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Abstract—Security Enhanced Linux (SELinux) is a security
architecture for Linux implementing mandatory access control.
It has been used in numerous security-critical contexts ranging
from servers to mobile devices. But this is challenging as SELinux
security policies are difficult to write, understand, and maintain.
Recently, the intermediate language CIL was introduced to
foster the development of high-level policy languages and to
write structured configurations. However, CIL lacks mechanisms
for ensuring that the resulting configurations obey desired
information flow policies. To remedy this, we propose IFCIL,
a backward compatible extension of CIL for specifying fine-
grained information flow requirements for CIL configurations.
Using IFCIL, administrators can express, e.g., confidentiality,
integrity, and non-interference properties. We also provide a tool
to statically verify these requirements.

I. INTRODUCTION

Security Enhanced Linux (SELinux) is a set of extensions

of the Linux kernel that implements a Mandatory Access

Control mechanism. It is widely used for defining security

polices in Linux-based systems, including servers [1], network

appliances [2], and mobile devices [3]. Defining an SELinux

policy is conceptually simple: the system administrator defines

a set of types, uses them to label all system resources and

processes, and then defines a set of rules specifying which

operations the processes can perform on resources. However,

its use is far from simple. Writing, understanding, and main-

taining SELinux security policies is difficult and error-prone

as evidenced by numerous examples of misconfigurations [4]

that have led to serious vulnerabilities in widely used policies.

To simplify working with SELinux and to address the

limitations of its default policy language, the community called

for and proposed new high-level configuration languages [5],

[6]. In particular, SELinux developers recently proposed the

intermediate configuration language CIL (Common Interme-

diate Language), which is a declarative language that offers

advanced features to aid both policy specification and analysis.

CIL supports the definition of structured configurations, using,

e.g., namespaces and macros, and enables administrators to

specify which resources are critical, which entities can access

them, and which cannot. It also provides tool support to

statically detect and prevent misconfigurations, which could

lead to unauthorized access to security-critical resources.

However, CIL currently provides no means to prevent

unwanted indirect information flows, which is essential to

preventing confidentiality and integrity breaches. To overcome

this serious limitation, we propose IFCIL, an extension of

CIL supporting information flow requirements, and we endow

it with a verification procedure for statically checking that a

configuration satisfies its requirements.

Our proposal consists of three parts. First, we propose

the domain specific language (DSL), called IFL (Information

Flow Language), for expressing fine-grained information flow

requirements, which we group in two categories: functional

and security requirements. Functional requirements specify

which permissions must be granted to users to perform their

authorized tasks, such as which resources they can access and

with which operations. In contrast, security requirements pre-

vent entities from operating on other possibly critical entities,

and thereby enforce security properties, including confidential-

ity, integrity, and non-transitive information flow properties.

Our DSL is compositional and supports the refinement of

requirements with further restrictions both to make them more

demanding and to adapt them to specific contexts.

Second, we introduce IFCIL (Information Flow CIL), which

extends CIL with constructs to annotate configurations with

IFL requirements. Our extension is backward compatible: an

IFCIL configuration is also a valid CIL configuration and can

be translated by the standard CIL compiler.

Finally, we endow IFCIL with a verification procedure sup-

ported by an automated tool that, given a configuration, checks

if its IFL requirements are satisfied. We assess our tool’s

effectiveness and scalability on real-world configurations.

In summary, our main contributions are as follows.

• We present the language IFL for expressing complex,

fine-grained, information flow requirements in a declar-

ative and compositional way, including confidentiality,

integrity, and non-transitive information flow properties.

IFL requirements can be extended through refinement and

various access control languages can easily be augmented
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with IFL. Moreover, IFL requirements can be verified

using off-the-shelf LTL model checkers.

• We propose IFCIL, the integration of IFL inside CIL.

We achieve this by using special comments that an

administrator can associate with different parts of a

CIL configuration. We give an algorithm for statically

verifying the compliance of a configuration to its IFL

requirements.

• We give CIL a formal semantics and empirically validate

its adequacy with respect to the CIL reference manual

and the CIL compiler. Besides providing the basis for our

verification algorithm, the semantics and its experimental

validation make it possible to understand CIL’s trickier

bits, and to illuminate some unspecified corner cases

and disagreements between the documentation and the

compiler.

• We provide a prototype tool [7] that implements our

verification procedure by leveraging NuSMV, a popular

model checker [8]. Our tool checks if an IFCIL config-

uration satisfies the requirements therein and, when they

are violated, it warns the administrator about potentially

dangerous parts of the configuration.

• We experimentally assess our tool on three real-world

CIL policies [2], [9], [10]. We annotate them with IFL re-

quirements expressing properties taken from the literature

and with new ones. We thereby validate our tool and show

that it scales well. For example, it takes less than two

minutes to verify 39 requirements on the configuration

in [2], which has roughly 46,000 lines of code.

Outline: In Section II we introduce SELinux, CIL, and the

mechanism used by administrators to protect critical resources.

In Section III we give a high-level account of our CIL

semantics and how we experimentally validate its adequacy. In

Section IV we present IFCIL and we explain our verification

procedure for checking the satisfiability of the requirements in

Section V. In Section VI we present our verification tool and

our experimental assessment. In Section VII we compare our

work with the relevant literature and in Section VIII we draw

conclusions. The appendices contain the details of our formal

development and the proofs of our theorems.

II. BACKGROUND

a) SELinux: SELinux is a set of extensions to the Linux

kernel and utilities [11]. It extends the major subsystems of the

Linux kernel with strong, flexible, mandatory access control

(MAC). The SELinux security server permits or denies a

process to invoke a system call on a resource based on a

configuration specified by the system administrator. To specify

a configuration, an administrator defines a set of types, and

labels the OS resources and processes with them. In addition,

all resources belong to predefined classes, such as file, process,

socket, or directory. A rule in a configuration relates the type t

and class c of resources, and the type t
′

of processes with the

permitted operations. A rule thereby specifies the actions that

processes labelled t
′

can perform on the resources of class c

labeled t, for example, read or write a file, execute a process,

open a socket, or change the DAC rights of a directory. A

process P can invoke a system call SC on a resource R only

if there is a rule that permits P to do so.

Administrators typically specify configurations using

SELinux’s kernel policy language [12]. Configurations are

then compiled to a kind of (kernel binary) access-control

matrix. However, this policy language is very low-level. For

example, it does not allow the administrator to structure con-

figurations, which makes them hard to understand and main-

tain. Thus using the kernel policy language is cumbersome and

error-prone, as shown by the over permissive evolution of the

Android policy [4]. Some high-level configuration languages

have been suggested with their own compilers and tools as

an attempt to address these limitations [6], [13]. Recently, the

SELinux developers proposed a promising new intermediate

configuration language with advanced features and tools to

support both the development of high-level languages and the

definition of configurations. We briefly survey this language

below.

b) CIL: The Common Intermediate Language (CIL) [14]

was designed as a bridge between high-level configuration

languages and the low-level binary representation introduced

above. Compilers from various configuration languages to CIL

are intended to support multi-language policy definitions. A

compiler for the kernel policy language is currently available,

and CIL is designed to support existing high-level config-

uration languages, e.g., Lobster [6], and future ones too.

Despite its original goal, CIL is also used to directly write

configurations [10], [2], [9] for complex real-world policies,

like for Android [15]. Indeed, CIL provides its users with high-

level constructs like nested blocks, inheritance, and macros,

thereby supporting the structured definition of configurations.

Moreover, since CIL is declarative, it facilitates reasoning

about configurations, and the same analysis techniques and

tools for CIL can help when other high-level languages are

used.

Roughly, a CIL configuration consists of a set of decla-

rations of blocks, types, and rules. Similarly to classes in

programming languages, blocks have names and introduce

namespaces and further declarations. Types are labels that are

associated with system resources and processes. Rules regulate

types by specifying which operations processes can perform

on resources. Intuitively, administrators can define two kinds

of rules: those that grant permission to processes (allow rules)

and those that specify permissions that must be never granted

to processes (never allow rules).

Types can be grouped into named sets, called typeattributes,

which may be used inside rules to denote all the types

therein. Blocks can also contain macro definitions that allow

an administrator to abstract a set of rules and to reuse them

in different parts of a configuration. Macros can have types

as parameters that are instantiated when the macro is called.

Moreover, to foster code reuse and modularity, CIL features

the construct blockinherit that permits a block to inherit

from another block. Similarly to Object Oriented languages,

all the definitions of rules and types in the inherited block are



available in the inheriting block. The main difference is that

inheritance is actually realized by a kind of copying rule.

The most appealing features of CIL with respect to the

kernel policy language of SELinux are blocks that enable the

administrator build modular configurations, as well as macros

and inheritance that allow code reuse.

Below, we illustrate CIL’s main features through examples.

These examples also illustrate that blocks, types, typeattributes

and macros have names, and resolving them in the correct

name space and order is non-trivial.

Consider the following CIL block house that declares two

types, man and object, and the permission (the allow rule)

for processes labeled man to read the files labeled object:

(block house

(type man)

(type object)

(allow man object (file (read))))

Intuitively, processes of type house.man can read the ele-

ments of the class file labeled house.object. Note that

blocks introduce namespaces, and the elements defined therein

may be referred to directly within the block itself, or by their

qualified name, as done above.

The following block inherits the types man and object and

the relevant permission from the block house through the

blockinherit rule.

(block cottage

(blockinherit house)

(type garden))

Intuitively, blockinherit copies the body of the block

house. Thus the qualified names of the copied types become

cottage.man and cottage.object. In contrast, the type

garden is declared in the block, which is not in house.

Blocks can be nested, and the outermost block can refer to

the elements in the nested ones by qualifying their names.

(block tree

(block nest

(type egg))

(type bird)

(allow bird nest.egg (file (write))))

Intuitively, the last allow rule grants subjects with type

tree.bird the permission to write to the files with type

tree.nest.egg.

A global namespace is assumed that includes all the blocks,

the global types, and the global permission. For example, in

(type stranger)

(allow stranger inhouse.object (file (open)))

(block inhouse

(type man)

(type object)

(allow man object (file (read)))

(allow .stranger object (file (read)))

(allow stranger object (file (write))))

the name stranger and the fully qualified .stranger in

the allow rules both refer to the global type .stranger. Note

however that if the block inhouse declared a type stranger,

this declaration would overshadow the global one in the last

allow rule, but not the third one since a fully qualified name

is used. Note too that the global allow rule refers to a type

declared in the enclosed block.

The administrator can collect a set of rules using a macro-

like construct, as shown in the following example.

(block animal_mcr

(macro add_dog((type x)(type y))

(allow x man (file (read)))

(allow y dog (file (open))))

(type dog))

Macros are invoked as follows.

(block animal_house

(type man)

(type cat)

(call animal_mcr.add_dog(cat cat)))

Roughly, the content of add_dog replaces the last line

where the formal parameters x and y are bound to

animal_house.cat. Names are resolved using a mechanism

similar to dynamic binding: the name dog in the macro is

resolved as animal_mcr.dog, while man is resolved as

animal_house.man. Name resolution can be rather intricate,

especially when constructs are combined in non-trivial ways,

such as when inheritance and macros are interweaved. In these

cases, configurations may have unexepected behaviour (see

Section III for examples), and lead to misconfigurations that

are difficult to spot. This problem is exacerbated by the fact

that administrators cannot refer to a formal semantics, which

CIL lacks. One contribution of this paper is to provide such a

semantics. We define it in Appendix A and provide an intuitive

account in Section III.

An administrator can group types into named sets, called

type attributes, which may be used in place of a type. The fol-

lowing declares two type attributes named pet and not_pet

and defines the types therein.

(typeattribute pet)

(typeattributeset pet

(or (animal_mcr.dog) (animal_house.cat)))

(typeattribute not_pet)

(typeattributeset not_pet

(not (pet)))

The first type attribute includes the two types

animal_mcr.dog and animal_house.cat. In contrast, the

second one includes all the others.

Administrators can also specify which permissions should

never be granted to a given type using neverallow rules. The

rule below prohibits subjects with type animal_house.cat

to read resources of any type not in pet:

(neverallow animal_house.cat not_pet (file(read)))

The CIL compiler statically checks that no allow rule inside

the configuration violates a neverallow rule. In this example

the compiler will report an error because animal_house.cat

can read the files of type animal_house.man that is in

not_pet. Although useful, as we explain below, these checks

are insufficient to prevent insecure information flow.

c) An example from the security domain: Consider the

following block mem defined in [2], a CIL configuration

designed for OpenWrt powered wireless routers.



(block mem

(block read

(typeattribute subj_typeattr)

(typeattribute not_subj_typeattr)

(typeattributeset not_subj_typeattr

(not subj_typeattr))

(neverallow not_subj_typeattr nodedev

(chr_file (read)))))

This block defines an inner block read and two disjoint

type attributes. The first includes the system subjects, and the

second includes other types. The neverallow rule prevents

not_subj_typeattr types from reading a character file of

the globally defined type nodedev. The underlying idea is that

resources of type nodedev are critical for the system and must

be carefully protected. This block shows a typical pattern that

administrators use to protect critical resources in CIL using

type attributes and neverallow rules.

This pattern offers an extra check. In our example, if the

administrator includes the following rule

(allow untrusted mem.read.nodedev (chr_file (read)))

that grants a type untrusted the permission to read a charac-

ter file of type nodedev, then the CIL compiler raises an error.

There are two ways to avoid this error: the administrator may

either remove the last rule (because granting the permission is

actually dangerous), or add untrusted to subj_typeattr

to grant the permission.

However, this pattern is insufficient to control how infor-

mation flows. For example, consider the following snippet

(type untrusted)

(type vect)

(type deputy)

(typeattributeset mem.read.subj_typeattr deputy)

(allow deputy mem.read.nodedev (chr_file (read)))

(allow deputy vect (file (write)))

(allow untrusted vect (file (read)))

where the types untrusted, vect, and deputy are defined,

and deputy is in mem.read.subj_typeattr. Now, a leak

may occur if a subject in subj_typeattr reads a character

file of type nodedev and forwards information, via vect, to

an arbitrary process of type untrusted, which is permitted

by the given allow rules.

d) Preventing information flow: Currently, CIL does not

prevent indirect information flows between types. The goal

of our work is to extend it with a DSL, dubbed IFL, to

express information flow control requirements. We call the

resulting language IFCIL. In addition, we endow IFCIL with a

mechanism for statically checking that a configuration satisfies

the stated requirements. Our extensions provide administrators

with an extra, automatic check when defining rules that grant

or deny information flows from a critical resource.

We provide some intuition behind our extension by adding

the following lines to the mem block above:

(typeattribute ind_subj_typeattr)

(typeattribute not_ind_subj_typeattr)

(typeattributeset not_ind_subj_typeattr

(not ind_subj_typeattr))

;IFL; ˜(nodedev +> not_ind_subj_typeattr) ;IFL;

The first three lines introduce two type attributes

ind_subj_typeattr, and not_ind_subj_typeattr,

which are declared disjoint. The last line, enclosed between

the ;IFL; markers is IFL annotation that specifies the

infomation flow requirement that no information can

flow from nodedev to not_ind_subj_typeattr. This

annotation is given as a CIL comment that is used by our

verification tool, but is completely ignored by the standard

CIL compiler. Thus, an IFCIL configuration is still a CIL

configuration.

Note that IFL enables administrators to use a pattern

similar to the pattern used with neverallow, preventing

not_ind_subj_typeattr types from getting information

from a character file of type nodedev. In this way, our tool

warns the administrator of the information leakage from

nodedev character files illustrated above.

III. FORMALIZING CIL

The official CIL documentation [14] does not formally

describe CIL’s syntax and semantics. The following, admit-

tedly artificial, configuration highlights the need for a formal

semantics:

(type a)

(block A

(call B.m1(a)))

(block B

(macro m1((type x))

(type a)

(allow a x (file (read)))))

One would expect the parameter x of the macro B.m1 to be

bound to the type a in the global namespace, thereby allowing

A.a to read files of type .a. Instead, x is bound to A.a, and

the resulting permission for A.a is to read files of type A.a.

As a second example, consider the following configuration:

(type a)

(macro m((type x))

(type b)

(allow x b (file (read))))

(block A

(call m(a)))

(block B

(type a)

(blockinherit A))

Here the block B inherits from A, which calls the macro

m. There are two plausible orders in which macro calls and

inheritances can be resolved, and the choice determines to

which name the parameter x is bound when the allow rule is

copied in B. If the macro call is resolved before inheritance,

then x is bound to .a (since a is undefined in A). If instead the

inheritance is resolved first, then the call instruction is copied

inside B and x is bound to B.a. This is CIL’s actual behaviour,

but the reference guide is unclear about the choice.

a) Ambiguities in CIL: We found cases that are coun-

terintuitive, but nevertheless are represented by our semantics

correctly, i.e. in accordance with the actual behaviour of the

CIL compiler. For example, the following

(macro m(type x)

(type a)



(allow x x (file (read))))

(block A

(call m(a)))

seems impossible to resolve, because the type a defined inside

m is passed to m itself as a parameter. However, this is not

deemed to be erroneous according to the compiler’s behaviour.

Namely, the type a is copied from the macro m to the block A

and then passed as parameter to m itself. In a similar puzzling

way, if another type named a is defined, e.g., in the global en-

vironment, it is shadowed by the type copied from the macro.

We also found cases that are meaningless, but are not

detected as such by the compiler. In particular this is when

typeattributes are recursively defined in a vacuous manner.

Consider for example the following configuration:

(type a)

(typeattribute b)

(typeattribute c)

(typeattributeset b (not c))

(typeattributeset c b)

(allow b b (file (read)))

(allow c c (file (read)))

The typeattribute b should contain all the elements that are not

in itself, which is a contradiction. This error is not detected by

the compiler, and a kernel policy is produced whose behaviour

cannot be predicted using what we know about the semantics.

In fact, according to the compiler, a belongs to b but not to

c, which is again contradictory since c is defined to be the

same as b. Note that such misconfigurations may arise silently

in complex code where typeattributes are set using macros in

different places in the code. Indeed, we found such cases in the

openWRT configuration that we used for assessing our tool.

Our tool warns the administrator about such misconfigurations

and approximates the configuration behaviour by pruning the

recursion tree to remove circularity. This misbehaviour from

the compiler deserves further investigation.

b) Formal semantics of CIL: To clarify the behaviour

of CIL configurations, and to formally support IFCIL and its

verification mechanism, we provide a formal semantics for

CIL. Our semantics focuses on the type enforcement fragment

of the language, which is its most used part (see the real-word

CIL configurations in Section VI-B), and maps each system

type to its set of permissions.

In this section, we provide a high-level overview of our CIL

semantics. Its detailed formalization is given in Appendix A.

Our semantics benefits from a normal form for configura-

tions. Roughly, we resolve inheritance and macro calls and

fully qualify all names. We compute this normal form using

the following rewriting pipeline. This pipeline consists of six

phases, where each phase repeatedly applies a set of rewrite

transformations until the fixed point is reached.

1) The block names in blockinherit rules are resolved

locally, if possible, or globally otherwise.

2) blockinherit rules are replaced by the content of the

blocks they refer to.

3) The names of macros in call rules are resolved locally,

if possible, or globally otherwise.

4) The declarations of types and typeattributes are copied

from the body of the macros in the calling blocks.

5) Macro calls are resolved: the type names in the param-

eters of call rules are resolved locally, if possible, or

globally otherwise; then the allow rules are copied from

the macros in the calling blocks. While copying, the non-

local names in the allow rules are resolved in the block

containing the macro definition, if possible; otherwise the

resolution is delegated to further application of (5), until

no longer possible, and then to (6);

6) The names in allow and typeattributeset rules in

blocks are resolved locally, if possible, or globally if not.

The configuration in the second example is transformed by

the first four phases into the left configuration below, where

the (blockinherit A) first becomes (blockinherit .A)

and then is resolved as (call m(a)); the macro name in

the two occurences of (call m(a)) are both resolved to

.m; finally the type definition (type b) is copied from the

macro to blocks A and B. Phase (5) copies the allow rule

instantiating the parameter x to the names .a in A and .B.a

in B. Finally, the two occurences of b are resolved to .A.b

and .B.b. Note that this representation is that of the binary

representation, where names are always fully qualified. The

resulting configuration is on the right below.

(type a)

(macro m((type x))

(type b)

(allow x b

(file (read))))

(block A

(type b)

(call .m(a)))

(block B

(type a)

(type b)

(call .m(a)))

(type a)

(macro m((type x))

(type b)

(allow x b

(file (read))))

(block A

(type b)

(allow .a .A.b (file (read)))

(block B

(type a)

(type b)

(allow .B.a .B.b (file (read)))

Given a configuration in normal form, our semantic function

represents it as a directed labelled graph G = (N, ta, A). The

nodes N model the types and the typeattributes (with global

names), and the function ta∶N → 2
N

represents the types

contained in a typeattribute (assuming ta(n) = {n} when n

is a type, which will be always the case in our examples).

The arcs A ⊆ N × 2
O
× N model permissions, where O

is the set of SELinux operations; we assume that whenever

the typeattribute m operates on m
′
, there are also the arcs

(n, o, n
′
), for all n ∈ ta(m) and n

′
∈ ta(m

′
). The meaning of

(n, o, n
′
) is that the type n is allowed to perform all operations

in o on the resources of type n
′
. The formal definition of the

semantic function is straightforward.

For example, the configuration above is associated with the

following graph, where ta maps a node into the singleton set

containing itself and we omit {} for singleton sets on the arcs.

.a .A.b .B.a .B.b
read read

c) Adequacy of the formalization: We define the CIL

formal semantics to reflect both the implicit semantics given



by the reference manual and the operational semantics defined

by the compiler. However, the documentation and the com-

piler sometimes disagree. In addition, the manual has both

underspecified and ambiguous cases. When these mismatches

occur and when unexplainable behavior arise, we asked CIL

developers about the intended behavior [16], [17]. Some cases

have been recognized as compiler bugs and the developers will

fix them, whereas they will update the documentation in other

cases [18].

We identified name resolution as the most involved part

of CIL’s semantics, especially when name resolution interacts

with inheritance or macros.

As an example of a mismatch between the compiler and the

reference manual, consider the following configuration:

(block A

(type a)

(macro m ()

(type a)

(allow a a (file (read)))))

(block B

(call A.m))

According to the manual, types defined inside the macro

should be checked before those defined in the namespace

where the macro is defined. Hence, when copying the allow

rule from m to B, we expect the type a to be resolved as B.a.

But it is resolved instead as A.a. The CIL developers agreed

that this is a bug of the compiler [18].

The reference manual lacks a description of how the compo-

sition of CIL constructs behaves. In particular, the composition

of macro calls and block inheritance behaves differently,

depending on the order in which they are resolved. The

beginning of this section presented several configurations with

this kind of problem. Since the manual specifies no evaluation

order and even ignores this problem, we based the adequacy

of this part of the semantics entirely on the compiler and on

the developers’ feedback.

To understand how to correctly compose the semantics of

the different constructs, we performed comprehensive testing,

discriminating between different orders. Our tests indicate that

macro calls are handled after block inheritance (i.e., phases (1)

and (2) are executed before phases (3) to (6)). We discovered

that no order works for the resolution of different occurrences

of block inheritance, and the same applies with different oc-

currences of macro calls. This is because different occurrences

of the same construct are resolved in an interleaved manner.

In other words, this resolution consists of a number of steps

that are executed in the given order for all the occurrences.

For example, all the occurrences of block inheritance must

complete phase (1) before any of them starts phase (2). Note

that our semantics may seem counterintuitive in some corner

cases like those mentioned in paragraph III-a, but it is in

agreement with the developers’ intent.

IV. THE POLICY LANGUAGE IFCIL

This section introduces IFL, our DSL for defining anno-

tations that enable administrators to express infomation flow

control requirements. We integrate IFL with CIL, obtaining

the policy language IFCIL, where annotations are composed

with CIL constructs. In addition, we endow IFCIL with a

mechanism for statically checking that configurations satisfy

their requirements.

A. IFL

The constructs of IFL consider SELinux entities, typically

types, and the flow of information between them. Using IFL

we define both functional requirements, allowing authorized

information flows, and security requirements, preventing dan-

gerous information flows.

a) The language: We use IFL to model how information

flows from one node of the graph associated with a type by

the semantics, to another node, by listing the traversed nodes

in the graph, and the operations allowed on them. This is done

by defining a flow kind P using the following grammar.

P ∶∶= n [o]> n
′
∣ n +[o]> n

′
∣ P1 P2

In this grammar, n and n
′

are the starting and the ending

nodes in a path of length 1 for [o]>, and of length 1 or longer

for +[o]>. Nodes may also be given using the wildcard *

standing for any node representing a type. The non-empty set

o ⊆ O contains a subset of the applicable operations, and it is

omitted when it is the entire set O. The labeled path P1 P2 is

additionally constrained so that the ending point of P1 matches

the starting one of P2.

The direction of arrows reflects how information flows in

the graph, e.g., n [write,read]> n
′
means that information

flows from n to n
′

when n writes on n
′

or n
′

reads from

n (the operations in square brakets are the only applicable

ones in this step). A direct information flow is represented

as a single step n > n
′
, whereas an indirect information flow

is represented by multiple steps n +> n
′
. A kind can also

mention intermediate steps, e.g., n > * > n
′′
+> n

′
specifies

that information flows in two steps (through an unspecified

node) from n to n
′′

and then in multiple steps to n
′
.

Kinds are used to constrain the admissible paths of a

configuration. Given the semantics G = (N, ta, A) of a

configuration, the following construction builds an information

flow diagram, i.e., a directed graph I = (N, ta, E), where the

arcs of E are built as follows. For any arc (n, o, n
′
) ∈ A,

E contains: (i) the arc (n, o
′
, n

′
), where ∅ ≠ o

′
⊆ o are

the operations of n on n
′

that cause an explicit information

flow from n to n
′

(e.g., write); (ii) the arc (n
′
, o
′′
, n), where

∅ ≠ o
′′
⊆ o are the operations of n on n

′
that cause an explicit

information flow from n
′

to n (e.g., read).

The administrator can state the requirements on configura-

tions given by the following grammar

R ∶∶= P ∣ ˜P ∣ P:P
′
,

for assertions about the information flow diagram I and flow

kinds. In particular, the first type of requirement, P , is path

existence, which stipulates the existence in I of a path π

of kind P . The second, ˜P , specifies path prohibition and

requires that there are no paths in I of kind P . The third is
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Figure 1. A simple configuration (black solid arcs) and its information flow
diagram (gray dashed arcs); the dotted arc represents inclusion of the target
in the typeattribute of the source.

path constraint and requires that every path π of kind P in I

is also of kind P
′
.

Figure 1 shows the graph semantics of a simple config-

uration (with the black solid arcs) and its information flow

diagram (with the gray dashed arcs). A dotted arc from a

node t to a node t
′

indicates that t
′

is in ta(t). We will

further discuss this configuration in Figure 2. Intuitively, the

entities of type http collect information from the network

into the database and make data available to the network

and to additional entities of type home. Information can flow

from the network into the database and vice versa, as the

configuration satisfies the functional requirements net +>

http +> DB and DB +> http +> net (passing through

anon). Moreover, the following security requirements are met:

˜(DB +> other) and DB +> net : DB > anon +> net.

The first states that no information flows from the database to

the generic, untrusted types in other; the second requirement

says that the private information in the database passes through

anon (where, for example, anonymization takes place) before

being delivered in the network.

b) Formal semantics: We formalize next when a config-

uration satisfies a given requirement. We define a path π of an

information flow diagram I , and when the path π is of kind

P . Intuitively, this holds when the information flow passes

through the specified nodes in the correct order as a result of

the designated operations.

Definition 1 (information flow path and kinds). Let I =

(N, ta, E) be an information flow diagram, a path in I is

the non-empty sequence

π = (n1, o1, n2)(n2, o2, n3)...(ni, oi, ni+1).

We say that π has kind P in I , in symbols π ▷I P , iff

(n, o, n
′
)▷I m [o

′
]> m

′
iff (m = ∗ ∨ n ∈ ta(m))∧

(m
′
= ∗ ∨ n

′
∈ ta(m

′
))∧

o∩ o
′
≠ ∅

(n, o, n
′
)▷I m +[o

′
]> m

′
iff (n, o, n

′
)▷I m [o

′
]> m

′

(n, o, n
′
)π ▷I m +[o

′
]> m

′
iff (n, o, n

′
)▷I m [o

′
]> ∗ ∧

π▷I ∗ +[o
′
]> m

′

π▷I P1 P2 iff ∃π
′
, π

′′
. π = π

′
π
′′
∧

π
′
▷I P1 ∧ π

′′
▷I P2

The second part of the definition has four cases. The first

case considers a path in the information flow diagram made of

a single arc of a simple kind; since there exists an operation

op∈ o∩ o
′
, the arc (n, op, n’) can be followed transferring

information from n to n’. The second case reduces +[o
′
]>

to [o
′
]>. The third case simply iterates the checks along a

path longer than one. In the final case, we split a path into

a prefix satisfying P1 and a suffix satisfying P2. Recall that

the wildcard ∗ stands for any node and can replace n, n
′
, and

n
′′

above. For example, the first clause can be rewritten as

(n, o, n
′
) ▷I ∗ [o

′
]> n

′
iff o∩ o

′
≠ ∅ holds because the kind

∗ [o
′
]> n

′
says that information flows from any node to n

′
.

The predicate I ⊧ R defined below expresses that a

configuration with information flow diagram I satisfies the

requirement R.

Definition 2 (validity of a configuration). Let I be an infor-

mation flow diagram, and let R be a requirement of a given

configuration. We define I to be valid w.r.t. R, in symbols

I ⊧ R, by cases on the syntax of R as follows:

I ⊧ P iff ∃π in I such that π ▷I P

I ⊧ ˜P iff ¬(I ⊧ P )

I ⊧ P1 ∶ P2 iff ∀π in I if π ▷I P1 then π ▷I P2

It is immediate to verify that the requirements on the

configuration in Figure 1 are indeed satisfied.

c) Expressivity: A path existence constraint expresses

a functional requirement, namely that a specific information

flow is allowed. If satisfied, this constraint ensures the ad-

ministrator that the configuration does not prevent the system

from performing the desired task. In contrast, a prohibition

constraint specifies a security requirement: a configuration

obeying it never goes wrong. For example, one can easily

specify confidentiality in a Bell-La Padula style, or integrity in

the Biba integrity model. Finally, path constraints can express

nontransitive properties, like intransitive noninterference. For

example n+>n
′
∶ n+>n

′′
+>n

′
requires that the type n cannot

transmit any information to n
′

unless it is done through n
′′
.

IFL can express (positive and negative) reachability prop-

erties with constraints on the paths. Since information flow

diagrams are labeled transitions systems, IFL has similarities

to temporal logics. Actually, IFL kinds can be expressed as

LTL formulas, as the encoding in Section V-A shows. How-

ever, IFL allows an additional quantification over paths, which

can appear only at top level and is not expressible in LTL.

B. IFCIL

We introduce the language IFCIL, obtained by integrating

IFL into CIL. More precisely, we add the following two

constructs to augment CIL with comments that specify IFL

requirements.

1) Information flow requirement definitions, which may oc-

cur in blocks and macros. We use them to specify IFL

requirements with labels, which must be satisfied by the

allow rules of the configuration where they occur. Re-

quirements are copied when calling a macro or inheriting

a block, and are managed coherently with the other rules,

e.g., concerning name resolution.



2) Refinement of requirements, which may occur within

call and blockinherit instructions. Refinements

strengthen requirements by further elaborating constraints

in the inheriting or caller block.

To ensure backward compatibility, requirement definitions and

refinements are enclosed between ;IFL; thereby taking the

form of CIL comments.

The example in Figure 2 illustrates both constructs. For

example, the second line in Figure 2 contains a functional

requirement labeled with (F1) that requires the existence of a

direct or indirect information flow from the node inp to out.

Nodes in the IFL requirements are types, and are resolved as

any other CIL name, e.g., the parameter out is bound to

net in the first call of the macro in_out; in contrast, the

requirements F1 and F2 are simply copied.

In the second call, the administrator duplicates the require-

ments and refines them with further constraints about how

information must flow, since the intermediate node http is

inserted in the requirements. Note that the new labels refer

to those of the original requirements. The new requirements

impose that a flow must exist from net (instantiating the

parameter inp) to DB (instantiating out) and vice-versa, both

passing through http. Note that since the wildcard is used

there is no constraint on the actual parameters. The refined

requirement (F1R:F1) results then in the path constraint

net +> http : http +> DB, while the refined requirement

(F2R:F2) is DB +> http : http +> net.

Similarly, in the call to anonymize, the requirement (S1)

is refined by specifying that the operation in the single step is

read. Of course, the same happens when inheriting a block.

Finally, the requirement (S2) states that information cannot

flow from DB to other.

We now introduce the most important details of the formal-

ization of IFCIL; its complete definition is in the Appendix B.

We first discuss the notion of refinement of IFL requirements.

Intuitively, a refinement of a requirement R allows a subset of

the information flow paths allowed by R. This is formalized

by a preorder ⪯, saying that R
′
⪯ R if R

′
refines R; the

precise definition of ⪯ is given in Appendix B.

We prove the following theorem, stating that the validity of

configurations is preserved by refinement.

Theorem 1 (Refinement). Let I be an information flow

diagram, and let R
′

and R be two IFL requirements such

that R
′
⪯ R. Then

I ⊧ R
′
⇒ I ⊧ R.

In defining the semantics of IFCIL, we use the meet of two

requirements R
′
⊓R on the set of requirements preordered with

⪯, i.e., the largest requirement w.r.t. ⪯ that is smaller than both

R
′

and R. To see why, consider the following requirements

taken from the example above.

;IFL; (F1) inp +> out ;IFL;

;IFL; (F1R:F1) * +> http +> * ;IFL;

These requirements are incomparable with respect to ⪯. To

see this, take I and I
′

with nodes in {inp, out, http, a}
such that I has a single arc (inp, out), and I

′
only has the

(macro in_out((type inp) (type out))

;IFL; (F1) inp +> out ;IFL;

;IFL; (F2) out +> inp ;IFL;)

(macro anonymize((type x) (type y))

(type anon)

(allow anon x (file (read)))

;IFL; (S1) x +> y : x > anon +> y ;IFL;)

(typeattribute other)

(typeattributeset other

(not (or DB (or http (or anon net)))))

(type DB)

(type http)

(type home)

(type net)

(call in_out(net http))

(call in_out(net DB)

;IFL; (F1R:F1) * +> http +> * ;IFL;

;IFL; (F2R:F2) * +> http +> * ;IFL;)

(call anonymize(DB net)

;IFL;(S1R:S1) DB+>net : DB[read]>anon+>net ;IFL;)

(allow http anon (file (read)))

(allow http DB (file (write)))

(allow http other (file (read)))

(allow http net (file (read write)))

;IFL; (S2) ˜ DB +> other ;IFL;

Figure 2. Example of CIL configuration with IFL annotations.

two arcs (a, http) and (http, a). If they were comparable,

Theorem 1 would be falsified because I ⊧ inp +> out but

I /⊧ * +> http +> *, and similarly for I
′

replacing I .

Although incomparable, F1 and F1R:F1 are clearly related.

Namely there exists the meet of the two F1 ⊓ F1R:F1 =

inp +> http +> out. This meet has more details than, and

refines both, F1 and F1R:F1, because it requests the presence

of an information flow from the node inp to out, via http.

We are now ready to define the semantics of IFCIL. We first

normalize configurations by applying the six transformation

phases described in Section III, taking meets whenever needed.

The semantics of a configuration consists of a graph G and

a set of requirements R representing the semantics of a CIL

configuration and the IFL annotations. It is defined as:

Definition 3 (IFCIL semantics). Given a (normalized) IFCIL

configuration Σ, its semantics is the pair (G,R), where G is

the CIL semantics of Σ and R is the set of IFL requirements

occurring in Σ.

Not all configurations satisfy their requirements, and we

define below when they do, i.e., when the information flow

respects the constraints expressed in the IFL annotations.

Definition 4 (correct IFCIL configuration). Let Σ be a (nor-

malized) IFCIL configuration, let (G,R) be its semantics, and

let I be the information flow diagram of G. The configuration

Σ is correct, in symbols I ⊧ R, iff I ⊧ R for all R ∈ R.



V. REQUIREMENT VERIFICATION

We describe next how we automatically check that a IFCIL

configuration respects the given information flow require-

ments. We rely on model checking, so as to reuse existing

verification tools. For this, we first encode a configuration as

a Kripke transition system [19] and an IFL requirement as an

LTL formula.

A. Encoding in temporal logic

A Kripke transition system (KTS) over a set AP of atomic

propositions is K = (S,Act,→, L), where S is a set of states,

Act is a set of actions, →⊆ S×Act×S is a transition relation,

and L∶S → 2
AP

is a labeling function mapping nodes to a set

of proposition that hold at that node. Paths of K are defined as

alternating sequences of states and actions starting and ending

with a state.

We associate an IFCL configuration Σ with a KTS with the

nodes of Σ as states and the edges of the information flow dia-

gram of Σ as transitions (for technical reasons, transitions are

labeled with a single operation), and the type and typeattribute

names of Σ as atomic propositions.

Definition 5 (Encoding of configurations). Let I = (N, ta, E)
be the information flow diagram of a configuration Σ. The

corresponding KTS is K = (N,O,E
′
,Λ), where

• O is the set of SELinux operations

• E
′
= {(n, op, n

′
) ∣ (n, o, n

′
) ∈ E ∧ op ∈ o}

• M ∈Λ(n) if n∈ ta(M), i.e., n is in the typeattribute M

We encode IFL kinds in a suitable version of LTL [19],

where the syntax of formulas φ is

φ ∶∶= p ∣ (op) ∣ φ1 ∧ φ2 ∣ φ1 ∨ φ2 ∣ ¬φ ∣ X(φ) ∣ φ1Uφ2.

We write w ⊧l φ if the path w of K satifies the LTL formula

φ; the formal definition is standard and can be found in [19].

Intuitively, w satisfies the atomic proposition p if it starts with

a node labeled with p; w satisfies (op) if its first action is

op ∈ O; conjunction, disjuction, and negation are as usual;

X(φ) is satisfied by w if its subpath starting from the second

state satisfies φ; and w satisfies φ1Uφ2 if there exists a node

s in w such that the subpath starting from it satisfies φ2 and

every subpath starting from a state before s satisfies φ2.

For convenience, in the following we simplify our grammar

for the flow kind P1P2 and rewrite the grammar from sub-

section IV-A in the following equivalent form (recall that the

starting node of P in the last two cases is n
′
).

P ∶∶= n[o]> n’ ∣ n+[o]> n
′
∣ (n[o]> n’)P ∣ (n+[o]> n

′
)P

Definition 6 (Encoding of flow kinds). The encoding of flow

kinds is defined as follows.

$n [o]> n
′
% = n ∧ ⋁

op∈o

(op) ∧X(n
′
∧ ¬X(true))

$n +[o]> n
′
% = n ∧ ⋁

op∈o

(op) ∧X(⋁
op∈o

(op) U (n
′
∧ ¬X(true)))

$(n [o]> n
′
)P% = n ∧ ⋁

op∈o

(op)∧X($P%)

$(n +[o]> n
′
)P% = n ∧ ⋁

op∈o

(op) ∧X(⋁
op∈o

(op) U $P%)

Note that we use ¬X(true), i.e., the path is complete as

there is no next step, to represent the fact that IFL semantics

is defined on finite paths.

LTL’s semantics can be lifted to a KTS K in quite different

manners, with the best for modeling IFL being as follows:

K ⊧l φ iff ∀w ∈ W.w ⊧l φ, where W is the set of all (finite

and infinite) paths in K . This paves the way for defining when

a KTS satisfies a set of IFL requirements.

Definition 7 (Satisfaction of configurations). Let R be a

requirement of a given configuration, let K be a KTS, and

let W be the set of paths in K . We define the satisfaction

relation ⊢ on the syntax of R as follows:

K ⊢ P iff K /⊧l ¬$P%

K ⊢ ˜P iff K ⊧l ¬$P%

K ⊢ P:P
′

iff K ⊧l ¬$P% ∨$P
′
%

We homomorphically extend ⊢ to sets of requirements.

Note that the three clauses above mimic the analogous

clauses in the Definition 2. The first clause says that at least

one path satisfies $P%; conversely, the second clause says

that no path satisfies $P%. The third clause simply contains

the boolean definition of classical implication.

This correspondence supports the correctness of our verifi-

cation technique, which is expressed by the following theorem

stating that the notions of validity and satisfaction of config-

urations coincide:

Theorem 2 (Correctness and Completeness). Let Σ be an IF-

CIL configuration with requirements R, let I be its information

flow diagram, and let K be the KTS of Σ. Then

K ⊢ R if and only if I ⊧ R.

B. Model checking IFCIL

Theorem 2 enables us to reuse model checking techniques

and tools to automatically verify that a configuration is correct

with respect to its information flow requirements. In particular,

an LTL model checker provides us with a decision algorithm

for K ⊧l φ.

In this work, we resort to the classical model checker

NuSMV that targets only infinite paths, as usual, whereas

Definition 7 also considers finite paths. Therefore, we extend

K to a KTS Kι with a distinguished sink state ι and with

additional transitions (labeled with every op ∈ O) from every

state to ι. Roughly, the satisfaction relation is updated by

substituting X(ι) for ¬X(true). Theorem 2 still holds (see



Corollary 1 in Appendix B). This extension enables us to

verify the correctness of IFCIL configurations with NuSMV.

The worst case complexity of LTL model checking is

unfortunately 2
O(∣φ∣)

O(∣S∣ + ∣E
′
∣) [19], where ∣S∣ and ∣E

′
∣

are the number of nodes and number of arcs in the KTS,

respectively. In practice we expect the size of the configuration

and the number of requirements to grow as the system grows.

In contrast, we do not expect the size of each IFL requirement

to depend on the system size.

We now specialize the formula above to our encoding. It is

easy to see that ∣S∣ is equal to the number of type declarations

in the configuration, and that ∣E
′
∣ is bounded from above by

∣S∣×∣S∣×∣O∣, where O is the set of SELinux operations. Note

that the size of an LTL formula resulting from the encoding

of an IFL requirement is linear with respect to the number of

names in the requirement. Thus, the complexity of verifying

an IFCIL configuration is ∑φ∈R 2
O(∣φ∣)

O(∣S∣)
2
× O(∣O∣).

Since ∣φ∣ is usually small and does not increase with the con-

figuration size, the complexity grows linearly with respect to

the number of requirements and operations, and quadratically

with respect to the number of types.

Experiments with our prototype implementation on real-

world configurations show that results are obtained in an

acceptable amount of time, on the order of seconds, see below.

VI. THE TOOL IFCILVERIF

We now describe our tool IFCILverif that given a IFCIL

configuration verifies its correctness with respect to its infor-

mation flow requirements. Although our tool is currently a

prototype, and not optimized, we were nevertheless able to

successfully apply it to large, complex, real-world policies.

A. Translation to NuSMV

Our tool has a front end that reads a configuration, normal-

izes it, and then computes its semantics, the associated KTS,

and the LTL representation of the requirements, expressed in

the NuSMV input language. The result is supplied to the model

checker NuSMV, which checks each requirement. Finally the

administrator is notified which requirements are satisfied and

which are not.

In more detail, IFCILverif takes as input an IFCIL config-

uration and an associated file where every operation comes

with the direction of the information flow it causes. This file

is used to build the information flow diagram.

The tool explicitly handles CIL’s constructs for defining

classes and permissions, and reduces the input configuration to

one that only uses the fragment of CIL presented in Section III.

Since other constructs, like those concerning roles, do not

affect requirement satisfiability, the tool just ignores them.

For example, the following

(type DB)

(type http)

(type home)

(type net)

(type anon)

(typeattribute other)

(typeattributeset .other

(not (or .DB (or .http (or .anon .net)))))

(allow .anon .DB (file (read)))

(allow .http .anon (file (read)))

(allow .http .DB (file (write)))

(allow .http .other (file (read)))

(allow .http .net (file (read write)))

;IFL; (F1) .net +> .http ;IFL;

;IFL; (F2) .http +> .net ;IFL;

;IFL; (F1R) .net +> .http +> .DB ;IFL;

;IFL; (F2R) .DB +> .http +> .net ;IFL;

;IFL; (S1R) .DB+>.net: .DB[read]>.anon+>.net ;IFL;)

;IFL; (S2) ˜ .DB +> .other ;IFL;

is the normalization of the configuration in Figure 2. Its

IFCIL semantics is the pair (G,R = {F1, F2, F1R, F2R,

S1R, S2}), where G is the CIL semantics in Figure 1. It is

trivial to derive the KTS K associated with G. To verify the

satisfaction of the requirements, we check K ⊢ R ∈ R. We

only show the case R = S1R, i.e., K ⊧l ¬$.DB +> .net%∨

$.DB [read]> .anon +> .net% where:

$.DB +> .net% = .DB ∧ ⋁
op∈O

(op) ∧

X(⋁
op∈O

(op) U (.net ∧ ¬X(true)))

$.DB [read]> .anon +> .net% = .DB ∧ (read) ∧

X(.anon∧ ⋁
op∈O

(op) ∧X(⋁
op∈O

(op) U (.net ∧ ¬X(true))))

The resulting input file for NuSMV represents the nodes of

the KTS by variable assignments and transitions as updates of

such assignments (using the next operator).

MODULE main

DEFINE

other := (!((type=DB | (type=http |

(type=anon | type=net))))) & !(type=sink);

VAR

type : { sink, DB, anon, home, http, net };

IVAR

operation : { read, write };

TRANS

(type=DB ->

((operation=read & next(type=anon)) |

next(type=sink))) &

(type=anon ->

((operation=read & next(type=http)) |

next(type=sink))) &

(type=home ->

(next(type=sink))) &

(type=http ->

((operation=write & next(type=DB)) |

(operation=write & next(type=net)) |

next(type=sink))) &

(type=net ->

((operation=read & next(type=http)) |

next(type=sink))) &

(type=sink -> next(type=sink))

LTLSPEC (!(type=DB & X(F type=net)) | (type=DB &

operation=read & X(type=anon & X(F type=net))))

LTLSPEC !(type=net & X(F type=http))

LTLSPEC !(type=http & X(F type=net))

LTLSPEC !(type=DB & X(F(type=http & X(F type=net))))

LTLSPEC !(type=net & X(F(type=http & X(F type=DB))))



LTLSPEC !(type=DB & X(F other))

We briefly comment on the encoding to generate the input file:

• The state variable type has the enumeration type that

lists all the types in the configuration, plus sink (i.e., ι).

• Typeattributes are encoded as symbols and defined as

predicates on types.

• The input variable operation has the enumeration type

that lists all the operations in O.

• The transitions are defined in TRANS: from each starting

node there is an arc to the possible types and typeat-

tributes with the appropriate operation.

• Requirements are expressed in the syntax of NuSMV as

defined by $%.

IFCILverif then parses the response of NuSMV and answers

positively: all the requirements are verified within few seconds.

B. Validation

We experimentally assessed our tool on three real-world CIL

policies. The first policy [2] is used in the OpenWrt project,

a version of the Linux operating system targeting embedded

devices, like network appliances [20]. The second and the

third are SELinux example policies, namely cilbase [9] and

dspp5 [10], which serve as templates for creating personalized

configurations. The analyzed policies have more than ten

thousands lines of code, and make extensive use of all CIL’s

advanced features, in particular macros and blocks.

To illustrate IFL’s expressivity, we use it to formalize

various properties that are often considered in the literature, as

well as domain-specific policies that we designed. Expressing

them in IFL is easy and the resulting requirements are short,

direct, and natural. Moreover, we assess the scalability of

IFCILverif on real-world examples and show that it scales

well to large configurations, checking their requirements in a

few seconds.

a) Properties: We first consider the following property

inspired by Jeager et al. [21], who investigated the trusted

computing base (TCB) of an SELinux configuration and

checked from which types information flows to the TCB,

identifying those that do not compromise security. Using

IFCIL, the administrator can restrict the information flows to

the TCB to the permitted ones by defining the typeattributes

TCB and Harmless, and by requiring +> TCB : Harmless

+> TCB.

The second property states that the flow from a to z must

pass through a list of intermediate entities b,c ... [22],

also called assured pipeline [23]. Here, it suffices to define

requirements of the form a +> z : * +> b +> c +> ...

+> *.

We express the wrapping of untrustworthy programs of [23],

by defining requirements stating that all the information flows

from (or to) a given type untrustworthy must pass through

a verifier type as first step, i.e., untrustworthy > * :

* > verifier.

Finally, we propose the additional augment-only property

that only allows elements of type a to increase (append) the

Table I
PERFORMANCE ANALYSIS ON TREE REAL-WORLD CONFIGURATIONS

Property Requirements Verification Time

openWRT (45702 lines, 590 types)

TCB 1 119sec

assured pipeline 3 122sec

wrap untrustworthy 10 100sec

augment only 2 115sec

total 16 129sec

cilbase (11989 lines, 293 types)

TCB 1 0.240sec

assured pipeline 4 0.238sec

wrap untrustworthy 6 0.235sec

augment only 2 0.232sec

total 13 0.258sec

dspp5 (14782 lines, 149 types)

TCB 1 2.22sec

assured pipeline 4 2.14sec

wrap untrustworthy 8 2.28sec

total 13 2.24sec

information on the targets with type b without overwriting

or removing any. This property is expressed as a > b : a

[append]> b and a +> > b : a +> [append]> b.

b) Experimental results: The results of our analyses on

the three configurations are summarized in Table I. For each

row, the table reports the kind of property, the number of

requirements, and the total time for verifying them (NuSMV

input file generation plus LTL model checking). The tool took

approximately two minutes to check the entire OpenWRT

configuration, and less then three seconds for the other two

policies. The analysis reports that some requirements are

violated. Among these, the checks on the TCB property show

that information flows exist from types that are likely untrusted

to types related to the OS security mechanisms, e.g., in dspp5,

information can flow from .lostfound.file to .sys.fs.

We are investigating whether these types are indeed untrusted

and the actual impact the detected violations have on security.

This however requires reverse engineering to better understand

the security goals of the analyzed policies.

VII. RELATED WORK

Checking the security of the information flow is a problem

that has been widely studied since the seminal work by Den-

ning [24], and Goguen and Meseguer [25]. Below, we discuss

proposals that target information flow in SELinux policies.

We also consider research that addresses verifying information

flow in access control languages, and that augment existing

programming languages with information flow policies. For a

broad survey on the topic, we refer the reader to [26].

a) Information flow in SELinux: Numerous tools for

SELinux policy analysis have been proposed. Many of them

are based on information flow, but none targets CIL or explic-

itly handles the advanced features we consider. These tools can

be divided in two categories. The first focuses on predefined

tests, searching for specific kinds of misconfigurations. The

second supports administrators in querying information flow



properties of given policies. Since our tool enables administra-

tors to perform custom analysis, it differs from the proposals

in the first category that we briefly survey.

Reshetova et. al. [27] propose SELint, a tool for detecting

common kinds of misconfigurations in given SELinux configu-

rations, e.g., the overuse of default types, and the association of

specific untrusted types with critical permissions. In contrast to

our work, their approach is also specialized for mobile devices.

Radika et. al. [28] analyse SELinux configurations to spot

potentially dangerous information flows. They consider an

information flow from an entity a to an entity b to be

potentially dangerous if a neverallow rule prohibits a direct

read access from b to a. They propose two tools: the first

statically investigates such information flows in configurations,

and has been applied to the SELinux reference policy and to

the Android policy [29]; the second is a run-time monitor

that dynamically tracks information flows in an SELinux

system. Our tool does the same kinds of analysis, and also

expresses more specific requirements. We can, for example,

check for the presence of direct information flows caused

by operations different from those in neverallow and of

intransitive information flows that pass through a specific path.

Jaeger et. al. [21] analyze the SELinux example policy for

Linux 2.4.19, focusing on integrity properties. They determine

which entities are in the TCB and analyze their integrity by

focusing on transitive information flow. As discussed above,

we let the administrator specify the TCB and the desired

requirements while developing the configuration, rather than

deriving the TCB after the policy is implemented.

We now briefly discuss the proposals in the second category

that are closest to ours. These proposals neither directly

work on structured CIL configurations nor they offer real

support for advanced features of this language. Moreover, they

do not allow labeling configurations with requirements that

interact with the language constructs. All the properties they

consider are global. In contrast, our proposal works directly

on structured CIL configurations and our requirements are first

class citizens in IFCIL.

Guttman et al. [22] propose a formal model of SELinux

access control, based on transition systems, and provide an

LTL model checking procedure to verify that a configuration

satisfies the security goals specified by the administrator. The

security goals they consider are non-transitive information flow

properties: they verify that every information flow between

two given SELinux entities (e.g., users, types, roles) passes

through a third entity. As discussed above, IFCIL expresses

these requirements, also with conditions about the operations

occurring in the information flow. In contrast, we do not con-

sider exceptions as they can be encoded using typeattributes.

Sarna-Starosta et al. [30] propose a logic-programming

based approach to analyzing SELinux policies. Their tool

transforms a configuration into a Prolog program, thus al-

lowing the administrator to perform deductions on the prop-

erties of the configuration with the standard Prolog query

mechanism. This proposal is similar to ours except that we

target CIL and allow labels inside configurations. Also, they

rely on libraries of predefined queries for assisting users not

familiar with logic programming. Our DSL precisely targets

information flows, and easily compiles into LTL.

Finally, high-level languages have been proposed for

SELinux based on information flows. All these languages were

presented prior to the introduction of CIL; they therefore target

the kernel policy language and do not exploit CIL’s advanced

features. In contrast, we consider an already adopted language,

namely CIL, and extend it with useful features, that support

administrators in reasoning about their code. Moreover, IFCIL

is backward compatible. Administrators thus neither need to

change the workflow nor the tools they use to develop and

maintain SELinux configurations.

Hurd et al. [6] propose Lobster, a high-level DSL for

specifying SELinux configurations. This compositional lan-

guage describes the configuration’s expected information flow.

Instead of macros and blocks, Lobster provides the user with

class definition and instantiation, where operations and per-

missions are represented as ports and labeled arrows between

ports, respectively. The user must specify all the desired

information flows of the system and the compiler checks

that no others are possible. In contrast, we allow the user to

succinctly specify wanted and unwanted information flows. In

particular, user can also specify “negative” requirements that

explicitly forbid some information flows, while Lobster allows

specifying only the “positive” flows. Moreover, IFCIL supports

more fine-grained requirements, letting users choose the level

of details in defining the information flow in the system,

e.g., targeting only critical permissions. Finally, Lobster is

not backward compatible with SELinux, whereas IFCIL is

backward compatible.

Nakamura et al. [13] propose SEEdit, a security policy

configuration system that supports creating SELinux configu-

rations using a high-level language called the Simplified Policy

Description Language (SPDL). SPDL keeps the configuration

small because the administrator can group SELinux permis-

sions and refer to system resources directly using their name

instead of types. They implement a converter that produces

SELinux configurations, and they propose a set of tools for

automatically deriving (parts of) a configuration using system

logs. Their main objective is mainly to simplify the usage of

the kernel policy language, working on its syntax and adding

utility features. Static checking is not supported.

b) Information flow on access control: Bugliesi et

al. [31] develop a verification framework supported by a tool

for grsecurity, a role-based access control system for

Unix/Linux [32]. They propose an operational semantics for

grsecurity and an abstraction mechanism that reduces the

problem of policy verification to reachability, thereby allowing

for model checking. The properties they address concern es-

tablishing whether a given subject can access a given resource

and the writing and reading flows on resources. Although they

address properties similar to ours, these properties are built

into the verification framework and there is no language for

formalizing new security requirements. Moreover, they do not

address non-transitive properties as we do.



Calzavara et al. [33] continue this line of research by

proposing a security type system for verifying information

flow in ARBAC policies. In particular, their type system can

address the role reachability problem and offers a composi-

tional technique. Also in these policies are built into the type

system and do not cover intransitive properties. In contrast,

our policies are written in a language, can be composed,

and can express intransitive properties. Since we use model

checking, the results of our verification phase cannot, however,

be composed.

Guttman and Herzog [34] consider a network access control

scenario. They propose a formalism for expressing networks

and security goals about the trajectories a network packet

can follow. Moreover, they propose ad hoc algorithms that

determine if the security goals are satisfied by a system. Their

security goals are similar to our information flow requirements

in terms of the expressible properties. However, we reduce

verification to standard model checking.

c) Adding information flow to real languages: Numerous

papers address the control of information flow in the language-

based approach where programmers specify how data may be

used. Below we consider some proposals, focussing on full-

fledged security-typed languages.

FlowCAML [35] is a variant of ML with information-flow

types and type inference and provides support for the static

enforcement of Denning-style confidentiality policies.

Jif [36] extends Java with the decentralized label model

where data values are labeled with security policies. The Jif

compiler enforces these security policies performing some

static checking. Moreover, Jif supports declassification, which

provides a liberal information flow escape hatch for programs

that would otherwise be rejected by the compiler.

Fabric [37] extends Jif with support for distributed pro-

gramming and transactions. It provides several mechanisms for

controlling accesses and information flow, to prevent violating

confidentiality and integrity policies. All values in Fabric

are labeled with policies in the decentralized label model

that express security requirements in terms of principals.

These labels allow principals to control to what extent other

principals can learn or affect their information.

Lifty [38] is a domain-specific language for data-centric ap-

plications that allows programmers to annotate the sources of

sensitive data with declarative information flow policies. Lifty

uses liquid types to enforce static information flow control and

to statically and automatically verify that the application obeys

the policies. Moreover, its compiler is equipped with a repair

engine that automatically patches any found leaks.

Paragon [39] extends Java with information flow policies

building on an object-oriented generalisation of Paralocks [40].

A policy is a set of flow locks that are conditions constraining

how principals handle data and that can be opened and closed

via instructions. Paragon expresses a wide variety of policy

paradigms, including Denning-style policies, the Jif decen-

tralised label model, and stateful information flow policies.

All the above papers address Turing complete languages.

They encode policies through security labels and enforce them

through security type systems. We instead propose a declara-

tive language for expressing policies that describe the admitted

and prohibited flows rather than associating labels to resources

and user. Also, we target a configuration language that is not

Turing complete, and our verification mechanism is based on

model checking. Finally, in contrast to some of the above

proposals, we do not explicitly deal with declassification.

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed IFL, a language for expressing fine-

grained information flow requirements. Its declarative nature

makes it easy to embed it in various access control languages

and facilitates requirement verification through standard model

checkers. We exploit IFL to obtain IFCIL, a backwards

compatible extension of CIL. IFCIL helps administrators in

writing information flow policies, including confidentiality and

integrity requirements. We have also defined and implemented

a verification procedure to check if an IFCIL configuration

complies with its IFL requirements. Our experiments show

that the language works well for defining properties that are

commonly investigated for SELinux policies, and that the

verification times are acceptable even for large real-world

configurations.

a) Discussion: We believe that our extension can help

with the development of more advanced high-level languages.

As our annotations are associated with a common intermediate

language, they can enrich different high-level languages. Our

verification procedure can be used for checking properties

when composing code written in different languages.

Our semantics focuses on CIL type enforcement because

it allows defining more fine-grained information flow policies

than other constructs, like those for multi-level security [41].

Moreover, many real CIL configurations only use these more

limited constructs. We do not explicitly model the constructs

for defining the operations used inside allow rules. But this

is not a limitation because these constructs can be easily

encoded in the considered fragment. Indeed, as we discussed

in Section VI-B, our tool deals with all the type enforcement

constructs used in real-word CIL configurations.

Our extension targets well known problems in policy de-

velopment. Moreover, it provides a basis for developing and

implementing new high-level languages for SELinux as our

semantics completes the existing, informal, and incomplete,

CIL documentation. Our proposal can also be applied to check

properties when composing code written in different high-level

languages sharing this common intermediate language.

Since the actual SELinux architecture uses CIL as an inter-

mediate language, our tool can also be used to verify properties

of configurations written in the current policy language. This

includes the SELinux reference policy that is part of several

Linux distributions, and the Android policy [29].

b) Future work: There are several exciting directions for

future work that aim at fostering the adoption of IFCIL by

practitioners. First, we plan to cover all the features of the

CIL language, even though the type enforcement fragment

that we currently support suffices to analyze many real-word



configurations. We will also provide more friendly diagnostics

and suggestions for fixing violated requirements.

We plan to enhance our tool’s efficiency by reengineering

and optimizing its code, and extending it to fully support

requirement refinement. Also we will address the issues of

modular and incremental analysis. We consider these aspects

critical for the integration of IFCIL in the life-cycle of CIL

configurations. In particular, we aim at supporting the devel-

opment of tools like IDEs that provide instant feedback to

administrators while they are writing their configurations, as

is sometimes the case with typed languages.

Finally, we plan to support configurations partly written in

the kernel policy language and partly written in CIL, as this

is common practice [15].
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(S-A1)
(t, perms, t

′
) ∈ A

(t1, perms, t2) ∈ A

t1
′
∈ ta(t1)

t2
′
∈ ta(t2)

(S-A2)
(t1

′
, perms, t2

′
) ∈ A

Figure 4. CIL semantics.

separated by dots. In CIL, qualified names from the global

namespace start with a dot (.). We instead use the distinguished

symbol #. Global qualifications σ start from the global

namespace #; other qualifications are called relative (e.g.,

#.A.a is globally qualified, A.a is a relatively qualified).

The syntax of a CIL configuration is as follows, where [F ]
represents lists of F entities, and CIL is the starting symbol.

CIL ∶∶= [rule]

rule ∶∶= declaration ∣ command

declaration ∶∶= (block n CIL) ∣ (typeattribute n)

∣ (type n) ∣ (macro n([x])(CIL))

command ∶∶= (allow a a (class (perms)))

∣ (typeattributeset a (expr))

∣ (call m([a])) ∣ (blockinherit B)

Here n, n
′
, . . . are unqualified names (of types, typeattributes,

macros or blocks); x, x
′
, . . . are formal parameter names;

a, a
′
, . . . are types and typeattributes (possibly qualified);

m,m
′
, . . . are macro (possibly qualified) names; B,B

′
, . . .

are block (possibly qualified) names. Furthermore, we will use

g, g
′
, . . . for possibly qualified names of macros or blocks, and

p, p
′
, . . . for possibly qualified names in general. Finally, we

use B#, B
′

#, . . . to refer to either # or a block name B.

We abstractly represent a CIL configuration as a set of pairs

(σ, r), where the rule r occurs in the namespace σ.

Assume as given a set of CIL rules Γ. We define the

following function eval
k
σ(p) to resolve names, where p = ρ.n

(the qualification ρ is possibly empty, and n is the unqualified

name) occurring in the globally qualified block or macro σ,

and where k ∈ {type,typeattribute,block,macro}
indicates that we are resolving a type, a typeattribute, etc. This

function returns a fully qualified name for p, or ⊥ is resolution

is not possible in σ.

eval
k
σ(ρ.n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρ.n if ρ = #.ρ
′

σ.ρ.n if ρ = #.ρ
′
∧ (σ.ρ, k n) ∈ Γ

⊥ otherwise

Since typeattributes are treated as types in CIL, we abuse

notation and simply write eval
type
σ (a) for the function defined

as eval
type
σ (a) if its result is different from ⊥, and as

eval
typeattribute
σ (a) otherwise. Moreover, we omit k, assum-

ing that the correct parameter is used. In CIL, a name that

cannot be resolved in the namespace in which it occurs is often

resolved in its parent namespace (recursively). We formalize

this as follows

eval
k

σ(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

eval
k
σ(p) if eval

k
σ(p) ≠ ⊥

eval
k

σ′(p) if eval
k
σ(p) = ⊥ ∧

σ = σ
′
.n with σ

′
≠ #

⊥ otherwise

Moreover, it is common that a name is resolved in the global

namespace if the resolution in the block or macro in which the

name is used fails. We will write evalσ;σ′(p) for a function

that, evaluates p in σ unless the result is ⊥, and evaluates it

in σ
′

otherwise.

The CIL normalization pipeline consists of the six rewriting

rules in Figure 3, with applicability conditions in the upper



part and an action in the lower one. We denote rules by

r, r
′
, . . . ; declarations by d, d

′
, . . . ; and commands by c, c

′
, . . . .

The conditions predicate on the configuration at hand, and

the actions either prescribe: (i) to rewrite a rule in Γ, as in

(σ, r) → (σ
′
, r
′
); (ii) to add a rule in Γ, as in add (σ, r); and

(iii) to remove a rule from Γ, as in remove(σ, r). Each phase

is iterated until a fixpoint is reached, with the only exception

being the fifth phase. The fifth phase is a sub-pipeline where

rule (N-5a) is applied first, then rule (N-5b), and finally (N-

5c). In the fifth phase, each rule and the whole pipeline are

applied until a fixpoint is reached.

The rules for CIL’s semantics are given in Figure 4, which

yield the graph G = (N, ta,A). Since attribute expressions

expr are boolean functions on types and typeattributes, we

assume a denotational semantics JexprK ∶ N → {true, false}.

APPENDIX B

FORMALIZING IFCIL

A. IFL

IFL requirement refinement is defined by the ⪯ operator in

Figure 5, where reflexivity and transitivity rules are implicitly

assumed for every defined relation, and where arrows > or

+ > are sometimes represented by w, and an arrow w labeled

with a set of operations o is represented as a pair (w, o) (e.g.,

+[{read}] > is represented as (+ >, {read})).

Lemma 1 (Kind refinement). Let I be an information flow

diagram and π a path in I , if P ⪯P P
′

and π ▷I P then

π ▷I P
′
.

Proof. Assume π▷IP and not π▷IP
′
and proceed by proving

for each rule in Figure 5 and for arbirary π that if the lemma

holds on the premises, that it also does on the conclusion.

Consider the rule (comp), and let i ∈ {1, 2}. From πi▷I Pi

we have that πi ▷I P
′

i . Then π1π2 ▷I P
′

1P
′

2 by the definition

of ▷.

Consider the rule (P-1) and proceed by cases on the form of

the arrow in oa. If the arrow is > then from π▷I (n1[o] > n2)
we know that π = (n

′′

1, o
′′
, n

′′

2) (since this is the only possible

case in the definition of ▷). We also know that n
′′

1 ∈ ta(n1)
or n1 = ∗, but since n1 ⪯ n

′

1 either n1 = n
′

1 or n
′

1 = ∗,

and then n
′′

1 ∈ ta(n
′

1) or n
′

1 = ∗. Similarly for n
′′

2. Finally,

from the definition of ▷ we also know that o ∩ o
′′
≠ ∅, but

since o ⪯ o
′
, o ⊆ o

′
, thus o ∩ o

′
≠ ∅. All the requirements

for π▷I (n
′

1[o
′
] > n

′

2) are thus verified. If the arrow is + >,

two rules in the definition of ▷ may be used. The first one

has same condition of the previous case, and the second one

requires induction on π (note that ∗ ⪯ ∗).

Consider the rule (P-2) and assume π ▷I n1 + [o1] >

∗ [o2] > n2. Then, by the definition of ▷ we have that π =

π
′
(n, o, n

′′

2) with π
′
▷In1 +[o1] > ∗; n

′′

2 ∈ ta(n2) if n2 ≠ ∗,

and o ∩ o2 ≠ ∅. From π
′
▷I n1 + [o1] > ∗ it follows that

either π
′
= (n

′′

1, o
′
, n

′
) or π

′
= (n

′′

1, o
′
, n

′
)π

′′
; in both cases

n
′′

1 ∈ ta(n1) if n1 ≠ ∗, and o
′
∩ o1 ≠ ∅. If π

′
= (n

′′

1, o
′
, n

′
)

then the thesis holds since π
′
▷In

′

1 [o
′

1] > ∗ and (n, o, n
′′

2)▷I

∗[o
′

2] > n
′

2 (thus (n, o, n
′′

2)▷I ∗+[o
′

2] > n
′

2 by the definition

of ▷). If π
′
= (n

′′

1, o
′
, n

′
)π

′′
, then from π

′
▷I n1 + [o1] > ∗

and all (n
′′
, o
′′
, n

′′′
) in π

′
, o
′′
∩o1 ≠ ∅ holds. The thesis follows,

since o1 ⪯ o
′

2, π
′′
(n, o, n

′′

2)▷I ∗ + [o
′

2] > n
′

2.

Consider the rule (P-3) and assume π▷I n1 + [o1] > ∗ +

[o2] > n2. Then split π as π
′
π
′′

such that π
′
▷In1 +[o1] > ∗

and π
′′
▷I ∗ +[o2] > n2. From π

′
▷I n1 +[o1] > ∗, the first

element of π
′
is some (n, o, n

′
) such that n ∈ ta(n1) if n1 ≠ ∗

and thus that n ∈ ta(n
′

1) if n
′

1 ≠ ∗. Moreover, for every

(n
′′

1, o
′

1, n
′′

2) in π
′
, o

′

1∩o1 ≠ ∅. From π
′′
▷∗ +[o1] > n2, the

last element of π
′

is some (n
′′
, o
′′
, n

′′′
) such that n

′′′
∈ ta(n2)

if n2 ≠ ∗ and thus n ∈ ta(n
′

1) if n
′

1 ≠ ∗. Moreover, for every

(n
′′′

1 , o
′

2, n
′′′

2 ) in π
′′
, o

′

2 ∩ o2 ≠ ∅. Finally, since o1 ⪯ o
′
, and

o2 ⪯ o
′
, for every ( , o

′′′
, ) in π, o

′′′
∩ o

′
≠ ∅.

The proof of rule (P-4) is almost the same of (P-2).

Theorem 1 (Refinement). Let I be an information flow

diagram, and let R
′

and R be two IFL requirements such

that R
′
⪯ R. Then

I ⊧ R
′
⇒ I ⊧ R.

Proof. We consider the rules in Figure 5, and for arbitrary I

we show that if the premises are met, then the theorem holds

for the conclusion.

Consider the rule (R-1) and assume that I ⊧ P , then there

exists a path π in I such that π▷I P . Since P ⪯ P
′
, π▷I P

′

by Lemma 1, thus I ⊧ P
′
.

Consider the rule (R-2), and assume that I ⊧ ˜P
′
. We

proceed by refutation, assuming I /⊧ ˜P and showing a

contradiction. By the definition, I /⊧ ˜P implies I ⊧ P and

thus there exists a path π in I such that π▷IP . Since P ⪯ P
′
,

π ▷I P
′

by Lemma 1 and thus I ⊧ P
′
, i.e., I /⊧ ˜P

′
.

Consider the rule (R-3), and assume that I ⊧ P
′

1 ∶ P2.

Assume now by refutation that I /⊧ P1 ∶ P
′

2. By the definition,

I /⊧ P1 ∶ P
′

2 implies that there exists a path π in I such

that π ▷I P1 and not π ▷I P
′

2. Since P1 ⪯ P
′

1, π ▷I P
′

1 by

Lemma 1. Thus, since I ⊧ P
′

1 ∶ P2, π ▷I P2 must hold, but

since P2 ⪯ P
′

2, then π ▷I P
′

2 must also hold.

The (not always defined) greatest lower bound, and least

upper bound of a pair of requirements R and R
′

are repre-

sented as R ⊓R
′
, and R⊔R

′
respectively.

B. Syntax and semantics of IFCIL

The grammar for IFCIL is obtained by updating the rules

of command for call and blockinherit as follows.

command ∶∶= (call m([a]) [IFLrefinement])

∣ (blockinherit B [IFLrefinement])

Moreover, the following rules are added to the grammar.

command ∶∶= IFLrequirement

IFLrequirement ∶∶= ;IFL; (label) R ;IFL;

IFLrefinement ∶∶= ;IFL; (label ∶ label) R ;IFL;

In the normalization pipeline, the rules are updated as shown

in Figure 6, where r and c are rules and commands that are not

IFL requirements. The normalization procedure is the same as

CIL, where rules (N-i), (N-i’), and (N-i”) are applied together

during phase i (1 ≤ i ≤ 6).



(node)
n ⪯n ∗

o ⊆ o
′

(op)
o ⪯o o

′ (arrow)
> ⪯a + >

o ⪯o o
′

w ⪯a w
′

(o-arrow)
(w, o) ⪯oa (w

′
, o
′
)

P1 ⪯P P
′

1 P2 ⪯P P
′

2
(comp)

P1P2 ⪯P P
′

1P
′

2

n1 ⪯n n
′

1 n2 ⪯n n
′

2 oa ⪯oa oa
′

(P-1)
n1 oa n2 ⪯P n

′

1 oa
′
n
′

2

n1 ⪯n n
′

1 n2 ⪯n n
′

2 o1 ⪯o o
′

1 o1 ⪯o o
′

2 o2 ⪯o o
′

2
(P-2)

n1 + [o1] > ∗ [o2] > n2 ⪯P n
′

1 [o
′

1] > ∗ + [o
′

2] > n
′

2

n1 ⪯n n
′

1 n2 ⪯n n
′

2 o1 ⪯o o
′

o2 ⪯o o
′

(P-3)
n1 + [o1] > ∗ + [o2] > n2 ⪯P n

′

1 + [o
′
] > n

′

2

n1 ⪯n n
′

1 n2 ⪯n n
′

2 o1 ⪯o o
′

1 o2 ⪯o o
′

2 o2 ⪯o o
′

1
(P-4)

n1 [o1] > ∗ + [o2] > n2 ⪯P n
′

1 + [o
′

1] > ∗ [o
′

2] > n
′

2

P ⪯P P
′

(R-1)
P ⪯ P

P ⪯P P
′

(R-2)
˜P

′
⪯ ˜P

P1 ⪯P P
′

1 P2 ⪯P P
′

2
(R-3)

P
′

1 ∶ P2 ⪯ P1 ∶ P
′

2

Figure 5. Definition of IFL requirement refinement and auxiliary relations.

The semantics (G,R) of a IFCIL configuration Σ is ob-

tained by applying the rules in Figure 4 for G, and the

following one for R.

(B#,;IFL;(l) R ;IFL;) ∈ Γ
(S-R)

R ∈ R

C. Verification

It is convenient to use in the following the grammar of P

of Section V, and to redefine the relation ▷I of Definition 1

in the following, trivially equivalent way.

(n, o, n
′
)▷I m [o

′
]> m

′
if (m = ∗ ∨ n ∈ ta(m))

∧ (m
′
= ∗ ∨ n

′
∈ ta(m

′
))

∧ o ∩ o
′
≠ ∅

(n, o, n
′
)▷I m +[o

′
]> m

′
if (n, o, n

′
)▷I m [o

′
]> m

′

(n, o, n
′
)π ▷I m +[o

′
]> m

′
if (n, o, n

′
)▷I m [o

′
]> ∗

∧ π ▷I ∗ +[o
′
]> m

′

(n, o, n
′
)π ▷I m [o

′
]> m

′
P if (n, o, n

′
)▷I m [o

′
]> ∗

∧ π ▷I P

π ▷I m +[o
′
]> m

′
P if π ▷I m [o

′
]> m

′
P

(n, o, n
′
)π ▷I m +[o

′
]> m

′
P if (n, o, n

′
)▷I m [o

′
]> ∗

∧ π ▷I ∗ +[o
′
]> ∗ P

Given a path π = (n0, o0, n1)(n1, o1, n2) . . . (nm−1, om−1, nm)
of an information diagram I with K its KTS, let $π% be the

set of paths w = n0, op0, n1, op1, n2, . . . , nm−1, opm−1, nm

in K such that ∀i ∶ opi ∈ oi. Moreover, given a path of K

w = n0, op0, n1, op1, n2, . . . , nm−1, opm−1, nm, let πw be

(n0, {op0}, n1)(n1, {op1}, n2) . . . (nm−1, {opm−1}, nm) of I .

Lemma 2. Let π be a path in the information diagram I with

K its KTS, and let P be an information flow kind. Then π▷IP

if and only if w ⊧l $P% for some w ∈$π%.

Proof. We proceed by induction on P . For P of the form

m [o
′
]> m

′
or m +[o

′
]> m

′
the properties trivially hold. For

the last two cases of P we proceed as follows.

Case P = m [o
′
]> m

′
P
′
. Assume π▷I P . By the definition

of ▷I , π = (n, o, n
′
) π

′
, with o ∩ o

′
≠ ∅. We also know by

the induction hypothesis that there exists w
′
∈$π

′
% such that

w
′
⊧l $P

′
%. Since o ∩ o

′
≠ ∅, there exists op ∈ o ∩ o

′
. Take

w = n, op, w
′
. Then w ∈ $π% holds by definition, and also

w ⊧l $P%.

Assume w ⊧l $P%. Since $P% = m ∧ ⋁op∈o′(op) ∧

X($P
′
%), w = n, op, w

′
with n ∈ ta(m) and op ∈ o

′
trivially

follows from the semantics of LTL. Then π = (n, o, n
′
)π

′

with op ∈ o and w
′
∈ $π

′
%. We also know by the induction

hypothesis that π
′
▷I P

′
, then π ▷I P .

Case P = m +[o
′
]> m

′
P
′
. Assume π▷I P . We separately

consider the two cases of the definition of ▷ that apply to

P . If π ▷I m [o
′
]> m

′
P
′
, then we are in the previous case.

Otherwise, π = (n, o, n
′
) π

′
with (n, o, n

′
)▷I m[o

′
]>∗ and

π
′
▷I∗[o

′
]>∗ P

′
. By induction hypothesis, w

′
∈$π

′
% exists

such that w
′
⊧l ⋁op∈o′(op) ∧X(⋁op∈o′(op) U $P

′
%). Thus,

w = n, op, w
′

exists such that op ∈ o, and it holds that w ∈

$π%. The thesis follows from the following stronger statement

that trivially holds by construction: w ⊧l m ∧⋁op∈o′(op) ∧

X(⋁op∈o′(op) ∧X(⋁op∈o′(op) U $P
′
%)).

Assume w ⊧l $P%. Then either w ⊧l ⋁op∈o′(op) ∧

X($P
′
%) or w ⊧l ⋁op∈o′(op) ∧ X(⋁op∈o′(op) ∧

X(⋁op∈o′(op) U $P
′
%)). If w ⊧l ⋁op∈o′(op) ∧X($P

′
%),

then we are in the previous case. Consider now the second

case, and let w be n, op, w
′
. By definition, π = (n, o, n

′
)π

′
,

with op ∈ o and w
′
∈ $π

′
%. By construction, (n, o, n

′
) ▷I

m[o
′
]>∗, and by induction hypothesis, π

′
▷I ∗+[o

′
]> ∗

P .

Lemma 3. Let w be a path in the KTS K of the information

diagram I , and let P be an information flow kind. Then w ⊧l

$P% if and only if πw ▷I P .

Proof. Trivially derives from Lemma 2 since $πw% = {w}.

Theorem 2 (Correctness and Completeness). Let Σ be an IF-

CIL configuration with requirements R, let I be its information

flow diagram, and let K be the KTS of Σ. Then



evalσ;#(B) = B
′

(N-1)
(σ, inherit B R) → (σ, inherit B

′
R)

(σ, inherit B R) ∈ Γ

(B.ρ, r) ∈ Γ
(N-2)

add(σ.ρ, r)

(σ, inherit B R) ∈ Γ

(B.ρ,;IFL; (l) R ;IFL;) ∈ Γ

;IFL;(l
′
∶ ρ.l) R

′
;IFL; ∈ R

(N-2’)
add(σ.ρ,;IFL;(l

′
) R

′
⊓R ;IFL;)

(σ, inherit B R) ∈ Γ

(B.ρ,;IFL; (l) R ;IFL;) ∈ Γ

¬∃l
′
,R

′
∶ ;IFL;(l

′
∶ ρ.l) R

′
;IFL; ∈ R

(N-2”)
add(σ.ρ,;IFL;(l

′
) R ;IFL;)

evalσ;#(m) = m
′

(N-3)
(σ, call m([a]) R) → (σ, call m

′
([a]) R)

(σ, call m([a]) R) ∈ Γ

(m,d) ∈ Γ
(N-4)

add(σ, d)

a occurs in c

evalm(a) = a
′
≠ ⊥

evalm(a) = ⊥
(N-5a)

(m, c) → ((m, c{a
′
/a})

(σ, call σ
′
.n([a]) R) ∈ Γ

(σ
′
.n, c) ∈ Γ

(σ
′
,macro m([x])) ∈ Γ

(¬∃m
′
, a

′
,R

′
∶ (σ

′
.n, call m

′
[a

′
] R

′
) ∈ Γ)

(N-5b)
add(σ, c{[a]/[x]})

(σ, call σ
′
.n([a]) R) ∈ Γ

(σ
′
.n, ;IFL;(l) R ;IFL;) ∈ Γ

(σ
′
,macro m([x])) ∈ Γ

(¬∃m
′
, a

′
, R

′
∶ (σ

′
.n, call m

′
[a

′
] R

′
) ∈ Γ)

;IFL;(l
′
∶ l) R

′
;IFL; ∈ R

(N-5b’)
add(σ,;IFL;(l

′
) (R⊓R

′
){[a]/[x]} ;IFL;)

(σ, call σ
′
.n([a]) R) ∈ Γ

(σ
′
.n,;IFL;(l) R ;IFL;) ∈ Γ

(σ
′
,macro m([x])) ∈ Γ

(¬∃m
′
, a

′
,R

′
∶ (σ

′
.n, call m

′
[a

′
] R

′
) ∈ Γ)

¬∃l
′
,R

′
∶ ;IFL;(l

′
∶ l) R

′
;IFL; ∈ R

(N-5b”)
add(σ,;IFL;(l) R{[a]/[x]} ;IFL;)

(σ, call m([a]) R) ∈ Γ

(¬∃m
′
, [a

′
] ∶ (m, call m

′
[a

′
] R) ∈ Γ)

(N-5c)
remove(σ, call m([a]) R)

a occurs in c

evalB#;#(a) = a
′

(N-6)
(B#, c) → (B#, c{a

′
/a})

Figure 6. IFCIL normalization rules.

K ⊢ R if and only if I ⊧ R.

Proof. We proceed by cases on R.

Case R = P . Assume I ⊧ P . Then there exists π such

that π ▷I P , and by Lemma 2 K ⊢ P . Conversely, assume

K ⊢ P , thus there exists w such that w ⊧l $P%, and by

Lemma 3 I ⊧ P .

Case R = ˜P . Assume I ⊧ ˜P . Then there exists no π such

that π ▷I P . Assume by refutation that K /⊢ P . Then w ⊧l

$P% for some w, and by Lemma 3 πw ▷I P . Contradiction.

Conversely, assume K ⊢ ˜P , thus there exists no w such

that w ⊧l $P%. Assume by refutation that I /⊧ ˜P . Then there

exists π such that π ▷I P and, by Lemma 3 there exists w

such that w ⊧l $P%. Contradiction.

Case R = P ∶ P
′
. Assume I ⊧ P ∶ P

′
. Then there exists

no π such that π ▷I P and π /▷I P . Assume by refutation

that K /⊢ P ∶ P
′
. Then there exists w such that w ⊧l $P%

and w /⊧l $P
′
%, and by Lemma 3 πw ▷I P and πw /▷I P .

Contradiction.

Conversely, assume K ⊢ P ∶ P
′
, thus there exists no w

such that w ⊧l $P% and w /⊧l $P
′
%. Assume by refutation

that I /⊧ P ∶ P
′
. Then there exists π such that π ▷I P and

π /▷I P
′
. Thus, by Lemma 2, there exists w such that w ⊧l

$P% and w /⊧l $P
′
%. Contradiction.

In the following we write W̄ and W̄ι for infinite paths in

K and Kι; Ẇ and Ẇι for finite paths in K and Kι; and Wι

for W̄ι ∪ Ẇι (note that W = W̄ ∪ Ẇ ). With a small abuse of

notation, we write Kι ⊧l φ if and only if ∀w ∈ W̄ι.w ⊧l φ.

Definition 8. The encoding of flow kinds for Kι is as follows.

$n [o]> n
′
%ι = n ∧ ⋁

op∈o

(op)∧X(n
′
∧X(ι))

$n +[o]> n
′
%ι = n ∧ ⋁

op∈o

(op) ∧X(⋁
op∈o

(op) U (n
′
∧X(ι)))

$(n [o]> n
′
)P%ι = n ∧ ⋁

op∈o

(op) ∧X($P%ι)

$(n +[o]> n
′
)P%ι = n ∧ ⋁

op∈o

(op) ∧X(⋁
op∈o

(op) U $P%ι)

The satisfaction relation ⊢ι is defined as follows.

Kι ⊢ι P iff Kι /⊧l ¬$P%ι

Kι ⊢ι ˜P iff Kι ⊧l ¬$P%ι

Kι ⊢ι P:P
′

iff Kι ⊧l ¬$P%ι ∨$P
′
%ι

Lemma 4. If w ⊧l $P% then w ∈ Ẇ and wι
ω
⊧l $P%ι with

wι
ω
∈ W̄ι.

Proof. Trivial.



Lemma 5. If w ⊧l $P%ι then there exists a unique ẇ ∈ Ẇ

such that ẇ ⊧l $P% and w = ẇι
ω

.

Proof. Trivial.

Corollary 1. Let Σ be an IFCIL configuration with require-

ments R, let I be its information flow diagram, and let K be

the KTS of Σ. Then

Kι ⊢ R if and only if K ⊢ R if and only if I ⊧ R.

Proof. It suffices to prove the following.

K ⊧l ¬$P% iff Kι ⊧l ¬$P%ι (1)

K ⊧l ¬$P% ∨$P
′
% iff Kι ⊧l ¬$P%ι ∨$P

′
%ι (2)

Proof of (1). Assume by refutation that K ⊧l ¬$P% and

Kι /⊧l ¬$P%ι. From Kι /⊧l ¬$P%ι we know that there

exists w
′
∈ W̄ι such that w

′
⊧l $P%ι. By Lemma 5, there

exists w
′′
∈ W such that w

′′
⊧l $P%. But from K ⊧l ¬$P%

we know that ∀w ∈ W.w /⊧l $P%. Contradiction.

Assume now by refutation that K /⊧l ¬$P% and Kι ⊧l

¬$P%ι. From K /⊧l ¬$P% we know that there exists w
′
∈

W such that w ⊧l $P%. By Lemma 4, w
′
ι
ω
∈ W̄ι is such

that w
′
ι
ω
⊧l $P%ι. But from Kι ⊧l ¬$P%ι we know that

∀w ∈ W̄ι it is w /⊧l $P%. Contradiction.

Proof of (2). Assume by refutation that K ⊧l ¬$P%∨$P
′
%

and Kι /⊧l ¬$P%ι ∨$P
′
%ι. From Kι /⊧l ¬$P%ι ∨$P

′
%ι

we know that there exists w
′
∈ W̄ι such that w

′
⊧l $P%ι and

w
′
/⊧l $P

′
%ι. Then, by Lemma 5, w

′
= w

′′
ι
ω

with w
′′
∈ Ẇ

and w
′′
⊧l $P%. Clearly, w

′′
/⊧l $P

′
%, otherwise we would

have that w
′
⊧l $P

′
%ι by Lemma 4. But from K ⊧l ¬$P%∨

$P
′
% we know that ∀w ∈ W it is w /⊧l $P% ∨ w ⊧l $P

′
%.

Contradiction.

Assume now by refutation that K /⊧l ¬$P% ∨$P
′
% and

Kι ⊧l ¬$P%ι ∨ $P
′
%ι. From K /⊧l ¬$P% ∨ $P

′
% we

know that there exists w
′
∈ W such that w

′
⊧l $P% and

w
′
/⊧l $P

′
%. Thus, by Lemma 4, w

′
ι
ω
⊧l $P%ι with w

′
ι
ω
∈

W̄ι. Clearly, w
′
ι
ω

/⊧l $P
′
%ι, otherwise we would have that

w
′
⊧l $P

′
% by Lemma 4. But from Kι ⊧l ¬$P%ι ∨$P

′
%ι

we know that ∀w ∈ W̄ι it is w /⊧l $P%ι ∨ w ⊧l $P
′
%ι.

Contradiction.
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