
ar
X

iv
:1

90
6.

10
77

5v
2

 [
cs

.C
R

]
 2

0
A

pr
 2

02
0

SoK: Delegation and Revocation,
the Missing Links in the Web’s Chain of Trust

Laurent Chuat∗, AbdelRahman Abdou†, Ralf Sasse∗, Christoph Sprenger∗, David Basin∗, Adrian Perrig∗

∗Department of Computer Science, ETH Zurich
†School of Computer Science, Carleton University

Abstract—The ability to quickly revoke a compro-

mised key is critical to the security of any public-

key infrastructure. Regrettably, most traditional

certificate revocation schemes suffer from latency,

availability, or privacy problems. These problems

are exacerbated by the lack of a native delegation

mechanism in TLS, which increasingly leads domain

owners to engage in dangerous practices such as

sharing their private keys with third parties.

We analyze solutions that address the long-

standing delegation and revocation shortcomings

of the web PKI, with a focus on approaches that

directly affect the chain of trust (i.e., the X.509

certification path). For this purpose, we propose a

19-criteria framework for characterizing revocation

and delegation schemes. We also show that com-

bining short-lived delegated credentials or proxy

certificates with an appropriate revocation system

would solve several pressing problems.

Index Terms—public-key infrastructure (PKI), dig-

ital certificate, delegation, revocation, proxy certifi-

cate, content-delivery network (CDN)

1. Introduction

Certificate revocation has always been a challenge
in the HTTPS public-key infrastructure (or web PKI,
for short). Certificate revocation lists (CRLs) [12], [59]
grow linearly in the number of revocations, making
their communication to browsers inefficient. CRLs and
OCSP [35] require an extra round-trip communication
initiated by the browser to verify a certificate’s valid-
ity. This increases page-load delay and reveals users’
browsing habits. The extra round trip may also block
the connection when the browser fails to receive a re-
sponse [47]. Failing open (i.e., proceeding with the con-
nection anyway) is effectively equivalent to not check-
ing if a certificate is revoked, jeopardizing security.

Given the above problems, some browser vendors
have decided to disable online revocation checks (i.e.,
CRL and OCSP) and instead rely upon small sets of
emergency revocations pushed to clients through soft-
ware updates [25], [34]. OCSP stapling [39] addresses
the extra-round-trip problem but, like CRLs, places an
additional burden and reliance on certification author-
ities (CAs) as they must be frequently contacted over
a certificate’s lifespan. Moreover, a stapled certificate

status is typically valid for four days, implying a rogue
certificate or a compromised private key remains us-
able by the adversary for four days in the worst case;
the consequences can thus be severe.

Short-lived certificates [42], [55] provide compara-
ble benefits to OCSP stapling. Again, four days is the
suggested validity period. Questions remain, however,
about the feasibility of reducing this period to sev-
eral minutes to limit adversarial capabilities in case
of private key compromise. In general, the tradeoff
between promptly disseminating revocation informa-
tion to browsers (requiring an extra round-trip and
burdening CAs) and increasing the system’s efficiency
(but sacrificing security) is now well established. Un-
fortunately, browser vendors often favor efficiency over
security when it comes to certificate revocation [30].

Besides revocation, new requirements with asso-
ciated problems have emerged for the web PKI. In
particular, content delivery networks (CDNs) are now
widely used and beg for a secure delegation sys-
tem [29]. In practice, rather than explicitly delegating
specific rights to CDNs, domain owners often resort to
some form of key sharing [9]. The delegation problem
is, in fact, intimately related to that of revocation.
If we could rely on an efficient and secure revoca-
tion system, the negative consequences of key sharing
would be minimized as compromised keys could be
invalidated as soon as misbehavior is observed.

This evolution of the HTTPS landscape has put
domain owners into an uncomfortable position: to sat-
isfy their delegation and revocation needs, they must
either adopt insecure approaches or heavily depend on
CA support. We therefore ask the following fundamen-
tal question: Why are domain owners required to visit
a CA for every issuance, renewal, revocation, and key
update they perform to any of their subdomains?

In our view, domain owners should be offered a
flexible and secure solution that leaves them in full
control of their domain and its subdomains. We thus
formulate the following two requirements for any
possible solution. Domain owners should be able to
autonomously

(R1) decide on the validity period or revocation status
of their own certificates; and

(R2) delegate all or a subset of their privileges to third
parties, without sharing a private key with them.

Our systematization of knowledge has resulted
from our endeavor to identify solutions satisfying the

http://arxiv.org/abs/1906.10775v2

above two requirements. We start by providing back-
ground on delegation to CDNs (Section 2) to show
how the web and its trust model have evolved in
recent years. We then review a wide spectrum of
approaches to revocation and delegation with differ-
ent features and trade-offs (Section 3). We divide
revocation schemes into four categories, depending on
which actor provides the revocation information, and
we distinguish delegation schemes with and without
key sharing. We also highlight several problems of
these approaches, showing why they fail to fully sat-
isfy the requirements. Next, we examine different ap-
proaches that extend the traditional chain of trust and
promise to bring more security and flexibility to the
HTTPS ecosystem (Section 4). These include name
constraints, short-lived certificates, proxy certificates,
and delegated credentials. We focus on the latter two,
proxy certificates and delegated credentials, as the
most promising candidates for satisfying the require-
ments and discuss them in more detail in Sections 5
and 6.

The concept of proxy certificates was introduced
more than a decade ago in the context of grid com-
puting [56]. Proxy certificates allow entities holding
non-CA certificates to delegate some or all of their
privileges to other entities. We thoroughly investigate
the challenges and advantages of such delegation in the
context of the current web PKI. Allowing such dele-
gation would provide several security and efficiency
advantages. These include a domain owner’s ability
to update and use multiple distinct keys (e.g., for
multiple subdomains, or for different transactions per
subdomain) much more easily and rapidly than with
current practices. Domain owners can also issue short-
lived proxy certificates for added security. Perhaps
more importantly, the owner’s main private key, corre-
sponding to the public key in the CA-issued certificate,
need not be involved in online cryptographic opera-
tions, and could thus be safely stored on a discon-
nected (air-gapped) device. Additionally, proxy certifi-
cates need not be logged by Certificate Transparency
servers, solving the problem of log servers disclosing
private subdomains [17], [48].

More recently, another promising approach called
delegated credentials was developed at the IETF
and described in an Internet Draft [3] as a first
step towards standardization. On 1 November 2019,
Mozilla [22], Cloudflare [50], and Facebook [21] an-
nounced plans to support delegated credentials. We
describe and study this new proposal in comparison
to similar approaches, proxy certificates in particular.

In Section 7, we analyze the consequences of using
short-lived certificates and investigate how TLS should
handle these certificates.

In Section 8, we thoroughly analyze the different
approaches to revocation and delegation. We propose a
19-criteria framework, which includes criteria pertain-
ing to delegation, revocation, security, efficiency, and
deployability. We use this framework to evaluate and
compare 19 delegation schemes, revocation schemes,
and related certificate features. We show how dele-
gated credentials and proxy certificates fit into the
bigger picture and how they can be combined with

other schemes to satisfy the requirements and offer
additional properties. Finally, in Section 9, we discuss
related topics, and we draw conclusions in Section 10.

The main contributions of our work are to sys-
tematize existing work and suggest new solutions and
directions in this important problem domain:

• After segmenting revocation schemes into 4 cate-
gories, we provide a detailed analysis of 19 dele-
gation and revocation schemes with respect to 19
evaluation criteria.

• As those schemes offer a wide set of comple-
mentary features, we examine how they can be
combined so that both the requirements are met.

• We show how proxy certificates can be adapted to
today’s web, and present three use cases for such
certificates.

• Finally, we point out that session resumption may
undermine the security advantages provided by
short-lived credentials, and we discuss potential
workarounds.

We refer readers who are not familiar with the
HTTPS ecosystem to Durumeric et al. [15] or Clark
and van Oorschot [10] for background information.

2. Delegation to CDNs

Content delivery networks (CDNs) pose new chal-
lenges for the web PKI, as they fundamentally alter
the trust model upon which HTTPS relies [29]. Every
CDN is composed of a myriad of servers that dis-
tribute content to users based on their location. The
objective is usually to increase performance and avail-
ability, but CDN vendors may also provide security-
related services. The caching servers controlled by the
CDN, commonly referred to as edge servers, act as
intermediaries between clients and the origin server
(controlled by the domain owner). At the moment,
this communication model is incompatible with TLS,
which was specifically designed to prevent man-in-the-
middle (MitM) attacks, and may force domain owners
to share their private key with the CDN operator who
then acts as a MitM.

Multiple options exist for redirecting HTTP re-
quests to CDN servers. The most common techniques
are the following:

• Authoritative: The CDN’s name servers are de-
fined as authoritative for the domain in ques-
tion. This lets the CDN take full control over
the resolution of the entire domain. When try-
ing to contact example.com, the browser should
obtain the IP address of one of the CDN’s edge
servers. As the redirection happens through DNS,
the browser will attempt to establish a connec-
tion based on a valid certificate for example.com;
therefore, the edge server must know the corre-
sponding private key.

• CNAME: The redirection is done through a
DNS Canonical Name (CNAME) record, which
allows for a more fine-grained mapping as it sup-
ports the redirection of specific subdomains. For
example, such a record could specify the following
mapping:

s1.example.com → s1.example.com.cdn.net

As in the previous case, if the browser tries to
contact s1.example.com, then it will expect to
see a valid certificate for it.

• URL rewriting: The URLs of specific resources
(e.g., images, videos, documents) are modified
(either automatically by the web server, or man-
ually by the domain owner) so that they point
to CDN servers. This is the most fine-grained
approach but it has drawbacks: URL rewriting
does not support common security features that
the CDN may offer, such as DDoS protection and
web application firewalls. Delegation plays a less
significant role in this scenario, as the browser can
accept the CDN’s own certificate.

We classify schemes with respect to delegation by
whether it is supported in any (possibly insecure)
way, and whether it is possible without requiring key
sharing, as necessary by Requirement R2.

3. Dealing with Key Compromise

We now review a vast range of techniques devel-
oped to prevent, detect, and remedy the compromise
of private keys. The schemes we present will be com-
pared in our systematic analysis in Section 8.

3.1. Revocation

Certificate revocation is a notoriously challenging
aspect of the web PKI [30]. In recent years, researchers
have examined the question of how revocations should
be delivered to clients, with objectives such as effi-
ciency, deployability, and privacy in mind. For this
reason, we classify revocation schemes based on the de-
livery process. Specifically, we distinguish four types of
revocation schemes: client-driven, where the browser
establishes an out-of-band connection with a revoca-
tion provider; server-driven, where the TLS server
attaches a recent revocation status to the connec-
tion; vendor-driven, where browser vendors push re-
vocations to clients through software updates; and
middlebox-driven, where network devices deliver revo-
cations. Our selection of schemes is not intended to be
comprehensive; we instead seek to present a few promi-
nent examples in each category to help the reader
understand and further classify alternative schemes.

Category I: client-driven. A traditional certificate
revocation list (CRL) [12] simply contains a set of
revocations typically recorded by a CA. The distri-
bution point of such a list can be specified within
each certificate. A client may fetch the entire list
(which can grow quite large) from that distribution
point when establishing a TLS connection. OCSP [35]
improves upon this design by letting clients contact a
special responder to determine the status of any spe-
cific certificate. Both approaches suffer from latency
and privacy issues. This is due to the fact that an extra
connection must be established to the CRL issuer or
OCSP responder, revealing to that third party which
domain the user is visiting.

Category II: server-driven. OCSP stapling [39]
allows the web server to add a timestamped OCSP
response (signed by the corresponding CA) to the TLS
handshake. Unfortunately, OCSP stapling is ineffec-
tive unless the browser knows when to expect a stapled
response, as an attacker could just not include any
OCSP status when using a revoked certificate. The
must-staple extension [19] addresses this issue but has
yet to gain widespread support. PKISN [53] tackles
another problem: collateral damage resulting from the
revocation of the certificate of a large CA, i.e., the
sudden invalidation of all certificates previously signed
by this CA, which should be unaffected. This requires
all certificates to be timestamped by a verifiable log
server, whereby CA certificate revocations can be per-
formed effective from a specific point in time, not
affecting previously issued certificates. Although the
authors [53] note that PKISN could also be deployed
with a vendor-driven model, we will consider its main
deployment model as one where servers deliver the
revocation status to browsers with an OCSP-stapling-
like mechanism.

Category III: vendor-driven. We identified three
main examples of vendor-driven revocation schemes.
CRLSets [25] and OneCRL [34] are, respectively,
Google’s and Mozilla’s effort to push a minimal set
of critical revocations to their browsers. CRLite [26],
based on the same approach of disseminating revoca-
tions through software updates, uses Bloom filters to
efficiently represent a larger number of revocations.

Category IV: middlebox-driven. This category of
schemes follows the observation that the communi-
cation and storage burden incurred by revocations
can be carried by a single device for multiple hosts.
RevCast [45] propagates revocations over FM radio
using the RDS protocol. An RDS-to-LAN bridge then
delivers revocations to end hosts. In a similar vein,
RITM [52] relies on a network device on the client–
server path to deliver revocations to end hosts by
analyzing and appending relevant information to TLS
handshakes.

3.2. (Revocable) Delegation

As we describe in Section 2, in most deploy-
ment models, hosting providers (such as CDNs) need
browser-accepted certificates for the domains they
serve. This often leads to key sharing [9], [29], which
can take various forms. In its simplest form, key shar-
ing consists of having the domain owner directly up-
load its private key(s) to the hosting provider (through
a web interface, for example). Alternatively, the host-
ing provider may use a certificate with a subject alter-
native name (SAN) list containing domain names from
numerous distinct customers. Such certificates raise a
number of questions. Cangialosi et al. [9] refer to these
as “cruise-liner” certificates, and ask:

“Who on a cruise-liner certificate deserves ac-
cess to the certificate’s corresponding private
key, given that whoever has it can imperson-
ate all others on the certificate? Who among

them has the right to revoke the certificate,
if so doing potentially renders invalid a cer-
tificate the others rely on? Cruise-liner cer-
tificates are not covered explicitly by X.509,
but we can infer that, in all likelihood, only
the hosting provider has the private keys and
right to revoke.”

Because X.509 certificates do not natively sup-
port explicit delegation, researchers and practitioners
have proposed different approaches that would allow
domain owners to use proxies (CDNs, in particular)
without any key sharing. Keyless SSL [49] (developed
by CloudFlare) splits the TLS handshake so that most
of the connection establishment is handled by edge
servers, while operations requiring the domain’s pri-
vate key are delegated to a key server maintained by
the domain owner. Keyless SSL is compatible with
both RSA and Diffie-Hellman handshakes. In RSA
mode, the key server decrypts the premaster secret
(generated and encrypted by the browser using the do-
main’s public key) and sends it back to the edge server
over an encrypted channel. In the Diffie-Hellman case,
the edge server sends a hash of parameters and nonces
to the key server, which the key server signs and
returns. The protocol was analyzed in a cryptographic
model [5] where new attacks show that Keyless SSL, as
specified for TLS 1.2, does not meet its intended secu-
rity goals. Additionally, a new design for Keyless SSL
for both TLS 1.2 and TLS 1.3 is given, together with
a proof of security. In their design, session resumption
is forbidden except in special cases.

SSL splitting [28] is an older but similar technique
with the additional guarantee that data served by the
proxy server is endorsed by the origin server. This
is achieved by requiring the origin server to com-
pute message authentication codes: for each record,
the origin server sends the MAC and a short unique
identifier that the proxy server uses to look up the cor-
responding payload in its local cache. Unfortunately,
this approach limits the benefits of using a CDN as
it increases latency (even more so than Keyless SSL,
which only affects the initial handshake).

Liang et al. [29] proposed a solution, based on
DANE [20], that makes the delegation to a CDN
explicit through the name resolution process. The do-
main owner must add a special TLSA record contain-
ing both its own certificate and the certificate of the
CDN to its DNSSEC records. This approach requires
that a modified version of DANE be deployed, and
that a browser extension be installed. It also increases
page-load delay as it requires an extra round trip
during the TLS handshake.

3.3. Related Certificate Features

Revocation and delegation, as we will show, are
issues that can be addressed simultaneously. Instead
of relying on ad-hoc schemes to satisfy the two re-
quirements stated in Section 1, these requirements can
be met using existing X.509 features, but currently
incurring major drawbacks.

The name constraints extension [12] allows CAs
to issue CA certificates with a limited scope. The

constraint is specified as a fully qualified domain
name and may specify a host. For example, as
indicated in RFC 5280, both “host.example.com”
and “my.host.example.com” would satisfy the “.exam-
ple.com” constraint, but “example.com” would not.
Unfortunately, this mechanism suffers from limited
support and implementation issues. Liang et al. [29]
report that major browsers do not check name con-
straints, except for Firefox. Even when they check
name constraints, a limitation of the standard [12]
can allow a dishonest intermediate CA (normally re-
stricted by a name constraint) to issue certificates for
arbitrary domain names that is not caught by the
browser’s enforcement.

Short-lived certificates [55] reduce the attack win-
dow after a key compromise but require CA support.
This places an extra burden on those CAs; the burden
increases with shorter expiry windows, imposing mini-
mum length of certificates’ validity periods. Self-signed
certificates, in contrast, allow domain owners to both
delegate and select their attack window, but require
trust on first use (TOFU) or an authenticated, out-of-
band transmission of the self-signed root certificate.

3.4. Certificate Transparency

The Certificate Transparency (CT) framework [27]
was developed by Google in response to several cases
of CA compromise that resulted in the issuance of
illegitimate certificates for high-profile domains, in-
cluding *.google.com [40]. The objective of CT is to
make certificates publicly visible. To do so, CT relies
on append-only log servers that anyone can consult.
To make the logging process verifiable, certificates are
incorporated into a Merkle hash tree, which allows
log servers to produce efficient proofs of presence
and consistency. When a certificate is submitted to
a log server—provided that the certificate is rooted
in an accepted trust anchor—the log will reply with a
Signed Certificate Timestamp (SCT). This constitutes
a promise that the certificate is already or will be
incorporated into the hash tree within a predefined
period. Chrome requires that SCTs be provided with
all certificates issued after April 30, 2018 [37].

Certificate Transparency is relevant to our dis-
cussion for several reasons: CT allows detecting il-
legitimate CA actions and is thus a precious source
of information for taking revocation decisions. As an
integral part of the current HTTPS ecosystem, CT
must be accounted for when proposing a new scheme,
for both compatibility and efficiency reasons. Finally,
as an extensive source of certificates, CT is particularly
helpful for understanding today’s PKI.

4. Overview of Trust Models

Figure 1 illustrates the trust model of name con-
straints, short-lived certificates, proxy certificates, and
delegated credentials. In a traditional PKI, the “chain
of trust” is typically only three certificates long, and
certificates are long-lived (on the order of months,
if not years). With name constraints, a link may be
added to the chain in the form of a restricted CA

CA:true

CA:true

CA:true

Constraint:
example.com

root CA

inter. CA

CA:true

CA:true

CA:false CA:falseCA:false

CA:false CA:falseCA:false

root CA

inter. CA

CA:true

CA:true

CA:false

s2.example.com s3.example.coms1.example.com

proxy

short-lived,
not logged

long-lived,
logged

domain
owner

domain
owner

*.example.com

Proxy CertificatesShort-Lived CertificatesName Constraints

root CA

inter. CA

CA:true

CA:true

CA:false

short-lived
credentials

domain
owner

Delegated Credentials

domain
owner

root CA

inter. CA

CA:true

CA:true

CA:false

Traditional PKI

domain
owner

root CA

inter. CA

*.example.com

(not logged)

Figure 1. Illustration of different PKI models and extensions. Solid arrows represent the “chain of trust”; certificates with no inbound
arrow are self-signed. Only proxy certificates and delegated credentials may not be logged (see Section 5.2).

certificate. Theoretically, a CA certificate with the
right constraints could be given to a domain owner,
but because browsers do not properly support name
constraints at the moment, CAs do not offer this
option. Also illustrated in Figure 1 are classic short-
lived certificates. Previous work suggested that these
should be issued by CAs [55]. Short-lived proxy cer-
tificates offer the best of both worlds: domain owners
can impose their own policies without any form of CA
support. Proxy certificates allow domain owners to
issue their own certificates, as self-signed certificates
do, but do not require TOFU as the certificate chain
starts from a CA certificate. With these properties,
short-lived proxy certificates satisfy the requirements
(R1 and R2). Delegated credentials are stripped-down
certificates, containing merely a public key and a few
parameters. Similarly to proxy certificates, delegated
credentials are signed with the domain owner’s private
key. Moreover, the time to live of delegated credentials
must be shorter than 7 days [3].

While CA-based authentication has many ad-
vantages over trust-on-first-use or web-of-trust ap-
proaches, proxy certificates illustrate that interactions
between certificate holder and CAs may be neither
needed nor desirable for actions such as delegation
or revocation. One may argue, after the rise of Let’s
Encrypt, that interacting with an automated CA is
free and effortless. However, Let’s Encrypt is a unique
case; it is actually a costly operation supported by a
large number of sponsors. Interactions with a CA incur
costs, and for Let’s Encrypt to continue to thrive, the
burden put on it by new security schemes should be
minimal. Moreover, each CA is a single point of failure.
While a CA being unavailable or going bankrupt may
not be an issue for a domain owner wanting to obtain a
new certificate (as they can simply pick another CA),
it is a problem with regard to delegation and revo-
cation. Finally, even if a CA provides a feature such
as short-lived certificates, it will not necessarily be
flexible (the validity period may be fixed, for example).

With proxy certificates or delegated credentials,
domain owners can become issuers, which raises the
question of whether they would need to fundamen-
tally become CAs. This would imply following best
practices, using sophisticated software and hardware,
and being accountable in case of a security blunder.

This is true only to the extent that the responsibili-
ties and security requirements of domain owners are
commensurate with the scale of their endeavors: the
administrator of a small website could choose not to
use any delegation mechanism at all, while an online
bank may want to spend a significant amount of time,
effort, and money on protecting its private keys. In the
worst case, a failure to adequately issue credentials can
only cause harm to the domain in question.

CA support is the main feature distinguishing
proxy certificates from name-constraint certificates.
While certificates that specify appropriate name con-
straints must be obtained from CAs, proxy certificates
can be issued without interacting with a CA. Another
important aspect, relating to the above discussion, is
that name constraints—because the CA bit must be
set to true in the corresponding certificate for them to
be effective—reinforce the misconception that domain
owners would indispensably need to become CAs if
they want to issue certificates for their own domain.
Delegated credentials also require special certificate
extensions, but they do not require the CA bit to be
set to true. Delegated credentials also have the ad-
vantage of requiring minimal code changes, compared
to approaches that rely on full-fledged certificates,
because of the restricted semantics of the credentials.
Unfortunately, this also implies that delegated creden-
tials do not give domain owners the opportunity to
enforce fine-grained security policies.

5. Proxy Certificates for the Web

The concept of proxy certificates was first proposed
in the early 2000s in the context of grid comput-
ing [56], [58], where the need for secure SSL/TLS
delegation emerged. Back then, proxy certificates were
used in middleware libraries and for use cases such
as single sign-on. The web was not envisioned as the
main application for proxy certificates. At the time,
the technologies used on the web were vastly different:
the very first CDNs had just been created, Certificate
Transparency did not yet exist, and the use of HTTPS
was far less common than it is today. In this section,
we show how proxy certificates could be adapted to
today’s web to fulfill the requirements.

To delegate rights to a third party, a proxy certifi-
cate is signed using the domain owner’s private key.
It informs clients that the holder of the proxy certifi-
cate may legitimately serve content for the specified
domain name. The term “proxy” must be interpreted
as an agent to which the domain owner has conferred
certain rights. Here, proxies are HTTPS servers, under
the control of either the domain owner or a third party
such as a CDN or hosting provider.

As we describe in detail in Section 5.3, several use
cases exist where proxy certificates would be bene-
ficial. An overarching principle guiding their use is
that the scope and exposure of private keys should be
limited. User-facing web servers, in particular, should
only hold private keys with limited capabilities, be-
cause they are especially exposed to various threats.
This has been demonstrated by recent vulnerabili-
ties, such as Heartbleed [16], which allow attackers
to remotely read protected memory on the vulnerable
machine and thus extract private keys.

Another important aspect to consider is the eco-
nomic consequences proxy certificates would have on
the current PKI ecosystem. They could reduce the
number of requests to CAs (as having a separate
certificate for each subdomain would not be necessary
anymore, for example) and thus reduce their revenue.
Although this is not in the interest of CAs, they
will not be able to hinder the deployment of proxy
certificates, as they are not involved in the issuance
process. Reducing CA-incurred costs is beneficial for
the deployment of HTTPS, as demonstrated by the
success of Let’s Encrypt, for example.

In the remainder of this paper, we use the term
end-entity certificate to refer exclusively to a non-
CA certificate issued by a CA, as opposed to proxy
certificate, which refers to a certificate that extends the
chain of trust starting from an end-entity certificate.
We use the term end-entity key to refer to the private
key that corresponds to an end-entity certificate.

5.1. Certification Path Validation

A proxy certificate is similar to any other X.509
certificate in terms of format; the distinction from a
regular certificate comes from the certification path.
In a nutshell, a proxy certificate is considered valid for
a given name if it extends the chain from a non-CA
certificate that is valid for that name and the proxy
certificate also contains that name in its (possibly
reduced) set of permitted names. However, we also
allow for chains of proxy certificates and the restriction
thereof through “path length” constraints, which—
among other factors—makes the validation of proxy
certificates non-trivial. Below we describe a validation
algorithm designed to require only minor changes to
the current X.509 specification and implementations.

An algorithm for the validation of a regular cer-
tification path is given in RFC 5280 [12, Section 6].
Trust anchor information (typically in the form of self-
signed certificates) must be provided as input to the
algorithm. A prospective certification path of length
n (which does not contain the trust anchor) is also
provided as input, along with other information such

as the current date/time and policies. The algorithm
then iterates over the n certificates and verifies that
they satisfy a number of conditions. We extend that
algorithm as follows:

1) Split the certification path into a regular path
(stopping at the first non-CA certificate, i.e., the
end-entity certificate) and a proxy path (consisting
of zero or more proxy certificates).

2) Run the algorithm exactly as specified in RFC
5280 on the regular path. If the algorithm indi-
cates a failure, then stop and return the failure
indication; otherwise, continue with the next step.

3) If the proxy path is null, then return a success
indication; otherwise, run the algorithm of RFC
5280 on the proxy path as follows:

• Provide the end-entity certificate as the “trust
anchor information” input to the algorithm.

• Ignore the CA boolean in the “basic con-
straints” extension of the proxy certificate(s).

• Consider “subject alternative name” values
in both the end-entity certificate and subse-
quent proxy certificates as additional name con-
straints. That is, in each iteration i of the al-
gorithm, update the “permitted subtrees” state
variable, which defines a set of names “within
which all subject names in subsequent certifi-
cates in the certification path MUST fall.” [12],
as follows:

PSTi = PSTi−1 ∩ NCi ∩ (SANi ∪ CNi),

where PSTi−1 is the previous value of the “per-
mitted subtrees” variable, NCi is the set of
acceptable names defined by the “name con-
straints” extension, SANi is the set of names
indicated in the “subject alternative names”
extension, and CNi is the “common name” field
of the i-th certificate. Initially, PST0 = SAN0

∪ CN0, where SAN0, and CN0 are defined in
the end-entity certificate.

The path length is interpreted as is done in
RFC 5280 for the proxy path as well, restarting the
count. The above validation algorithm then guarantees
that the following properties are satisfied:

• The set of acceptable names cannot be extended
by an additional proxy certificate down the cer-
tification path. However, anyone holding a proxy
certificate and the corresponding private key may
sign another proxy certificate with an equal or
smaller set of acceptable names, provided that the
path length constraint is respected.

• Since every certificate in the validation path must
be valid, the expiration time of a proxy certificate
cannot be deferred by extending the validation
path with an additional proxy certificate.

• The end-entity certificate must be issued by a
trusted CA. It may be used as is by the domain
owner, without any proxy certificate in the chain
(i.e., with a null proxy path).

A CDN holding a proxy certificate for www.exam-

ple.com may issue a valid proxy certificate (one level
below in the chain of trust) for www.example.com,
but not for admin.example.com. Note also that a

wildcard certificate for *.example.com would match
foo.example.com but not bar.foo.example.com as
per current standards [43]. Therefore, someone holding
such a wildcard certificate cannot issue valid proxy
certificates for names that would otherwise not be
covered by the wildcard certificate itself, even when
extending the proxy path.

RFC 3820 [56] provides an analogous logic. How-
ever, we base our algorithm upon the more recent and
complete RFC 5280 [12], which does not cover proxy
certificates. In contrast to our algorithm, RFC 3820
(a) forbids usage of the “subject alternative name”
extension in proxy certificates, (b) does not specify
how “name constraints” should be treated, and (c)
introduces an additional field for restricting the length
of the proxy path, rather than utilizing the existing
“path length” parameter as we do here.

5.2. Certificate Logging

As indicated in Figure 1, we submit that proxy
certificates should not be logged (by CT servers, for
example). Our rationale is as follows: First, the CT
framework was created with the objective of uncov-
ering CA misbehavior and compromise, not attacks
against individual domain owners. Second, comparing
with the current situation, not logging proxy certifi-
cates does not reduce security: an attacker who com-
promises a private key can already impersonate the
corresponding domain; issuing bogus proxy certificates
for that domain would not give the attacker any more
capabilities. Therefore, logging proxy certificates does
not help domain owners discover breaches. Finally,
traditional short-lived certificates are issued by CAs
and, except for their validity period, cannot be dis-
tinguished from regular certificates. This implies that
each short-lived certificate must be logged as any other
certificate, increasing the pressure on log servers. Al-
though potential solutions have been proposed, there
is no consensus on how log servers should deal with
short-lived certificates [31]. If proxy certificates are not
logged, they do not suffer from this issue.

5.3. Use Cases

In this section, we describe three use cases that
highlight the benefits proxy certificates would bring to
the web PKI. These use cases are non-exhaustive, and
the features we present can be combined in different
ways. For example, a domain owner may want to (a)
use a CDN, (b) have multiple subdomains, and (c) be
able to specify different policies on each subdomain.

Use Case 1: Content Delivery. The primary use
case we envision for proxy certificates is content deliv-
ery, with a potentially large number of caching servers
distributing content fetched from an origin server.
The infrastructure needed to best take advantage of
proxy certificates in this scenario depends on different
factors, including whether the domain owner decides
to focus on security, deployability, or efficiency. An
entire range of possible configurations exists. At one
end of the spectrum, the administrator of a static

Edge Server
(Proxy)

Client
(Browser)

Certificate Server*

Origin Server*

TLS session
End-Entity Key*

Firewall

Fetch/push proxy cert.

*may or may not be hosted on
the same machine

Fetch content

(upon cache miss)

Figure 2. Deployment model for Use Case 1 (content delivery).
The white key is certified by the end-entity key (in black)
through proxy certificates.

website with no sensitive data could choose to forgo
using proxy certificates altogether, as they are not
mandatory. At the other extreme, the end-entity key
can be stored on an air-gapped device, kept in a secure
location and configured only to sign very-short-lived
proxy certificates, which could then be extracted from
the signing device using QR codes [33] displayed on
an attached screen and read by a networked camera,
for example. This might be the solution of choice for
an organization with high security requirements, such
as a financial institution.

Before an HTTPS connection can be established,
the client must obtain the IP address of the edge
server through DNS resolution. The edge server could
be one of many servers under the control of a CDN,
for example, or a machine that the domain owner
controls directly. If the edge server is controlled by the
domain owner, the DNS resolution is straightforward.
Redirection to a CDN server, on the other hand, can
be realized in different ways, as described in Section 2.

The client then establishes an HTTPS connection
with the edge server, which temporarily stores some
or all of the resources fetched from an origin server,
as illustrated in Figure 2. To establish a TLS connec-
tion with the client, the edge server needs a proxy
certificate that it can either fetch from the certificate
server, or that the certificate server can push at regular
intervals. Issuing these proxy certificates requires an
initial setup:

1) The edge server (or the entity controlling it) gen-
erates a key pair and puts the public key into an
unsigned certificate signing request (CSR) with
the same format as a standard CSR. We call this
file a proxy CSR.

2) The domain owner obtains the proxy CSR
through an authentic channel (e.g., the web portal
of the CDN).

3) The domain owner configures the certificate
server to issue proxy certificates (based on the
proxy CSR) at a specified frequency and with
a specified validity period. Only the notBefore

and notAfter fields [12] are updated. The validity
periods of two consecutive proxy certificates must
overlap to avoid downtimes.

Thereafter, when needed, the certificate server cre-
ates a new proxy certificate and signs it using the end-
entity key. This implies that the certificate server must
either have direct access to the end-entity key or access
to a device able to produce the appropriate signatures.

For example, the end-entity key could be stored on
a hardware security module (HSM). The proxy cer-
tificate is then transmitted from the certificate server
to the edge server. As proxy certificates are public
information, any communication protocol can be em-
ployed. The CDN could even extend the certification
path further (by additional proxy certificates) so that
different keys are used by different edge servers.

Under normal circumstances, even if the proxy
certificates are short-lived, the key pair used by the
edge server can remain unchanged over a long time.
Indeed, the reissuance process only serves the purpose
of extending a lease to the proxy, but does not imply
a key rollover. If needed, key rollover can be achieved
simply by having the edge server generate a new key
pair, and use the new public key for subsequent key
signing requests. The domain owner has the option of
terminating that lease at any time, by simply stopping
the issuance process, thus effectively revoking delega-
tion privileges. It is recommended, in such a context,
to restrict traffic to the certificate and origin servers,
especially from the public Internet. A firewall may
be configured to limit incoming connections to those
from the CDN’s IP space, which is generally public
information [11].

Since 2016, Let’s Encrypt has been offering free
certificates to domain owners, thanks in part to a
completely automated domain validation process sup-
ported by the Automatic Certificate Management
Environment (ACME) protocol [2]. Since then, sev-
eral other CAs have followed suit and started us-
ing ACME [14], [46]. These CAs generally also offer
tools for (re)issuing and revoking certificates. In 2018,
ACME v2 was adopted by Let’s Encrypt, notably to
support wildcard certificates [1]. Similar automation
could be adopted by domain owners to handle and
maintain proxy certificates, which could be imple-
mented using a software framework like that of Let’s
Encrypt, or incorporated into it.

Use Case 2: Private, Separated Subdomains.
Another use case is that of using different private
keys on different subdomains. Wildcard certificates
(albeit generally more expensive than regular ones)
are appreciated by domain owners because they allow
them to protect any number of subdomains they want,
independently from CAs. However, a wildcard certifi-
cate normally implies that the same private key is used
on all subdomains. In contrast, by using a wildcard in
the end-entity certificate (such as *.example.com) but
a more specific name (such as s1.example.com) in all
proxy certificates (see Figure 1), the domain owner can
make sure that the consequences of a key compromise
or misbehavior from a hosting provider are confined
to the corresponding subdomain.

Moreover, as proxy certificates need not be in-
cluded in certificate logs such as CT’s (see Section 5.2
above for motivations), they would not disclose pri-
vate subdomain names such as secret-project.ex-

ample.com, which is an otherwise inherent and unde-
sirable consequence of Certificate Transparency [18].
Stark et al. [48] reported that CAs stripping full do-
main names from logged certificates was a cause of

breakage in the early deployment of CT, and listed
name redaction as an open problem. Eskandarian et
al. [17] proposed a solution to supporting private sub-
domains based on cryptographic commitments, but
it would require updating browsers, log servers, and
CA software. Scheitle et al. [44] also showed that CT
logs are being actively monitored to find new domain
names as targets.

Use Case 3: Dynamic Security Policies. One of
the benefits of proxy certificates is that they lend
themselves to short validity periods. However, a more
general advantage is that they allow domain owners
to define security policies dynamically and for each
subdomain separately: every time a proxy certificate
is created or renewed, the domain owner is free to
define a new policy or change an existing one using
the appropriate fields in the proxy certificate. We do
not attempt to exhaustively list all such policies here,
but discuss a few salient examples. The notBefore and
notAfter fields define the validity period of the cer-
tificate, while pathLenConstraint restricts the length
of the certification path.

As we have seen, the assumption that the domain
name and servers are controlled by the same entity no
longer holds. As a consequence, a domain owner may
not approve of the server’s configuration. For example,
a CDN (or attacker having compromised the domain’s
private key) may try to use session resumption to ex-
tend a TLS session far beyond the certificate’s expira-
tion date (see Section 7). With a dedicated certificate
extension field in the proxy certificate, a security-
focused domain owner could indicate to the browser
that session resumption should not be attempted.
The browser may be configured to strengthen certain
domain policies, but should not weaken them.

Another example of a policy relates to how
browsers deal with protocol errors. As pointed out
by Szalachowski et al. [54], domain owners should be
able to influence the decision of the browser to either
completely stop a TLS communication in case an
anomaly occurs, a hard fail, or give the user an option
to proceed despite the risk, a soft fail. Indeed, the
domain owner is the entity best able to specify the
level of security and availability that their application
requires and determine whether the browser should
hard fail or soft fail. We suggest that domain owners
should be able to express their preference for a failure
mode through an extension in the proxy certificates
they issue.

6. Delegated Credentials

A recent alternative to proxy certificates are dele-
gated credentials, which we describe here to enable our
detailed comparison later. Similarly to proxy certifi-
cates, delegated credentials are designed to be short-
lived and allow delegation to be done offline. In con-
trast to proxy certificates delegated credentials are not
full-fledged X.509 certificates. A delegated credential
is composed of a public key, a validity time (relative
to the certificate’s notBefore field), a signature al-
gorithm, and the signature itself. In addition, every

delegated credential is bound to a signature algorithm
that may be used during the TLS handshake [3].

An argument put forth by the authors of the Inter-
net Draft for using delegated credentials rather than
proxy certificates is that their semantics are minimized
to mitigate the risks of cross-protocols attacks. More-
over, software changes required to support delegated
credentials are limited to the TLS stack and do not
affect PKI code.

Delegated credentials almost exclusively address
the Use Case 1 of proxy certificates, that is, delega-
tion to content delivery networks. They do not allow
domain owners to enforce security policies on a per-
subdomain basis and do not address the problem of
keeping subdomains private.

6.1. Server and Client Authentication

Although TLS is most commonly used for server
authentication, it supports client authentication as
well, and so do delegated credentials. Below we only
describe server authentication but client authentica-
tion is handled analogously.

A client supporting delegated credentials must first
indicate it by sending an empty “delegated creden-
tial” extension in its ClientHello message (during the
TLS handshake). The server may then send a dele-
gated credential to the client, only if this extension is
present. This mechanism ensures that an incremental
deployment is possible: delegated credentials are only
provided to browsers that support them while a less
efficient alternative, such as Keyless SSL, can be used
with legacy clients. A similar mechanism could be used
for an incremental deployment of proxy certificates.

6.2. Validation and Requirements

A delegated credential is validated as follows. First,
the current time must be within the validity period
of the credential, and the lifetime of the credential
cannot be greater than 7 days. Second, the signature
algorithm used to sign the TLS handshake must match
the one indicated in the credential. Finally, the end-
entity certificate must satisfy the conditions we de-
scribe below, and its public key must be used to verify
the signature on the credential.

Delegated credentials introduce a new certificate
extension: DelegationUsage. The signature on the
delegated credential may be generated using the end-
entity certificate’s private key, under the conditions
that the digitalSignature bit is set (in the key usage
extension of the certificate) and that the delegation
usage extension is present. The digital signature bit is
only required when the subject public key is used for
verifying signatures “other than signatures on certifi-
cates” [12]. Therefore, the digital signature bit is not
required for validating proxy certificates.

6.3. Deployment Incentives

The deployment of a new technology is always
challenging, especially when it affects core Internet

protocols. On the one hand, new security policies (e.g.,
requiring that the server provide SCTs to support
Certificate Transparency) are often not enforced due
to fear of breakage [48]. On the other hand, not sup-
porting a new scheme and thus causing breakage is
different. Proxy certificates and delegated credentials
both fall into the second category, as a connection to
a server employing one of those delegation techniques
might fail if the browser does not support them.

7. TLS with Short-Lived Certificates

TLS was not designed with short-lived certificates
or credentials in mind. In this section, we explain why
it is critical that the certificate lifetime be considered
even after a connection is established. We stress that
this issue does not only concern proxy certificates. Our
discussion concerns any TLS session that is sufficiently
long-lived to extend beyond the certificate’s expiration
time. This situation is not as unlikely as it may ini-
tially appear, when we consider session resumption,
but has unfortunately often been neglected in previous
work on short-lived certificates [36], [55].

7.1. TLS sessions and resumption

We focus on TLS 1.3 [41] and use its nomencla-
ture, rather than that of older TLS versions. However,
similar arguments apply to older TLS versions, in
particular, TLS 1.2.

TLS describes a key-exchange protocol between
two parties, resulting in shared keying material used
in a subsequent connection transferring data. Such
a connection usually times out after not being used
between 1 to 5 minutes, but can otherwise stay alive
indefinitely. This connection is part of a session that
may (and in practice does) provide a pre-shared key
(PSK) which is single-use and provisioned for session
resumption, which creates a new connection.

Based on a PSK, a client can reconnect to the
server while the PSK stays valid, without the certifi-
cate being checked again. Note that a PSK stays valid
for up to 7 days, at the issuing server’s discretion.
Using PSK-based resumption (usually) provisions a
new PSK, again valid for 7 days from its issuance,
allowing indefinite chaining [41, Section 4.6.1].

7.2. The problem with resumption

At no point after the initial full key exchange is
the certificate, or its lifetime, considered. The TLS
1.3 specification suggests that the validity of connec-
tions and sessions should consider certificate validity,
but does not mandate it [41, at the end of Section
4.6.1]. Using session resumption can therefore nullify
the security benefits of short-lived certificates. Cur-
rent web browsers do not check that a resumption is
performed within the certificates’ lifetime. A malicious
edge server can issue a session PSK with a long lifetime
(maximum of 7 days) to clients and prolong them on
every subsequent connection, thereby subverting the
benefit of short-lived certificates.

The Internet Draft describing delegated creden-
tials [3] only states that “if a client decides to cache
the certificate chain and re-validate it when resuming a
connection, the client should also cache the associated
delegated credential and re-validate it.”

7.3. Possible solutions

Currently, the simplest solution to this problem is
to disallow session resumption completely, thereby for-
saking its efficiency benefits. For non security-sensitive
websites, one can opt for more efficiency and use
longer-lived certificates together with session resump-
tion. Unfortunately, most browsers do not allow users
to configure the use of session resumption. However,
some privacy-aware browsers such as Tor Browser or
JonDoBrowser disable session resumption globally to
prevent user tracking [51]. We propose a more flexible
approach based on dynamic policies (as explained in
Use Case 3 above, Section 5.3) where a domain can
determine an on-off session resumption policy, which
is then enforced by the browser.

A further improvement that combines security and
efficiency would require a coordination between the
lifetimes of the short-lived certificates and the session
PSKs, ensuring that a PSK cannot be used after
the expiration of the edge server’s (or subdomain’s)
certificate. For the certificate obtained from the
server during the first connection of a session, this
could be achieved by dropping the connection when
the certificate expires. Unfortunately, handling the
extended expiration time of subsequently issued
short-lived certificates appears hard to achieve, since
it additionally mandates a timely update of these
certificates in the browser. Such an update could be
achieved by either (a) establishing a fresh session,
which involves a full TLS handshake, or (b) updating
the certificate in the web browser by an out-of-band
communication with the domain. The former solution
means that the use of the session PSK is limited by the
lifetime of a single short-lived certificate, which makes
resumption useless with minute-range certificate
lifetimes. The latter would effectively enable the
use of session resumption as long as the browser
possesses a valid certificate for the domain. However,
implementing this solution would likely involve
considerable modifications to current infrastructure.

Using proxy certificates, a domain owner can spec-
ify its own session resumption policies, which are then
enforced by the browser. This allows a fine-grained
split, for example by subdomain, where security-
critical subdomains (e.g., a login page) disallows re-
sumption, while other pages allow it. In conclusion, as
proxy certificates provide domain owners fine-grained
control over their policies, they achieve the efficiency
benefits of quick session resumption without losing the
security benefits across all subdomains.

8. Analysis

We now present our framework for characterizing
delegation and revocation schemes with respect to a
wide range of properties. Our results are summarized

in Table 1. We formulate the properties in terms of the
benefits that the different schemes may provide and we
categorize these benefits into six classes: revocation-
related, delegation-related, security, efficiency, deploy-
ability, and cross-category benefits. We consider 19
possible benefits in total, two of which cover the re-
quirements we have set out in Section 1. We classify
each scheme as to whether it provides, partially pro-
vides, or does not provide each benefit.

At the bottom of the table we list various com-
binations of schemes that add benefits. Short-lived
proxy certificates and delegated credentials offer al-
ready most of the benefits. By combining proxy certifi-
cates of delegated credentials with different revocation
schemes, we can achieve additional benefits.

Evaluation Criteria

A. Revocation-Related Benefits

Supports CA revocation: A revocation scheme
should give authorized entities (such as CAs or soft-
ware vendors) the ability to invalidate the certificates
of root and intermediate CAs. We give partial points
to schemes that theoretically support revoking CA
certificates but require contacting those CAs.
Supports damage-free CA revocation: Revoking
a CA certificate should not cause collateral damage,
i.e., it should not invalidate certificates issued by the
revoked CA before it was compromised. Standard re-
vocation invalidates all previously issued certificates
by a revoked CA, thus leading to collateral damage.
Supports leaf revocation: This benefit is offered by
schemes that enable the revocation of certificates or
credentials at the end of the certification path. We
give partial points to schemes that only propagate a
manually selected subset of revocations. Short-lived
certificates and delegated credentials offer this benefit
(although, strictly speaking, they do not support revo-
cation) because they allow domain owners to rapidly
make a compromised key unusable for the attacker,
which is equivalent. Self-signed certificates do not offer
this benefit as their revocation requires additional
mechanisms. Proxy certificates get partial points as
they are not necessarily short-lived.
Supports autonomous revocation: Domain own-
ers can autonomously (i.e., without reliance on a CA,
browser vendor, or log) perform “leaf revocation” (see
above). This benefit corresponds to Requirement R1.

B. Delegation-Related Benefits

Supports delegation: Schemes offering this benefit
allow domain owners to transfer some or all of their
privileges (not necessarily in a secure way).
Supports delegation without key sharing: This
benefit is offered by schemes that let domain owners
autonomously delegate certain rights without sharing
any private key. This corresponds to Requirement R2.

C. Security Benefits

Supports domain-based policies: This benefit is
offered by schemes that let domain owners define

Table 1. Comparison of revocation and delegation approaches. Columns represent benefits. Each benefit falls under
one of six categories (A–F). Benefits corresponding to the requirements are marked with R1 and R2 . See Section 3

for our categorization of revocation schemes (Cat. I–IV) and Section 8 for the definitions of our criteria.

S
u

p
p

o
rt

s
C

A
re

v
o

c
a

ti
o

n

S
u

p
p

o
rt

s
d

a
m

a
g

e
-f

re
e

C
A

re
v

.

S
u

p
p

o
rt

s
le

a
f

re
v

o
c
a

ti
o

n

S
u

p
p

o
rt

s
a

u
to

n
o

m
o

u
s

re
v

.
(R

1
)

S
u

p
p

o
rt

s
d

e
le

g
a

ti
o

n

D
e
le

g
a

ti
o

n
w

/
o

k
e
y

sh
a

ri
n

g
(R

2
)

S
u

p
p

o
rt

s
d

o
m

a
in

-b
a

se
d

p
o

li
c
ie

s

N
o

tr
u

st
-o

n
-fi

rs
t-

u
se

re
q

u
ir

e
d

P
re

se
rv

e
s

u
se

r
p

ri
v

a
c
y

D
o

e
s

n
o

t
in

c
re

a
se

p
a

g
e
-l

o
a

d
d

e
la

y

L
o

w
b

u
rd

e
n

o
n

C
A

s
R

e
a

so
n

a
b

le
lo

g
g

in
g

o
v

e
rh

e
a

d

N
o

n
-p

ro
p

ri
e
ta

ry

N
o

sp
e
c
ia

l
h

a
rd

w
a

re
re

q
u

ir
e
d

N
o

e
x

tr
a

C
A

in
v

o
lv

e
m

e
n

t
N

o
b

ro
w

se
r-

v
e
n

d
o

r
in

v
o

lv
e
m

e
n

t
S

e
rv

e
r

c
o

m
p

a
ti

b
le

B
ro

w
se

r
c
o

m
p

a
ti

b
le

N
o

o
u

t-
o

f-
b

a
n

d
c
o

m
m

u
n

ic
a

ti
o

n

Scheme R
ef

er
en

ce

A B C D E F

Revocation
Schemes

a. Regular CRL (Cat. I) [12] G# # # # # # # # # # G# #

b. Hard-fail OCSP (Cat. I) [35] G# # # # # # # # # # G# #

c. OCSP stapling (Cat. II) [39] G# # # # # # # # G# G#

d. PKISN (Cat. II) [53] # # # # G# G# # #

e. CRLSets (Cat. III) [25] # G# # # # # # # G#

f. OneCRL (Cat. III) [34] # G# # # # # # # G#

g. CRLite (Cat. III) [26] # # # # # # #

h. RevCast (Cat. IV) [45] # # # # # # # #

i. RITM (Cat. IV) [52] # # # # # G# # #

Delegation
Schemes

j. SSL splitting [28] # # # # # # #

k. Keyless SSL [5] # # # # # # #

l. Key sharing [9] # # # # # #

m. DANE-based delegation [29] # # # # # # #

n. Delegated credentials [3] # # G# G# # #

Certificate
Features

o. Self-signed certificates [59] # # # # G# G# G#

p. Short-lived certificates [55] # # # # # # # # #

q. Name-constrained cert. [13] # # # # # # G#

r. Cruise-liner certificates [9] # # # # # # #

s. Proxy certificates [58] # # G# G# G# #

Combinations
of Schemes

n + d # G# G# # #

n + (e or f) # # # G# # # #

n + g # # G# # # #

p + s # # G# #

p + s + d G# G# # #

p + s + (e or f) # # # G# #

p + s + g # # G# #

 = offers the benefit; G# = partially offers the benefit; # = does not offer the benefit.

policies, e.g., specifying whether session resumption
is authorized or not (see Use Case 3 in Section 5.3).
We give partial points to delegated credentials because
their semantics are limited and only allow the domain
owner to define the validity period.

No trust-on-first-use required: This benefit is of-
fered by schemes that do not require trusting a public
key the first time it is encountered. We give partial
points to self-signed certificates as they can be ob-
tained through an authentic channel beforehand.

Preserves user privacy: Browsers should not have
to reveal any domain-related data to a third party
when validating a certificate or delegation.

D. Efficiency Benefits

Does not increase page-load delay: This benefit is
offered by schemes that do not substantially increase
the time it takes for the browser to load pages. We
ignore small processing delays, but do not grant this
benefit to schemes that incur additional network delay.

Low burden on CAs: Experience has shown that if a
scheme requires CAs to make considerable operational
efforts, but provides limited financial benefits, then the
scheme is unlikely to be successful. In particular, CAs
should not have to handle high numbers of requests
from clients (e.g., to check a revocation status) or be
required to reissue certificates at a high frequency.

Reasonable logging overhead: The scheme should
not put excessive pressure on certificate logs. Logging

certificates with a short validity period or issued by
the domain owners themselves (hence, potentially too
many) would make logs blow up.

E. Deployability Benefits

Non-proprietary: A scheme is more generally useful
if it is not bound to or controlled by a particular
software vendor. This benefit is offered by schemes
that are open, not controlled by a single organization,
and not restricted to a single browser.
No special hardware required: This holds for
schemes without special hardware requirements. We
give partial points to schemes that do not require
special hardware but require that existing hardware
(e.g., middleboxes) be updated to support the scheme.
No extra CA involvement: This benefit is offered
by schemes that work without the participation of
CAs (beyond regular certificate issuance). We give
partial points to delegated credentials as they require
the CA to issue an end-entity certificate with special
extensions (see Section 6.2). We also give partial points
to schemes that permit CA involvement but do not
require it. CRLs and OCSP do not provide this benefit
as CAs typically act as issuer/responder, although in
theory this role can be fulfilled by another entity.
No browser-vendor involvement: This benefit is
offered by schemes that do not require the participa-
tion of browser vendors beyond the need to develop
compatible software. For example, browser-vendor in-
volvement can consist in regularly selecting and prop-
agating a set of revocations through browser up-
dates. We give partial points to schemes that permit
software-vendor involvement but do not require it.
Server compatible: This benefit means that no
changes are required on the server side. OCSP sta-
pling partially offers the benefit as it requires actions
from the web server but is widely supported. Proxy
certificates also partially offer the benefit as they could
be used a priori by any web server, but software
updates would be needed to let domain owners fully
take advantage of proxy certificates.
Browser compatible: This indicates that no changes
to the browser are required. We give partial points to
standardized schemes that are implemented by major
browser vendors but often turned off by default or im-
properly enforced. Self-signed certificates also received
partial points for this benefit as they typically generate
error messages on first use. We also give partial points
to schemes that are specific to a particular browser
(e.g., CRLSets for Chrome only).

We purposely did not include “incrementally de-
ployable” in our analysis as we believe that it is a
vague and potentially misleading “benefit” in this con-
text. OCSP stapling, for example, can be considered
incrementally deployable in its soft-fail variant (i.e.,
the browser does not return an error when the server
does not support stapling), but this allows an attacker
to simply omit the OCSP status of a revoked certifi-
cate and thus provides no added security. Incremental
deployment can also be interpreted as “clients that
have not been updated to support a scheme can still
communicate with servers that support it (although

the clients will not reap the security benefits of that
scheme)”, but this is captured by our “browser com-
patible” benefit. The flip side of deploying a security
scheme that is compatible with previous browser ver-
sions is that users with outdated software are unlikely
to realize that their browser does not support the
latest security standards, which does not encourage
adoption.

F. Cross-Category Benefit

No out-of-band communication: Requiring users
to communicate with a third party or use a different
channel is problematic. It can compromise user pri-
vacy, increase latency, and captive portals may not
allow the connection to be made. We grant this benefit
to schemes that require users to neither use a separate
channel nor establish a connection with a server that
would not be contacted otherwise. We grant partial
points to self-signed certificates for this benefit, as
an out-of-band communication may be used to cir-
cumvent the TOFU problem self-signed certificates
inherently have otherwise.

Combinations of Schemes

In Table 1, we evaluate the benefits of combin-
ing proxy certificates and delegated credentials with
other schemes. When proxy certificates are short-lived
(i.e., when schemes p and s are combined), revocation
becomes feasible thus offering the “supports leaf re-
vocation” benefit. In that case, revocation would be
undertaken by the domain owner rather than the CA.
The owner issues short-lived certificates (e.g., a few
hours) and simply refrains from renewing these on
time of expiry when revocation is needed.

The revocation of CA certificates is supported nei-
ther by proxy certificates nor by delegated creden-
tials. CA certificate revocation has a vastly different
scale (with regard to the total number of certificates)
and different requirements. Therefore, we suggest that
schemes that were specially designed for that purpose
(such as PKISN [53]) or schemes that work well with
smaller numbers of certificates (such as CRLSets and
OneCRL) be used in conjunction with proxy certifi-
cates or delegated credentials.

As we could not include all possible combinations
in our comparison table, we only included schemes
that offer complementary benefits with minimal draw-
backs, and schemes that are already widely deployed
(CRLSets, OneCRL). We see that several combina-
tions fulfill both of the requirements, in most cases
requiring only minor software updates.

9. Related Work

In 2013, Clark and van Oorschot [10] surveyed
problems of the TLS/HTTPS ecosystem and its trust
model. Their systematization of knowledge covers
a wide range of problems, including TLS protocol
flaws, certification, trust anchoring, and user interface
issues. They evaluate various enhancements with
respect to security properties in three categories

(detecting MitM attacks, TLS stripping, and PKI
improvements) and their general impact on security
and privacy, deployability, and usability.1 Their
analysis highlighted how CA infrastructures are
increasingly being seen as a fundamental weakness in
the PKI system. The authors also analyzed techniques
against fraudulent certificates, including certificate
pinning. With support for certificate pinning dropped
after years of operation [38], it is becoming clearer
that such directions provide little hope to address
our current challenges. In contrast, our work focuses
on delegation and revocation and considers recent
developments of the HTTPS ecosystem, such as
delegated credentials, Certificate Transparency,
CDNs, and session resumption. Moreover, the work
of Clark and van Oorschot does not include proxy
certificates and recently proposed revocation schemes.

We now mention related topics that are relevant to
the area of the web PKI, delegation, or more generally
SSL/TLS, but go beyond the scope of our study.

9.1. Holistic PKI Proposals

AKI [23] and its successor ARPKI [4] are more
holistic approaches to upgrading the web PKI. One
of the main ideas in these proposals is that resilience
to compromise can be improved by requiring
that multiple CAs sign each end-entity certificate.
Additionally, to guarantee that no other rogue
certificate exists for a given domain, all certificates
must be logged and log servers efficiently produce
both presence and absence proofs. Unfortunately, this
also implies that only one certificate per domain can
be valid at any given time. ARPKI’s key security
properties were also formally verified.

PoliCert [54] builds on top of ARPKI to solve the
unique-certificate problem by replacing the end-entity
certificate by a unique domain policy that specifies
which CAs are allowed to issue (potentially multiple)
certificates for that domain. However, that approach
does not allow domain owners to rapidly change their
policies or produce their own certificates (i.e., with-
out contacting several CAs). Therefore, proxy certifi-
cates could complement ARPKI certificate chains as a
lightweight and more dynamic alternative to PoliCert.

9.2. Beyond HTTPS Delegation

A number of previous research papers have ad-
dressed the problem of delegation in different con-
texts than that of the web. Kogan et al. [24] argue
that a secure delegation system should always make
explicit “who will do what to whom”, and present a
design for the SSH protocol, called Guardian Agent.
MacKenzie et al. [32] address the problem of server
delegation in the context of capture-resilient devices
(i.e., devices required to confirm password guesses with
a designated remote server before private-key opera-
tions). STYX [57] is a key management scheme, based

1. Some evaluation criteria semantically overlap with theirs,
e.g., “preserves user privacy”, “server compatible”, and “no out-
of-band communication”. Other criteria are problem-specific.

on Intel SGX, Intel QuickAssist Technology, and the
SIGMA (SIGn-and-MAc) protocol, which can be used
to distribute and protect SSL/TLS keys.

9.3. Other Issues with SSL/TLS

Sy et al. [51] recently showed, after analyzing as
many as 48 browsers, that session resumption was also
problematic for user privacy as it can be used to track
the average user for up to eight days with standard
settings. With a long session resumption lifetime, a
majority of users can even be tracked permanently.
Problems have also been discovered in the way CAs
perform domain validation: exploiting a BGP vulner-
ability to hijack traffic, an attacker can obtain a rogue
certificate from vulnerable CAs [6], [7]. Brubaker et
al. also found serious vulnerabilities in popular imple-
mentations of SSL/TLS using certificates with unusual
combinations of extensions and constraints [8].

10. Conclusion

Delegation and revocation sometimes appear to be
two sides of the same coin. We have shown that it is
possible to simultaneously address both of these issues
with a slight modification to the chain of trust, but this
is a delicate task. On the one hand, using a single long-
lived certificate per domain has several advantages:
it is more practical for administrators, it lowers the
pressure on transparency logs, it reduces CA-incurred
costs, and thus benefits the deployment of HTTPS.
On the other hand, using short-lived credentials, not
sharing private keys with third parties, and limiting
the scope and exposure of private keys is preferable
from a security standpoint.

Delegated credentials and proxy certificates solve
this conundrum with minor changes to existing stan-
dards and little overhead. They give more flexibility
to domain owners and accommodate practices that
have become ubiquitous on the web, such as delegation
to CDNs. Although proxy certificates and delegated
credentials address similar issues, proxy certificates
offer more flexibility. For example, they enable domain
owners to maintain as many certificates as they desire,
without CA reliance, with policies and validity periods
defined individually for each subdomain. Proxy cer-
tificates also address the problem of keeping private
subdomains hidden from certificate logs.

We thus view the recent deployment efforts sur-
rounding delegated credentials with optimism, but
note that many challenges remain. For example, ses-
sion resumption—whose goal is to bring page-load
delay to a minimum, which in turn is one of the
main reasons for using a CDN in the first place—
finds itself in conflict with short-lived credentials. Also,
the revocation of CA certificates is a major issue that
short-lived credentials do not address. Other schemes
bring solutions to these issues but combining them
in meaningful ways is hard. Some of the examined
proposals may be conceptually simple, but have con-
siderable ramifications in the highly complex HTTPS
ecosystem. We hope that our systematic analysis sheds
light on these issues and helps guide future research.

References

[1] Josh Aas. ACME v2 API endpoint coming January 2018,
June 2017. https://perma.cc/K65K-N9L6.

[2] Richard Barnes, Jacob Hoffman-Andrews, Daniel McCar-
ney, and James Kasten. Automatic certificate management
environment (ACME). RFC 8555, March 2019.

[3] Richard Barnes, Subodh Iyengar, Nick Sullivan, and Eric
Rescorla. Delegated credentials for TLS. Technical report,
November 2019. draft-ietf-tls-subcerts-05.

[4] David Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian
Perrig, Ralf Sasse, and Pawel Szalachowski. Design, anal-
ysis, and implementation of ARPKI: an attack-resilient
public-key infrastructure. IEEE Transactions on Depend-
able and Secure Computing (TDSC), October 2016.

[5] Karthikeyan Bhargavan, Ioana Boureanu, Pierre-Alain
Fouque, Cristina Onete, and Benjamin Richard. Content
delivery over TLS: a cryptographic analysis of keyless SSL.
In Proceedings of the IEEE European Symposium on Secu-
rity and Privacy (EuroS&P), August 2017.

[6] Henry Birge-Lee, Yixin Sun, Annie Edmundson, Jennifer
Rexford, and Prateek Mittal. Bamboozling Certificate Au-
thorities with BGP. In Proceedings of the USENIX Security
Symposium, 2018.

[7] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shul-
man, and Michael Waidner. Domain Validation++ for
MitM-Resilient PKI. In Proceedings of the ACM Confer-
ence on Computer and Communications (CCS), 2018.

[8] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khur-
shid, and Vitaly Shmatikov. Using frankencerts for auto-
mated adversarial testing of certificate validation in ssl/tls
implementations. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2014.

[9] Frank Cangialosi, Taejoong Chung, David Choffnes, Dave
Levin, Bruce Maggs, Alan Mislove, and Christo Wilson.
Measurement and analysis of private key sharing in the
HTTPS ecosystem. In Proceedings of the ACM Conference
on Computer and Communications (CCS), 2016.

[10] Jeremy Clark and Paul C. van Oorschot. SoK: SSL and
HTTPS: revisiting past challenges and evaluating certifi-
cate trust model enhancements. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2013.

[11] CloudFlare. IP ranges. https://www.cloudflare.com/ips.

[12] David Cooper, Stefan Santesson, Stephen Farrell, Sharon
Boeyen, Russell Housley, and Tim Polk. Internet X.509
public key infrastructure certificate and certificate revoca-
tion list (CRL) profile. RFC 5280, May 2008.

[13] Matt Cooper, Yuriy Dzambasow, Peter Hesse, Susan
Joseph, and Richard Nicholas. Internet X.509 public key
infrastructure: Certification path building. RFC 4158,
September 2005.

[14] DigiCert. DigiCert announces certcentral enterprise, a
comprehensive, all-in-one digital certificate management
solution for enterprise cloud and hosted TLS/SSL environ-
ments, January 2019. https://perma.cc/54V4-MDD2.

[15] Zakir Durumeric, James Kasten, Michael Bailey, and J Alex
Halderman. Analysis of the HTTPS certificate ecosystem.
In Proceedings of the 2013 conference on Internet measure-
ment conference, pages 291–304, 2013.

[16] Zakir Durumeric, Frank Li, James Kasten, Johanna
Amann, Jethro Beekman, Mathias Payer, Nicolas Weaver,
David Adrian, Vern Paxson, Michael Bailey, et al. The
matter of Heartbleed. In Proceedings of the ACM Internet
Measurement conference (IMC), 2014.

[17] Saba Eskandarian, Eran Messeri, Joseph Bonneau, and
Dan Boneh. Certificate transparency with privacy. Proceed-
ings on Privacy Enhancing Technologies, 2017(4):329–344,
2017.

[18] Google Code Archive. Need options for avoiding logging
private subdomains (certificate-transparency issue #20),
October 2013. https://perma.cc/27RW-PNWF.

[19] Phillip Hallam-Baker. X.509v3 extension: OCSP stapling
required. Internet draft, October 2012. draft-hallambaker-
muststaple-00.

[20] Paul Hoffman and Jakob Schlyter. The DNS-based authen-
tication of named entities (DANE) transport layer security
(TLS) protocol: TLSA. RFC 6698, August 2012.

[21] Subodh Iyengar, Kyle Nekritz, and Alex Guzman. Del-
egated credentials: Improving the security of TLS certifi-
cates, November 2019. https://perma.cc/G3TC-9ZYU.

[22] Kevin Jacobs, J.C. Jones, and Thyla van der Merwe. Val-
idating delegated credentials for TLS in firefox, November
2019. https://perma.cc/VG47-PKLC.

[23] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perrig,
Collin Jackson, and Virgil Gligor. Accountable key in-
frastructure (AKI): A proposal for a public-key validation
infrastructure. In Proceedings of the International World
Wide Web Conference (WWW), May 2013.

[24] Dmitry Kogan, Henri Stern, Ashley Tolbert, David Maz-
ières, and Keith Winstein. The case for secure delegation.
In Proceedings of the ACM Workshop on Hot Topics in
Networks (HotNets), pages 15–21, 2017.

[25] Adam Langley. Revocation checking and Chrome’s CRL.
ImperialViolet, 2012. https://perma.cc/X7FT-W3LF.

[26] James Larisch, David Choffnes, Dave Levin, Bruce M.
Maggs, Alan Mislove, and Christo Wilson. CRLite: A scal-
able system for pushing all TLS revocations to all browsers.
In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), May 2017.

[27] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate
transparency. RFC 6962, June 2013.

[28] Chris Lesniewski-Laas and M Frans Kaashoek. SSL split-
ting: Securely serving data from untrusted caches. Com-
puter Networks, 48(5):763–779, August 2005.

[29] Jinjin Liang, Jian Jiang, Haixin Duan, Kang Li, Tao Wan,
and Jianping Wu. When HTTPS Meets CDN: A Case of
Authentication in Delegated Service. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), pages
67–82, April 2014.

[30] Yabing Liu, Will Tome, Liang Zhang, David Choffnes, Dave
Levin, Bruce Maggs, Alan Mislove, Aaron Schulman, and
Christo Wilson. An end-to-end measurement of certificate
revocation in the web’s PKI. In Proceedings of the ACM
Internet Measurement Conference (IMC), 2015.

[31] Diego Lopez, Antonio Pastor-Perales, Yaron Sheffer, and
Thomas Fossat. Short-lived certificates and certificate
transparency. IETF 100 Singapore, November 2017.

[32] Philip MacKenzie and Michael K. Reiter. Delegation of
cryptographic servers for capture-resilient devices. Dis-
tributed Computing, 16(4):307–327, December 2003.

[33] Stephanos Matsumoto, Samuel Steffen, and Adrian Perrig.
CASTLE: CA signing in a touch-less environment. In
Proceedings of the Annual Computer Security Applications
Conference (ACSAC), December 2016.

[34] Mozilla. CA:RevocationPlan. https://wiki.mozilla.org/
CA:RevocationPlan.

[35] Michael Myers, Rich Ankney, Ambarish Malpani, Slava
Galperin, and Carlisle Adams. X.509 internet public key
infrastructure online certificate status protocol - OCSP.
RFC 2560, June 1999.

[36] Yoav Nir, Thomas Fossati, Yaron Sheffer, and Toerless
Eckert. Considerations for using short term certificates.
Technical report, March 2018. draft-nir-saag-star-01.

[37] Devon O’Brien. Certificate Transparency Enforcement
in Chrome and CT Day in London. https://perma.cc/
73NM-SHZN.

https://perma.cc/K65K-N9L6
https://www.cloudflare.com/ips
https://perma.cc/54V4-MDD2
https://perma.cc/27RW-PNWF
https://perma.cc/G3TC-9ZYU
https://perma.cc/VG47-PKLC
https://perma.cc/X7FT-W3LF
https://wiki.mozilla.org/CA:RevocationPlan
https://wiki.mozilla.org/CA:RevocationPlan
https://perma.cc/73NM-SHZN
https://perma.cc/73NM-SHZN

[38] Chris Palmer. Intent to deprecate and remove: Public key
pinning, 2017. https://perma.cc/MC9E-BW5H.

[39] Yngve N. Pettersen. The transport layer security (TLS)
multiple certificate status request extension. RFC 6961,
June 2013.

[40] J. Ronald Prins. DigiNotar certificate authority breach
“Operation Black Tulip”. Interim report, Fox-IT, Septem-
ber 2011.

[41] Eric Rescorla. The transport layer security (TLS) protocol
version 1.3. RFC 8446, August 2018.

[42] Ronald L. Rivest. Can we eliminate certificate revocation
lists? In Proceedings of the Financial Cryptography and
Data Security Conference, 1998.

[43] Peter Saint-Andre and Jeff Hodges. Representation and
verification of domain-based application service identity
within internet public key infrastructure using X.509
(PKIX) certificates in the context of transport layer secu-
rity (TLS). RFC 6125, March 2011.

[44] Quirin Scheitle, Oliver Gasser, Theodor Nolte, Johanna
Amann, Lexi Brent, Georg Carle, Ralph Holz, Thomas C.
Schmidt, and Matthias Wählisch. The rise of Certificate
Transparency and its implications on the Internet ecosys-
tem. In Proceedings of the ACM Internet Measurement
Conference (IMC), 2018.

[45] Aaron Schulman, Dave Levin, and Neil Spring. RevCast:
Fast, private certificate revocation over FM radio. In Pro-
ceedings of the ACM Conference on Computer and Com-
munications (CCS), 2014.

[46] Sectigo. Sectigo adds ACME protocol support in certificate
manager platform to automate SSL lifecycle management,
April 2019.

[47] Emily Stark, Lin-Shung Huang, Dinesh Israni, Collin Jack-
son, and Dan Boneh. The case for prefetching and preval-
idating TLS server certificates. In Proceedings of the Net-
work and Distributed System Security Symposium (NDSS),
2012.

[48] Emily Stark, Ryan Sleevi, Rijad Muminović, Devon
O’Brien, Eran Messeri, Adrienne Porter Felt, Brendan
McMillion, and Parisa Tabriz. Does certificate trans-
parency break the web? Measuring adoption and error rate.
In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2019.

[49] Douglas Stebila and Nick Sullivan. An analysis of TLS
handshake proxying. In Proceedings of the IEEE Inter-
national Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), 2015.

[50] Nick Sullivan and Watson Ladd. Delegated credentials for
TLS, November 2019. https://perma.cc/4CPK-HX9Z.

[51] Erik Sy, Christian Burkert, Hannes Federrath, and Mathias
Fischer. Tracking users across the web via TLS session re-
sumption. In Proceedings of the Annual Computer Security
Applications Conference (ACSAC), 2018.

[52] Pawel Szalachowski, Laurent Chuat, Taeho Lee, and Adrian
Perrig. RITM: Revocation in the middle. In Proceedings
of the IEEE International Conference on Distributed Com-
puting Systems (ICDCS), June 2016.

[53] Pawel Szalachowski, Laurent Chuat, and Adrian Perrig.
PKI safety net (PKISN): Addressing the too-big-to-be-
revoked problem of the TLS ecosystem. In Proceedings of
the IEEE European Symposium on Security and Privacy
(EuroS&P), March 2016.

[54] Pawel Szalachowski, Stephanos Matsumoto, and Adrian
Perrig. Policert: Secure and flexible TLS certificate man-
agement. In Proceedings of the ACM Conference on Com-
puter and Communications (CCS), 2014.

[55] Emin Topalovic, Brennan Saeta, Lin-Shung Huang, Collin
Jackson, and Dan Boneh. Towards short-lived certificates.
Web 2.0 Security and Privacy, 2012.

[56] Steven Tuecke, Von Welch, Doug Engert, Laura Pearlman,
and Mary Thompson. Internet X.509 public key infrastruc-
ture (PKI) proxy certificate profile. RFC 3820, June 2004.

[57] Changzheng Wei, Jian Li, Weigang Li, Ping Yu, and Haib-
ing Guan. STYX: a trusted and accelerated hierarchical
SSL key management and distribution system for cloud
based CDN application. In Proceedings of the ACM Sym-
posium on Cloud Computing (SoCC), pages 201–213, 2017.

[58] Von Welch, Ian Foster, Carl Kesselman, Olle Mulmo, Laura
Pearlman, Steven Tuecke, Jarek Gawor, Sam Meder, and
Frank Siebenlist. X.509 proxy certificates for dynamic
delegation. In Proceedings of the 3rd annual PKI R&D
workshop, volume 14, 2004.

[59] Peter E. Yee. Updates to the internet X.509 public key in-
frastructure certificate and certificate revocation list (CRL)
profile. RFC 6818, January 2013.

https://perma.cc/MC9E-BW5H
https://perma.cc/4CPK-HX9Z

	1 Introduction
	2 Delegation to CDNs
	3 Dealing with Key Compromise
	3.1 Revocation
	3.2 (Revocable) Delegation
	3.3 Related Certificate Features
	3.4 Certificate Transparency

	4 Overview of Trust Models
	5 Proxy Certificates for the Web
	5.1 Certification Path Validation
	5.2 Certificate Logging
	5.3 Use Cases

	6 Delegated Credentials
	6.1 Server and Client Authentication
	6.2 Validation and Requirements
	6.3 Deployment Incentives

	7 TLS with Short-Lived Certificates
	7.1 TLS sessions and resumption
	7.2 The problem with resumption
	7.3 Possible solutions

	8 Analysis
	9 Related Work
	9.1 Holistic PKI Proposals
	9.2 Beyond HTTPS Delegation
	9.3 Other Issues with SSL/TLS

	10 Conclusion
	References

