
Greedily Computing Associative Aggregations on Sliding WindowsI

David Basina, Felix Klaedtkeb, Eugen Zălinescua,∗

aInstitute of Information Security, ETH Zurich, Switzerland
bNEC Europe Ltd., Heidelberg, Germany

Abstract

We present an algorithm for combining the elements of subsequences of a sequence with an associative operator. The
subsequences are given by a sliding window of varying size. Our algorithm is greedy and computes the result with the
minimal number of operator applications.

Keywords: sliding window, associative aggregation operator, greedy algorithm, complexity, optimality

1. Introduction

Problem Statement. Let ⊕ : D×D → D be an associative
operator over a non-empty set D. Consider a sequence
ā = (a1, . . . , an) of elements in D, with n ≥ 1. A win-
dow w in ā is a pair (`w, rw) with 1 ≤ `w ≤ rw ≤ n.
We call `w and rw the w’s left and right margin respec-
tively. We omit the subscript w when it is unimportant
or clear from the context. Moreover, we write ⊕w(ā) for
a`w ⊕ a`w+1 ⊕ · · · ⊕ arw .

We consider the following problem in which the number
of applications of the ⊕ operator should be minimized.

Input: A nonempty sequence ā of elements in D and a
sequence w̄ = (w1, . . . , wk) of windows in ā, with
`w1
≤ `w2

≤ · · · ≤ `wk
and rw1

≤ rw2
≤ · · · ≤ rwk

.

Output: The sequence
(
⊕w1

(ā),⊕w2
(ā), . . . ,⊕wk

(ā)
)
.

This minimization problem is motivated by settings
where ⊕’s computation is expensive, for example, when
multiplying large matrices, or when taking the union of
large finite sets or determining their minimum. This prob-
lem arises, for example, when evaluating queries in system
monitoring and stream processing, where ⊕ is used to
aggregate values on windows sliding over data streams.

A straightforward but suboptimal algorithm is to com-
pute ⊕wi

(ā) for each window wi separately. It is easy to see
that this algorithm applies the ⊕ operator

∑k
i=1(rwi

− `wi
)

times. One can do better by sharing intermediate results
between overlapping windows as the following example
illustrates.

Example. Let D be the domain N and ⊕ integer addi-
tion. For the sequence ā = (2, 4, 5, 2) and the window

IThis work was partially supported by the Zurich Information
Security and Privacy Center (ZISC).
∗Corresponding author.

sequence w̄ =
(
(1, 3), (1, 4), (2, 4)

)
, the output is the se-

quence (11, 13, 11). The straightforward algorithm applies
the ⊕ operator 2 + 3 + 2 = 7 times. For this example, the
minimal number of ⊕ applications is 3, since integer addi-
tion is associative and commutative and the windows w1

and w3 contain the same integers. However, the minimal
number is 4 if we just exploit the associativity of ⊕.

Obviously, when computing ⊕w2(ā) we can reuse the
result of the window w1, since ⊕w2(ā) = ⊕w1(ā) ⊕ a4. If
we compute the intermediate result h := a3 ⊕ a4 when
computing the result for the window w2, we could reuse it
for the window w3, since ⊕w3

(ā) = a2⊕h. Note that we do
not have h as an intermediate result when computing the
results of the previous windows w1 and w2 as (a1⊕a2)⊕a3

and
(
(a1⊕a2)⊕a3

)
⊕a4, respectively. In case we compute

the results of the windows w1 and w2 as a1⊕ (a2⊕ a3) and
a1 ⊕

(
a2 ⊕ (a3 ⊕ a4)

)
, h is available for the result of the

window w3. However, in this case, the computation of the
result of the window w2 does not use the result of the first
window. So how we parenthesize ai ⊕ ai+1 ⊕ · · · ⊕ aj is
important when computing the result of a window. This
choice has an impact on whether we can reuse intermediate
results for other windows.

Contributions. In this article, we present an efficient algo-
rithmic solution to this problem. Our algorithm, which we
present in Section 2 and name SWA, processes the windows
iteratively and reuses intermediate results from previously
processed windows. SWA is greedy in the sense that it
minimizes for each window the number of ⊕ applications.
In Section 3 we prove SWA’s correctness and in Section 4
we show that it has linear running time in the length of the
input sequence ā. In Section 5 we prove SWA’s optimality
with respect to minimizing the number of ⊕ applications.
We conclude in Section 6 by discussing applications and
related work.

Preprint submitted to Elsevier September 17, 2014

{`=1; r=4;
v=Some 13}

{` = 1; r = 3;
v=None}

{`=1; r=1;
v=None}

Leaf Leaf

{`=2; r=3;
v=Some 9}

{`=2; r=2;
v=None}

Leaf Leaf

{`=3; r=3;
v=Some 5}

Leaf Leaf

{`=4; r=4;
v=Some 2}

Leaf Leaf

Figure 1: Instance of the tree data structure.

2. Algorithm

We present our sliding window algorithm SWA in a
functional programming style, close to the OCaml pro-
gramming language [7].1 To simplify the exposition, we
fix the associative operator ⊕ : D ×D → D and the input
sequence ā = (a1, . . . , an), i.e., we treat ⊕ and ā as global
variables. Our pseudo code can easily be modified so that ⊕
and ā are algorithm parameters. Furthermore, we assume
that we can access ā’s element at any position i ∈ {1, . . . , n}
in constant time.

SWA uses binary ordered trees to store and reuse in-
termediate results, which are updated when iteratively
processing the window sequence w̄. Figure 1 shows the
tree that SWA builds for the window w2 = (1, 4) for the
input from the example in the introduction. Generally, the
polymorphic datatype of these trees is

type ’a intermediate = ’a option node tree

where
type ’b node = {`: N; r: N; v: ’b}
type ’c tree =

| Leaf
| Node of (’c ∗ (’c tree) ∗ (’c tree))

Only the inner nodes of the trees are labeled (cf. the type
definition of ’c tree). The content of an inner node (of
the type ’b node), which we associate in the following to
its subtree t, is a record whose field values are denoted
by `t, rt, and vt, respectively. The field values `t and rt
are elements of N, with 1 ≤ `t ≤ rt ≤ n. They describe
the elements of ā that are covered by the tree t and their
combination ⊕(`t,rt)(ā) is the field value vt. If we know
that the intermediate result ⊕(`t,rt)(ā) is not reused later,
SWA does not store it to reduce memory usage. In this
case vt is actually None; otherwise, vt is Some ⊕(`t,rt)(ā).

1An OCaml implementation is provided as supplementary material
in Appendix A.

We recall that the option type, used in the type definition
of ’a intermediate, is defined as

type ’a option = None | Some of ’a

We lift the ⊕ operator in the canonical way to this
extended domain. For t = Leaf, we define `t := rt := 0 and
vt := None. Furthermore, we define the following function
for extracting the children of a tree’s root:

fun children t = match t with
| Leaf → error "No children at leaf."
| Node (_, t′, t′′) → (t′, t′′)

We first define two basic auxiliary functions for creating
and combining trees. The function atomic i builds the
single-node tree t with `t = rt = i and vt = Some ai.

fun atomic i = Node ({` = i; r = i; v = Some ai}, Leaf, Leaf)

The function combine t′ t′′ builds the tree t with the left
child t′ and the right child t′′, provided neither t′ nor t′′ is
a leaf. The value at t’s root is vt′ ⊕ vt′′ . The field values `t
and rt are obtained straightforwardly from the field values
of its left and right children. If t′ is the tree Leaf then t
is t′′. Analogously, if t′′ is the tree Leaf then t is t′.

fun discharge t = match t with
| Leaf → Leaf
| Node (n, t′, t′′) → Node ({` = n.`; r = n.r;

v = None}, t′, t′′)

fun combine t′ t′′ = match (t′, t′′) with
| (Leaf, _) → t′′

| (_, Leaf) → t′

| (_, _) → Node ({` = `t′ ; r = rt′′ ;
v = vt′ ⊕ vt′′},

discharge t′, t′′)

Note that in the case where t′ and t′′ are not the trees Leaf,
the value of the left child of the tree t is discharged by the
homonymous function and becomes None.

SWA’s working horse is the function slide t w. It up-
dates the tree t for the window w:

fun atomics i j =
if i > j then [] else (atomic j) :: atomics i (j − 1)

fun reusables t w =
if `w > rt then []
else if `w = `t then [t]
else let (t′, t′′) = children t

in if `w ≥ `t′′ then reusables t′′ w else t′′ :: reusables t′ w

fun slide t w =
let ts = atomics (max `w (rt + 1)) rw

ts′ = reusables t w
swap f x y = f y x

in fold_left (swap combine) Leaf (ts @ ts′)

The auxiliary function atomics i j returns the list of single-
node trees for the elements ai, ai+1, . . . , aj . The auxiliary
function reusables t w returns the list of maximal subtrees t′
of t for which the value vt′ can be used for computing
the value ⊕w(ā). The function slide t w combines both
these lists of trees into a single tree for the window w
by folding the list ts @ ts ′, where @ denotes list concate-
nation. Note that we must swap the order of the argu-
ments of combine when building the tree, since atomics

2

�
��TT
T�

�
�
�
�JJJ

•

•

2 4 5 2
◦ ◦ •

��
�J
J
J
J
J
J
J

•

◦

•

2 4 5 2
◦ ◦ • •

��
�T
T
T
T
T

•

◦

2 4 5 2
◦ • •

Figure 2: Skeletons of the trees built by the slide function for the input
sequence (2, 4, 5, 2) and the window sequence

(
(1, 3), (1, 4), (2, 4)

)
.

and reusables add trees to the front of the lists they build.
Intuitively, the head of these lists are at the right, the
tails at the left, and the resulting tree is thus built from
right to left. Recall that fold_left f a (b1, . . . , bn) returns
f(. . . (f(f(a, b1), b2), . . .), bn).

Figure 2 shows the skeletons of the trees that SWA
builds for the input sequence (2, 4, 5, 2) and the windows
(1, 3), (1, 4), and (2, 4). The skeletons are obtained by
removing the leaves and ignoring the nodes’ values. Nodes
with the value None are depicted as circles instead of black
dots. The skeletons of the subtrees that are reused from
the previous window are depicted with dashed lines.

SWA iteratively calls the function slide ti−1 wi, for i =
1, . . . , k, where ws is the list consisting of the given windows
w1, . . . , wk, t0 is the tree Leaf, and ti is the tree returned
by slide ti−1 wi. For i ∈ {1, . . . , k}, the value at the root
of the tree ti is ⊕wi(ā), which SWA extracts from the tree
in the ith iteration and adds to the returned list after
updating the tree ti−1.

fun extract t = match t with
| Leaf → error "No value at leaf."
| Node (n, _, _) →

match n.v with
| None → error "No value at node."
| Some v → v

fun iterate t ws = match ws with
| [] → []
| w :: ws′ → let t′ = slide t w

in (extract t′) :: iterate t′ ws′

fun sliding_window ws = iterate Leaf ws

3. Correctness

SWA obviously terminates. It successively processes
the windows w1, . . . , wk in the list ws. In particular, the
function iterate processes the window at the head of the
window list ws and proceeds with the list’s tail until it is
empty.

We now prove partial correctness. A tree t is correctly
shaped if the following conditions are satisfied, where t̂
ranges over t’s non-Leaf subtrees and t̂′ and t̂′′ are the left
and right children of t̂:

(S1) `t̂ ≤ rt̂.

(S2) If `t̂ = rt̂ then t̂′ = t̂′′ = Leaf.

(S3) If `t̂ < rt̂ then t̂′, t̂′′ 6= Leaf, `t̂ = `t̂′ , rt̂ = rt̂′′ , and
rt̂′ + 1 = `t̂′′ .

A tree t is correctly valued if the following conditions are
satisfied, where t̂ ranges over t’s non-Leaf subtrees:

(V1) If vt̂ 6= None then vt̂ = Some⊕(`t̂,rt̂)
(ā).

(V2) If t̂ is a right child then vt̂ 6= None.

(V3) If t 6= Leaf then vt 6= None.

Note that while a tree that is correctly shaped has only
correctly shaped subtrees, this might not be true for a
correctly valued tree. A tree is valid if it is correctly
shaped and correctly valued.

We prove the following lemma about the tree returned
by slide t w, where w is the window for which we update
the tree t.

Lemma 1. Let w be a window and t a valid tree with
`t ≤ `w and rt ≤ rw. The tree t′ returned by slide t w is
valid and (`t′ , rt′) = (`w, rw).

Proof. We first introduce the following notion. A list ts
of trees is adjacent for (`, r) with `, r ∈ N if the following
conditions are satisfied:

(L1) No tree in ts is Leaf.

(L2) If two trees t1 and t2 are next to each other in ts with
t1 appearing before t2, then `t1 − 1 = rt2 .

(L3) If ts 6= [] then rt1 = r and `t2 = `, where t1 is the
first tree in ts and t2 is the last tree in ts.

Note that the empty list is adjacent for any (`, r). If the
singleton list consisting of the tree t is adjacent for (`, r)
then t = t1 = t2, where t1 and t2 are the trees in the
condition (L3).

The lemma follows straightforwardly from the following
facts about the functions that are used by slide t w for
building the tree t′:

(a) The list returned by reusables t w is adjacent for (`w, rt)
and its elements are valid trees.

(b) The list returned by atomics (max `w (rt + 1)) rw is an
adjacent list for (max{`w, rt + 1}, rw) and its elements
are valid trees.

(c) Let ts be a nonempty list of valid trees, adjacent for w.
The tree t′ returned by fold_left (swap combine) Leaf ts
is a valid tree with (`t′ , rt′) = w.

We only prove (a) and (c); (b) is obvious.
We prove (a) by induction over the size of t. Note

that all the elements of ts are correctly shaped since ts
only contains subtrees of t, which are correctly shaped.
Similarly, properties (V1) and (V2) hold for the trees in ts
because they hold for t.

The base case t = Leaf is trivial, since the returned
list ts is empty. For the step case, suppose that t 6= Leaf.
The cases where `w > rt and `w = `t are obvious, since

3

ts is either the empty list or the singleton list consisting
of the tree t, respectively. For the other cases, we have
that `t < `w ≤ rt. Let t′ be the left child of t and let
t′′ be the right child of t. For `w ≥ `t′′ , it follows from
the induction hypothesis that the function reusables t′′ w
returns an adjacent list for (`w, rt′′). This concludes the
case since rt = rt′′ . For `w < `t′′ , it follows from the
induction hypothesis that reusables t′ w returns an adjacent
list ts ′ for (`w, rt′). Putting t′′ at the front of ts ′ results
in an adjacent list for (`w, rt), because r′t + 1 = `t′′ since
t is correctly shaped. As t′′ is a right child and t is valid,
we have from (V2) that vt′′ 6= None. It follows that (V3)
holds for t′′ and therefore t′′ is correctly valued.

In the remainder of the proof, we show (c). We first
remark that fold_left (swap combine) Leaf ts is equivalent
to fold_left (swap combine) h ts ′, where h is the head of
ts and ts ′ its tail. Note that ts ′ is an adjacent list for
(`w, `h − 1). We define rts′ as `w − 1 if ts ′ is the empty list
and as rt1 otherwise, where t1 is the first tree in ts ′.

It suffices to prove that for every valid tree z distinct
from Leaf with (`z, rz) = (rts′ + 1, rw), the tree s returned
by fold_left (swap combine) z ts ′ is valid and (`s, rs) =
(`w, rw). We use induction over the length of ts ′. The base
case is trivial since s = z. For the step case, suppose that h
is the head of ts ′ and ts ′′ its tail. Composing z with h results
in a valid tree z′ with (`z′ , rz′) = (`h, rz). The list ts ′′ is
adjacent for (`w, `h − 1). As rts′′ + 1 = `h, it follows that
(`z′ , rz′) = (rts′′ + 1, rw). Using the induction hypothesis
for fold_left (swap combine) z′ ts ′′ concludes the step case.

The SWA’s correctness follows easily from Lemma 1.
Note that we assume that the given windows w1, . . . , wk
always slide to the right over the sequence ā, i.e., `wi

≤
`wi+1

and rwi
≤ rwi+1

, for all i ∈ {1, . . . , k − 1}. Hence, in
each iteration of SWA, the assumptions of Lemma 1 are
satisfied.

Theorem 2. Let ā be a nonempty sequence of elements
in D and let ws be the list consisting of the windows
w1, . . . , wk. The function sliding_window ws returns the
list ⊕w1(ā),⊕w2(ā), . . . ,⊕wk

(ā).

4. Complexity

We now analyze the time and space that SWA uses.
In doing so, we ignore the actual cost of applying the
⊕ operator, i.e., we assume that its application takes O(1)
time and space. We use the following notation. The size of
a window w is ||w|| := rw − `w + 1 and ||t|| denotes the size
of the tree t, i.e., the number of its subtrees. We denote
by |s| the length of the list s.

We first analyze the time and space required for a single
iteration of SWA, i.e., to compute the tree t′ returned by
slide t w, where w is a window and t is a valid tree with `t ≤
`w and rt ≤ rw. To build the tree t′, slide t w determines
the list ts of single-node trees for the new elements in the

window w. This is done by atomics (max `w (rt + 1)) rw
and takes O(||w||) time. The length of ts is at most ||w||.
Furthermore, slide t w determines the list ts ′ of subtrees of t
that are reusable by executing reusables t w. The length
of the list ts ′ is at most O(||w||), since each subtree in ts ′

covers at least one and distinct elements in w. Since SWA
visits each node in t at most once, it takes O(||t||) time to
compute the list ts ′. Folding the concatenated list ts @ ts ′

takes O(||w||) time and space, resulting in the tree t′ with
||t′|| ∈ O(||w||). Overall, slide t w runs in O(||w||+ ||t||) time
and space.

From this upper bound for a single iteration, we obtain
for SWA the upper bounds O(km) for time and O(m)
for space, when processing the windows w1, . . . , wk, where
m := max{||wi|| | 1 ≤ i ≤ k}. However, the upper bound
on the running time does not take into account that SWA
reuses intermediate results. We establish next a linear-time
upper bound in the length of the input sequence, when the
windows are pairwise distinct.

We fix SWA’s input: let ā be a sequence of n ≥ 1 ele-
ments in D and ws the list of windows w1, . . . , wk, with
k ≥ 1 and wi 6= wi+1, for all i ∈ {1, . . . , k}. Furthermore,
let t0, t1, . . . , tk be the trees that SWA successively builds
for the windows w1, . . . , wk, where t0 = Leaf. That is, ti is
the output of slide ti−1 wi, for i ∈ {1, . . . , k}.

Lemma 3. The number k of windows is in O(n).

Proof. Consider the relative movements of consecutive win-
dows in the sequence, i.e., for i ∈ {1, . . . , k}, let `δi :=
`wi
− `wi−1

and rδi := rwi
− rwi−1

, where `w0
:= rw0

:= 0.
Since the windows are pairwise distinct, we have that
`δi > 0 or rδi > 0, for every i ∈ {1, . . . , k}. If k > 2n

then
∑k
i=1 `

δ
i > n or

∑k
i=1 r

δ
i > n, which contradicts

`wk
≤ rwk

≤ n. Hence k ≤ 2n.

The following lemma is key for establishing SWA’s
complexity.

Lemma 4. The number of applications of the ⊕ operator
is in O(n).

Proof. The number of applications of the ⊕ operator equals
the number of calls to combine minus k, because at each
iteration there is exactly one call to combine, namely the
first one, where one of the arguments is Leaf and thus for
which the ⊕ operator is not applied.

The number of calls to combine during iteration j is
|tsj |+ |ts ′j |, where tsj is the list of single-node trees for the
new elements in the window wj and ts ′j is the list of reusable
subtrees of tj , that is, the list returned by reusables tj−1 wj .
We have that |tsi| ≤ rwi

− rwi−1
for 1 < i ≤ k and |ts1| =

rw1
− `w1

+ 1. Hence,
∑k
i=1 |tsi| ≤ rwk

− `w1
+ 1 ≤ n. It

remains to prove that
∑k
i=1 |ts ′i|, that is, the number of all

reusable trees is linear in n.
The structure of the remaining proof is as follows. We

associate a position in the input sequence to each reusable
tree. For each possible position, we bound the number of
reusable trees that can be associated with that position.

4

We first state some properties about subtrees t with
`t = rt. We call these trees atomic. Furthermore, we say
that a subtree is a left or a right subtree in some tree t, if it
is a left child or respectively a right child in t. Let j be some
iteration, with 1 ≤ j ≤ k. In the tree tj , the right atomic
subtrees are either subtrees of a reusable subtree, and thus
subtrees of tj−1, or the subtree t′ with `t′ = rt′ = rwj .
In fact, in all calls to combine t′ t′′ except the first two,
the tree t′′ represents the tree accumulated during the
execution of fold_left, and thus cannot be atomic. In the
first call, t′′ = Leaf. In the second call, t′′ is atomic iff
rwj > rwj−1 . By a simple inductive argument over j, it
follows that any right atomic subtree t of tj is such that
`t = rt = rwi

, for some iteration i ≤ j.
For any reusable subtree, consider its left-most right

atomic subtree (or the reusable tree itself, if it is atomic).
By the previous paragraph, the position of this atomic
subtree is the right margin of some window. Then the
number of reusables trees is upper bounded by how many
times the right margin of some window can be the position
of the left-most right atomic subtree of a reusable subtree.
We only bound the number of reusable subtrees that are
not heads of the ts ′ lists. This is sufficient as there are at
most k reusable trees that are heads, and k is linear in n.

Consider the right margin of some window. Let wi be
the first window with this right margin. Suppose that rwi

is the position of the left-most right atomic subtree of a
reusable subtree t in tj for some iteration j. Furthermore,
suppose that t is not the head of the list ts ′j . We prove the
following two properties.

(a) rwi−1
< `t ≤ rwi

.

(b) For each position k with rwi−1
< k ≤ rwi

there is at
most one reusable tree t such that `t = k, the position
of the left-most right atomic subtree of t is rwi , and t
is not the head of the list ts ′j for some iteration j.

From (a) and (b) it follows that there are most rwi
− rwi−1

reusable trees t such that left-most right atomic subtree
of t is rwi

, and t is not the head of some list ts ′j . Summing
up over all i with 1 ≤ i ≤ k, there are at most rwk

− rw1

reusable trees that are not heads of the ts ′ lists. As rwk
−

rw1 < n, this concludes the proof, under the assumption
that (a) and (b) hold.

We first prove (a). We have that `t ≤ rwi
as the right

atomic subtree at position rwi
is a subtree of t. For the

sake of contradiction, suppose that `t ≤ rwi−1
. Then the

atomic subtree at position rwi−1 is a right atomic subtree
in t. As rwi−1 < rwi , this contradicts the hypothesis that
rwi

is the position of the left-most right atomic subtree in t.
Hence we have that `t > rwi−1

. We have thus obtained
that rwi−1

< `t ≤ rwi
.

We prove (b) by contradiction. Suppose that there is a
reusable tree t′ in tj′ , for some iteration j′ 6= j, such that
`t′ = `t, the position of left-most right atomic subtree of t′
is also rwi

, and t′ is not the head of the list ts ′j′ . Say that
j < j′. As t is not the head of the list ts ′j , then t is a left

proper subtree in tj . As `wj+1 ≤ `wj′ ≤ `t′ = `t, we have
that t is a subtree of the reusable tree at the head of the
list ts ′j+1. Repeating the argument, it follows that t is a
subtree of the reusable tree t′′ at the head of the list ts ′j′ .
As reusable trees do not overlap, it follows that t′ = t′′.
This contradicts the assumption that t′ is not the head of
the list ts ′j′ .

We now state the main complexity result.

Theorem 5. Let ā be a nonempty sequence of n elements
in D and ws be the list consisting of the windows w1, . . . , wk
with wi 6= wi+1, for all i ∈ {1, . . . , k}. The function
sliding_window ws runs in O(n) time.

Proof. The running time of sliding_window is linear in the
total number of calls to combine and reusables. From the
first paragraph of the proof of Lemma 4, the number of
calls to combine is in O(n).

It remains to prove that the number of calls to reusables
is also in O(n). First note that reusables calls itself recur-
sively at most once. In the recursive call, reusables s w
inside the function reusables t w, the tree s is the child of
the tree t that satisfies `s ≤ `w ≤ rs. Hence the number
of calls to reusables in slide ti−1 wi equals the number of
nodes on the path from the root of ti−1 to the root of the
left-most reusable tree in ti−1. We call such a path the call
path of an iteration.

We show next that the call paths of different iterations
share no edges. For the sake of contradiction, suppose
that there are two iterations i and j, with i < j, such
that the call path in ti shares an edge e with the call path
in tj . Let t and t′ be the two trees having as roots the
two nodes of e, with t′ being a proper subtree of t. Let s
be the left-most reusable tree in ti. We have that s is a
subtree of t′, which is a subtree of t, which is a subtree of
tj . Thus `wj

= `tj ≤ `t ≤ `t′ ≤ `s = `wi+1
. Since i+ 1 ≤ j,

all previous inequalities are equalities. In particular, `t
equals `wi+1 . As t is a subtree in ti, it follows that t is a
subtree of a reusable tree, and thus a subtree of s. Hence
t equals s, which contradicts the fact that s is a proper
subtree of t.

We have shown that the total number of calls to reusables
is bounded by the number of edges created during the run
of the algorithm. In each iteration, the number of new
edges is linear in the number of new nodes, that is, linear
in the number of calls to combine. As we have already
observed, this number is linear in n.

5. Optimality

We prove SWA’s optimality by contradiction. As-
sume that it is not optimal for the window sequence w̄ =
(w1, . . . , wk). Without loss of generality, we assume that k
is the minimal number for which SWA is not optimal, i.e.,
for all window sequences (w′1, . . . , w

′
k′) with k′ < k, SWA

is optimal. Recall that a1, . . . , an are the elements in the
input sequence ā and wi = (`wi

, rwi
), for i ∈ {1, . . . , k}.

5

In the following, let t0, t1, . . . , tk be the trees that are
iteratively built by SWA for the windows w1, . . . , wk. Recall
that t0 is the tree Leaf. Furthermore, let s0, s1, . . . , sk be
trees that are optimal for the windows w1, . . . , wk, where
s0 is the tree Leaf.

We define the following measure. For t and t′ trees, let
cost(t, t′) be the number of subtrees t̂′ of t′ with rt̂′−`t̂′ ≥ 1
and there is no subtree t̂ of t with `t̂ = `t̂′ and rt̂ = rt̂′ .
Note that cost(t, t′) is the number of ⊕ operations that
are necessary to build t′ by reusing intermediate results
from t, where we assume that the value for each subtree
in t is available, even when the actual stored value is
None. In particular,

∑k
i=1 cost(ti−1, ti) is the number of ⊕

operations that SWA performs and
∑k
i=1 cost(si−1, si) is

the number of ⊕ operations for the given optimal solution.
By the non-optimality assumption we have that

k∑
i=1

cost(ti−1, ti) >

k∑
i=1

cost(si−1, si) .

Since k is minimal, we also have that

k−1∑
i=1

cost(ti−1, ti) ≤
k−1∑
i=1

cost(si−1, si) .

Intuitively speaking, the non-optimality is caused when
building the tree tk for the last window wk.

In the following, let t̂1, . . . , t̂p, with p ≥ 0, be the
reusable subtrees of tk−1. Furthermore, let t̂p+1 be the sub-
tree in tk for the new elements in the window wk, i.e., t̂p+1

stores the value ⊕(`,r)(ā), with ` = max{`wk
, rwk−1

+ 1}
and r = rwk

. Note that

cost(tk−1, tk) = p + rwk
− `

and therefore

cost(sk−1, sk) < p + rwk
− ` .

This inequality can only hold when there are q subtrees
of sk−1, with q < p that can be reused for building the
tree sk. For p ∈ {0, 1}, this is not possible.

In the remainder of the proof, we assume that p ≥ 2.
The following properties hold for the trees t̂1, . . . , t̂p. See
also Figure 3 for an illustration.

(i) Each subtree t̂i combines the new elements of a win-
dow wji , with 1 ≤ ji ≤ k− 1. Note that the windows
wj1 , . . . , wjp are different, in particular, we have that
j1 < j2 < · · · < jp. This is easy to see: if ji = ji+1,
for some i ∈ {1, . . . , p− 1}, SWA would build a tree
with t̂i as a left child and t̂i+1 as a right child. This
tree would be reusable when building the tree for wk.
Furthermore, we have that `wj1

≤ · · · ≤ `wjp
and

rwj1
< · · · < rwjp

= rwk−1
. Finally, note that wjp

can be the window wk−1.

(ii) Each subtree t̂i is the right child of a subtree ťi of tk−1,
where `ťi is less than `wk

. The existence of ťi follows
from `wk−1

< `wk
. Otherwise, if `wk−1

= `wk
, there

is only a single tree (p = 1), which contradicts the
assumption p ≥ 2. Note that the trees are ťi−1, . . . , ť1
are subtrees of ťi.

We further observe that for every i ∈ {1, . . . , p}, the
tree ťi occurs also as a subtree in each of the trees tji , . . . , tjp .
To see this, suppose that ťi does not occur in tji′ , for some
i′ ∈ {i, . . . , p}. Let i′ be maximal. Obviously, i′ 6= p since
rwjp

= rwk−1
and `wji

≤ `wk−1
. For i′ < p, t̂i′ would be a

reusable subtree when building the tree ti′+1. SWA would
build a subtree of ti′+1 with the left child t̂i′ and the right
child t̂i′+1. This contradicts the fact that t̂i′ is the right
child of the subtree ťi′ of tk−1.

Next, we show that for each i ∈ {1, . . . , p}, there is
a tree ŝi with `ŝi = `t̂i and rŝi = rt̂i that appears as a
subtree in the trees sji , . . . , sjp . Suppose that such a tree
ŝi does not exist. When building the tree sji , we must
combine the new elements in the window wji . If we also
combine it with old elements, no ⊕ operations are saved.
Furthermore, for i = 1, we cannot reuse ŝ1 to build sk.
Overall, it is not more expensive to build trees with the
claimed property.

It follows that ŝ1, . . . , ŝp are subtrees of sjp and there-
fore also subtrees of sk−1. If there is a subtree in sk−1 that
has as children two of these adjacent trees, say ŝi and ŝi+1,
then for its combination at least one additional application
of the ⊕ operator is needed. Note that the tree ŝi is a right
child of a subtree of the tree si.

It follows that if we have q reusable subtrees in sk−1 to
build sk, then

k−1∑
i=1

cost(si−1, si) ≥ (p− q) +

k−1∑
i=1

cost(ti−1, ti) .

From this inequality, we obtain a contradiction to the non-
optimality assumption:

k∑
i=1

cost(si−1, si) =

k−1∑
i=1

cost(si−1, si) + (q + rwk
− `) ≥

(p− q) +

k−1∑
i=1

cost(ti−1, ti) + (q + rwk
− `) =

k−1∑
i=1

cost(ti−1, ti) + (p + rwk
− `) =

k∑
i=1

cost(ti−1, ti) .

6

wk−1 wk

�
�
�
�
�
�
�L
L
L
L
L
L
Lt̂p+1�

�
�T
T
Tt̂p

PP
PP

PP
PP

PP
P
ťp

...

. . .�
�
�T
T
Tt̂1

aa
a
ť1

...

`wk rwkrwj1
rwjp−1

rwjp
=rwk−1`wjp

≤`wk−1`wjp−1

. . .

`wj1

Figure 3: Building the tree tk from tk−1.

6. Applications and Related Work

The presented algorithm can be easily modified to solve
the online version of the problem, where the input se-
quences ā and w̄ are iteratively given. In iteration i, the
input is the window wi and the remaining elements of the
sequence ā up to arwi

. The output of the ith iteration is
⊕wi(ā). In the online version of the problem, we do not
restrict ourselves to finite sequences, i.e., ā and w̄ can be
infinite. However, we require that the windows still have
finite size, i.e., the right margin rw of a window w cannot
be ∞. The presented algorithm, in particular its online
version, has applications in areas like system monitoring
(see, e.g., [4, 2]) and stream processing (see, e.g, [1]), where
⊕ is used to aggregate values on windows sliding over data
streams.

The sliding-window-minimum problem is a special in-
stance of the problem considered in this article. It addition-
ally assumes an ordering on the data element from D and
⊕ returns the minimum of its arguments. An algorithmic
solution to this problem where the window size is constant
and the window always slides by one over the sequence
of data items is described by Harter [5]. As with SWA,
Harter’s algorithm runs in O(n) time and uses O(m) space,
where n is the length of the input sequence ā and m is the
window size. Lemire [6] presents a minimum-maximum fil-
ter, which is similar to Harter’s algorithm. Lemire provides
a detailed analysis of his algorithm. In particular, he shows
that it performs at most three comparisons per element.

Approximation algorithms for computing statistics or
evaluating aggregation queries over sliding windows in data-
stream processing have received attention in the last decade.
See [3] for a seminal paper in this area, in which the au-
thors present and analyze an approximation algorithm for
the basic-counting problem, i.e., for a given data stream
consisting of 0s and 1s, maintain at every time instant the
count of the number of 1s in the last k elements. When
restricting the memory usage, their algorithm estimates the
answer at every instant within a certain bound. They prove
that their algorithm is optimal in terms of memory usage
and show how their algorithm extends to richer problems.

References

[1] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani,
I. Nishizawa, U. Srivastava, D. Thomas, R. Varma, and J. Widom.

STREAM: The Stanford stream data manager. IEEE Data Eng.
Bull., 26(1):19–26, 2003.

[2] D. Basin, M. Harvan, F. Klaedtke, and E. Zălinescu. Monitoring
data usage in distributed systems. IEEE Trans. Software Eng.,
39(10):1403–1426, 2013.

[3] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintain-
ing stream statistics over sliding windows. SIAM J. Comput.,
31(6):1794–1813, 2002.

[4] A. Goodloe and L. Pike. Monitoring distributed real-time systems:
A survey and future directions. Technical Report NASA/CR-
2010-216724, NASA Langley Research Center, 2010.

[5] R. Harter. The sliding window minimum algorithm. Blog
entry http://richardhartersworld.com/cri/2001/slidingmin.
html (see also http://programmingpraxis.com/2011/02/22/),
2009. Accessed on July 22, 2014.

[6] D. Lemire. Streaming maximum-minimum filter using no more
than three comparisons per element. Nord. J. Comput., 13(4):328–
339, 2006.

[7] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and
J. Vouillon. The OCaml system (release 3.12). Institut National
de Recherche en Informatique et en Automatique (INRIA), July
2011. http://caml.inria.fr.

7

Appendix A. Supplementary Material: OCaml Source Code

In this section, we provide an OCaml implementation of SWA. The OCaml code slightly differs from the pseudo code
in Section 2. In Section 2 we used a more intuitive and readable syntax. Moreover, in the code below, the operator ⊕
and the sequence ā are arguments of the algorithm and not fixed as in Section 2. Another difference stems from how ā’s
elements are accessed, which was simplified to ease the exposition in Section 2.
(* Some general auxiliary functions *)

let swap f x y = f y x

let lift f x y = match x, y with
| None, _ → None
| _, None → None
| Some x’, Some y’→ Some (f x’ y’)

let rec drop n xs = match xs with
| [] → []
| hd :: tl→ if n > 0 then drop (n-1) tl else xs

let rec take n xs = match xs with
| [] → []
| hd :: tl→ if n > 0 then hd :: take (n-1) tl else []

let split_at n xs = (take n xs, drop n xs)

(* Datatypes for the sliding window algorithm *)

type ’a node = {left: int; right: int; v: ’a}
type ’a tree =

| Leaf
| Node of (’a * (’a tree) * (’a tree))

type ’a intermediate = ’a option node tree

(* Selection functions for datatype *)

let left_index = function
| Leaf → -1
| Node (n, _, _)→ n.left

let right_index = function
| Leaf → -1
| Node (n, _, _)→ n.right

let value = function
| Leaf → None
| Node (n, _, _)→ n.v

let extract t = match value t with
| None → invalid_arg "No value at node."
| Some v→ v

let children = function
| Leaf → invalid_arg "No children at leaf."
| Node (_, t’, t’’)→ (t’, t’’)

(* Auxiliary functions for the sliding window algorithm *)

let atomic (i,x) = Node ({left = i; right = i; v = Some x}, Leaf, Leaf)

let rec atomics xs i j = match xs with
| [] → []
| hd :: tl→ if i > j then [] else (atomic (i, hd)) :: atomics tl (i+1) j

let discharge = function
| Leaf → Leaf
| Node (n, t’, t’’)→ Node ({left = n.left; right = n.right; v = None}, t’, t’’)

let combine op t’ t’’ = match t’, t’’ with
| Leaf, _→ t’’
| _, Leaf→ t’
| _, _ → Node ({left = left_index t’; right = right_index t’’; v = (lift op) (value t’) (value t’’)},

discharge t’, t’’)

8

let rec reusables t l =
if l > right_index t then []
else if l = left_index t then [t]
else let (t’, t’’) = children t in

if l ≥ left_index t’’ then reusables t’’ l
else t’’ :: reusables t’ l

let slide op xs t (l,r) =
let reuses = reusables t l in
let (news, rems) = split_at (1 + r - (max l (1 + right_index t))) xs in
let news’ = atomics news (max l (1 + right_index t)) r in
(rems, List.fold_left (swap (combine op)) Leaf ((List.rev news’) @ reuses))

(* Sliding window algorithm *)

let rec iterate op xs t = function
| [] → []
| (l, r) :: ws→

let zs = if right_index t < l then drop (l - 1 - right_index t) xs else xs in
let (xs’, t’) = slide op zs t (l,r) in
(extract t’) :: iterate op xs’ t’ ws

(* Arguments:
(1) associative operator op : ’a→ ’a→ ’a
(2) list [x_0; ...; x_n-1] of data elements xs : ’a list
(3) list [(l_0,r_0); ...; (l_k-1,r_k-1)] of windows ws : (int * int) list

with l_0≤l_2≤...≤l_k-1 and r_0≤r_1≤...≤r_k-1 and 0≤l_i≤r_i<n, for all i = 0, ..., k-1
Return value: [y_0; ...; y_k-1] : ’a list

with y_i = x_{l_i} op x_{l_i+1} op ... op x_{r_i}, for all i = 0, ..., k-1
*)

let sliding_window op xs ws = iterate op xs Leaf ws

9

