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Abstract In system monitoring, one is often interested in checking properties of
aggregated data. Current policy monitoring approaches are limited in the kinds of
aggregations they handle. To rectify this, we extend an expressive language, metric
first-order temporal logic, with aggregation operators. Our extension is inspired
by the aggregation operators common in database query languages like SQL. We
provide a monitoring algorithm for this enriched policy specification language. We
show that, in comparison to related data processing approaches, our language is
better suited for expressing policies, and our monitoring algorithm has competitive
performance.

Keywords Runtime Verification · Monitoring · System Compliance · Temporal
Logic · Aggregation Operators

1 Introduction

Motivation. System monitoring is a wide-spread requirement for many kinds of
systems, ranging from enterprise data centers to power grids. Both public and pri-
vate companies are increasingly required to monitor whether their system usage
complies with normative regulations. For example, US hospitals must follow the
US Health Insurance Portability and Accountability Act (HIPAA) and financial
services must conform to the Sarbanes-Oxley Act (SOX). First-order temporal
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logics are not only well-suited for formalizing such regulations, they also admit ef-
ficient monitoring. When used online, these monitors observe the actions of agents,
such as users and their processes, and report violations. This can be in real-time,
as the actions occur. Alternatively, the actions are logged and the monitor checks
them later, such as during an audit. See, for example, [6, 19].

Current logic-based monitoring approaches are limited in their support for
expressing and monitoring properties of aggregations. Such properties are often
needed to express compliance policies, such as the following simple example from
fraud prevention: A user must not withdraw more than $10,000 within a 31 day
period from his credit card account. To formalize this policy, we need an operator to
express the aggregation of the withdrawal amounts over the specified time window,
grouped by the users. In this article, we address the problem of expressing and
monitoring first-order temporal properties built from such aggregation operators.

Solution. First, we extend metric first-order temporal logic (MFOTL) with ag-
gregation operators and with functions. This follows Hella et al.’s [20] extension
of first-order logic with aggregations. We also ensure that the semantics of ag-
gregations and grouping operations in our language mimics that of SQL. As an
illustration, a formalization in our language of the above fraud-detection policy is

� ∀u. ∀s. [SUMa a. �[0,31) withdraw(u, a)](s;u)→ s � 10000 . (P0)

The SUM operator, at the current time point, groups all withdrawals for a user u
over the past 31 days and sums up their amounts a. The aggregation formula
defines a binary relation where the first coordinate is the SUM’s result s and the
second coordinate is the user u for whom the result is calculated. If the user’s sum
is greater than 10,000, then the policy is violated at the current time point. The
formula (P0) therefore states that the aggregation condition must hold for each
user and every time point.

For comparison, an SQL query for determining the violations with respect to
the above policy at a specific time is

SELECT SUM(a) AS s, u FROM W GROUP BY u HAVING SUM(a) > 10000 .

Here W is the dynamically created view consisting of the withdrawals of all users
within the 31 day time window relative to the given time. Note that the subscript a
of the formula’s aggregation operator in (P0) corresponds to a in the SQL query
and the third appearance of a in (P0) is implicit in the query, as it is fixed by the
view’s definition. The second a in (P0) is redundant; its inclusion emphasizes that
the variable a is bound, i.e., it does not correspond to a coordinate in the resulting
relation.

Not all formulas in our language are monitorable. Unrestricted use of logic
operators may require infinite relations to be built and manipulated. The second
part of our solution, therefore, is a monitorable fragment of our language. It can
express all our examples, which represent typical policy patterns, and it allows
the liberal use of aggregations and functions. We extend our monitoring algo-
rithm for MFOTL [8] to this fragment. In more detail, the algorithm processes log
files sequentially and evaluates formulas in a bottom-up manner, using extended
relational algebra operators to compute the evaluation of a formula from the eval-
uation of its direct subformulas. In particular, aggregation formulas are handled
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as the homonymous relational algebra operators. Functions are handled similarly
to Prolog, where variables are instantiated before functions are evaluated.

We have implemented our monitoring solution and we evaluate it, comparing it
with the relational database management system PostgreSQL [23] and the stream-
processing tool STREAM [2]. Our evaluation focuses on two aspects: the suitability
of our proposed language for formalizing complex policies with aggregations (our
examples are from the domain of fraud detection) and the performance of our
prototype implementation. The results show that our language is better suited
for specifying policies than SQL and our prototype’s performance is superior to
PostgreSQL’s performance. This is because temporal reasoning must be explicitly
encoded in SQL queries and PostgreSQL does not process logged data sequentially
in time. STREAM’s query language CQL [3] has limited support for temporal
reasoning and several temporal constructs must be explicitly encoded, as is the
case with SQL. It is thus less suited than our language for specifying the example
policies. However, STREAM’s performance is better than our tool’s. Nevertheless,
the performance of our prototype tool is still within the same order of magnitude
as STREAM’s performance and it is efficient enough for practical use.

Contributions. Although aggregations have appeared previously in monitoring, our
language is the first to add expressive SQL-like aggregation operators to a first-
order temporal language. This enables us to express complex compliance policies
with aggregations. Our prototype implementation is therefore the first tool to
handle such policies, and it does so with acceptable performance.

Related Work. Our MFOTL extension is inspired by the aggregation operators in
database query languages like SQL and by Hella et al.’s extension of first-order
logic with aggregation operators [20]. Hella et al.’s work is theoretically motivated:
they investigate the expressiveness of such an extension in a non-temporal setting.
A minor difference between their aggregation operators and ours is that their
operators yield terms rather than formulas, as in our extension.

Monitoring algorithms for different variants of first-order temporal logics have
been proposed by Hallé and Villemaire [19], Bauer at al. [10], and Basin et al. [8].
Except for the counting quantifier [10], none of them support aggregations. Bian-
culli et al. [11] present a policy language based on a first-order temporal logic
with a restricted set of aggregation operators that can only be applied to atomic
formulas. For monitoring, they require a fixed finite domain and provide a trans-
lation to a propositional temporal logic. Such a translation is not possible in our
setting since variables range over an infinite domain. In the context of database
triggers and integrity constraints, Sistla and Wolfson [24] describe an integration
of aggregation operators into their monitoring algorithm for a first-order temporal
logic. Their aggregation operators are different from those presented here in that
they involve two formulas that select the time points to be considered for aggre-
gation and they use a database query to select the values to be aggregated from
the selected time points.

Other monitoring approaches that support aggregations are LarvaStat [14],
LOLA [16], EAGLE [4], and an approach based on algebraic alternating au-
tomata [17]. These approaches allow one to aggregate over the events in system
traces, where events are either propositions or parametrized propositions. They
do not support grouping, which is needed to obtain statistics per group of events,
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e.g., the events generated by the same agent. Moreover, quantification over data
elements and correlating data elements is more restrictive in these approaches than
in a first-order setting.

Most data stream management systems like STREAM [2] and Gigascope [15]
handle SQL-like aggregation operators. For example, in STREAM’s query lan-
guage CQL [3] one selects events in a specified time range, relative to the current
position in the stream, into a table that one aggregates. The temporal expres-
siveness of such languages is weaker than our language; in particular, linear-time
temporal operators are not supported.

Organization. The remainder of the article is structured as follows. In Section 2, we
extend MFOTL with aggregation operators. In Section 3, we present our monitor-
ing algorithm, which we evaluate in Section 4. In Section 5, we draw conclusions.

2 MFOTL with Aggregation Operators

2.1 Preliminaries

We use standard notation for sets and set operations. We also use set notation
with sequences. For instance, for a set A and a sequence s̄ = (s1, . . . , sn), we write
A ∪ s̄ for the union A ∪ {si | 1 ≤ i ≤ n} and we denote the length of s̄ by |s̄|.
Let I be the set of nonempty intervals over N. We often write an interval in I as
[b, b′) := {a ∈ N | b ≤ a < b′}, where b ∈ N, b′ ∈ N ∪ {∞}, and b < b′.

A multi-set M with domain D is a function M : D → N ∪ {∞}. This defini-
tion extends the standard one to multi-sets where elements can have an infinite
multiplicity. A multi-set M is finite if M(a) ∈ N for every a ∈ D and the set
{a ∈ D | M(a) > 0} is finite. We use the brackets {| and |} to specify multi-sets.
For instance, {|2 · bn/2c | n ∈ N|} denotes the multi-set M : N → N ∪ {∞} with
M(n) = 2 if n is even and M(n) = 0 otherwise. A multi-set M is empty if M(a) = 0
for any a ∈ D. We denote the empty multi-set by ∅.

Given a domain D, an aggregation operator is a function from multi-sets with
domain D to D ∪ {⊥∞} such that finite multi-sets are mapped to elements of D \
{⊥∞} and infinite multi-sets are mapped to ⊥∞. Common aggregations operators
on finite non-empty multi-sets M that only contain rational numbers are:

CNT(M) :=
∑
a∈D

M(a) ,

SUM(M) :=
∑
a∈D

M(a) · a ,

MIN(M) := min{a ∈ D |M(a) > 0} ,
MAX(M) := max{a ∈ D |M(a) > 0} ,

and

AVG(M) := SUM(M)/CNT(M) .

On the empty multi-set, the definition of the aggregations operators CNT and
SUM is straightforward, namely, CNT(∅) := SUM(∅) := 0. However, the definition
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of the other aggregations operators MIN, MAX, and AVG on the empty multi-set
is less standard. For example, the average over an empty multi-set is undefined.
We can define AVG(∅) := ⊥, where ⊥ is a special domain element representing
undefinedness. Analogously, we can define MIN(∅) and MAX(∅) as ⊥, or we can
assume special domain elements ∞ and −∞ and define MIN(∅) and MAX(∅) as
∞ and −∞, respectively. Note that when ⊥, ∞, and −∞ are domain elements,
one must extend the above definitions to finite, non-empty multi-sets that contain
such elements. This can, for example, be done by ignoring such elements and their
multiplicity. For readability, we omit a definition of these aggregation operators
on such “ill-formed” multi-sets. These definitions are not relevant for the results
of this article.

2.2 Syntax

A signature S is a tuple (F,R, ι), where F is a finite set of function symbols, R is
a finite set of predicate symbols disjoint from F, and the function ι : F ∪ R → N
assigns to each symbol s ∈ F ∪ R an arity ι(s). In the following, let S = (F,R, ι) be
a signature and V a countably infinite set of variables, where V ∩ (F ∪ R) = ∅.

Function symbols of arity 0 are called constants. Let C ⊆ F be the set of con-
stants of S. Terms over S are defined inductively: Constants and variables are
terms, and f(t1, . . . , tn) is a term if t1, . . . , tn are terms and f is a function symbol
of arity n > 0. We denote by fv(t) the set of the variables that occur in the term t.
We denote by T the set of all terms over S, and by T∅ the set of ground terms,
that is, terms without variables. A substitution θ is a function from variables to
terms. We use the same symbol θ to denote its homomorphic extension to terms.

Given a finite set Ω of aggregation operators, the MFOTLΩ formulas over the
signature S are given by the grammar

ϕ ::= r(t1, . . . , tι(r)) | (¬ϕ) | (ϕ ∨ ϕ) | (∃x. ϕ) | ( I ϕ) | (ϕ SI ψ) | [ωt z̄. ϕ](y; ḡ) ,

where r, t and the tis, I, and ω range over the elements in R, T, I, and Ω, re-
spectively, x and y range over elements in V, and z̄ and ḡ range over sequences
of elements in V. Note that we overload notation: ω denotes both an aggregation
operator and its corresponding symbol. This grammar extends MFOTL’s gram-
mar [21] in two ways. First, it introduces aggregation operators. Second, terms may
also be built from function symbols and not just from variables and constants. For
ease of exposition, we do not consider future-time temporal operators.

We call [ωt z̄. ψ](y; ḡ) an aggregation formula. It is inspired by the homony-
mous relational algebra operator. Intuitively, by viewing variables as (relation)
attributes, ḡ are the attributes on which grouping is performed, t is the term on
which the aggregation operator ω is applied, and y is the attribute that stores the
result. The variables in z̄ are ψ’s attributes that do not appear in the described
relation. We define the semantics in Section 2.3, where we also provide examples.

The set of free variables of a formula ϕ, denoted fv(ϕ), is defined as expected
for the standard logic connectives. For an aggregation formula, it is defined as
fv
(
[ωt z̄. ϕ](y; ḡ)

)
:= {y}∪ ḡ. A variable is bound if it is not free. We denote by f̄v(ϕ)

the sequence of free variables of a formula ϕ that is obtained by ordering the free
variables of ϕ by their occurrence when reading the formula from left to right. A
formula is well-formed if, for each of its subformulas [ωt z̄. ψ](y; ḡ), it holds that
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(a) y 6∈ ḡ, (b) fv(t) ⊆ fv(ψ), (c) the elements of z̄ and ḡ are pairwise distinct, and
(d) z̄ = fv(ψ) \ ḡ. Note that, given condition (d), the use of one of the sequences
z̄ and ḡ is redundant. However, we use this syntax to make the free and bound
variables explicit in aggregation formulas. Throughout this article, we consider
only well-formed formulas.

To omit parentheses, we assume that Boolean connectives bind stronger than
temporal connectives, and unary connectives bind stronger than binary ones, ex-
cept for the quantifiers, which bind weaker than Boolean ones. As syntactic sugar,
we use standard Boolean connectives such as ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ), the universal
quantifier ∀x. ϕ := ¬∃x.¬ϕ, and the temporal operators ϕ TI ψ := ¬(¬ϕ SI ¬ψ),

�I ϕ := t SI ϕ, and �I ϕ := f TI ϕ, where I ∈ I, t := p ∨ ¬p, and f := ¬t, for some
predicate symbol p of arity 0, assuming without loss of generality that R contains
such a symbol. Non-metric variants of the temporal operators are easily defined,
for example, �ϕ := �[0,∞) ϕ.

2.3 Semantics

We distinguish between predicate symbols whose corresponding relations are rigid

over time and those that are flexible, i.e., their interpretations can change over time.
We denote by Rr and Rf the sets of rigid and flexible predicate symbols, where
R = Rr ∪ Rf with Rr ∩ Rf = ∅. We assume that Rr contains the binary predicate
symbols ≈ and ≺, which have their expected interpretation, namely, equality and
ordering.

A structure D over the signature S consists of a domain D 6= ∅ and interpre-
tations fD ∈ Dι(f) → D and rD ⊆ Dι(r), for each f ∈ F and r ∈ R. A temporal

structure over the signature S is a pair (D̄, τ̄), where D̄ = (D0,D1, . . . ) is a se-
quence of structures over S and τ̄ = (τ0, τ1, . . . ) is a sequence of non-negative
integers with the following properties.

1. The sequence τ̄ is monotonically increasing, that is, τi ≤ τi+1, for all i ≥ 0.
Moreover, τ̄ makes progress, that is, for every τ ∈ N, there is some index i ≥ 0
such that τi > τ .

2. All structures Di, with i ≥ 0, have the same domain, denoted D.
3. Function symbols and rigid predicate symbols have rigid interpretations, that

is, fDi = fDi+1 and pDi = pDi+1 , for all f ∈ F, p ∈ Rr, and i ≥ 0. We also write
fD̄ and pD̄ for fDi and pDi , respectively.

We call the elements in the sequence τ̄ timestamps and the indices of the elements
in the sequences D̄ and τ̄ time points.

A valuation is a mapping v : V → D. For a valuation v, a variable sequence
x̄ = (x1, . . . , xn) ∈ Vn, and d̄ = (d1, . . . , dn) ∈ Dn, we write v[x̄ 7→ d̄] for the
valuation that maps xi to di, for 1 ≤ i ≤ n, and the other variables’ valuation is
unaltered. We abuse notation by also applying a valuation v to terms. That is,
given a structure D, we extend v homomorphically to terms.

For the remainder of the article, we fix a countable domain D that contains
the rational numbers Q and elements like ⊥∞ and ⊥. We only consider a single-
sorted logic. One could alternatively have sorts for the different types of elements
like data elements and the aggregations. Furthermore, we assume that function
symbols are always interpreted by total functions. Partial functions like division
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over scalar domains can be extended to total functions, e.g., by mapping elements
outside the function’s domain to ⊥. Since the treatment of partial functions is not
essential to our work, we treat ⊥ as any other element of D. Alternative treatments
are possible, for example based on multi-valued logics [22].

Definition 1 Let (D̄, τ̄) be a temporal structure over the signature S, with D̄ =
(D0,D1, . . . ) and τ̄ = (τ0, τ1, . . . ), ϕ a formula over S, v a valuation, and i ∈ N. We
define the relation (D̄, τ̄ , v, i) |= ϕ inductively as follows:

(D̄, τ̄ , v, i) |= p(t1, . . . , tι(r)) iff
(
v(t1), . . . , v(tι(r))

)
∈ pDi

(D̄, τ̄ , v, i) |= ¬ψ iff (D̄, τ̄ , v, i) 6|= ψ

(D̄, τ̄ , v, i) |= ψ ∨ ψ′ iff (D̄, τ̄ , v, i) |= ψ or (D̄, τ̄ , v, i) |= ψ′

(D̄, τ̄ , v, i) |= ∃x. ψ iff (D̄, τ̄ , v[x 7→ d], i) |= ψ, for some d ∈ D
(D̄, τ̄ , v, i) |=  I ψ iff i > 0, τi − τi−1 ∈ I, and (D̄, τ̄ , v, i− 1) |= ψ

(D̄, τ̄ , v, i) |= ψ SI ψ
′ iff for some j ≤ i, τi − τj ∈ I, (D̄, τ̄ , v, j) |= ψ′,

and (D̄, τ̄ , v, k) |= ψ, for all k with j < k ≤ i
(D̄, τ̄ , v, i) |= [ωt z̄. ψ](y; ḡ) iff v(y) = ω(M) and if ḡ 6= ∅ then M is non-empty,

where M : D→ N ∪ {∞} is the multi-set{∣∣v[z̄ 7→ d̄](t)
∣∣ (D̄, τ̄ , v[z̄ 7→ d̄], i) |= ψ, for some d̄ ∈ D|z̄|

∣∣}.
Note that the semantics for the aggregation formula is independent of the order
of the variables in the sequence z̄.

For a temporal structure (D̄, τ̄), a time point i ∈ N, a formula ϕ, a valuation v,
and a sequence z̄ of variables with z̄ ⊆ fv(ϕ), we define the set

[[ϕ]]
(D̄,τ̄ ,i)
z̄,v :=

{
d̄ ∈ D|z̄|

∣∣ (D̄, τ̄ , v[z̄ 7→ d̄], i) |= ϕ
}
.

We drop the superscript when it is clear from the context. We drop the subscript
when z̄ = f̄v(ϕ). In this case the valuation v is irrelevant and [[ϕ]](D̄,τ̄ ,i) denotes
the set of satisfying elements of ϕ at time point i in (D̄, τ̄).

With this notation, we illustrate the semantics for aggregation formulas in
the case where we aggregate over a variable. We use the same notation as in
Definition 1. In particular, consider a formula ϕ = [ωx z̄. ψ](y; ḡ), with x ∈ V, and
a valuation v. Note that v (and thus also v[z̄ 7→ d̄]) fixes the values of the variables
in ḡ because these are free in ϕ. The multi-set M is as follows. If x 6∈ ḡ, then
M(a) = |{d̄ ∈ [[ϕ]]z̄,v | dj = a}|, for any a ∈ D, where j is the index of x in z̄. If
x ∈ ḡ, then M(v(x)) = |[[ϕ]]z̄,v| and M(a) = 0, for any a ∈ D \ {v(x)}.

Example 2 Let (D̄, τ̄) be a temporal structure over a signature with a ternary predi-
cate symbol p, with pD0 = {(1, b, a), (2, b, a), (1, c, a), (4, c, b)}. Moreover, let ϕ be the
formula [SUMx x, y. p(x, y, g)](s; g) and z̄ = (x, y). At time point 0, for a valuation
v1 with v1(g) = a, we have [[p(x, y, g)]]z̄,v1 = {(1, b), (2, b), (1, c)} and M = {|1, 2, 1|}.
For a valuation v2 with v2(g) = b, we have [[p(x, y, g)]]z̄,v2 = {(4, c)} and M = {|4|}.
Finally, for a valuation v3 with v3(g) /∈ {a, b}, we have that both [[p(x, y, g)]]z̄,v3 and
M are empty. So the formula ϕ is only satisfied under a valuation v with v(s) = 4
and either v(g) = a or v(g) = b. Indeed, we have [[ϕ]] = {(4, a), (4, b)}. The tables
in Figure 1 illustrate this example.

If we group on the variable x instead of g, we get [[[SUMx y, g. p(x, y, g)](s;x)]] =
{(2, 1), (2, 2), (4, 4)}, and [[[SUMx x, y, g. p(x, y, g)](s)]] = {(8)}, if we do not group on
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x y g

1 b a
2 b a
1 c a
4 c b

x y g

1
2
1

b
b
c

a

4 c b

Fig. 1 Relation pD0 from Example 2. The two boxes represent the multi-set M for the two
valuations v1 and v2, respectively.

any variable. Finally, note that if the multi-set over which we aggregate is infinite,
the aggregated value is ⊥∞. For example, we have [[[SUMx x, y.¬p(x, y, g)](s; g)]] =
D× {⊥∞} and [[[SUMx x, y, g.¬p(x, y, g)](s)]] = {(⊥∞)}.

Example 3 This example illustrates the special case where aggregation opera-
tors are applied on formulas that have no satisfying elements. Let (D̄, τ̄) be
a temporal structure over a signature with a binary predicate symbol q, with
qD0 = ∅. We have [[[ωx x. q(x, y)](s; y)]] = ∅, for any aggregation operator ω,
while [[[SUMx x. q(x, y)](s)]] = {(0)} and [[[AVGx x. q(x, y)](a)]] = {(⊥)}. Further-
more, if MIN(∅) is defined as ⊥ then [[[MINx x. q(x, y)](m)]] = {(⊥)}, while if
it is defined as ∞, we obtain [[[MINx x. q(x, y)](m)]] = {(∞)} if ∞ ∈ D, and
[[[MINx x. q(x, y)](m)]] = ∅, if ∞ 6∈ D.

The issue with the definition of aggregation operators on empty multi-sets, illus-
trated by Example 3, also appears in SQL. There, aggregation operators return
the special domain element NULL on empty multi-sets.

Example 4 Consider the formula ϕ = [SUMa a. ψ](s;u), where ψ is the for-
mula �[0,31) withdraw(u, a). Let (D̄, τ̄) be a temporal structure with the re-

lations withdrawD0 = {(Bob, 9), (Bob, 3)} and withdrawD1 = {(Bob, 3)}, and

the timestamps τ0 = 5 and τ1 = 8. We have that [[ψ]](D̄,τ̄ ,0) = [[ψ]](D̄,τ̄ ,1) =

{(Bob, 9), (Bob, 3)} and therefore [[ϕ]](D̄,τ̄ ,0) = [[ϕ]](D̄,τ̄ ,1) = {(12,Bob)}. Our se-
mantics ignores the fact that the tuple (Bob, 3) occurs at both time points 0 and 1.
Note that the withdraw events do not have unique identifiers in this example.

To account for multiple occurrences of an event, we can attach to each
event additional information to make it unique. For example, assume we have
a predicate symbol ts at hand that records the timestamp at each time point,
i.e., tsDi = {τi}, for i ∈ N. For the formula ϕ′ = [SUMa a. ψ

′](s;u) with

ψ′ = �[0,31) withdraw(u, a) ∧ ts(τ), we have that [[ϕ′]](D̄,τ̄ ,0) = {(12,Bob)} and

[[ϕ′]](D̄,τ̄ ,1) = {(15,Bob)} because [[ψ′]](D̄,τ̄ ,0) = {(Bob, 9, 5), (Bob, 3, 5)} while

[[ψ′]](D̄,τ̄ ,1) = {(Bob, 9, 5), (Bob, 3, 5), (Bob, 3, 8)}. To further distinguish between
withdraw events at time points with equal timestamps, we would need additional
information about the occurrence of an event, for example information obtained
from a predicate symbol tpts that is interpreted as tptsDi = {(i, τi)}, for i ∈ N.

The multiplicity issue illustrated by Example 4 also appears in databases. SQL is
based on a multi-set semantics and one uses the DISTINCT keyword to switch to a
set-based semantics. However, it is problematic to define a multi-set semantics for
first-order logic that associates a tuple d̄ ∈ D|fv(ϕ)| with a multiplicity denoting how
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often d̄ satisfies the formula ϕ rather than a Boolean value. For instance, there are
several ways to define a multi-set semantics for disjunction: the multiplicity of d̄ for
ψ∨ψ′ can be either the maximum or the sum of the multiplicities of d̄ for ψ and ψ′.
Depending on the choice, standard logical laws become invalid, for example the
distributivity of existential quantification or conjunction over disjunction. Defining
a multi-set semantics for negation is even more problematic.

3 Monitoring Algorithm

In this section, we present our monitoring algorithm for MFOTLΩ . The algorithm
is inspired by those in [8, 9, 12] and it is based on formulating the evaluation of
formulas ϕ in a fragment of MFOTLΩ in terms of extended relational algebra
operators applied to the evaluation of the direct subformulas of ϕ. We start with
an overview of our monitoring approach.

We assume that policies are of the form �∀x̄. ϕ, where ϕ is an MFOTLΩ
formula and x̄ is the sequence of ϕ’s free variables. The policy requires that ∀x̄. ϕ
holds at every time point in the temporal structure (D̄, τ̄). In the following, we
assume that (D̄, τ̄) is a temporal database, i.e., (1) the domain D is countably infinite,

(2) the relation pDi is finite, for each p ∈ Rf and i ∈ N, (3) pD̄ is a recursive relation,

for each p ∈ Rr, and (4) fD̄ is computable, for each f ∈ F. We also assume that
the aggregation operators in Ω are computable functions on finite multi-sets.

The inputs of our monitoring algorithm are a formula ψ, which is logically
equivalent to ¬ϕ, and a temporal database (D̄, τ̄), which is processed iteratively.

The algorithm outputs, again iteratively, the relation [[ψ]](D̄,τ̄ ,i), for each i ≥ 0.

As ψ and ¬ϕ are equivalent, the tuples in [[ψ]](D̄,τ̄ ,i) are the policy violations at
time point i. Note that we drop the outermost quantifier as we are interested not
only in whether the policy is violated. An instantiation of the free variables x̄ that
satisfies ψ provides additional information about the violations.

3.1 Monitorable Fragment

Not all formulas are effectively monitorable. Consider, for example, the policy
formalization �∀x. ∀y. p(x) → q(x, y), with the formula ψ = p(x) ∧ ¬q(x, y) that
we use for monitoring. There are infinitely many violations for time points i with
pDi 6= ∅, namely, any tuple (a, b) ∈ D2\qDi with a ∈ pDi . In such a case, [[ψ]](D̄,τ̄ ,i) is
infinite and its elements cannot be enumerated in finite time. We define a fragment
of MFOTLΩ that guarantees finiteness. Furthermore, the set of violations at each
time point can be effectively computed bottom-up over the formula structure. In
the following, we treat the Boolean connective ∧ and the temporal operator TI as
primitives.

Definition 5 The set F of monitorable formulas with respect to (Hp)p∈Rr is defined
by the rules given in Figure 2, where Hp ⊆ {1, . . . , ι(p)}, for each p ∈ Rr.

Let ` be a label of a rule from Figure 2. We say that a formula ϕ ∈ F is of kind `

if there is a derivation tree for ϕ having as its root a rule labeled by `.
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p ∈ Rf x1, . . . , xι(p) ∈ V are pairwise distinct

p(x1, . . . , xι(p)) ∈ F
FLX

ϕ ∈ F p ∈ Rr
⋃ι(p)
i=1 fv(ti) ⊆ fv(ϕ)

ϕ ∧ p(t1, . . . , tι(p)) ∈ F
RIG∧

ϕ ∈ F p ∈ Rr
⋃ι(p)
i=1 fv(ti) ⊆ fv(ϕ)

ϕ ∧ ¬p(t1, . . . , tι(p)) ∈ F
RIG∧¬

ϕ ∈ F p ∈ Rr
⋃ι(p)
i=1,i 6=j fv(ti) ⊆ fv(ϕ) tj ∈ V j ∈ Hp

ϕ ∧ p(t1, . . . , tι(p)) ∈ F
RIG′

∧

ϕ,ψ ∈ F
ϕ ∧ ψ ∈ F GEN∧

ϕ,ψ ∈ F fv(ψ) ⊆ fv(ϕ)

ϕ ∧ ¬ψ ∈ F GEN∧¬
ϕ,ψ ∈ F fv(ψ) = fv(ϕ)

ϕ ∨ ψ ∈ F GEN∨

ϕ ∈ F
∃x. ϕ ∈ F

GEN∃
ϕ ∈ F
 I ϕ ∈ F

GEN 
ϕ ∈ F

[ωt z̄. ϕ](y; ḡ) ∈ F
GENω

ϕ,ψ ∈ F fv(ϕ) ⊆ fv(ψ)

ϕ SI ψ ∈ F
GENS

ϕ,ψ ∈ F fv(ϕ) ⊆ fv(ψ)

¬ϕ SI ψ ∈ F
GEN¬S

ϕ,ψ ∈ F fv(ψ) ⊆ fv(ϕ)

ϕ TI ψ ∈ F
GENT

Fig. 2 The derivation rules defining the fragment F of monitorable formulas.

Before describing some of the rules, we first explain the meaning of the set Hp,
for p ∈ Rr with arity k. The set Hp contains the indexes j for which we can deter-
mine the values of the variable xj that satisfy p(x1, . . . , xk), given that the values
of the variables xi with i 6= j are fixed. Formally, given a temporal database (D̄, τ̄)
and a rigid predicate symbol p of arity k > 0, we say that an index j, with 1 ≤ j ≤ k,
is effective for p if for any ā ∈ Dk−1, the set {d ∈ D | (a1, . . . , aj−1, d, aj , . . . , ak−1) ∈
pD̄} is finite. For instance, for the rigid predicate ≈, the set of effective indexes is
H≈ = {1, 2}. Similarly, for the rigid predicate ≺N, defined as a ≺N b iff a, b ∈ N and
a < b, we have H≺N := {1}.

We describe the intuition behind the first four rules in Figure 2. The meaning
of the other rules should then be obvious. The first rule (FLX) requires that in
an atomic formula p(t1, . . . , tι(p)) with p ∈ Rf , the terms ti are pairwise distinct
variables. This formula is monitorable since we assume that p’s interpretation is
always a finite relation. For the rules (RIG∧) and (RIG∧¬), consider formulas of the

form ϕ∧p(t1, . . . , tι(p)) and ϕ∧¬p(t1, . . . , tι(p)) with p ∈ Rr and
⋃ι(p)
i=1 fv(ti) ⊆ fv(ϕ).

In both cases, the second conjunct further restricts the satisfying tuples of ϕ. An
example is the formula ϕ(x, y) ∧ x+ 1 ≈ y. If ϕ is monitorable, the conjunction is
also monitorable as it can be evaluated by removing from [[ϕ]] the tuples that do
not satisfy the second conjunct x + 1 ≈ y. The rule (RIG′∧) treats the case where
one of the terms ti is a variable that does not appear in ϕ. We require here that
the index j is effective, so that the values of this variable are determined by the
values of the other variables, which themselves are given by the tuples in [[ϕ]].
An example is the formula p(x, y) ∧ z ≈ x + y. The required conditions on tj are
necessary. If j is not effective, then we cannot guarantee finiteness. Consider, for
example, the formula q(x) ∧ x ≺ y. If we do not require that tj is a variable, then
we would have to solve equations to determine the value of the variable that does
not occur in ϕ. Consider, for example, the formula q(x) ∧ x ≈ y · y.
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The rule (FLX) may seem quite restrictive. However, one can often rewrite a
formula of the form p(t1, . . . , tn) with p ∈ Rf into an equivalent formula in F . For
instance, p(x+ 1, x) can be rewritten to ∃y. p(y, x) ∧ x+ 1 ≈ y. Alternatively, one
can add additional rules that handle such cases directly.

The following lemma shows that ϕ’s membership in F guarantees the finiteness
of [[ϕ]]. The proof consists of a straightforward induction on the formula structure.

Lemma 6 Let (D̄, τ̄) be a temporal database, i ∈ N a time point, ϕ a formula, and

Hp the set of effective indexes for p, for each p ∈ Rr. If ϕ is a monitorable formula

with respect to (Hp)p∈Rr , then [[ϕ]](D̄,τ̄ ,i) is finite.

There are formulas like (x ≈ y) S p(x, y) that describe finite relations but are
not in F . Finiteness can also be guaranteed by semantic notions like domain in-
dependence or syntactic notions like range restriction, see, for example, [1] and
also [8,13] for a generalization of these notions to a temporal setting. If we restrict
ourselves to MFOTL without future operators, the range restricted fragment in [8]
is more general than the fragment F . This is because, in contrast to the rules in
Figure 2, range restrictions are not local conditions, that is, conditions that only
relate formulas with their direct subformulas. However, the evaluation procedures
in [1,8,13] also work in a bottom-up recursive manner. So one still must rewrite the
formulas to evaluate them bottom-up. No rewriting is needed for formulas in F .
Furthermore, the fragment ensures that aggregation operators are always applied
to finite multi-sets. Thus, for any ϕ ∈ F , the element ⊥∞ ∈ D never appears in a
tuple of [[ϕ]], provided that pDi ⊆ Dι(p) and fD̄(ā) ∈ D, for every p ∈ R, f ∈ F,
i ∈ N, and ā ∈ Dι(f), where D = D \ {⊥∞}.

3.2 MFOTLΩ and Extended Relational Algebra Operators

Our monitoring algorithm is based on interpreting MFOTLΩ connectives in terms
of extended relational algebra operators. This interpretation is represented by
equalities between the evaluation of a formula and the evaluation of its direct
subformulas, for each kind of formula defined in Section 3.1. Such equalities ex-
tend the standard ones [1] that express the relationship between first-order logic
(without function symbols) and relational algebra, to function symbols, temporal
operators, and group-by operators. Before presenting the equalities, we introduce
the extended relational algebra operators.

3.2.1 Extended Relational Algebra Operators

We start by defining constraints. We assume a given infinite set of variables Z =
{z1, z2, . . . } ⊆ V, ordered by their indices. A constraint is a formula r(t1, . . . , tn)
or its negation, where r is a rigid predicate symbol of arity n and the tis are
constraint terms, i.e., terms with variables in Z. We assume that for each domain
element d ∈ D, there is a corresponding constant, also denoted by d. A tuple
(a1, . . . , ak) satisfies the constraint r(t1, . . . , tn) iff

⋃n
i=1 fv(ti) ⊆ {z1, . . . , zk} and

(v(t1), . . . , v(tn)) ∈ rD, where v is a valuation with v(zi) = ai, for all i ∈ {1, . . . , k}.
Satisfaction of a constraint ¬r(t1, . . . , tn) is defined similarly.
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In the following, let C be a set of constraints, A ⊆ Dm, and B ⊆ Dn. The
selection of A with respect to C is the m-ary relation

σC(A) := {ā ∈ A | ā satisfies all constraints in C} .

The integer i is a column in A if 1 ≤ i ≤ m. Let s̄ = (s1, s2, . . . , sk) be a sequence
of k ≥ 0 columns in A. The projection of A on s̄ is the k-ary relation

πs̄(A) :=
{

(as1 , as2 , . . . , ask) ∈ Dk
∣∣ (a1, a2, . . . , am) ∈ A

}
.

Let s̄ be a sequence of columns in A × B. The join and the antijoin of A and B

with respect to s̄ and C are defined as

A ./s̄,C B := (πs̄ ◦ σC)(A×B)

and

A�s̄,C B := A \ (A ./s̄,C B) .

Let ω be an operator in Ω, G a set of k ≥ 0 columns in A, and t a constraint term.
The ω-aggregate of A on t with grouping by G is the (k + 1)-ary relation

ωGt (A) :=
{

(b, ā)
∣∣ ā = (ag1 , ag2 , . . . , agk) ∈ πḡ(A) and b = ω(Mā)

}
.

Here ḡ = (g1, g2, . . . , gk) is the maximal subsequence of (1, 2, . . . ,m) such that
gi ∈ G, for 1 ≤ i ≤ k, and Mā : Dm−k → N is the finite multi-set

Mā :=
{∣∣(πh̄ ◦ σ{d≈t}∪D)(A)

∣∣ d ∈ D
∣∣} ,

where h̄ is the maximal subsequence of (1, 2, . . . ,m) with no element in G and
D := {ai ≈ zgi | 1 ≤ i ≤ k}.

3.2.2 Interpreting MFOTLΩ Connectives as Extended Regular Algebra Operators

Let (D̄, τ̄) be a temporal database, i ∈ N, and ϕ ∈ F . We express [[ϕ]](D̄,τ̄ ,i)

in terms of the generalized relational algebra operators. The following equalities
follow directly from the semantics of MFOTLΩ formulas and the definition of the
extended relational algebra operators.

Kind (FLX). This case is straightforward. For a predicate symbol p ∈ Rf of arity n
and pairwise distinct variables x1, . . . , xn ∈ V,

[[p(x1, . . . , xn)]](D̄,τ̄ ,i) = pDi .

Kinds (RIG∧) and (RIG∧¬). Let ψ and p(t1, . . . , tn) be two formulas such that ψ ∧
p(t1, . . . , tn) is a formula of kind (RIG∧). Note that ψ ∧ ¬p(t1, . . . , tn) is a formula
of kind (RIG∧¬). Then

[[ψ ∧ p(t1, . . . , tn)]](D̄,τ̄ ,i) = σ{p(θ(t1),...,θ(tn))}
(
[[ψ]](D̄,τ̄ ,i)

)
and

[[ψ ∧ ¬p(t1, . . . , tn)]](D̄,τ̄ ,i) = σ{¬p(θ(t1),...,θ(tn))}
(
[[ψ]](D̄,τ̄ ,i)

)
,

where the substitution θ : fv(ψ)→ {z1, . . . , z|fv(ψ)|} is given by θ(x) = zj , with j the
index of x in f̄v(ψ). For instance, if ϕ ∈ F is the formula ψ(x, y)∧(x− y) mod 2 ≈ 0

then [[ϕ]](D̄,τ̄ ,i) = σ{(z1−z2) mod 2≈ 0}[[ψ]](D̄,τ̄ ,i).
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Kind (RIG′∧). Let ψ ∧ p(t1, . . . , tn) be a formula of kind (RIG′∧), with f̄v(ψ) =
(y1, . . . , y`). Then

[[ψ ∧ p(t1, . . . , tn)]](D̄,τ̄ ,i) =
⋃

d̄∈[[ψ]](D̄,τ̄,i)

[[p(t1, . . . , tn) ∧
∧

j∈{1,...,`}

yj ≈ dj ]](D̄,τ̄ ,i) .

For instance, let ϕ(x, y, z) = ψ(y, z) ∧ x ≺ y + z. Assume that [[ψ]](D̄,τ̄ ,i) =

{(2, 0), (1, 2)}. Then [[ϕ]](D̄,τ̄ ,i) = [[x ≺ y + z ∧ y ≈ 2 ∧ z ≈ 0]] ∪ [[x ≺ y + z ∧ y ≈
1 ∧ z ≈ 2]] = {(0, 2, 0), (1, 2, 0)} ∪ {(0, 1, 2), (1, 1, 2), (2, 1, 2)}.

Kinds (GEN∧) and (GEN∧¬). Let ψ∧ψ′ and ψ∧¬ψ′ be formulas of kind (GEN∧) and
respectively (GEN∧¬), with f̄v(ψ) = (y1, . . . , yn) and f̄v(ψ′) = (y′1, . . . , y

′
`). Then

[[ψ ∧ ψ′]](D̄,τ̄ ,i) = [[ψ]](D̄,τ̄ ,i) ./s̄,C [[ψ′]](D̄,τ̄ ,i)

and

[[ψ ∧ ¬ψ′]](D̄,τ̄ ,i) = [[ψ]](D̄,τ̄ ,i) �s̄,C [[ψ′]](D̄,τ̄ ,i) ,

where (a) s̄ = (1, . . . , n, n+i1, . . . , n+i`) with ij such that (i1, . . . , i`) is the maximal
subsequence of (1, . . . , `) with y′ij /∈ fv(ψ), and (b) C = {zj ≈ zn+h | yj = y′h, 1 ≤
j ≤ n, and 1 ≤ h ≤ `}. For instance, if ϕ = p(x, y) ∧ q(y, z) then s̄ = (1, 2, 4) and
C = {z2 ≈ z3}.

Kind (GEN∨). Let ψ ∨ ψ′ be a formula of kind (GEN∨). Then

[[ψ ∨ ψ′]](D̄,τ̄ ,i) = [[ψ]](D̄,τ̄ ,i) ∪ [[ψ′]](D̄,τ̄ ,i) .

Kind (GEN∃). Let ∃x. ψ be a formula of kind (GEN∃) with f̄v(ψ) = (y1, . . . , yk).
Then

[[∃x. ψ]](D̄,τ̄ ,i) = π̄
(
[[ψ]](D̄,τ̄ ,i)

)
,

where ̄ = (1, . . . , k) if x 6∈ fv(ψ) and otherwise ̄ = (1, . . . , j − 1, j + 1, . . . , k) with
j such that x = yj .

Kind (GEN ). Let  I ψ be a formula of kind (GEN ). Then

[[ I ψ]](D̄,τ̄ ,i) =

{
[[ψ]](D̄,τ̄ ,i−1) if i > 0 and τi − τi−1 ∈ I,
∅ otherwise.

Kinds (GENS) and (GEN¬S). Let ψSIψ
′ and ¬ψSIψ

′ be two formulas of kind (GENS)
and respectively (GEN¬S), with f̄v(ψ) = (y1, . . . , yn) and f̄v(ψ′) = (y′1, . . . , y

′
`). Then

[[ψ SI ψ
′]](D̄,τ̄ ,i) =

⋃
j∈{i′|i′≤i, τi−τi′∈I}

(
[[ψ′]](D̄,τ̄ ,j) ./s̄,C

( ⋂
k∈{j+1,...,i}

[[ψ]](D̄,τ̄ ,k))) ,
and

[[¬ψ SI ψ
′]](D̄,τ̄ ,i) =

⋃
j∈{i′|i′≤i, τi−τi′∈I}

(
[[ψ′]](D̄,τ̄ ,j) �s̄,C

( ⋂
k∈{j+1,...,i}

[[ψ]](D̄,τ̄ ,k))) ,
where s̄ and C are as for the case of kinds (GEN∧) and (GEN∧¬). For instance,
for f̄v(ψ) = (x, y, z) and f̄v(ψ′) = (z, z′, x), we have s̄ = (1, 2, 3, 5) and C = {z1 ≈
z6, z3 ≈ z4}.



14 D. Basin et al.

Kinds (GENT). Let ψ TI ψ
′ be a formula of kind (GENT). Then

[[ψ TI ψ
′]](D̄,τ̄ ,i) =

( ⋂
j∈{i′|i′≤i, τi−τi′∈I}

[[ψ′]](D̄,τ̄ ,j)
)
∪

⋃
j∈{i′|i′≤i, τi−τi′∈I}

(
[[ψ′]](D̄,τ̄ ,j) ./s̄,C

( ⋂
k∈{j,...,i}

[[ψ]](D̄,τ̄ ,k))) ,
where s̄ and C are as for the case of kinds (GEN∧) and (GEN∧¬). This equality
follows the semantics of the T operator, that is, (D̄, τ̄ , v, i) |= ψTIψ

′ iff (D̄, τ̄ , v, j) |=
ψ′ for all j with j ≤ i and τi− τj ∈ I, or there is a j with j ≤ i and τi− τj ∈ I such
that (D̄, τ̄ , v, k) |= ψ, for all k with j ≤ k ≤ i.

Kind (GENω). Let [ωt z̄
′. ψ](y; ḡ) be a formula of kind (GENω). It holds that

[[[ωt z̄
′. ψ](y; ḡ)]](D̄,τ̄ ,i) = ωGθ(t)

(
[[ψ]](D̄,τ̄ ,i)

)
,

where f̄v(ψ) = (y1, . . . , yn), for some n ≥ 0, G = {i | yi ∈ ḡ}, and the substitution
θ : fv(ψ) → {z1, . . . , zn} is given by θ(x) = zj , where j is the index of x in f̄v(ψ).
For instance, for [SUMx+y x, y. p(x, y, z)](s; z), we have G = {3} and θ(t) = z1 + z2.

Remark. We do not have a translation from formulas in F into extended rela-
tional algebra expressions because one cannot fix in advance the relational sym-
bols used by such expressions. Indeed, the right-hand side of the equalities for the
kind (RIG′∧) and the kinds corresponding to temporal operators depend not only
on the left-hand side formula, but also on the temporal database.

3.3 Algorithmic Realization

For a given formula ψ ∈ F , the algorithm iteratively processes the given tem-
poral database (D̄, τ̄). At each time point i, it calls the procedure eval to com-

pute [[ψ]](D̄,τ̄ ,i). The input of eval at time point i is the formula ψ, the time point i
with its timestamp τi, and the interpretations of the flexible predicate symbols,
i.e., rDi , for each r ∈ Rf . Note that D̄’s domain and the interpretations of the
rigid predicate symbols and the function symbols, including the constants, do not
change over time. We assume that they are fixed in advance.

The computation of [[ψ]](D̄,τ̄ ,i) is by recursion over ψ’s formula structure. To

accelerate the computation of [[ψ]](D̄,τ̄ ,i), the monitoring algorithm maintains state
for each temporal subformula, storing previously computed intermediate results.
The monitor’s state is initialized by the procedure init and updated in each iteration
by the procedure eval. We describe the algorithm’s state for each temporal operator
when we present the pseudo-code that handles the operator.

The pseudo-code of the procedures init and eval is given in Figure 3. Our pseudo-
code (also used in Figures 4 and 5) is written in a functional-programming style
with pattern matching. The symbol 〈〉 denotes the empty sequence, ++ sequence
concatenation, h :: L the sequence with head h and tail L, and λx.f(x) denotes
a function f . The functions hd(L) and tl(L) return the head and respectively the
tail of the non-empty list L.
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proc init(ϕ)

for each ψ ∈ sf(ϕ) with ψ =  I ψ
′ do (Aψ, τψ)← (∅, 0)

for each ψ ∈ sf(ϕ) with ψ = ψ1 SI ψ2 do Lψ ← 〈〉
for each ψ ∈ sf(ϕ) with ψ = ψ1 TI ψ2 do (Hψ, Lψ)← (〈〉, 〈〉)

proc eval(ϕ, i, τ , Γ )
case ϕ = p(x1, . . . , xn)

return Γp

case ϕ = ψ ∧ p(t1, . . . , tn)
& kind rig(ϕ)

case ϕ = ψ ∧ ¬p(t1, . . . , tn)
& kind rig(ϕ)

A ← eval(ψ, i, τ , Γ )
C ← get info rig(ϕ)
return σC(A)

case ϕ = ψ ∧ p(t1, . . . , tn)
& kind rig’(ϕ)

A ← eval(ψ, i, τ , Γ )
k ← get info rig’(ϕ)
R ← ∅
for each ā ∈ A
R ← R ∪ reval(p, k, ā)

return R

case ϕ = ψ ∧ ¬ψ′

case ϕ = ψ ∧ ψ′

A ← eval(ψ, i, τ , Γ )

A′ ← eval(ψ′, i, τ , Γ )
C, s̄ ← get info and(ϕ)

if ϕ = ψ ∧ ψ′ then
return A ./C,s̄ B

else
return A�C,s̄ B

case ϕ = ψ ∨ ψ′

A ← eval(ψ, i, τ , Γ )

A′ ← eval(ψ′, i, τ , Γ )

return A ∪ A′

case ϕ = ∃x̄. ψ
A ← eval(ψ, i, τ , Γ )
s̄ ← get info exists(ϕ)
return πs̄(A)

case ϕ = [ωt z̄. ψ](y; ḡ)
A ← eval(ψ, i, τ , Γ )

H, t′ ← get info agg(ϕ)

return ωH
t′ (A)

case ϕ =  I ψ
A′ ← Aϕ
Aϕ ← eval(ψ, i, τ , Γ )

τ ′ ← τϕ
τϕ ← τ

if i > 0 and (τ − τ ′) ∈ I then

return A′

else
return ∅

case ϕ = ¬ψ SI ψ
′

case ϕ = ψ SI ψ
′

A ← eval(ψ, i, τ , Γ )

A′ ← eval(ψ′, i, τ , Γ )

return eval since(ϕ, τ , A, A′)

case ϕ = ψ TI ψ
′

A ← eval(ψ, i, τ , Γ )

A′ ← eval(ψ′, i, τ , Γ )

R ← eval palways(ϕ, τ , A′)

S ← eval since’(ϕ, τ , A′, A)
return R ∪ S

Fig. 3 The init and eval procedures.

First-order Connectives. We now describe the eval procedure in more detail. The
cases correspond to the rules defining the set of monitorable formulas. The pseudo-
code for the cases corresponding to non-temporal connectives follows closely the
equalities given in Section 3.2.2. Note that extended relational algebra operators
have standard, efficient implementations [18], which can be used to evaluate the
expressions on the right-hand side of these equalities.

The predicates kind rig and kind rig’ check whether the input formula ϕ

is indeed of the intended kind. The get info ∗ procedures return the param-
eters used by the corresponding relational algebra operators. For instance,
get info rig returns the singleton set consisting of the constraint correspond-
ing to the restrictions p(t1, . . . , tι(p)) or ¬p(t1, . . . , tι(p)). Similarly, get info rig’
returns the effective index corresponding to the unique variable that appears
only in the right conjunct of ϕ. The procedure reval(p, k, ā) returns the set

{d ∈ D | (a1, . . . , ak−1, d, ak, . . . , an−1) ∈ pD̄}, for any ā ∈ Dn−1, where n is the
arity of the rigid predicate symbol p.

Aggregation Operators. Computing the aggregation ωHt′ (A) is standard [18]. Namely,
one iterates through the tuples in the relation A and maintains a data structure
that associates an accumulated value for the aggregation term t′ to each group
of A, that is, to each tuple of values for the aggregation attributes in H. The
accumulation depends on the aggregation operator. For instance, for CNT, it is
the number of tuples of A seen so far that belong to the group, for SUM, it is the
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proc eval since(ϕ, τ , A, A′)
b ← interval right margin(ϕ)
drop old(Lϕ, b, τ)
C, s̄ ← get info and(ϕ)

case ϕ = ¬ψ SI ψ
′ then

f ← λB.B �s̄,C A
case ϕ = ψ SI ψ

′ then
f ← λB.B ./s̄,C A

g ← λ(κ,B).(κ, f(B))
Lϕ ← map(g, Lϕ)

Lϕ ← Lϕ ++ 〈(τ, A′)〉
return fold left(aux since, ∅, Lϕ)

proc drop old(L, b, τ)
case L = 〈〉

return 〈〉
case L = (κ,B) :: L′

if τ − κ ≥ b then

return drop old(L′, b, τ)
else return L

proc aux since(R, (κ,B))
if (τ − κ) ∈ I then return R ∪ B
else return R

Fig. 4 The eval since procedure.

sum of values for t′ corresponding to such tuples, and for AVG it is the pair of
the values used for CNT and SUM. The accumulated values are updated at each
iteration. For instance, for CNT, the accumulated value is increased by one. When
A’s scan is finished, the aggregated value for each group is obtained from the
accumulated value. Suitable data structures are hash tables and balanced search
trees as they allow for fast lookups and updates.

Finally, note that when handling an aggregation operator, one only needs a
suitable accumulation, functions for initializing and updating this accumulation,
and a function f for obtaining the aggregated value from the accumulated value.
In the general case, the accumulation consists of all the values for t′ seen so far and
the function f is the aggregation operator itself. For many aggregation operators,
for instance for the ones in considered in this article, the computation of the
accumulated value can be carried out more efficiently.

Temporal Operators. Consider first the case where the formula ϕ is of the form  I ψ.
In this case, the state stores between the iterations i − 1 and i, when i > 0, the
timestamp of the last time point, namely τϕ := τi−1, and the tuples that satisfy ψ

at last time point i− 1, i.e., the relation Aϕ := [[ψ]](D̄,τ̄ ,i−1). To evaluate ϕ at the
current time point i, we recursively evaluate the subformula ψ at i, we update the
state, and we return the relation resulting from the evaluation of ψ at the previous
time point, provided that the temporal constraint is satisfied. Otherwise we return
the empty relation. Note that by storing the relation [[ψ]](D̄,τ̄ ,i) at time point i, the
subformula ψ need not be evaluated again at time point i during the evaluation
of ψ at time point i+ 1.

Consider now the case where the formula ϕ is of the form ψ SI ψ
′ or ¬ψ SI ψ

′,
where I = [a, b), for some a ∈ N and b ∈ N∪{∞}. This case is mainly handled by the
sub-procedure eval since, given in Figure 4. For clarity of presentation, we assume
that ϕ = ψSIψ

′, the other case being similar. The evaluation of ϕ reflects the logical
equivalence ψ SI ψ

′ ≡
∨
d∈I ψ S[d,d] ψ

′. Note that we abuse notation here, as the
right-hand side is not a formula when b =∞. The function interval right margin(ϕ)
returns b.

The state at time point i, that is, after the procedure eval(ϕ, i, τi, Γi) has been
executed, consists of the list Lϕ of tuples (τj , R

i
j) ordered with j ascending, where
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proc eval palways(ϕ, τ , A′)
b ← interval right margin(ϕ)
drop old(Hϕ, b, τ)

Hϕ ← Hϕ ++ 〈(τ, A′)〉
(R, κ) ← hd(Hϕ)
if (τ − κ) ∈ I then

return fold left(aux palways, R, tl(Hϕ))
else return ∅

proc aux palways(R, (κ,B))
if (τ − κ) ∈ I then return R ∩ B
else return R

Fig. 5 The eval palways procedure.

j is such that j ≤ i and τi − τj < b and with

Rij := [[ψ′]](D̄,τ̄ ,j) ./s̄,C
( ⋂
k∈{j+1,...,i}

[[ψ]](D̄,τ̄ ,k)) ,
with s̄ and C defined as in Section 3.2.2. We have

[[ϕ]](D̄,τ̄ ,i) =
⋃

j∈{i′|i′≤i,τi−τi′∈I}

Rij .

The computation of this union is performed in the last line of the eval since pro-
cedure. Note that, in general, not all the relations Rij in the list Lϕ are needed

for the evaluation of ϕ at time point i. However, the relations Rij with j such that
τi − τj 6∈ I, that is τi − τj < a, are stored for the evaluation of ϕ at future time
points i′ > i. By storing these relations, the subformulas ψ1 and ψ2 need not be
evaluated again at time points j < i during the evaluation of ψ at time point i.

We now explain how the state is updated at time point i from the state at
time point i − 1. We first drop from the list Lϕ the tuples that are no longer
relevant. More precisely, we drop the tuples that have as their first component a
timestamp τj for which the distance to the current timestamp τi is too large with
respect to the right margin of I. This is done by the procedure drop old. Next,
the state is updated using the logical equivalence α S β ≡ (α ∧ (α S β)) ∨ β. This
is accomplished in two steps. First, we update each element of Lϕ so that the
tuples in the stored relations also satisfy ψ at the current time point i. This step
corresponds to the conjunction in the above equivalence and it is performed by the
map function. The update is based on the equality Rij = Ri−1

j ./s̄,C [[ψ]](D̄,τ̄ ,i). Note
that the join distributes over the intersection. The second step, which corresponds
to the disjunction in the above equivalence, consists of appending the tuple (τi, R

i
i)

to Lϕ. Note that Rii = [[ψ′]](D̄,τ̄ ,i).
Finally, we consider the case where the formula ϕ is of the form ψ TI ψ

′. The
pseudo-code for this case in the eval procedure reflects the logical equivalence
ψ TI ψ

′ ≡ (�I ψ
′) ∨ (ψ′ SI ψ ∧ ψ′). This case is mainly handled by the procedures

eval palways and eval since’, which correspond to the left-hand and respectively the
right-hand side of the union operator of the right-hand side of the equality given in
Section 3.2.2. The pseudo-code of the eval since’ procedure is similar to that of the
eval since procedure, and thus omitted. The only difference consists in replacing
the assignment Lϕ ← Lϕ ++ 〈(τ, A′)〉 by Lϕ ← Lϕ ++ 〈(τ, A ∩ A′)〉. The list Lϕ,
which is part of the state maintained for ϕ, has the same meaning as for the
case of the SI operator. Note also that the order of the parameters in the call
to eval since’ is reversed in comparison to eval since; this matches the previously
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given equivalence. The pseudo-code of the eval palways is given in Figure 5 and it
represents the evaluation of formulas of the form �I ψ

′ (“always in the past ψ′”).
This procedure uses and maintains the other part of the state for ϕ, namely the
list Hϕ. At time point i, after the procedure eval(ϕ, i, τi, Γi) has been executed, the

list Hϕ consists of the tuples (τj , [[ψ
′]](D̄,τ̄ ,j)) with j ≤ i and τi − τj ∈ I, ordered

with j ascending. The list Hϕ is updated at each iteration by eliminating old
tuples using the same procedure drop old as in the SI case, and by appending the
tuple (τi, [[ψ

′]](D̄,τ̄ ,i)). The procedure eval palways returns the intersection on the
left-hand side of the union operator of the equality for the TI operator. As in the
SI case, this intersection is computed by calling the standard fold left function on
the list Hϕ, this time using the auxiliary procedure aux palways.

The following theorem states the correctness of our algorithm. Its proof follows
the algorithm’s presentation, and it proceeds by induction using the lexicographic
ordering on tuples (i, |ϕ|), where i ∈ N and |ϕ| denotes ϕ’s size, defined as expected.

Theorem 7 Let (D̄, τ̄) be a temporal database, i ∈ N, and ψ ∈ F . The procedure

eval(ψ, i, τi, Γi) returns the relation [[ψ]](D̄,τ̄ ,i), whenever init(ψ), eval(ψ, 0, τ0, Γ0),

. . . , eval(ψ, i−1, τi−1, Γi−1) were called previously in this order, where Γj = (pDj )p∈Rf
is the family of interpretations of flexible predicates at j, for every time point j ∈ N.

Optimizations. Several optimizations are possible when evaluating formulas, in par-
ticular those formulas of the form ψ1 SI ψ2 and ψ1 TI ψ2. For instance, when
I = [0,∞), for the SI operator, it is sufficient to store the resulting relation from the

previous time point as we have [[ψ1 Sψ2]](D̄,τ̄ ,i) = [[ψ2]](D̄,τ̄ ,i)∪
(
[[ψ1 Sψ2]](D̄,τ̄ ,i−1) ./

[[ψ1]](D̄,τ̄ ,i)
)
. Further optimizations for incrementally updating the relations of the

temporal formulas are described in [8].
We also present an optimization for the frequently occurring pattern

[ωx z̄. �I ψ](y; ḡ). Instead of applying the aggregation operator to the relation for
the formula �I ψ, we directly compute the aggregation from the relations for the
formula ψ at the time points in the specified time window. The approach is an
adaptation of the one for handling stand-alone aggregation operators, where one
maintains a map between groups and accumulated values. For [ωx z̄. �I ψ](y; ḡ),
this map is not re-built from scratch at each time point; instead, it is stored and
updated at each time point. In addition to a function for updating accumulations
when tuples “enter” the relation for �I ψ, we also use a function to update accu-
mulations when tuples “leave” this relation. For instance, for CNT, one decreases
the accumulated value by 1. By using a multi-set for storing the relation for �I ψ,
we can efficiently determine when a tuple enters and when it leaves this relation.

4 Evaluation

In this section, we evaluate our extension of metric first-order temporal logic with
aggregation operators. First, we evaluate whether MFOTLΩ is a suitable language
for expressing complex policies with aggregations. Second, we evaluate the perfor-
mance of our prototype monitor, comparing it with the stream-processing tool
STREAM [2] and the relational database PostgreSQL [23]. In contrast to existing
logic-based monitoring solutions, both of these tools support the aggregation of
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�∀u.∀s. [SUMa a, τ. �[0,31) withdraw(u, a) ∧ ts(τ)](s;u)→ s � 10000 (P1)

�∀u.∀s. [SUMa a, τ. �[0,31) withdraw(u, a) ∧ ts(τ)](s;u)∧(
¬limit off (u) S limit on(u)

)
→ s � 10000

(P2)

�∀u. ∀s. ∀`. [SUMa a, τ. �[0,31) withdraw(u, a) ∧ ts(τ)](s;u)∧(
¬∃`′. limit(u, `′) S limit(u, `)

)
→ s � ` (P3)

�∀u.∀s. ∀m. [AVGa a, τ. �[0,91) withdraw(u, a) ∧ ts(τ)](s;u)∧
[MAXa a. �[0,8) withdraw(u, a)](m;u)→ m � 2 · s (P4)

�∀s. [AVGc c, u. [CNTa a, τ. �[0,31) withdraw(u, a) ∧ ts(τ)](c;u)](s)→ s � 150 (P5)

�∀u.∀c. [CNTj v, p, κ. [AVGa a, τ. �[0,31) withdraw(u, a) ∧ ts(τ)](v;u)∧
�[0,31) withdraw(u, p) ∧ ts(κ) ∧ 2 · v ≺ p](c;u)→ c � 5

(P6)

Fig. 6 Policy formalizations.

data values and their performance is comparable to other state-of-the-art tools in
their respective domains.

4.1 Specification Language

To evaluate MFOTLΩ ’s suitability for specifying policies with aggregations, we
compare specifications in MFOTLΩ with those in the prominent query languages
CQL [3] (STREAM’s query language) and SQL. For the comparison, we use the
following six policies rooted in the domain of fraud detection.

1. The sum of withdrawals of each user in the last 31 days does not exceed the
limit of $10,000.

2. Similar to the first policy, except that the withdrawals must not exceed $10,000
only when the flag for checking the limit is set.

3. Similar to the second policy, except that the withdrawal limit is set by the user.
4. The maximal withdrawal of each user in the last week must be at most twice

the average of the user’s withdrawals over the last 91 days.
5. The average number of withdrawals per user in the last 31 days must not exceed

a given threshold of 150, where the average is taken over all users.
6. For each user, the number of withdrawal peaks in the last 31 days does not

exceed a threshold of 5, where a withdrawal peak is a value at least twice the
average over the last 31 days.

The MFOTLΩ formulas that formalize the given policies are presented in Fig-
ure 6. Note that since we restrict ourselves in this article to the past-only fragment
of MFOTLΩ , the outermost temporal operator � (“always”) is not part of our def-
inition of the logic given in Section 2. However, we include it in our formalizations
to emphasize that policies must be fulfilled at all time points. We use withdraw(u, a)
to denote that the user u has withdrawn the amount a and ts(τ) to denote the
timestamp τ of a time point.

In the MFOTLΩ formalization of the first policy, the SUM operator adds all
the withdrawal amounts in the past 31 days, and we require that the result is
less than 10,000. We use ts(τ) to differentiate the different withdrawals of the
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same amount made by the user within a given time window (see Example 4). The
formalization of the second policy is a simple extension of the first, where we just
add the condition that a user’s limit is set. We use limit on(u) to denote that a
user u sets the limit flag and limit off (u) to denote that u unsets it. Using the
temporal operator S, we express the existence of a time point in the past where
the user has set the limit flag and has not unset it since then. To formalize the
third policy, we use limit(u, `) to represent that u sets his limit to `. To simulate
setting no limit, a user can set an arbitrarily high limit, and we assume that when
a new account is opened, the limit is set to some default value. The S operator is
now used to find the latest limit that has been set by the user. This limit is then
used to constrain the sum of all withdrawals.

For the fourth policy, AVG computes the average withdrawal amount over the
last 91 days and MAX finds the maximum withdrawal amount for the last week.
We require that the maximum is at most double the average. For the fifth policy,
we first use CNT to count the number of withdrawals made over last 31 days by
each user. We then use AVG to compute the average number of withdrawals per
user during this time period, which we require not to exceed 150. Finally for the
sixth policy, we use AVG to compute the average withdrawal over the last 31 days
for each user. The CNT operator then counts all withdrawals with amounts greater
than twice the calculated average. We require that the count is not greater than 5.

Before we compare MFOTLΩ with SQL and CQL, we remark that the given
MFOTLΩ formalizations follow the common pattern �∀x̄. ∀ȳ. ϕ(x̄, ȳ) ∧ c(x̄, ȳ) →
ψ(ȳ)∧c′(ȳ), where c and c′ represent restrictions, i.e., formulas of the form r(t̄) and
¬r(t̄) with r ∈ Rr. The formula to be monitored, i.e., ϕ(x̄, ȳ)∧c(x̄, ȳ)∧¬(ψ(ȳ)∧c′(ȳ))
is in the fragment F if ϕ and ψ are in F , and both c and c′ satisfy the conditions
of the (RIG) rules. See Figure 2 in Section 3.1. It can be easily checked that this
is indeed the case for the given formulas (P1) to (P6) and we can thus use our
monitoring solution for them.

Comparison with SQL. SQL does not have temporal operators, and thus all tem-
poral reasoning must be explicitly specified. This can be done by adapting the
standard embedding of temporal logic into first-order logic to represent MFOTLΩ
formulas as SQL queries. The key ideas underlying the embedding are the follow-
ing. First, we add to each predicate two additional attributes, tp and ts, which
represent the time point and the timestamp of an event’s occurrence. Second, we
use the tpts predicate from Example 4, with two attributes, tp and ts, whose inter-
pretation consists of all pairs of time points and associated timestamps. Finally,
we express temporal constraints by arithmetic expressions over the newly intro-
duced temporal data, that is, the data values for the tp and ts attributes. The tpts

predicate is needed to preserve the semantic equivalence between MFOTLΩ and
its embedding in first-order logic, as there can be time points at which no event
occurs. Expressing first-order formulas with aggregations as extended relational
algebra expressions is done in a standard way [1].

To illustrate this approach, consider the following SQL query for reporting
violations with respect to the first policy (P1).

SELECT T1.ts, SUM(T2.a) AS s, T2.u
FROM (SELECT ∗ FROM tpts) AS T1,

(SELECT tp AS tp’, ts AS ts’, u, a FROM withdraw) AS T2
WHERE T2.tp’ ≤ T1.tp AND 0 ≤ T1.ts − T2.ts’ AND T1.ts − T2.ts’ ≤ 30
GROUP BY T1.tp, T1.ts, T2.u
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HAVING SUM(T2.a) > 10000
ORDER BY T1.ts

A drawback of using SQL is that the queries are less succinct because they
must explicitly account for temporal constraints within policies. Therefore, with-
out an automated translation from MFOTLΩ to SQL, queries for complex policies
are difficult to specify and maintain. Moreover, and regardless of whether an au-
tomated translation is used, queries are hard to simplify and optimize. This is not
just due to the query’s complexity, the structure is also lost: since there is no dis-
tinction between temporal data and other data, an SQL engine cannot exploit the
policy’s temporal dimension to optimize the query’s execution. Our performance
evaluation in Section 4.2 illustrates this point.

Comparison with CQL. STREAM’s query language CQL for data streams extends
SQL with the sliding window construct. This construct takes as input a stream of
timestamped events and a range. For each event in the stream, it outputs a relation
that contains the current event and all the preceding events that fall within the
given range. CQL’s time model differs from MFOTLΩ ’s and thus the meaning of
range in CQL and MFOTLΩ do not match. In CQL, there is no notion of time
points and the sliding window evaluation is applied after each received event.

To illustrate the sliding window construct, consider the following CQL query,
which returns all the violations of the first policy (P1).

sum rel := SELECT SUM(a) AS s, u FROM withdraw [RANGE 31] GROUP BY u
SELECT ∗ FROM sum rel WHERE s > 10000

Here, the sliding window construct, syntactically denoted with the [. . . ] expression,
is applied over the withdraw stream. That is, for each event e with timestamp τ ,
a relation is created that contains e and all the events that happened between τ

and τ − 31 days. Finally, both SELECT queries are evaluated using the standard
SQL semantics.

The CQL’s sliding windows construct roughly corresponds to the �I operator
in MFOTLΩ , where I is of the form [0, t) with t ∈ N ∪ {∞}. All other MFOTLΩ
operators must be implicitly encoded. To illustrate, consider the following CQL
query to find violations of the second policy (P2).

cnt on := SELECT COUNT(∗) AS c on, u FROM limit on [RANGE Unbounded] GROUP BY u
cnt off := SELECT COUNT(∗) AS c off, u FROM limit off [RANGE Unbounded] GROUP BY u
limit is on := SELECT cnt on.u FROM cnt on, cnt off

WHERE cnt on.u = cnt off.u AND c off = c on
SELECT sum rel.s, sum rel.u
FROM sum rel, limit is on
WHERE sum rel.u = limit is on.u AND s > 10000

To mimic the semantics of the S operator, we first count the number of limit on

and limit off events for each user and produce the corresponding cnt on and cnt off

relations. The [RANGE Unbounded] sliding window ranges over the entire stream
up to the currently processed position. Second, we create the limit is on stream,
which contains the users u that have the limit turned on at the current timestamp.
The limit is turned on for user u if there are as many limit on events as limit off

events. We assume here that, for each user, the limit is initially turned off and that
the limit on and limit off events alternate. Finally, for each (s, u) tuple in sum rel,
we check whether u has turned his limit on at the current timestamp and, if so,
whether s is greater than 10,000.
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The previous workaround for policy (P2) does not apply to policy (P3). Here we
must find the latest limit set for each user, and this is not possible without directly
accessing the timestamps of events. Thus, to express the policy (P3) in CQL, we
assume that events in the limit stream are tuples of the form (τ, u, `) timestamped
by τ , in contrast to withdraw events which are tuples of the form (u, a). We encode
the MFOTLΩ subformula ¬∃`′. limit(u, `′)S limit(u, `) with an SQL query that uses
the timestamp field explicitly, in a manner similar to the approach used to express
temporal operators in SQL. This encoding can be generalized and used for any
MFOTLΩ temporal operator. However, it has similar drawbacks to using SQL, as
seen by STREAM’s performance on (P3).

Temporal reasoning using only the sliding window in STREAM is limited in
general. For example, we cannot check that certain event patterns happen at every
time point in a given time window, whereas in MFOTLΩ we can simply use the
�I operator. Moreover, we cannot select tuples from a time window that is strictly
in the past. It is therefore in general not clear how to specify in CQL temporal
constraints of the form ϕ SI ψ, with 0 /∈ I.

To illustrate the first limitation, consider the following policy. If during the
past week a user’s acount balance is continually negative, that is, the amount
withdrawn exceeds the amount deposited at each time point during the week,
then the user must not withdraw more money from his account. In MFOTLΩ , this
policy is formalized by the following formula, where deposit(u, a) has the expected
meaning.

�∀u.
(
�[0,8) ∃w.∃d. [SUMa a, τ. � withdraw(u, a) ∧ ts(τ)](w;u)∧

[SUMa a, τ. � deposit(u, a) ∧ ts(τ)](d;u) ∧ w � d
)
→

¬∃a.withdraw(u, a)

The following policy illustrates the second limitation. If a user makes a with-
drawal larger than $1,000, then he must not have been in-debt during the last
seven days. In MFOTLΩ , this policy is formalized by the formula

�∀u.
(
∃a.withdraw(u, a) ∧ a � 1000

)
→
(
¬indebt(u) S[8,∞) outdebt(u)

)
,

where we assume that the time points when the user u goes into debt and out
of debt are marked by indebt(u) and outdebt(u), respectively. The subformula
¬indebt(u) S[8,∞) outdebt(u) holds when the last outdebt event for the user u hap-
pened more than 7 days ago and no indebt event for u has happened since then.
Here we assume that each user is initially not in debt, and this is marked with a
corresponding outdebt event.

In summary, the sliding window operator is restrictive, even in CQL’s simple
underlying time model, namely, a stream of timestamped events. Since the sliding
window operator is CQL’s only construct for performing temporal reasoning di-
rectly, one must often combine it in ad-hoc ways with other language constructs
to express temporal constraints. In contrast, MFOTLΩ has richer support for ex-
pressing temporal constraints over a more sophisticated time model (e.g., time
points are timestamped and multiple events can happen at the same time point).
In particular, the temporal operator SI in combination with the other Boolean
connectives often allows one to express temporal properties naturally.
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Table 1 Running times (STREAM / MonPoly extension / PostgreSQL) in seconds. Timeouts
after 3,600 seconds are marked with the symbol † and out of memory or runtime errors with ‡.
XXXXXXXpolicy

time span
400 800 1200 1600 2000

(P1) 8 / 9 / 76 9 / 19 / 279 11 / 29 / 610 12 / 39 / 1065 14 / 48 / 1650
(P2) 21 / 10 / 247 23 / 20 / 1646 24 / 30 / † 26 / 40 / † 28 / 50 / †
(P3) ‡ / 21 / 193 ‡ / 40 / 1125 ‡ / 61 / † ‡ / 81 / † ‡ / 101 / †
(P4) ‡ / 22 / 168 ‡ / 44 / 604 ‡ / 66 / 1230 ‡ / 88 / 2251 ‡ / 110 / 3458
(P5) 12 / 9 / 75 15 / 19 / 280 15 / 29 / 612 17 / 38 / 1068 19 / 48 / 1650
(P6) 24 / 76 / 83 33 / 157 / 337 41 / 234 / 745 49 / 313 / 1351 59 / 395 / 2099

4.2 Tool Performance

For our performance evaluation, we use the policies from Section 4.1 and syn-
thetically generated logs with different time spans (in days).1 The logs contain
withdraw events from 500 users, except for (P6), for which we consider only 100
users. Each user makes on average five withdrawals per day. The SQL queries for
PostgreSQL and the CQL queries for STREAM are manually obtained from the
corresponding MFOTLΩ formulas (P1) to (P6). The MFOTLΩ formulas and SQL
queries have the same semantics, while the semantic differences between MFOTLΩ
and CQL are not substantial for the policies and logs considered. In particular,
the tools (PostgreSQL version 9.1.4, STREAM version 0.6.0, and our prototype,
which extends our monitoring tool MonPoly [5]) output the same violations. Fi-
nally, note that the formulas differ in the number of temporal and aggregation
operators, as well as their respective nesting.

Table 1 shows the running times of the three tools on a standard desktop com-
puter with 8 GB of RAM and an Intel Core i5 CPU with 2.67 GHz. PostgreSQL’s
running times only account for the query evaluation, performed once per log file,
and not for populating the database. For MAX aggregations, STREAM aborts with
a runtime error. We mark this in the table with the symbol ‡. Overall, our tool’s
performance is between STREAM’s and PostgreSQL’s for our examples. We also
note that STREAM and our tool scale linearly in our experiments with respect to
the logs’ time spans. This is not the case for PostgreSQL.

Regarding memory usage, our tool uses less than 50 MB for each policy, and
memory consumption does not depend on the logs’ time span. STREAM’s memory
usage is set in advance as a configuration parameter. In these experiments, we set
this parameter to 1.5 GB for policy (P3) and to 64 MB for the other policies.
STREAM runs out of memory for (P3). Setting the parameter higher, e.g. to
2 GB, leads to a memory-related runtime error for (P3), which is also marked with
the symbol ‡ in the table. PostgreSQL’s memory consumption increases with the
time span. It varies from around 400 MB for (P1) and (P5), to 2.5 GB for (P2) and
(P6), and to around 4 GB for (P3), for the last value of the time span for which a
timeout does not occur.

In the following, we comment on the running times. We first focus on our
tool. We observe that the formulas (P1), (P2), and (P5) are roughly equally hard
to monitor. This is because their running times are dominated by the evaluation
of the subformula of the form [ωa a, τ. �[0,31) withdraw(u, a) ∧ ts(τ)](v;u), which is

1 Our prototype, the formulas, and the input data are available as an archive at http:
//sourceforge.net/projects/monpoly/files/fmsd-experiments.tgz.
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common to all three formulas. In more detail, the number of tuples satisfying the
temporal subformula at a time point is on average 31mn, where m is the average
number of withdrawals per day of a user and n is the number of users. This size is
significantly larger than the size of the relations corresponding to the additional
subformulas in (P2) and (P5). For (P2), at each time point, on average the relations
for limit on(u) and limit off (u) contain (n/10)/2 tuples each and the relation for
¬limit off (u) S limit on(u) contains n/2 tuples, because the limit flag is toggled
for each user on average every 10 days. For (P5), the outer aggregation operator
AVG is applied to a relation of average size n. Note that in general the nesting of
aggregation operators does not have a substantial impact on the running times,
since aggregating over a relation does not increase its size.

For formulas (P3), (P4), and (P6), the main impact on the running times is
due to the computation of the natural join [[ϕ]] ./ [[ψ]], where ϕ and ψ denote
the two main conjuncts in the formalization of the formulas (P2), (P3), (P4),
and (P6). The formula (P3) is slower to monitor than (P2) because the natural
join can be optimized when fv(ψ) ⊆ fv(ϕ), which is the case for (P2) but not for
(P3). This remark also applies to (P4) and (P6). The relations for the additional
subformulas in (P3) are also larger than in (P2): on average, the relation for
limit(u, `) contains n/10 tuples and the relation for ¬∃`′. limit(u, `′) S limit(u, `)
contains n tuples because the limits are changed on average every 10 days for
each user. The formula (P4) takes longer to monitor than (P3) because it uses a
significantly larger time window. Finally, (P6) takes significantly longer to monitor
than (P4) because the input and output relations of the main join operator are
also larger. For (P3) and (P4), the two input relations and the output relation
each have size n. For (P6), the sizes of the input relations are on average n and
31mn while the output relation is on average of size 31mn.

PostgreSQL performs worst in these experiments. This is not surprising as
PostgreSQL was not designed for this application domain. In particular, Post-
greSQL has no support for temporal reasoning and we treat time as just another
data value, as explained in Section 4.1. Treating time as data has the following
disadvantages. First, it is not suited for the online event processing: query evalu-
ation does not scale because the database grows over time and the query must be
reevaluated on the entire database each time new events are added. Second, even
for offline processing (as done in our experiments), the query evaluation procedure
does not take advantage of the temporal ordering of events. This deficiency is most
evident when evaluating the SQL queries for the formulas (P2) and (P3). We note
that while PostgreSQL is faster on (P3) than on (P2), it consumes significantly
more memory for (P3) than for (P2).

In contrast to PostgreSQL, STREAM is designed for online event processing
and its running times, except for policy (P3), are consistently better than those
of our tool. For the policy (P3), we have bypassed STREAM’s default temporal
reasoning by treating time as data, and we observe a very high memory consump-
tion, as is the case with PostgreSQL. We also remark that the extension needed to
go from formalizing (P1) to formalizing (P2) has a larger impact on STREAM’s
performance than on our tool. This is because extending the CQL query for (P1)
requires a workaround, which does not use the sliding window construct.

Even though STREAM generally outperforms our tool, the performance dif-
ferences are not as significant as one might expect. One reason why our tool is
slower is because it must account for MFOTLΩ ’s underlying time model, which
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is more complex than CQL’s. MFOTLΩ has also a richer tool set than CQL to
express temporal patterns.

5 Conclusion

Existing logic-based policy monitoring approaches offer little support for aggrega-
tions. To rectify this shortcoming, we extended metric first-order temporal logic
with expressive SQL-like aggregation operators and presented a monitoring algo-
rithm for this language. Our experimental results for a prototype implementation
of the algorithm are promising. The prototype’s performance is in the reach of
optimized stream-processing tools, despite its richer input language and its lack
of systematic optimization. As future work, we will investigate performance op-
timizations for our monitor. In general, it remains to be seen how logic-based
monitoring approaches can benefit from the techniques used in stream processing.
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6. D. Basin, M. Harvan, F. Klaedtke, and E. Zălinescu. Monitoring data usage in distributed
systems. IEEE Trans. Software Eng., 39(10):1403–1426, 2013.

7. D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu. Monitoring of temporal first-
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13. J. Chomicki, D. Toman, and M. H. Böhlen. Querying ATSQL databases with temporal
logic. ACM Trans. Database Syst., 26(2):145–178, 2001.

14. C. Colombo, A. Gauci, and G. J. Pace. LarvaStat: Monitoring of statistical properties. In
Proceedings of the 1st International Conference on Runtime Verification (RV’10), volume
6418 of Lect. Notes Comput. Sci., pages 480–484, 2010.

15. C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: A stream database
for network applications. In Proceedings of the 2003 ACM SIGMOD International Con-
ference on Management of Data, pages 647–651, 2003.

16. B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B. Finkbeiner, H. B. Sipma,
S. Mehrotra, and Z. Manna. LOLA: Runtime monitoring of synchronous systems. In Pro-
ceedings of the 12th International Symposium on Temporal Representation and Reasoning
(TIME’05), pages 166–174, 2005.

17. B. Finkbeiner, S. Sankaranarayanan, and H. Sipma. Collecting statistics over runtime
executions. Form. Method. Syst. Des., 27(3):253–274, 2005.

18. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database systems: The complete book.
Pearson Education, 2009.
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