
Monitoring the Internet Computer

David Basin1 , Daniel Stefan Dietiker2 , Srđan Krstić1(B) ,
Yvonne-Anne Pignolet2 , Martin Raszyk2 , Joshua Schneider1(B) ,

and Arshavir Ter-Gabrielyan2

1 Department of Computer Science, ETH Zürich, Zurich, Switzerland
{basin,srdan.krstic,joshua.schneider}@inf.ethz.ch

2 DFINITY, Zurich, Switzerland
{danielstefan.dietiker,yvonneanne,martin.raszyk,

arshavir.ter.gabrielyan}@dfinity.org

Abstract. The Internet Computer (IC) is a distributed platform for
Web3 applications, spanning over 1,200 nodes worldwide. We present
results on applying runtime monitoring to the IC. We use the MonPoly
monitor and its expressive policy language with quantifiers over infinite
domains, aggregations, and past and future operators. We formalize com-
plex policies that cover common kinds of production incidents and IC-
specific protocol properties, including malicious behaviors and infrastruc-
ture outages. Using these policies, we evaluate MonPoly’s performance
in a large-scale case study that includes logs from both production and
testing environments. We find, for example, that MonPoly performs well
on testing logs, and that half of our policies applicable to production logs
can be monitored in an online setting. Overall, our policies and IC traces
constitute a new benchmark for first-order temporal logic monitors.

Keywords: Runtime monitoring · Temporal logic · Internet Computer

1 Introduction

In runtime monitoring, a monitor observes a system’s execution, typically
encoded as a sequence of events, checks whether the execution complies with
a policy formalizing the system’s correct behavior, and outputs detected vio-
lations. Online monitors incrementally process an unbounded stream of events
produced by a running system, whereas offline monitors process a finite log.
Good online monitors output timely violations, while good offline monitors pro-
cess the log quickly, i.e., the former have low latency, whereas the latter have
high throughput.

A real-world system’s execution contains complex events, which include arbi-
trary data values. Such systems also require complex checks, for example based
on aggregated values, dependencies between values, and possibly values coming
from events spread over time. It is therefore important that monitors support

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 383–402, 2023.
https://doi.org/10.1007/978-3-031-27481-7_22

https://doi.org/10.5281/zenodo.7340850
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_22&domain=pdf
http://orcid.org/0000-0003-2952-939X
http://orcid.org/0000-0003-2125-2146
http://orcid.org/0000-0001-8314-2589
http://orcid.org/0000-0003-0837-7948
http://orcid.org/0000-0003-3018-2557
http://orcid.org/0000-0001-8253-4513
http://orcid.org/0000-0003-0292-7750
https://doi.org/10.1007/978-3-031-27481-7_22

384 D. Basin et al.

expressive policy languages and complex events. Furthermore, distributed sys-
tems pose additional monitoring challenges as policies may refer to (only partially
ordered) events coming from different distributed components.

While many monitors support expressive policy languages [12,29,30] and
there exist approaches for monitoring distributed systems [9,13,36,39] (Sect. 6),
there is a substantial gap to bridge when applying them in the real world. With a
notable exception [18], current literature has no answers to questions concerning
policy engineering, measuring effectiveness, maintainability, as well as process
organization, roles, and responsibilities in the context of runtime monitoring.

In this paper, we report on our experience in monitoring the Internet Com-
puter (Sect. 2), a complex distributed system that facilitates the governance and
execution of Web3 applications, i.e., applications processing data and financial
assets with decentralized ownership and control of the applications’ data, assets,
and code. The Internet Computer is itself governed by a Web3 application, for
example letting stakeholders vote on the Internet Computer’s configuration and
the addition and replacement of the machines that provide computing power
to the system. The Internet Computer also possesses numerous other features
that are challenging to monitor, both individually and when combined. These
features include a long-lived execution with high event rates, a software archi-
tecture with multiple layers, dynamic configuration, and continuous evolution.
Our case study is the outcome of a collaboration between Internet Computer
developers at Dfinity and researchers in monitoring at ETH Zürich.

Assurance of the Internet Computer’s correct behavior is critical for its stake-
holders as it is a complex system managing financial assets. We show how
runtime monitoring complements system testing and metric-based observabil-
ity, two existing assurance techniques. In particular, our case study shows that
MonPoly [11,12], a state-of-the-art monitor supporting an expressive policy lan-
guage, is well-suited for monitoring logs obtained from system tests. Moreover,
MonPoly can process the event stream from the production system in real time
for some policies, but for other, more complex policies, it incurs a monitoring
backlog. We identify several opportunities for future optimizations and report
on lessons learned.

Overall, we make the following contributions: (1) We formalize a set of policies
that express common symptoms of production incidents in the Internet Com-
puter as well as domain-specific properties of its protocol, including malicious
behaviors and infrastructure outages that the protocol must tolerate (Sect. 3).
(2) We use these policies for a quantitative evaluation of MonPoly’s performance
(Sect. 4) and its applicability in both testing and production scenarios. (3) We
obtain qualitative insights about the integration of runtime monitoring into a
complex production system. In particular, we report on insights on policy engi-
neering and monitoring maintainability (Sect. 5). (4) We publish the artifact [7]
containing the logs, policies, and code used in this case study. It can be used to
benchmark monitors for policy languages that support first-order temporal logic
with aggregations.

We believe that our results are valuable to others applying runtime monitor-
ing in practice (Sect. 7). Our policies formalizing infrastructure outages, although

Monitoring the Internet Computer 385

specific to Internet Computer in their current form, generalize well to other sys-
tems. Moreover, our policies that formalize properties of the Internet Computer’s
protocol may be adapted to other distributed systems with replicated execution
proceeding in rounds.

2 Background

Runtime Monitoring. A runtime monitor [4,25] verifies whether a running sys-
tem satisfies a policy by observing the system’s execution. We now briefly
describe the MonPoly monitor [12], its policy language called metric first-order
temporal logic (MFOTL) [10], and data-parallel monitoring [38].

We fix a set of event names E, an infinite domain D of values, and an infinite
set V of variables such that E, D, and V are pairwise disjoint. Let T be a set of
terms over variables in V. In the case of MonPoly, the domain D contains integers,
floats, and strings, and the constant and function symbols available in terms
provide basic arithmetic operations over integers and floats. For example, x + 4
is a well-formed term. Let Ω be a set of aggregation functions that map multisets
over D to D∪{⊥}. For example, SUM ∈ Ω computes SUM({|1, 1, 3, 4, 4, 5|}) = 18,
but SUM(N) = ⊥ as the result is infinite. Each name r ∈ E has an arity ι(r) ∈ N.
An event r(d1, . . . , dι(r)) is an element of E × D

∗ and di ∈ D are its parameters.
Let I be the set of nonempty intervals [a, b) := {x ∈ N | a ≤ x < b}, where a ∈ N

and b ∈ N ∪ {∞}. MFOTL formulas ϕ are defined inductively, where r, x, x̄, t,
t̄, ω, and I range over E, V, V∗, T, T∗, Ω, and I, respectively:

ϕ ::= r(t̄) | t = t | ¬ϕ | ϕ ∨ ϕ | ∃x̄. ϕ | I ϕ | I ϕ | ϕ SI ϕ | ϕ UI ϕ
| x ← ω t; x̄ ϕ | let r(x̄) := ϕ in ϕ

The set fv(ϕ) contains ϕ’s free variables. Formulas of the form r(t̄) are called
predicates and require |t̄| = ι(r). The temporal operators I (previous), I

(next), SI (since), and UI (until) may be nested arbitrarily. The aggregation
operator r ← ω t; ḡ ϕ requires ḡ ∪ fv(t) ⊆ fv(ϕ) and r /∈ fv(ϕ). The let operator
let r(x̄) := ϕ in ψ requires x̄ = fv(ϕ) and it (re)defines ι(r) = |x̄| in ψ. We distin-
guish the let predicates (defined by a let operator) from the input predicates. We
derive other operators: truth � := ∃x. x = x, inequality t1 �= t2 := ¬(t1 = t2),
conjunction ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ), and once �I ϕ := � SI ϕ.

A valuation v is a mapping V → D, assigning domain elements to variables.
We write v[x̄ �→ d̄] for the function equal to v, except that the variables x̄ are
mapped to values d̄, where |x̄| = |d̄|. Overloading notation, v is extended to
the domain T, evaluating the term t based on the valuations of fv(t). A trace is
an infinite sequence (τi,Di)i∈N of timestamp (τi ∈ N), database (Di ∈ 2E×D

∗
)

pairs. Timestamps in a trace are monotone (∀i. τi ≤ τi+1) and progressing
(∀τ. ∃i. τ < τi). Databases are finite. Given a trace ρ = (τi,Di)i∈N, we write
ρ[r(x̄) �→ R] for the trace ρ′ = (τ ′

i ,D
′
i)i∈N with τ ′

i = τi and D′
i = Di − {r(d̄) |

d̄ ∈ D
ι(r)} ∪ {r(map(v, x̄)) | v ∈ R(i)} for all i ∈ N, where R is a function from

natural numbers to sets of valuations. The function map(f, [d1, . . . , dn]) returns

386 D. Basin et al.

Fig. 1. Semantics of MFOTL

[f(d1), . . . , f(dn)]. The relation v, i |=ρ ϕ (Fig. 1) defines the satisfaction of the
formula ϕ for a valuation v at an index i with respect to the trace ρ.

A runtime monitor like MonPoly monitors an MFOTL policy formula ϕ by
incrementally observing a finite prefix of some execution trace and computing a
set of valuations and indices that satisfy ϕ given the observed prefix. The formula
ϕ typically formalizes the negation of a policy, i.e., a desired system property,
such that each valuation–index pair indicates a violation of the policy.

We distinguish between events and log entries, which are text strings reported
by a running system. For monitoring, a log entry like “[WARN] TLS handshake
failed” is mapped to zero or more events like TLSError() and Log(. . . , WARN, . . .).
A recent survey [25] overviews existing monitoring tools and their languages.

Target System. The Internet Computer (IC) [40] is a public, blockchain-based
distributed platform for general-purpose Web3 applications (apps), also known
as smart contracts. The IC’s distributed nature and its replication are transpar-
ent to the app developers and users. Users submit their requests and the apps
process them, possibly communicating with other apps, and reply back to the
users.

The machines (nodes) running the IC’s protocol are partitioned into sub-
nets [40] (currently 13–40 nodes), each replicating and executing a set of apps.
Thus, unlike most other blockchain-based platforms, the IC does not employ a
global consensus protocol; instead, nodes participate in consensus only among
their subnet peers. Each subnet maintains its own (small) blockchain instance,
characterized by blocks each occurring at a height (the block’s position in the
chain). Besides the metadata (e.g., timestamps), blocks contain app requests
from users and from apps on other subnets. Each subnet produces blocks at rates
as high as ca. 0.5–1.0 blocks/s. To ensure that consensus is not just fast, but also
trustworthy, each subnet’s nodes are hosted on servers distributed among many
stakeholders, e.g., data center providers from multiple countries and jurisdic-
tions. A special app called registry maintains the IC configuration (e.g., active
nodes and their assignment to subnets) and logs configuration changes.

The IC currently consists of more than 1,200 nodes, hosting ca. 150,000
apps [3]. The IC generates ca. 1,500 log entries per second, i.e., over 400 GB

Monitoring the Internet Computer 387

Fig. 2. Overview of the IC

of logs per day across all nodes. Each node has four layers (Fig. 2): (i) the peer-
to-peer layer reliably disseminates information among nodes; (ii) the consensus
layer validates and orders the requests to the apps; (iii) the message routing
layer delivers those requests to the apps; and (iv) the execution layer runs the
apps.

System Testing and Metrics. The development process of distributed systems
such as the IC involves various kinds of testing. Here we focus on system testing,
i.e., end-to-end testing of the complete system in isolation from the production
environment. In system testing, a new software version, constituting the system
under test (SUT), is deployed over a dedicated testing infrastructure. Requests
are then sent to the SUT via its public interface. Optionally, the SUT is manip-
ulated in a controlled way, modeling effects like network failures or configuration
changes. Finally, the test checks if the SUT responded to all the requests cor-
rectly.

Unlike runtime monitoring, system tests do not check if the sequence of states
that arise during the system execution is correct. Instead, they only check the
system’s final output. Moreover, scenarios covered by system testing are fixed a
priori. These aspects limit the issues that can be potentially detected by system
testing.

Even if the system is well-tested, detecting, e.g., unforeseen real-world attacks
requires observability, i.e., the degree to which the internal state can be deter-
mined based on system’s output [28]. Observability is crucial also for other
requirements that are not covered by system testing: auditing, accounting,
performance assessments, and design feedback [37]. For example, observability
enables engineers to recognize failures and users to confirm whether the system
does what is promised.

In practice, distributed systems typically output additional data, called met-
rics, into an external centralized metrics database [37]. IC’s metrics enable
humans to observe and visualize, e.g., the height of the blockchain or the number
of requests submitted to a subnet. Programmatic rules running atop of the met-
rics database, called alerts, can send notifications, e.g., to the developers of the
IC, whenever the block production rate drops below a threshold value. Metrics
are a lossy representation of the system state as they are locally preprocessed
before being sent. As they do not record the context that has lead to an alert,
developers need other data sources, like logs, to find an alert’s root cause. Fur-
thermore, metrics are typically collected periodically (as defined by the metrics

388 D. Basin et al.

database), which is not suitable for checking the precise temporal evolution of
the system’s state.

3 Policies

In this section, we first describe how we devised new IC policies (Sect. 3.1) and
then present a selection of those policies that we formalized (Sect. 3.2).

3.1 Methodology

Operational concerns were the main driver for the policies we formulated. In
particular, we wanted to ensure that logs are produced consistently, abnormal
node behavior can be detected, and crucial properties of the IC protocol (like
agreement on requests, progress, and recovery from failure [40]) hold. We did
not aim to exhaustively cover all properties of the IC. We focused instead on
aspects that cannot be sufficiently covered by existing system tests and metric-
based alerts. For example, system tests cannot detect malicious behavior in the
production system, and metrics are ill-suited to observe a subnet’s behavior
holistically.

We started with high-level, natural-language specifications based on the exist-
ing logging instrumentation provided by the IC software engineers. In most cases,
however, the logged information was insufficient for monitoring. To bridge this
gap, we proceeded iteratively; each iteration started with a formalization attempt
for a high-level specification. Since this required precise knowledge about which
events are observable from which logs, we consulted with the engineers who
provided insights on the implementation of particular system components and
extended the log messages when necessary. In some cases, the developers con-
cluded that logging the requested events was infeasible, so the affected policies
had to be abandoned (see also Sect. 5).

Next, we performed preliminary monitoring of the policies on sample logs and
analyzed the output. We then triaged each violation, classifying it as (1) a true
bug in the system, (2) an imprecise policy due to insufficient understanding
of the system, or (3) a formalization error, e.g., due to typos or an incorrect
understanding of MFOTL semantics. In some cases, we could not easily triage
the violation. We then contacted the IC software engineers who either provided
insights for improving the policy or, in case of true bugs, submitted bug reports
to IC’s internal issue tracker. To date, more kinds of true bugs have been discov-
ered while developing the preliminary policies than while monitoring their final
version.

3.2 Policy Formulas

Our policies cover three broad categories, which differ in their scope and gen-
erality, and which demonstrate a variety of runtime monitoring use cases. We
present policy formulas for just a few selected policies. These policies showcase

Monitoring the Internet Computer 389

Table 1. Summary of MFOTL-based IC policies

Policy Past Fut Agg Loc Reg Test Prod Ops1 Ops2

clean-logs � – – � � � � 13 11

logging-behavior � � � – � � � 54 1,098

finalized-height � – – – � � – 56 89

finalization-consistency � – – – � � – 16 22

replica-divergence � – – � � � – 16 13

block-validation-latency � � � – � � – 50 229

unauthorized-connections � – – � � � � 22 39

reboot-count � – � – � � � 25 21

the most challenging aspects of formalizing distributed system properties and
justify the required features of MFOTL. The accompanying artifact [7] provides
all formulas.

Table 1 summarizes the IC policies and the characteristics of the MFOTL pol-
icy formulas that formalize them. All formulas contain at least one past-temporal
operator (column Past). There are two formulas with a future operator (Fut),
and three formulas that use aggregations (Agg). Three policies can be monitored
locally (Loc) on each node using only the node’s log entries. All policies depend
on the initial IC configuration obtained using the IC registry app (Reg) and
they can be checked against the testing logs (Test). Finally, four of the policies
can also be checked against the IC’s production log (Prod), whereas the other
policies require debug-level log entries, which are not available in production
in order to decrease the load on the logging infrastructure. We estimated the
complexity of the formulas by counting the numbers of their unary and binary
operators before unfolding the let definitions (Ops1) and after (Ops2).

Common Fragments. Some aspects are shared by all policies, e.g., the poli-
cies restrict the behavior of active nodes only. A subset of policies additionally
requires knowledge about which node belongs to which subnet at any point in
time. As explained earlier, the IC’s configuration can be changed by a voting-
driven governance mechanism and hence we must observe configuration changes
to correctly monitor these policies. We devised the following pattern to express
both the set of currently active nodes n (predicate InIC(n)) and the property
that a node n belongs to a subnet s (predicate InSubnet(n, s)):

InX(p̄) :=
(
(� InX0(p̄)) ∧ ¬�RegistryRemoveX(p̄)

) ∨(¬RegistryRemoveX(p̄) S RegistryAddX(p̄)
)

With X = IC and p̄ = [n], we define the predicate InIC(n) and, with
X = Subnet and p̄ = [n, s], we define the predicate InSubnet(n, s). The InIC(n)
and InIC0(n) predicates determine whether the node n belongs to the IC at the

390 D. Basin et al.

Fig. 3. Examples of policy formulas

current moment and when monitoring originally started, respectively. The pred-
icates InSubnet(n, s) and InSubnet0(n, s) are analogous. The input predicates
prefixed with Registry directly correspond to log entries from the IC registry
app; these events indicate the removal and addition of IC nodes (to a subnet or
the IC). To maintain the predicates, we rely on the IC registry as opposed to
relying on (potentially incorrect) node-local information. For each node n, the
InIC0(n) and InSubnet0(n, s) events are prepended to the log by querying the
registry before monitoring starts.

We use MFOTL’s let to define the InIC and InSubnet predicates. As their
definitions are syntactically encapsulated, it is easy to keep them in sync across
all policies in case input predicates change.

Generic Policies. Our goal here is to detect general signs of system malfunc-
tion.

clean-logs. The log entries produced by IC nodes have different priority levels.
Our clean-logs policy asserts that only warning- and info-level log entries are
allowed, whereas critical- or error -level entries are not. In the IC, these levels
indicate logical errors, violation of assumptions, or similarly severe problems.
The corresponding formula (Fig. 3, top) uses the Log(h, n, s, c, l,m) predicate,
which is satisfied by every log message m emitted by component c running on
node n in subnet s with host name h, where l is the log level. As previously
noted, we ignore decommissioned nodes. We also formulate all policy formulas
to be satisfied whenever the corresponding policy is violated.

logging-behavior. Although clean-logs can detect many problems, it only
produces violations once a fault has already become a failure. In contrast, the

Monitoring the Internet Computer 391

logging-behavior policy aims to detect faults before the failure occurs. We
use the fact that operations are replicated on multiple nodes of a subnet: If the
frequency of the log entries matching the replicated operations deviates on a
relatively small group of nodes within a subnet, this indicates that the nodes are
in an abnormal state that may lead to failure. For each subnet, the policy com-
pares its nodes’ logging frequencies computed over a sliding window [2] against
the median logging frequency over all nodes in the subnet.

This policy formula uses multiple aggregations (count, sum, median, mini-
mum, and maximum) and both past and future temporal operators. We also use
regular expression matching, a recent addition to MonPoly, to select log entries
that belong to a replicated operation. As the typical behavior may change over
time depending on the workload, we incorporate smoothing to avoid false pos-
itives. Specifically, we estimate the typical behavior from multiple overlapping
time intervals. Since log frequencies vary significantly between IC node layers
(Sect. 2), we monitor this policy separately for each layer.

IC Protocol Policies. We summarize some properties of the IC consensus
protocol [14] used in this group of policies. Given a subnet of n nodes, among
which f are faulty (i.e., behaving in a Byzantine way [34]) and the remaining
n−f nodes adhere to the protocol, the condition n ≥ 3f+1 must hold (otherwise,
consensus is not possible [26]). Intuitively, this means that to achieve consensus,
more than 2⁄3 of the subnet nodes must not be faulty, where the lowest tolerated
number of non-faulty nodes is 2f+1. The IC consensus protocol uses the concept
of rounds; out of all the block proposals created by the nodes for round r, exactly
one block is finalized, i.e., irreversibly added to the blockchain at height r.

Violations of the following IC protocol policies indicate software bugs or the
presence of more than f faulty nodes in a subnet.

finalized-height. To ensure that a subnet’s consensus makes progress, this
policy checks that the block at height h+1 in a subnet is finalized by some node
no later than 80 s after the earliest finalization of the block at height h. The
time between finalizations depends on node failures and network conditions. In
practice, the mean time elapsed between two finalized blocks is around 1 s. 80 s
is thus a rather conservative upper bound that allows us to turn a probabilistic
property into a safety property that we can monitor automatically.

The nodes changing their subnet membership require care, as the upper
bound on the time between finalizations may be exceeded, specifically, when
a new node is catching up, e.g., due to a temporary network outage. We there-
fore ignore violations that occur during subnet membership changes. To detect
changing subnets, we over-approximate by comparing the registry’s view of the
subnet membership to the nodes’ own view (as captured by the p2pAddNode and
p2pRemoveNode events from the peer-to-peer communication layer).

The formula illustrates how let operators reduce formula duplication and
improve its structure (Fig. 3, bottom). Specifically, we define the InSubnet predi-
cate as explained above. The predicate Growing on subnets is satisfied if a node in

392 D. Basin et al.

the subnet is not yet aware of another node in the same subnet, while the pred-
icate Shrinking detects when a node still considers another node as part of the
same subnet whereas the registry does not. In both cases, we over-approximate
because the nodes’ local view is not known before one of the two p2p events
has been observed. A subnet is considered to be Changing if it is Growing or
Shrinking.

The condition on the time between finalizations is expressed using a metric
temporal operator in the policy’s formula (Fig. 3, bottom), where the let predi-
cate First(n, s, h, b, v) represents the first finalization (event Finalized) of block b
at height h by some node (specifically node n) in subnet s, running IC software
version v. The S operator asserts that there is such a finalization by node n1 more
than 80 s ago (the interval (80 s,∞) is open), and its subnet must not have been
changing in the meantime. To detect a violation, the policy must additionally
observe a finalization at the next height by node n2.

finalization-consistency. This policy represents the core correctness prop-
erty of the IC consensus protocol: when a node finalizes a block at a given height,
no other node in the same subnet finalizes a different block at the same height.

replica-divergence. This policy expresses a liveness property. Whenever the
replicated state maintained by the nodes is not the same on all nodes in a subnet,
the nodes must eventually detect and overcome this divergence. State divergence
might occur even in absence of malicious behavior, e.g., due to software bugs or
hardware problems. A subnet can overcome a divergence when at least 2f + 1
of its nodes have the same replicated state. The protocol achieves this as nodes
periodically emit shares based on their local replicated state; 2f +1 such shares
are needed for catch-up packages—messages enabling the nodes to restore the
correct state and contribute to the consensus protocol again. In particular, a
catch-up package contains the hash of the correct replicated state, which allows
nodes to detect that they have diverged and obtain the correct state. However,
only shares from 2f + 1 nodes with the same state can be used for a catch-up
package. Hence, if a node’s share contributes to a catch-up package after the node
has diverged, this indicates that the node has since corrected its local state.

Note that system tests always produce finite logs; this enables us
to phrase the policy as a safety property: End() ∧ InSubnet(a, , s) ∧
(¬CupShareProposed(a, s) S Diverged(a, s)). Here, CupShareProposed(a, s) holds
when a catch-up package share is proposed by node a of subnet s. Diverged(a, s)
indicates that a has reported a state divergence (recall that our formulas express
the negation of the required properties). Lastly, End(), which is added by the
preprocessor, is the final event in the stream. Intuitively, the nullary predicate
End() binds the formula to the final time point of the test.

block-validation-latency. This policy formalizes network progress before
finalization is reached. Recall that the IC consensus protocol proceeds in rounds.
In each round, the nodes may create and propose new blocks to their peers via
the P2P layer. When receiving these blocks, the peers declare them validated
if a set of conditions is satisfied; these conditions concern the block’s metadata

Monitoring the Internet Computer 393

Fig. 4. Overview of IC’s monitoring pipeline. Rounded boxes are parties involved in
monitoring, arrows depict data flow, and dotted arrows show initial pipeline steps.

and the app requests, e.g., authentication. Upon validating the block, the node
informs its peers. Progress to the next round is possible only if more than 2⁄3 of
the nodes validate a block. This policy measures the time until a block proposal
created at one node has been validated by more than 2⁄3 of the nodes in the same
subnet; the policy then checks that this time does not exceed a threshold.

unauthorized-connections. IC nodes should receive peer-to-peer connections
only from other nodes within the same subnet. As these connections are secured
by TLS [41], any illicit connection attempt should cause a TLS handshake failure
as the certificate is rejected. This policy states that such failures must not occur
unless the illicitly connecting node and the receiver were members of the same
subnet in the recent past (we set the threshold to 15min), as the nodes may not
have learned yet that they are no longer peers.

Infrastructure Outage. We also consider platform-level aspects of the IC.

reboot-count. Data center problems may be accompanied by frequent server
reboots. This policy identifies problematic data centers, detecting when servers
hosting IC nodes within a data center are rebooted too frequently. For each data
center, the policy counts the number of unplanned (re-)boots within the past
30min; for this purpose, we employ the count aggregation and the � operator. A
violation is emitted if the number of reboots exceeds two, i.e., up to two reboots
are tolerated. Data centers are identified by prefixes of the node’s IPv6 address,
which are available as predicate arguments (Sect. 4).

4 Evaluation

In our evaluation of MonPoly’s performance, we address the following questions:
(Q1) How much time and memory does MonPoly require for monitoring com-
plex policies offline? (Q2) Is MonPoly able to monitor the IC’s production logs
online? (Q3) What are the main performance and scalability factors?

394 D. Basin et al.

Table 2. Evaluation results (median and maximum in parentheses) for offline moni-
toring

Measurement Test – 67 logs Prod – 1 log

Raw log entries 8,059 (860,164) 16,887,502
MiB 15.6 (3,250.3) 57,216.4

Processed log events 1,394 (634,790) 1,553,159
events/s 10.7 (168.1) 143.8
MiB 0.5 (207.2) 713.3

Preprocessor time ms/entry 0.12 (5.61) 0.07 (0.08)
ms/event MiB ms/event MiB

clean-logs 3.20 (145.0) 10 (10) 3.93 11
logging-behavior 2.74 (144.4) 11 (1265) TO TO
unauthorized-connections∗ 3.09 (145.6) 10 (1109) TO TO
reboot-count 2.68 (151.1) 10 (11) 3.54 11
finalized-height∗ 3.93 (138.7) 10 (19) – –
finalization-consistency 2.57 (143.1) 10 (16) – –
replica-divergence 2.80 (145.2) 10 (10) – –
block-validation-latency† 5.04 (143.1) 13 (26) – –

∗ Timeout on 1 log each. † Timeout on 3 logs.

Pipeline. We implemented a monitoring pipeline (Fig. 4) that downloads logs
from the IC’s log server (either from a Test-IC or from production), prepro-
cesses them, and manages MonPoly’s execution. The same pipeline was added
to the IC’s continuous development workflow, alerting IC software engineers
of detected policy violations and providing them with the context required to
reproduce and investigate the underlying problems. The pipeline’s log prepro-
cessor converts log entries into events encoded in MonPoly’s input format. Most
events require simple syntactic manipulations (e.g., extracting parameters with
regular expressions), but some require information about the IC configuration,
e.g., the mapping between node IDs and IP addresses. The preprocessor obtains
this information, as well as the InIC0 and InSubnet0 events (Sect. 3.2), from the
registry.

The top half of Table 2 summarizes basic properties of logs used in our exper-
iments, aggregating data across all logs and, where applicable, policies. The
median is shown as well as the maximum in parentheses. We obtained logs from
the IC’s system tests (Test) as well as a three hour fragment of the production
log (Prod). For repeatability, this step was performed separately from the exper-
iments and the logs were stored as files. The Test logs were collected from 3
runs of every system test in the IC’s hourly and nightly test suites, over a 3-day
period. We only considered successful test runs, as a failed test already requires
an engineer’s attention and monitoring would not add much value. In both Test

Monitoring the Internet Computer 395

and Prod logs, the pipeline’s preprocessor discarded all log entries that cannot
be assigned to an IC node, e.g., messages from systemd.

We approximated the time spent in preprocessing. Since the pipeline trans-
forms log entries on the fly before sending the events to the monitor, we accu-
mulated the time spent in the preprocessing step for each entry (“preprocessor
time”). Due to the logs’ diversity, we normalized this value by dividing it by the
number of log entries; the result is the inverse of throughput.

We instrumented the pipeline to collect performance measurements for offline
monitoring (Q1). Specifically, we obtained the wall-clock time for the combined
execution of pipeline and monitor (“monitoring time”) and the peak resident
set size (“monitoring memory”) of the MonPoly process. Monitoring time was
normalized based on the number of events comprising the input to MonPoly. To
address Q2, we simulated a real-time log stream based on the stored fragment
of the production log, using a replayer [33] that writes the log entries at the
appropriate time to MonPoly’s input. We performed additional experiments to
answer Q3.

We ran at most 13 experiments in parallel on a server with two 3GHz 16-core
AMD EPYC 7302 CPUs, 512 GiB RAM, and an SSD. We used Linux 5.4.0 as
the operating system and the MonPoly Docker image 1.4.2 as the monitor. All
the logs, policies, and code used in our experiments are publicly available [7].

Offline Monitoring. The bottom half of Table 2 shows the aggregated perfor-
mance measurements for offline monitoring, i.e., processing the stored logs as
quickly as the monitor allows. We instantiated the monitoring pipeline separately
for every combination of policy and log (i.e., system test run or the production
fragment). For Test , the table shows the median (and maximum) monitoring
time and memory. Some of the policies are not applicable to production (see
Table 1) and hence are marked with ‘–’. We set a timeout of 30min for Test to
limit the experiments’ duration. It was reached in five runs, which are excluded
from the results, as shown in the table. For Prod, we set a timeout of 4 h (the
length of the Prod fragment plus a safety margin), marked ‘TO’ in the table.

The results for the Test scenario are similar across policies, with few excep-
tions. Both logging-behavior and unauthorized-connections require signif-
icantly more memory on certain inputs, since they store many snapshots of the
InSubnet relation in proportion to the index rate, i.e., the number of indices in
the corresponding trace per unit of real time. The relation’s size depends on the
number of nodes created in the test. The policies perform nontrivial computa-
tions for every event and node, resulting in the timeouts for Prod , which has
ten times more nodes than Test . The timeouts for block-validation-latency
are likely caused by the larger number of subnets (29 compared to maximal 3)
in the corresponding logs; we plan to confirm this in the future. The other two
Test timeouts occurred with the largest log file (3.3 times the size of the next
largest).

Online Monitoring. Long-running systems like the IC are not expected to termi-
nate and hence they produce logs with unbounded streams of events. Therefore,

396 D. Basin et al.

Fig. 5. Replayer latency for online monitoring

online monitoring with low (bounded) latency is a prerequisite for continuous
monitoring. Logging activity may also be bursty, rendering the offline perfor-
mance a bad predictor for the online case. We therefore conducted separate
online monitoring experiments using the Prod data. Specifically, we measured
the latency at the replayer, which was provided with an already processed log.
While this measure is not equivalent to end-to-end latency, it is practically rele-
vant as it indicates how much log data must be buffered by system components
before the monitor.

Figure 5 shows the latency distribution over elapsed time, relative to the
log entries’ time-stamps. For the clean-logs and reboot-count policies, we
observed regular bursts of increased latency. Since the maximum latency does
not grow over time, it would be possible to monitor these policies online in a
production deployment. The bursts are clearly correlated with the index rate as
shown by the thin line drawn on top of the latency distribution.

In contrast, the latency increased steeply after approximately 13min for
logging-behavior, simultaneously with the first index rate burst. The exper-
iment was terminated once a latency of 10min was reached. We do not show
results for the unauthorized-connections policy as it immediately reached
the latency limit. The quickly increasing latency indicates that the time spent
monitoring the events generated within an interval of real time is longer than
the interval itself. This coincides with the timeouts observed in the offline
experiments.

In addition to the above experiments, we parallelized online monitoring of
the Prod fragment using an existing framework [38]. We observed improvements
but were unable to achieve low-latency monitoring for logging-behavior and
unauthorized-connections. We conjecture that the framework’s inability to
reduce the index rate observed by the parallel monitors prevents latency reduc-
tion.

Results. We found that offline monitoring of IC system test logs is possible
using moderate resources: monitoring extends the tests’ runtime by less than

Monitoring the Internet Computer 397

23%,1 while the peak memory usage of MonPoly was 5 GiB (Q1). Low-latency
online monitoring was possible for two applicable policies (Q2). By analyzing this
result, we identified three factors that significantly influence online monitoring
performance, namely, repeating relational computations, future operators, and
eager processing of let expressions (Q3). We believe that the insights from our
case study are helpful to developers of other monitoring tools.

5 Lessons Learned

We now summarize our case study’s qualitative findings on policy engineering
and monitoring maintainability.

Policy Engineering. Introducing runtime monitoring into an existing system is
challenging. Policy engineering is the process of identifying sources of policies,
selecting useful policies, and making them precise and formal. The distinction
between the last two characteristics is crucial: we argue that the former is dif-
ficult to achieve (even using natural language), whereas the latter is relatively
straightforward for runtime monitoring experts, if the policy is already precise.

Colombo and Pace [18] claim that policies should not be defined by devel-
opers, but rather by a quality assurance (QA) team, as the policies address end
users and concern high-level system properties. We agree with this assessment
in part: IC policies were sourced from IC’s formal method engineers who knew
the system and its high-level properties well. However, additional software engi-
neers and researchers were still needed to confirm the semantics of the existing
log entries observed by the monitor and possibly augment logging, for exam-
ple by adding new parameters or new events. Software engineers also had to
evaluate the production impact of such modifications (e.g., due to an increase
in log volume), and on the debugging processes (e.g., due to increased noise).
Such developer insights crucially influenced the final policies. We decided to drop
various drafted policies due to the lack of the required log entries.

Colombo and Pace argue that monitoring policies assured by other engi-
neering techniques (e.g., unit testing) is wasteful. They identify cross-cutting
properties [18] as the most useful policy class. We agree but additional selec-
tion criteria are also relevant. Namely, policies must be effective (i.e., capable
of detecting relevant problems), precise (i.e., producing a low number of false
violations), and actionable (i.e., given a true violation, a developer can debug it).

We found that an iterative process is needed to devise sufficiently precise
policies. Even domain experts can be misguided by their intuition, suggesting
policies that fail to account for corner cases and recent system changes. Natural
language ambiguity is another source of imprecision. Moreover, typos and logical
errors may occur in policy formalizations. In our case study, we experienced all
these issues.

1 Maximum monitoring time (80 min) divided by the longest test (362 min).

398 D. Basin et al.

Finally, we mention some MFOTL policy formula patterns that commonly
appeared in our formalizations. Such patterns implement policies that are intu-
itively and easily expressible in natural language, but cannot be encoded using
a single operator of the policy language. For example, one could expect that
valuations assigning 0 to c satisfy the policy c ← CNT m;n Log(n,m) when
monitoring a trace without any Log events. However, this is not the case accord-
ing to MFOTL’s semantics as Log(n,m) is not satisfiable for any n. Sometimes
it is necessary to report such valuations (typically, for a finite set values of n).
Our formalization of logging-behavior demonstrates a pattern that achieves
this:

c ← SUM c;n
((

(c ← CNT m;n �I Log(n,m)) ∧ InIC(n)
) ∨ (

InIC(n) ∧ c = 0
))

Here, we count the number of log messages c per node n in an interval I. The
result is used to compute the sum of the counts for each node. It is important
to include all known nodes (c.f. InIC), even if they did not log any message m
in that interval. The above encoding achieves this by adding the actual count
to the default of zero (the right disjunct), assigned to all nodes. Other common
policy formula patterns we identified are outer joins [1] and sliding windows [2].

Monitoring Maintainability. As in many software projects, engineers assume
that logs are inspected by humans, and often freely modify the logging state-
ments [16]. We observed that such changes break the monitoring pipeline outright
because the preprocessor fails to process log entries not matching expected pat-
terns. A more challenging problem is that the meaning of a log entry may also
subtly change, for example, when moved to a different location in the control
flow.

To address this, we used system tests that exercise code paths containing
policy-relevant logging statements. The test checks if the preprocessor correctly
processes log entries. However, we believe that for an evolving system, a struc-
tured and type-safe logging interface is necessary to maintain runtime monitor-
ing. Structured logging provides a way of introducing logging statements sys-
tematically at different levels of granularity. Type-safe logging can additionally
detect a mismatch between the log entry format expected by the monitor and
one produced by the logging statements at compile time. Detection of a change
in the semantics of a log entry, however, remains an open problem.

6 Related Work

We first summarize approaches to monitoring distributed systems. Afterwards,
we describe industrial case studies similar to ours that monitor distributed sys-
tems.

A classic result for predicate detection in distributed systems [15] states that
exponentially many interleavings of components’ traces must be checked in the
worst case, which does not scale [27]. Efficient algorithms exist for predicate

Monitoring the Internet Computer 399

classes [36] or under certain assumptions [35,39]. Basin et al. [9] monitor dis-
tributed systems with a centralized monitor by merging all the components’
traces. As in our work, their merged trace has events with same time-stamps
occur in an arbitrary order. They further restrict policies to a logical fragment
where that order does not influence the monitor’s output. Other approaches
focus on distributing the monitor. Bauer and Falcone [13] orchestrate multiple
distributed monitors based on the structure of the input LTL formula, such that
they jointly monitor the input formula with minimal need to exchange knowl-
edge.

Similar approaches hierarchically organize monitors [17], use regular expres-
sions [24], or stream equations [20] as the policy language. None, however,
support an expressive language like MFOTL, with the exception of Schneider
et al. [8,38], whose framework we used in our attempts to reduce monitoring
latency.

Basin et al. [9] monitored Nokia’s data usage policies in three databases run-
ning on different distributed components; they also monitored Google’s network
security policies [6]. El-Hokayem and Falcone [23] monitored traces collected
from 27 distributed smart apartment sensors. Colombo et al. [19] monitored
policies for an online payment service with millions of credit cards. Kane et
al. [31] monitor a controller-area automotive network. Unlike the languages used
in these works, we use a more expressive first-order temporal policy language
with aggregations.

We conducted a systematic literature review, following best practices [32],
to identify and classify monitoring case studies. We collected papers from five
conferences and two journals by matching keywords related to runtime veri-
fication and case studies. This yielded 54 papers that we manually analyzed
to select those 33 papers that use temporal logic as policy languages. Our
finalized-height policy is more complex than any policy we found: it has
a greater number of operators (56) than the next most complex one (44) [21].
Note that without the let operator, the logging-behavior policy would have
required more than 1,000 operators.

7 Conclusion

We have shown how to enrich system testing and metrics with runtime moni-
toring. In our case study, we formalize and monitor complex, non-local, metric
first-order temporal policies of the Internet Computer (IC), a real-world dis-
tributed system. The monitoring pipeline we use is tailored to the IC, but we
believe that its design can serve as blueprint for monitoring other distributed
systems. Some of our policies, although IC-specific in their current form, gen-
eralize well to other systems, specifically, to replicated distributed systems that
execute in rounds. Another contribution to the formal methods community is
our data set, which we publish and which provides a challenging benchmark for
monitors supporting metric first-order temporal policies with aggregations.

As future work, in addition to formalizing other IC policies, we plan to
improve the feedback that monitors provide to engineers. The emerging research

400 D. Basin et al.

area of explanations [5] for monitoring verdicts can aid the process of fault local-
ization, e.g., by visualizing minimal parts of the trace causing a violation. Further
monitor optimizations are required to achieve practical online monitoring of the
IC production deployment by handling high index rates. We conjecture that this
problem is solvable taking inspiration from the algorithms used in signal-based
monitoring [22].

Acknowledgement. We thank the anonymous reviewers for their comments, and
Qijing Yu, Bas van Dijk, and Nikolay Komarevskiy for helping set up this project.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB J. 15(2), 121–142 (2006)

3. Internet Computer Association. Internet Computer dashboard (2022). https://
dashboard.internetcomputer.org/

4. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification. LNCS, vol.
10457. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5

5. Basin, D., Bhatt, B.N., Traytel, D.: Optimal proofs for linear temporal logic on
lasso words. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
37–55. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_3

6. Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable
offline monitoring of temporal specifications. Formal Methods Syst. Des. 49(1),
75–108 (2016). https://doi.org/10.1007/s10703-016-0242-y

7. Basin, D., et al.: Monitoring the Internet Computer (artifact) (2022). https://doi.
org/10.5281/zenodo.7340850

8. Basin, D., Gras, M., Krstić, S., Schneider, J.: Scalable online monitoring of dis-
tributed systems. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol.
12399, pp. 197–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
60508-7_11

9. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: Monitoring data usage in dis-
tributed systems. IEEE Trans. Softw. Eng. 39(10), 1403–1426 (2013)

10. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal first-
order properties with aggregations. Formal Methods Syst. Des. 46(3), 262–285
(2015). https://doi.org/10.1007/s10703-015-0222-7

11. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1–15:45 (2015)

12. Basin, D., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: Reger, G.,
Havelund, K. (eds.) International Workshop on Competitions, Usability, Bench-
marks, Evaluation, and Standardisation for Runtime Verification Tools (RV-
CuBES). Kalpa Publications in Computing, vol. 3, pp. 19–28. EasyChair (2017)

13. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Formal Methods Syst. Des.
48(1–2), 46–93 (2016). https://doi.org/10.1007/s10703-016-0253-8

14. Camenisch, J., Drijvers, M., Hanke, T., Pignolet, Y.-A., Shoup, V., Williams, D.:
Internet Computer consensus. In: Proceedings of the 2022 ACM Symposium on
Principles of Distributed Computing, PODC 2022, pp. 81–91. ACM, New York
(2022)

https://dashboard.internetcomputer.org/
https://dashboard.internetcomputer.org/
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-030-01090-4_3
https://doi.org/10.1007/s10703-016-0242-y
https://doi.org/10.5281/zenodo.7340850
https://doi.org/10.5281/zenodo.7340850
https://doi.org/10.1007/978-3-030-60508-7_11
https://doi.org/10.1007/978-3-030-60508-7_11
https://doi.org/10.1007/s10703-015-0222-7
https://doi.org/10.1007/s10703-016-0253-8

Monitoring the Internet Computer 401

15. Chase, C.M., Garg, V.K.: Detection of global predicates: techniques and their
limitations. Distrib. Comput. 11(4), 191–201 (1998)

16. Chen, B., Jiang, Z.M.: Characterizing logging practices in Java-based open source
software projects – a replication study in apache software foundation. Empir. Softw.
Eng. 22(1), 330–374 (2017)

17. Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with
a global clock. Formal Methods Syst. Des. 49(1), 109–158 (2016). https://doi.org/
10.1007/s10703-016-0251-x

18. Colombo, C., Pace, G.J.: Industrial experiences with runtime verification of finan-
cial transaction systems: lessons learnt and standing challenges. In: Bartocci, E.,
Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 211–
232. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_7

19. Colombo, C., Pace, G.J., Abela, P.: Safer asynchronous runtime monitoring using
compensations. Formal Methods Syst. Des. 41(3), 269–294 (2012). https://doi.
org/10.1007/s10703-012-0142-8

20. Danielsson, L.M., Sánchez, C.: Decentralized stream runtime verification. In:
Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 185–201.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9_11

21. Desai, A., Dreossi, T., Seshia, S.A.: Combining model checking and runtime ver-
ification for safe robotics. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol.
10548, pp. 172–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67531-2_11

22. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. In: Bartocci, E., Majumdar, R. (eds.)
RV 2015. LNCS, vol. 9333, pp. 55–70. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-23820-3_4

23. El-Hokayem, A., Falcone, Y.: Bringing runtime verification home. In: Colombo,
C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 222–240. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03769-7_13

24. Falcone, Y., Cornebize, T., Fernandez, J.-C.: Efficient and generalized decentralized
monitoring of regular languages. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE
2014. LNCS, vol. 8461, pp. 66–83. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43613-4_5

25. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime
verification tools. Int. J. Softw. Tools Technol. Transfer 23(2), 255–284 (2021).
https://doi.org/10.1007/s10009-021-00609-z

26. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

27. Ganguly, R., et al.: Distributed runtime verification of metric temporal properties
for cross-chain protocols. CoRR, abs/2204.09796 (2022)

28. Gopal, M.: Modern Control System Theory. New Age International (1993)
29. Gorostiaga, F., Sánchez, C.: HLola: a very functional tool for extensible stream

runtime verification. In: Groote, J.F., Larsen, K.G. (eds.) TACAS 2021. LNCS,
vol. 12652, pp. 349–356. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-72013-1_18

30. Havelund, K., Peled, D., Ulus, D.: DejaVu: a monitoring tool for first-order tempo-
ral logic. In: 3rd Workshop on Monitoring and Testing of Cyber-Physical Systems,
MT@CPSWeek 2018, Porto, Portugal, 10 April 2018, pp. 12–13. IEEE (2018)

31. Kane, A., Chowdhury, O., Datta, A., Koopman, P.: A case study on runtime mon-
itoring of an autonomous research vehicle (ARV) system. In: Bartocci, E., Majum-

https://doi.org/10.1007/s10703-016-0251-x
https://doi.org/10.1007/s10703-016-0251-x
https://doi.org/10.1007/978-3-319-75632-5_7
https://doi.org/10.1007/s10703-012-0142-8
https://doi.org/10.1007/s10703-012-0142-8
https://doi.org/10.1007/978-3-030-32079-9_11
https://doi.org/10.1007/978-3-319-67531-2_11
https://doi.org/10.1007/978-3-319-67531-2_11
https://doi.org/10.1007/978-3-319-23820-3_4
https://doi.org/10.1007/978-3-319-23820-3_4
https://doi.org/10.1007/978-3-030-03769-7_13
https://doi.org/10.1007/978-3-662-43613-4_5
https://doi.org/10.1007/978-3-662-43613-4_5
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1007/978-3-030-72013-1_18
https://doi.org/10.1007/978-3-030-72013-1_18

402 D. Basin et al.

dar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 102–117. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23820-3_7

32. Kitchenham, B.A., Brereton, P., Budgen, D., Turner, M., Bailey, J., Linkman,
S.G.: Systematic literature reviews in software engineering – a systematic literature
review. Inf. Softw. Technol. 51(1), 7–15 (2009)

33. Krstić, S., Schneider, J.: A benchmark generator for online first-order monitoring.
In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 482–494.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60508-7_27

34. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982)

35. Momtaz, A., Basnet, N., Abbas, H., Bonakdarpour, B.: Predicate monitoring in
distributed cyber-physical systems. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS,
vol. 12974, pp. 3–22. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
88494-9_1

36. Ogale, V.A., Garg, V.K.: Detecting temporal logic predicates on distributed com-
putations. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 420–434. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75142-7_32

37. Sacerdoti, F.D., Katz, M.J., Massie, M.L., Culler, D.E.: Wide area cluster moni-
toring with Ganglia. In: CLUSTER 2003, p. 289. IEEE Computer Society (2003)

38. Schneider, J., Basin, D., Brix, F., Krstić, S., Traytel, D.: Scalable online first-order
monitoring. Int. J. Softw. Tools Technol. Transfer 23(2), 185–208 (2021). https://
doi.org/10.1007/s10009-021-00607-1

39. Stoller, S.D.: Detecting global predicates in distributed systems with clocks. Dis-
trib. Comput. 13(2), 85–98 (2000)

40. The DFINITY Team. The Internet Computer for geeks. Cryptology ePrint Archive,
Paper 2022/087 (2022). https://eprint.iacr.org/2022/087

41. Turner, S.: Transport layer security. IEEE Internet Comput. 18(6), 60–63 (2014)

https://doi.org/10.1007/978-3-319-23820-3_7
https://doi.org/10.1007/978-3-030-60508-7_27
https://doi.org/10.1007/978-3-030-88494-9_1
https://doi.org/10.1007/978-3-030-88494-9_1
https://doi.org/10.1007/978-3-540-75142-7_32
https://doi.org/10.1007/s10009-021-00607-1
https://doi.org/10.1007/s10009-021-00607-1
https://eprint.iacr.org/2022/087

	Monitoring the Internet Computer
	1 Introduction
	2 Background
	3 Policies
	3.1 Methodology
	3.2 Policy Formulas

	4 Evaluation
	5 Lessons Learned
	6 Related Work
	7 Conclusion
	References

