO/IEC 9798 can be prevented by
applying the previous two principles. Specifically, we propose three modifications
to the ISO standard, shown in Figure 6. The first two directly follow from the
principles and the third modification restricts the use of two protocols in the
standard. Afterwards we give an example of a repaired protocol.

Note that in this section we only give informal arguments why our modifica-
tions prevent the attacks. In Section 4, we provide machine-checked proofs that
this is the case.

Ensuring that Cryptographic Data Cannot Be Accepted at the Wrong
Point. We factor the first principle (positional tagging) into two parts and
propose two corresponding amendments to the standard. First, we explicitly
include in each cryptographic message component constants that uniquely identify
the protocol, the message number, and the position within the message. Second,
we ensure that protocol variants can be uniquely determined from the messages.

In our first amendment, shown in Figure 6, we implement unique protocol
identifiers by using an existing part of the standard: the object identifier from
Annex B of the standard, which specifies an encoding of a unique protocol identi-
fier. We also introduce a unique identifier for the position of the cryptographic
component within the protocol.

Amendment 1 prevents all reflection attacks because messages sent in one
step will no longer be accepted in another step. Furthermore, it prevents all role
mixup attacks, because the unique constants in the messages uniquely determine
the sending role. The final part of Amendment 1, stating that cryptographic keys
should not be used by other protocols, provides distinctness of cryptographic
messages with respect to any other protocols.

Our second amendment, also shown in Figure 6, ensures that the protocol
variant (determined by the omission of optional fields) can be uniquely determined
from the messages. We implement this by requiring that the recipient of a message
can uniquely determine which optional fields, if any, were omitted.

To see why protocols with omitted optional fields must be considered as
protocol variants, consider the following example: Consider a protocol in which a

12

Amendment 1:

The cryptographic data (encryptions, signatures, cryptographic check values) used at
di↵erent places in the protocols must not be interchangeable. This may be enforced by
including in each encryption/signature/CCF value the following two elements:

1. The object identifier as specified in Annex B [23, p. 6], in particular identifying the
ISO standard, the part number, and the authentication mechanism.

2. For protocols that contain more than one cryptographic data element, each encryp-
tion must contain a constant that uniquely identifies the position of the element
within the protocol.

The recipient of a message must verify that the object identifier and the position
identifiers are as expected. The cryptographic keys used by implementations of the
ISO/IEC 9798 protocols must be distinct from the keys used by other protocols.

Amendment 2:

When optional fields, such as optional identities or optional text fields, are not used
then they must be set to empty. In particular, the message encoding must ensure
that the concatenation of a field and an empty optional field is uniquely parsed as a
concatenation. This can be achieved by implementing optional fields as variable-length
fields. If the optional field is not used, the length of the field is set to zero.

Amendment 3:

Entities that perform the role of the TTP in the 9798-2-5 and 9798-2-6 protocols must
not perform the A or B role.

Fig. 6. Proposed amendments to the ISO/IEC 9798 standard.

message contains the sequence X || I
A

|| Text , where I
A

is an identity field that
may be dropped (e. g., with unidirectional keys) and Text is an optional text
field. Then, it may be the case that in one protocol variant, an agent expects a
message of the form X || I

A

, whereas the other implementation expects a message
of the form X || Text . The interaction between the two interpretations can result
in attacks. For example, the text field is used to insert a false agent identity, or
an agent identity is wrongly assumed to be the content of the text field.

If we follow the second amendment in the above example, the expected
messages correspond to X || I

A

|| ? and X|| ? ||Text , respectively, where ?
denotes the zero-length field. Because the ISO/IEC 9798 standard requires that
concatenated fields can be uniquely decomposed into their constituent parts,
misinterpretation of the fields is no longer possible.

Together, Amendments 1 and 2 implement our first principle.

Addressing Underspecification of the Role Played by Agents. Almost
all the protocols in the ISO/IEC 9798 standard already adhere to our second
principle: unique identification of the involved parties and their roles. However,
all protocols in the standard conform to Abadi and Needham’s third principle
because the messages uniquely determine the identities of all involved parties.

13

1. A ! B : TNA || Text2 || fKAB (“9798-4-3 ccf1” |||||| TNA || IB |||||| ???)
2. B ! A : TNB || Text4 || fKAB (“9798-4-3 ccf2” |||||| TNB || IA || Text3)

Fig. 7. Repaired version of the 9798-4-3 protocol with omitted Text1 field.

There are only two protocols in the standard that conform to Abadi and
Needham’s principle but not to our second principle: 9798-2-5 and 9798-2-6. For
example, the messages of the 9798-2-5 protocol identify all parties involved by
their association to the long-term keys. However they do not conform to our
second principle because the roles of the involved identities cannot be uniquely
determined from the messages. This is the underlying reason why, as currently
specified, the 9798-2-5 and 9798-2-6 protocols do not guarantee the aliveness of
the partner, as shown in Section 2.3.

This problem can be solved by applying our principle, i. e., including the
identities of all three participants in each message, so that their roles can be
uniquely determined. This is an acceptable solution and we have formally verified
it using the method of Section 4. However, from our analysis with Scyther, we
observe that the attacks require that the Trusted Third Party also performs other
roles (A or B). Under the assumption that in actual applications a TTP will,
by definition, not perform the A or B role, the protocols already provide strong
authentication. Thus, an alternative solution is to leave the protocols unchanged
and make this restriction explicit. This results in more streamlined protocols
and also requires minimal changes to the standard. This is the proposal made
in Amendment 3 in Figure 6. We have also verified this solution as described in
Section 4.

Repaired Protocols. Applying our principles and proposed amendments to
the standard, we obtain repaired versions of the protocols. As an example, we
show the repaired version of the 9798-4-3 protocol with bidirectional keys in
Figure 7. In this example, the Text

1

field is not used, and is therefore replaced
by ?. Each use of a cryptographic primitive (in this case the cryptographic check
function) includes a constant that uniquely identifies the protocol (9798-4-3) as
well as the position within the protocol specification (ccf1 and ccf2).

4 Proving the Correctness of the Repaired Protocols

The principles and amendments proposed in the previous section are motivated
by our analysis of the attacks and the protocol features that enable them. Conse-
quently, the principles and amendments are designed to eliminate these undesired
behaviors. Such principles are useful guides for protocol designers but their
application does not strictly provide any security guarantees. In order to ensure
that the repaired protocols actually have the intended strong authentication
properties, we provide machine-checked correctness proofs.

We use a version of the Scyther-Proof tool proposed in [31] to generate
proofs of these properties. Given a description of a protocol and its security

14

properties, the tool generates a proof script that is afterwards automatically
checked by the Isabelle/HOL theorem prover [33]. If the prover succeeds, then the
protocol is verified with respect to a symbolic, Dolev-Yao model. To verify our
repaired protocols, we extended the tool with support for bidirectional symmetric
long-term keys.

The proofs generated by Scyther-Proof are based on a security protocol
verification theory that provides a sound way to perform finite case distinctions
on the possible sources of messages that are known to the intruder, in the context
of a given protocol. The generated proofs use these case distinctions to show
that the assumptions of a security property imply its conclusions, as explained
in Example 1. The theorems constituting this verification theory are formally
derived in Isabelle/HOL from the formalization of a symbolic, Dolev-Yao model.

The tool searches for the proofs with the fewest number of such case dis-
tinctions. For example, in the proofs of our repaired protocols, two such case
distinctions are required on average to prove a security property. Therefore, the
generated proof scripts (available from [1]) are amenable to human inspection
and understanding. To simplify the task of understanding how the proofs work
and, hence, why the protocol is correct, the tool also generates proof outlines.
These consist of a representation of the security property proven and a tree of
case distinctions constituting the proof.

For each repaired protocol, we prove that it satisfies non-injective agreement
on all data items within the scope of cryptographic operators in the presence
of a Dolev-Yao intruder. Moreover, we prove that this holds even when all
the protocols from the standard are executed in parallel using the same key
infrastructure, provided that the set of bidirectional keys is disjoint from the
set of unidirectional keys. As the content of text fields is underspecified in the
standard, we assume that the intruder chooses their content immediately before
they are sent. We model timestamps and sequence numbers by random numbers
that are chosen at the beginning of a role and are public.

Example 1. Figure 8 on the next page specifies our model of the repaired 9798-4-3
protocol with bidirectional keys in the input language of the Scyther-Proof

tool. The leak A and the leak B steps model that the timestamps (represented
here as randomly generated numbers) are publicly known by leaking them to the
intruder. We model that the contents of the text 1 and text 2 fields is chosen
by the intruder by defining them as variables that receive their content from the
network, and therefore from the intruder. We model the cryptographic check
function by the hash function h.

Figure 9 on the following page shows the proof outline for non-injective
agreement for the A-role of this protocol, which is automatically generated by our
tool. We have taken minor liberties here in its presentation to improve readability.
In the figure, #i is a symbolic variable denoting some thread i and A#i is the
value of the A-variable in the thread i. Lines 3-9 state the security property:
for all threads #i that execute the A-role and have executed its Step 2 with
uncompromised (honest) agents A#i and B#i, there exists some thread #j that

15

Repaired version of 9798-4-3

protocol isoiec_9798_4_3_bdkey_repaired

{

leak_A. A -> : TNa

leak_B. B -> : TNb

text_1. -> A: Text1, Text2

1. A -> B: A, B, TNa, Text2, Text1, h((’CCF’, k[A,B]), (’isoiec_9798_4_3_ccf_1’,

TNa, B, Text1))

text_2. -> B: Text3, Text4

2. B -> A: B, A, TNb, Text4, Text3, h((’CCF’, k[A,B]), (’isoiec_9798_4_3_ccf_2’,

TNb, A, Text3))

}

properties (of isoiec_9798_4_3_bdkey_repaired)

A_non_injective_agreement: niagree(A_2[A,B,TNb,Text3] -> B_2[A,B,TNb,Text3], {A, B})

B_non_injective_agreement: niagree(B_1[A,B,TNa,Text1] -> A_1[A,B,TNa,Text1], {A, B})

Fig. 8. Example input provided to the Scyther-Proof tool.

1 property (of isoiec_9798_4_3_bdkey_repaired)

2 A_non_injective_agreement:

3 "All #i.

4 role(#i) = isoiec_9798_4_3_bdkey_repaired_A &

5 step(#i, isoiec_9798_4_3_bdkey_repaired_A_2) &

6 uncompromised(A#i, B#i)

7 ==> (Ex #j. role(#j) = isoiec_9798_4_3_bdkey_repaired_B &

8 step(#j, isoiec_9798_4_3_bdkey_repaired_B_2) &

9 (A#j, B#j, TNb#j, Text3#j) = (A#i, B#i, TNb#i, Text3#i)) "

10 sources(h((’CCF’, k[A#i,B#i]), (’isoiec_9798_4_3_ccf_2’, TNb#i, A#i, Text3#i)))

11 case fake

12 contradicts secrecy of k[A#i,B#i]

13 next

14 case (isoiec_9798_4_3_bdkey_B_2_repaired_hash #k)

15 tautology

16 qed

Fig. 9. Example proof outline automatically produced by the Scyther-Proof tool.

executed Step 2 of the B-role and thread #j agrees with thread #i on the values
of A, B, TNb, and Text3.

The proof proceeds by observing that thread #i executed Step 2 of the A-
role. Therefore, thread #i received the hash in line 10 from the network, which
implies that the intruder knows this hash. For our protocol, a case distinction
on the sources of this hash results in two cases: (1) the intruder could have
constructed (faked) this hash by himself or (2) the intruder could have learned
this hash from some thread #k that sent it in Step 2 of the B-role. There are no
other cases because all other hashes have di↵erent tags. Case 1 is contradictory
because the intruder does not know the long-term key shared between the two
uncompromised agents A#i and B#i. In Case 2, the security property holds
because we can instantiate thread #j in the conclusion with thread #k. Thread
#k executed Step 2 of the B-role and agrees with thread #i on all desired values
because they are included in the hash. ut

We verify the parallel composition of all repaired protocols of the ISO/IEC
9798 standard as follows. Given the disjoint encryption theorem [14], it is su�cient
to verify only the parallel composition of protocols that use the same cryptographic
primitive and the same keys. We verify the properties of each protocol when

16

composed in parallel with all other protocols that use the same cryptographic
primitive and the same keys. Note that in the corresponding proofs, the case
distinctions on the source of messages known to the intruder range over the roles
of each protocol in the protocol group. Despite the substantial increase in the
scope of these case distinctions, the proof structure of the composed protocols
is the same as for the individual protocols, as all additional cases are always
trivially discharged due to the tagging: cryptographic components received by a
thread of one protocol contain tags that do not match with the tags in messages
produced by roles from other protocols.

Our extension of the Scyther-Proof tool as well as the protocol models
(including the property specifications) can be downloaded at [1]. Using a Core 2
Duo 2.20GHz laptop with 2GB RAM, the full proof script generation requires
less than 20 seconds, and Isabelle’s proof checking requires less than three hours.

5 Related Work

Previous Analyses of the ISO/IEC 9798 Protocols. Chen and Mitchell [8] reported
attacks based on parsing ambiguities on protocols from several standards. They
identify two types of ambiguities in parsing strings involving concatenation: (1)
recipients wrongly parse an encrypted string after decryption, or (2) recipients
wrongly assume that a di↵erent combination of data fields was input to the digital
signature or MAC that they are verifying. They show that such errors lead to
attacks, and propose modifications to the standards. Their analysis resulted in a
technical corrigendum to the ISO/IEC 9798 standard [19,20,22].

Some of the protocols have been used as case studies for security protocol
analysis tools. In [12], the Casper/FDR tool is used to discover weaknesses in six
protocols from the ISO/IEC 9798 standard. The attacks discovered are similar
to our reflection and role-mixup attacks. They additionally report so-called
multiplicity attacks, but these are prevented by following the specification of the
time-variant parameters in Part 1 of the standard. Contrary to our findings, their
analysis reports “no attack” on the 9798-2-5 and 9798-2-6 protocols as they do
not consider type-flaw attacks. A role-mixup attack on the 9798-3-3 protocol was
also discovered by the SATMC tool [3]. Neither of these two works suggested
how to eliminate the detected weaknesses.

In [11], the authors verify the three-pass mutual authentication protocols
that use symmetric encryption and digital signatures, i. e., 9798-2-4 and 9798-3-4.
Their findings are consistent with our results.

Related Protocols. The SASL authentication mechanism from RFC 3163 [34]
claims to be based on Part 3 of the ISO/IEC 9798 standard. However, the SASL
protocol is designed di↵erently than the ISO/IEC protocols and is vulnerable to
a man-in-the-middle attack similar to Lowe’s well-known attack on the Needham-
Schroeder public-key protocol. Currently, the SASL protocol is not recommended
for use (as noted in the RFC). The SASL protocol only provides authentication
in the presence of an eavesdropping adversary, which can also be achieved using
only plaintext messages.

17

In the academic literature on key exchange protocols, one finds references
to a Di�e-Hellman-based key exchange protocol known as “ISO 9798-3”. This
protocol seems to be due to [7, p. 464-465], where a protocol is given that is similar
in structure to the three-pass mutual authentication ISO/IEC 9798 protocol
based on digital signatures, where each random value n is replaced by ephemeral
public keys of the form gx. However, in the actual ISO/IEC 9798 standard,
no key exchange protocols are defined, and no protocols use Di�e-Hellman
exponentiation.

6 Conclusions

Our findings show that great care must be taken when using current imple-
mentations of the ISO/IEC 9798 standard. Under the assumption that trusted
third parties do not play other roles, the protocols guarantee a weak form of
authentication, namely, aliveness. However, many of the protocols do not satisfy
any stronger authentication properties, which are needed in realistic applications.
For example, when using these protocols one cannot assume that when a text field
is encrypted with a key and was apparently sent by Bob, that Bob indeed sent it,
or that he was performing the intended role. In contrast, our repaired versions
satisfy strong authentication properties and hence ensure not only aliveness but
also agreement on the participating agents, their roles, the values of time-variant
parameters, and the message fields that are cryptographically protected.

Based on our analysis of the standard’s weaknesses, we have proposed amend-
ments and provided machine-checked proofs of their correctness. Our proofs
guarantee the absence of these weaknesses even in the case that all protocols from
the standard are run in parallel using the same key infrastructure. The working
group responsible for the ISO/IEC 9798 standard will release an updated version
of the standard based on our analysis and proposed fixes.

Formal methods are slowly starting to have an impact in standardization
bodies, e. g., [5, 6, 15, 25, 29, 30]. We expect this trend to continue as governments
and other organizations increasingly push for the use of formal methods for the
development and evaluation of critical standards. For example, ISO/IEC JTC
1/SC 27 started the project “Verification of cryptographic protocols (ISO/IEC
29128)” in 2007 which is developing standards for certifying cryptographic pro-
tocols, where the highest evaluation levels require the use of formal, machine
checked correctness proofs [28].

We believe that the approach we have taken here to analyze and provably repair
the ISO/IEC 9798 standard can play an important role in future standardization
e↵orts. Our approach supports standardization committees with both falsification,
for analysis in the early phases of standardization, and verification, providing
objective and verifiable security guarantees in the end phases.

References

1. Models and proofs of the repaired ISO/IEC 9798 protocols and source code of
Scyther-Proof, May 2011. www.infsec.ethz.ch/research/software#ESPL.

18

2. M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols.
Software Engineering, IEEE Transactions on, 22(1):6 –15, 1996.

3. A. Armando and L. Compagna. SAT-based model-checking for security protocols
analysis. Int. J. Inf. Sec., 7(1):3–32, 2008.

4. M. Bellare and P. Rogaway. Entity authentication and key distribution. In CRYPTO,
pages 232–249. Springer, 1993.

5. K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu. Cryptographically verified
implementations for TLS. In ACM Conference on Computer and Communications
Security, pages 459–468. ACM, 2008.

6. K. Bhargavan, C. Fournet, A. D. Gordon, and N. Swamy. Verified implementations
of the information card federated identity-management protocol. In ASIACCS,
pages 123–135. ACM, 2008.

7. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In EUROCRYPT, volume 2045 of LNCS, pages 453–474.
Springer, 2001.

8. L. Chen and C. J. Mitchell. Parsing ambiguities in authentication and key estab-
lishment protocols. Int. J. Electron. Secur. Digit. Forensic, 3:82–94, 2010.

9. C. Cremers. The Scyther Tool: Verification, falsification, and analysis of security
protocols. In Proc. CAV, volume 5123 of LNCS, pages 414–418. Springer, 2008.
Available for download at http://people.inf.ethz.ch/cremersc/scyther/.

10. C. Cremers, S. Mauw, and E. de Vink. Injective synchronisation: an extension of
the authentication hierarchy. Theoretical Computer Science, pages 139–161, 2006.

11. A. Datta, A. Derek, J. Mitchell, and D. Pavlovic. Abstraction and refinement in
protocol derivation. In Proc. 17th IEEE Computer Security Foundations Workshop
(CSFW), pages 30–45. IEEE Comp. Soc., June 2004.

12. B. Donovan, P. Norris, and G. Lowe. Analyzing a library of security protocols
using Casper and FDR. In Proc. of the Workshop on Formal Methods and Security
Protocols, 1999.

13. European Payments Council. Guidelines on algorithms usage and key management.
Technical report, 2009. EPC342-08 Version 1.1.

14. J. D. Guttman and F. J. Thayer. Protocol independence through disjoint encryption.
In CSFW, pages 24–34, 2000.

15. C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell. A modular
correctness proof of IEEE 802.11i and TLS. In Proc. of the 12th ACM conference
on Computer and communications security, CCS ’05, pages 2–15, New York, NY,
USA, 2005. ACM.

16. International Organization for Standardization, Genève, Switzerland. ISO/IEC
9798-3:1998, Information technology – Security techniques – Entity Authentication
– Part 3: Mechanisms using digital signature techniques, 1998. Second edition.

17. International Organization for Standardization, Genève, Switzerland. ISO/IEC
9798-4:1999, Information technology – Security techniques – Entity Authentication
– Part 3: Mechanisms using a cryptographic check function, 1999. Second edition.

18. International Organization for Standardization, Genève, Switzerland. ISO/IEC
9798-2:2008, Information technology – Security techniques – Entity Authentication –
Part 2: Mechanisms using symmetric encipherment algorithms, 2008. Third edition.

19. International Organization for Standardization, Genève, Switzerland. ISO/IEC
9798-3:1998/Cor.1:2009, Information technology – Security techniques – Entity
Authentication – Part 3: Mechanisms using digital signature techniques. Technical
Corrigendum 1, 2009.

19

20. International Organization for Standardization, Genève, Switzerland. ISO/IEC
9798-4:1999/Cor.1:2009, Information technology – Security techniques – Entity
Authentication – Part 3: Mechanisms using a cryptographic check function. Technical
Corrigendum 1, 2009.

21. International Organization for Standardization, Genève, Switzerland. ISO/IEC
9798-1:2010, Information technology – Security techniques – Entity Authentication
– Part 1: General, 2010. Third edition.

22. International Organization for Standardization, Genève, Switzerland. ISO/IEC
9798-2:2008/Cor.1:2010, Information technology – Security techniques – Entity
Authentication – Part 2: Mechanisms using symmetric encipherment algorithms.
Technical Corrigendum 1, 2010.

23. International Organization for Standardization, Genève, Switzerland. ISO/IEC
9798-3:1998/Amd.1:2010, Information technology – Security techniques – Entity
Authentication – Part 3: Mechanisms using digital signature techniques. Amendment
1, 2010.

24. ITU-T. Recommendation H.235 - Security and encryption for H-series (H.323 and
other H.245-based) multimedia terminals, 2003.

25. D. Kuhlman, R. Moriarty, T. Braskich, S. Emeott, and M. Tripunitara. A correctness
proof of a mesh security architecture. In Proc. of the 2008 21st IEEE Computer
Security Foundations Symposium, pages 315–330. IEEE Computer Society, 2008.

26. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In TACAS’96, volume 1055 of LNCS, pages 147–166. Springer, 1996.

27. G. Lowe. A hierarchy of authentication specifications. In Proc. 10th IEEE Computer
Security Foundations Workshop (CSFW), pages 31–44. IEEE, 1997.

28. S. Matsuo, K. Miyazaki, A. Otsuka, and D. A. Basin. How to evaluate the security of
real-life cryptographic protocols? - the cases of ISO/IEC 29128 and CRYPTREC. In
Financial Cryptography and Data Security, FC 2010 Workshops, RLCPS, WECSR,
and WLC 2010, Spain, January 25-28, 2010, Revised Selected Papers, volume 6054
of LNCS, pages 182–194. Springer, 2010.

29. C. Meadows. Analysis of the Internet Key Exchange protocol using the NRL
Protocol Analyzer. In IEEE Symposium on Security and Privacy, pages 216–231,
1999.

30. C. Meadows, P. F. Syverson, and I. Cervesato. Formal specification and analysis
of the Group Domain Of Interpretation Protocol using NPATRL and the NRL
Protocol Analyzer. Journal of Computer Security, 12(6):893–931, 2004.

31. S. Meier, C. J. F. Cremers, and D. A. Basin. Strong invariants for the e�cient
construction of machine-checked protocol security proofs. In CSF, pages 231–245.
IEEE Computer Society, 2010.

32. A. Menezes, P. V. Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, Inc., 5th edition, 2001.

33. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

34. R. Zuccherato and M. Nystrom. RFC 3163: ISO/IEC 9798-3 Authentication SASL
Mechanism, 2001. http://www.rfc-editor.org/info/rfc3163.

20

