
Security Testing beyond Functional Tests

Mohammad Torabi Dashti and David Basin

Department of Computer Science
ETH Zurich

Abstract. We present a theory of security testing based on the basic distinction
between system specifications and security requirements. Specifications describe
a system’s desired behavior over its interface. Security requirements, in contrast,
specify desired properties of the world the system lives in. We propose the notion
of a security rationale, which supports reductive security arguments for deriving a
system specification and assumptions on the system’s environment sufficient for
fulfilling stated security requirements. These reductions give rise to two types of
tests: those that test the system with respect to its specification and those that test
the validity of the assumptions about the adversarial environment. It is the second
type of tests that distinguishes security testing from functional testing and defies
systematization and automation.

1 Introduction

Security testing plays an essential role in quality assurance for information technolo-
gies ranging from traditional software applications to cyber-physical control systems.
Various security testing tools and techniques are available today, and a wide range of
systems are regularly subjected to security tests. Yet, the literature lacks the necessary
frame of reference to articulate and answer basic questions regarding security testing.
For example, most practitioners would agree that security testing is harder than func-
tional testing, measuring the adequacy of security tests is challenging, and some kinds
of security testing, such as penetration testing, defy systematization and automation.
However, there exists no coherent explanation for these phenomena.

We rationally reconstruct security testing around the notion of security require-
ments. Our starting point is the key distinction between system specifications and se-
curity requirements. A system specification describes how an artifact, or system, must
behave in an environment. A security requirement, in contrast, expresses desired prop-
erties of the environment controlled by the system. Consider, for example, an office. A
system specification for an electronic lock installed as part of the office’s door might
state that the lock opens the door if and only if a valid key is presented. A security
requirement might be that access to the office is restricted to employees working there.
Under certain assumptions, if the system (here, the lock) satisfies its specification, then
the requirement is satisfied in the actual environment. In our example, these environ-
mental assumptions include: the office has no entrance other than the door controlled
by the lock, and only those working in the office have a valid key. What distinguishes
security requirements from other requirements is that they must hold in the presence of
an adversary. In the office example, if the adversary can climb through an open window,

then the requirement is violated, regardless of whether or not the deployed lock satis-
fies its specification. Accounting for the adversary’s capabilities is therefore integral to
testing security requirements.

We introduce the notion of a security rationale, which supports reductive security
arguments for deriving a system specification and the assumptions on the system’s en-
vironment sufficient for fulfilling stated security requirements. These reductions give
rise to two types of tests: (1) those that test the system with respect to its specification
and (2) those that test the validity of the assumptions about the adversarial environment.
These types sharply distinguish security testing from functional testing. The purpose of
functional tests is to refute the hypothesis that the system satisfies its (functional, secu-
rity, or other) specification; this corresponds to just the first type. In contrast, security
testing requires both types of tests. This distinction allows us to precisely explain in
what sense security testing is harder than functional testing. It also provides a frame of
a reference for delimiting the scope and reach of existing security testing techniques and
procedures. We illustrate this point through examples from fuzz testing, fault injection,
risk-based security testing, and vulnerability-driven security testing.

We describe why measuring the adequacy of security tests is challenging by demon-
strating that security tests are inherently incomplete. This incompleteness, we argue,
stems from the open-ended nature of the assumptions that are part of security rationales.
It is therefore orthogonal to the incompleteness of functional tests, which is rooted in
the infinite cardinality of the domains where test inputs are selected. The open-ended
nature of the assumptions also explains why security testing intrinsically depends on
the testers’ creativity and resources, thereby defying automation and systematization.
Finally, we clarify testing and vulnerability remediation procedures associated with our
two test types.

The theory of security testing that we develop is novel. The most closely related
work comes from the domain of requirements engineering, where one studies the re-
lationship between systems and the domains in which they operate; see, for example,
Jackson’s world-machine model [13], which inspired our notion of security rationales.
Security testing itself is a broad topic and an extended literature review is outside this
paper’s scope. Nevertheless, we discuss along the way various prominent security test-
ing techniques and procedures, such as [11, 19, 24].

Structure of Paper. We define specifications and requirements in §2. We introduce the
notion of a security rationale in §3, which relates specifications and security require-
ments. Security cases, introduced in §4, justify the conformance of a concrete system
to a security rationale in the presence of a specific adversary. In §5, we define two types
of security tests whose purpose is to refute the hypothesis that a security requirement is
satisfied in an adversarial environment. We also discuss the role of these two types in
practice and comment on vulnerability remediation. We draw conclusions in §6.

2 Specifications and Requirements

Our starting point is valuable resources worth protecting, such as data on a company’s
web server or documents in an office. We consider security requirements that pertain

2

to these resources. For instance, if our resources are the books in a library, the security
requirement might be that only those possessing a valid library card may borrow books.
In general, such requirements reflect the constraints that stakeholders impose on access
to the resources.

What distinguishes security requirements from other requirements, such as func-
tional requirements, is that they must hold in the presence of an adversary. The adver-
sary (or threat agent) is the entity against whom the resources must be protected. Ex-
amples of adversaries include disgruntled employees, curious trespassers, and nation-
state attackers. A security requirement that is satisfied in the presence of one adversary
might not hold in the presence of a more capable one. A resource’s security is therefore
not a meaningful property without fixing the adversary’s capabilities, which is left im-
plicit in the above library example. Risk analysis can for example be used to identify
the adversary in whose presence a security requirement must be satisfied.

To satisfy a security requirement, we construct systems and deploy them in the (re-
source’s) environment. A system is an artifact whose behaviors can be regulated and
controlled. A system affects its environment by interacting with it through an interface.
To control access to an office, we may for example install an electronic lock system.
This system changes the environment by restricting who may enter through the office’s
door. A specification describes the desired behaviors of a system over its interface. For
instance, for the lock system, described in more detail in Example 1 below, its specifi-
cation relates input received by its sensors, e.g., a smart-card reader, with output to its
actuators, which control the lock’s cylinder. Note that specifications need not directly
constrain a system’s internal structure. Our electronic lock specification does not for
instance express a preference for a particular memory layout for the lock’s software.

There is a fundamental distinction between specifications and requirements. Spec-
ifications constrain a system’s behaviors over its interface. Requirements, in contrast,
constrain an adversary’s access to resources in an environment. Therefore, requirements
neither directly prohibit nor oblige any system behaviors, and systems do not directly
guarantee a requirements’ satisfaction. The following example illustrates this point.

Example 1. An R&D laboratory contains sensitive documents. To limit access to the
documents, an electronic lock system is installed at the lab’s door. A security require-
ment for the documents states that only those staff members working in the lab may
read them. This does not prohibit (or oblige) any input-output behavior for the lock. In
contrast, a specification for the lock states: the output signal open is produced only
after receiving as input a key that belongs to the set validKeys. Here open is the
signal that, say, triggers an actuator that opens the lock. The satisfaction of this specifi-
cation, which describes the lock’s desired input-output behavior over its interface, does
not entail the requirement’s satisfaction. The lab may have an open window.

As a side remark, the above requirement is rather weak. It does not, for example,
prohibit information flow arising from a careless staff member leaking a document’s
content to an outsider. This requirement’s satisfaction, therefore, does not entail the
documents’ confidentiality. 4

The fundamental distinction between specifications and requirements is at the heart
of our development, and we explore its implications in detail. Two comments are how-
ever due here. First, while a specification applies to a system’s (input-output) interface, a

3

requirement cannot be attributed with an interface because resources and environments
do not have definite interfaces. The following example illustrates this point.

Example 2. A publishing company’s database stores data that is subject to the following
integrity requirement: only copy editors may delete data. Dynamite that explodes in the
database’s vicinity constitutes an “input” that can delete the data, thereby affecting its
integrity. Similarly, formatting the database’s storage media or invoking the database’s
rollback operation are both “inputs” that can also delete the stored data. Clearly the
integrity requirement above cannot be attributed to a specific interface.

Now suppose that the database’s input-output interface is realized through an API.
A specification for the database system, which applies to this interface, states: only the
users who have the role copy editor may execute the API’s delete command. An
input is a user’s identity (or roles) together with the API command the user requests to
execute. The system then either executes the command or denies the request. 4

Second, a system’s interface may consist of multiple communication channels be-
tween the system and its environment. A nominal channel is a channel that has been
anticipated in the system’s specification. A trusted computing device, for example, has
a nominal channel, realized through its API. A side channel is an unanticipated com-
munication channel between the system and its environment, and by extension, the
adversary. Measuring a trusted device’s power consumption may for instance reveal a
secret key stored on the device. Similarly, magnetic fields can degauss, and hence write
to, the device’s magnetic storage, and row-hammer attacks [16] can write to protected
memory locations. These constitute side channels when the device’s specification does
not describe the device’s behavior on these channels. Whether an adversary can exploit
a nominal channel or a side channel to communicate with a system depends on the
adversary’s capabilities and the system’s environment.

The relationship between specifications and requirements is central to security de-
sign and analysis. The problem security engineers solve is that of satisfying a security
requirement in an adversarial environment. A solution to the problem consists of one or
more systems that are deployed in the environment; cf. [13]. No single solution how-
ever solves all problems, because solutions are invariably contingent upon assumptions
about the environment they address. We call these environmental assumptions. The
following example illustrates this notion.

Example 3. Consider the scenario of Example 1. The lock system addresses the stated
security requirement for the documents, provided various environmental assumptions
are satisfied. These include that the only way to enter the lab is through the door con-
trolled by the lock system. The adversary’s capabilities affect this assumption’s validity.
Suppose that the lab has a window. If the adversary can climb in through the window,
then this environmental assumption, and consequently the requirement, are violated. 4

The distinction between specifications and requirements is similar to the distinction
between mechanisms and the policies they are intended to enforce [17]. A system is a
mechanism that maps symbols to symbols, independently from the environment where
it is deployed. This is of course desirable: a XACML policy enforcement point, an AES

4

encryption module, and a lock system should do what their specifications promise, re-
gardless of where they are deployed. In this sense, systems are just symbol manipu-
lators, oblivious to their deployment environment. In contrast, a resource’s security re-
quirements impose certain (access) relations among actual entities in an environment. A
symbol-manipulation entity can contribute to security only based on the environmental
assumption that its input-output behavior is given an appropriate interpretation; cf. [22].
The following example illustrates this point.

Example 4. Consider the database scenario of Example 2. The database’s specification
(for its nominal channel) contributes to the security of the data under environmental
assumptions, including: only copy editors have the role copy editor, and there is
no way to delete the data except by executing the API’s delete command. These
assumptions reflect the condition that the symbolic notions of a role and a command
are interpreted appropriately in the context of the given scenario. 4

To capture the relationship between requirements, specifications, and environmental
assumptions, we next introduce the notion of a security rationale.

3 Security Rationales

To address a security requirement RQ in an environment E , we deploy a system in E .
The system’s design, construction, and analysis are guided by a system specification SP .
Moreover, deploying the system contributes to RQ if an environmental assumption EA
holds true. Reducing RQ to SP and EA must clearly be justified: not every combi-
nation of SP and EA contributes to satisfying RQ . Security rationales embody such
justifications. A security rationale for the four tuple (E ,RQ ,SP ,EA) is a justification
for the following condition: for any system S and adversary A,

S |= SP ∧ S‖E‖A |= EA → S‖E‖A |= RQ . (†)

Here |= and ‖ represent satisfaction and composition. Moreover, SP , EA and RQ can
each consist of multiple conjuncts, as illustrated subsequently in Example 5.

Intuitively, a rationale for (E ,RQ ,SP ,EA) explains that, to address the require-
ment RQ in the environment E in the presence of the adversary A, it suffices to deploy
the system S provided that S |= SP and S‖E‖A |= EA. The condition (†) can be used
from right to left to reduce a security requirement into a system specification and an
environmental assumption sufficient for its establishment; see Figure 1.

In (†), the premise S |= SP guides the design, construction, and analysis of systems,
as mentioned above. The inclusion of the system S in the premise S‖E‖A |= EA, which
concerns the environmental assumptions, may appear counterintuitive. The adversary’s
role clarifies this point. The specification SP regulates the system’s behaviors over its
nominal channels. The adversary, against whom the requirement RQ must hold, may
however interact with the system over side channels, i.e. channels not anticipated by SP .
The system’s interactions with the adversary over these channels must therefore be
constrained as well. The environmental assumption EA includes such constraints.

In the following, we further clarify the condition (†). First, there are numerous
frameworks for formalizing, verifying, and testing the relation S |= SP in a precise

5

Adversary A

System
S

Environment E

Specification SP

Assumption EA

Requirement RQ

Fig. 1. A security rationale reduces (thick arrows) a security requirement to a specification and an
environmental assumption. The validity of the environmental assumption depends on the adver-
sary’s capabilities. The adversary interacts (thin arrows) with the system over the environment.

manner. The two other relations in (†) cannot however be readily formalized. In partic-
ular, the nebulous entities E and A often have no clear boundaries. This poses a major
challenge to formalizing the notion of a security rationale. For the rest of this paper,
we therefore treat the condition (†) as an informal guideline and as a way to classify
verification and refutation objectives.

Second, environmental assumptions and requirements have, in essence, the same
type. In particular, (†) would be trivially satisfied if EA were RQ . The resulting reduc-
tion would however clearly not help with the requirement’s analysis. Moreover, whether
a statement is seen as a requirement or an assumption depends on the task at hand. For
instance, in Example 3, the assumption that one cannot enter the lab through its window
constitutes a requirement if we are interested in constructing the lab building. To satisfy
this requirement we may, for example, install window bars; this would be preceded by
a specification that would fix the window bars’ construction in a way that is deemed
sufficient to resist a given adversary.

Third, in the security literature, the environment is sometimes conflated with the
adversary. To denote such an adversarial environment, let E∗ = E‖A. Then (†) boils
down to S |= SP ∧ S‖E∗ |= EA → S‖E∗ |= RQ .

Finally, note that any security rationale can account for only a small set of entities
and their interactions: we cannot reason about everything in the world. Therefore, any
rationale inevitably relies upon the assumption that the excluded entities and interac-
tions play no role in the requirement’s satisfaction. This assumption in effect excludes
certain adversarial actions. A prominent example is the assumption that the system
has no side channels for communicating with the adversary; otherwise, its protection
mechanisms can potentially be subverted. This further explains why we cannot dispense
with S in S‖E‖A |= EA above.

The following example illustrates the above notions.

Example 5. Consider the R&D laboratory of Example 1. The requirement RQ states
that only staff members may enter the lab. The lab has a door that is controlled by an

6

electronic lock system. We reduce RQ to the requirement (SRQ): the lock opens the
door only after a valid key is presented to it. The reduction relies on the following three
environmental assumptions. (EA1) Only staff members have a valid key. (EA2) The
door opens only after receiving the lock’s signal.1 (EA3) The only way to enter the lab
is through the door. Laws of logic justify the reduction.

(EA1) hasValidKey(X) → isStaff(X)
(EA2) doorOpensFor(X) → signalFor(X)
(EA3) enterLab(X) → doorOpensFor(X)
(SRQ) signalFor(X) → hasValidKey(X)
(RQ) enterLab(X) → isStaff(X)

(?)

The assumptions constrain the adversary’s capabilities. The assumption EA1, for
instance, excludes numerous adversarial actions, both simple and elaborate. For exam-
ple, according to EA1, an adversary is not capable of bribing staff members to obtain
a valid key. Similarly, the adversary cannot forge a valid key. The excluded adversarial
actions clearly cannot be feasibly enumerated.

In the final step, we reduce the requirement SRQ to the following specification for
the lock system’s nominal communication channel: (SP) the output signal open is pro-
duced only after receiving as input a key that belongs to the set validKeys. This re-
duction is justified by two assumptions EAI and EAS . The assumption EAI states that
the set validKeys, the input key, and the signal open are interpreted as expected,
and that an entity cannot send a key to the lock system unless the entity has the key. The
latter conjunct intuitively bridges the gap between the predicate hasValidKey(X)
and the key the lock system receives from an entity X. The assumption EAS states that
all the communication channels between the lock system and the adversary are regu-
lated by SP . It excludes for instance the possibility that the lock system has a hidden
backdoor that bypasses its functionalities, or that disrupting the lock’s electricity supply
(which constitutes an “input” to the lock system) would leave the door open.

The arguments above constitute a security rationale for the tuple (E ,RQ ,SP ,EA),
where E is the lab’s environment, RQ and SP are defined above, and EA is the con-
junction of the assumptions EA1, EA2, EA3, EAI , and EAS . Note that EAI and EAS
cannot be expressed as assumptions on the environment alone: the lock system must be
considered too. 4

The reduction steps carried out in a security rationale can be graphically represented
as a reduction tree. Formally, a reduction tree is simply an and-or tree where the root
denotes a security requirement, and the leaves are system specifications and environ-
mental assumptions; see Figure 2.

Security rationales justify a reductive strategy for addressing security requirements.
Such justifications can, in part, be formalized in a suitable proof system and justified
using laws of logic, as (?) suggests. Laws of physics, such as nothing travels faster than
the speed of light, can also be part of a security rationale. Formal models of the problem
domain can assist security engineers with this task; cf. [1, 5, 14].

1 We will abstract away from further temporal aspects in this example. For instance, once the
door has been closed, it remains closed until the next signal arrives, and only one person can
pass through the door while it is open.

7

EA2EA1

EAI EAS

SRQ

RQ

EA3

SP

Fig. 2. A reduction tree for Example 5. Requirements and environmental assumptions are de-
picted as ovals, while specifications are depicted as rectangles. The dotted polygon contains the
environmental assumptions. All branches here are and-branches.

4 Security Cases

In this section, we introduce the notion of a security case. Intuitively, a security case
explains why a rationale for a given security requirement is applicable to a concrete
system in the presence of a specific adversary. Suppose we have a security rationale for
the tuple (E ,RQ ,SP ,EA). Then, deploying a system S in the environment E guaran-
tees that RQ holds in the presence of an adversary A if the following condition holds:

S |= SP ∧ S‖E‖A |= EA . (‡)

This statement is a direct consequence of (†). A security case is an argument for (‡)’s
truth, for a concrete system S and a specific adversary A. If the rationale’s reduction
steps are represented as a reduction tree, then a security case is an argument for the
satisfaction of the tree’s leaves.

Three remarks are due here. First, security cases are analogous both to safety cases,
which argue for the safety of, say, vehicles (see for example ISO 26262-1:2011), and
to dependability cases [12]. Security cases are (ideally) provided by security designers
and analysts who explain why deploying S in the environment E solves the problem of
addressing RQ in the presence of the adversary A. For example, software verification
techniques that demonstrate that a software system S satisfies a specification SP can
contribute to a security case.

Second, the adversary’s capabilities do not enter into a security rationale itself. In-
stead, once a specific adversary has been identified, for example, through risk analysis,
the security case is given to justify the environmental assumptions’ validity in the ad-
versary’s presence. The following example illustrates this point.

Example 6. Consider the security rationale of Example 5. This rationale does not de-
pend on any particular adversary or system. However, the validity of the environmental
assumptions critically depends on the adversary’s capabilities, and the validity of the
specification depends on the system’s behaviors. For instance, the assumption EA1 is
violated if the adversary can threaten or bribe a staff member and thereby obtain a valid

8

key. A security case here must argue that the given adversary, say, curious visitors,
cannot violate this assumption. Similarly, the security case explains why a given lock
system’s behaviors over its nominal channels satisfy SP . 4

Third, whether or not a system satisfies a specification does not depend on the adver-
sary’s capabilities, as is evident in the condition (‡). This is a central point: systems can
be designed, developed, and evaluated without knowledge about the environment where
they will be deployed. That a system contributes to the security of protected resources in
a given adversarial environment must be justified using security cases. This observation
may seem counterintuitive as, for example, buffer overflow attacks and SQL injections,
where an adversary takes control of a system by providing it with “malicious” inputs,
are prevalent. We remark that these attacks exploit a system’s inadequate handling of
malformed inputs. They can therefore be addressed by providing an adequate specifica-
tion for the system’s interface and requiring that the system satisfies it.

As mentioned in §3, the environmental assumptions always exclude certain adver-
sarial actions. These exclusions cannot be justified without accounting for all interac-
tions in the world, which is clearly infeasible. Therefore, to construct a manageable
model of the environment, security cases invariably depend on closed-world assump-
tions, stating that what has not been considered plays no role in satisfying the given
security requirement. Closed-world assumptions thus complete security cases in this
merely formal sense [25]; see also Simon’s empty world hypothesis [26]. The following
example illustrates this point.

Example 7. Consider the security rationale of Example 5. The validity of EAS , which
states that the system has no side channels, depends on the adversary’s capabilities and
the system’s behaviors. Suppose the lock system leaves the door open if its power is dis-
rupted. The assumption EAS is then not valid in the presence of an adversary who can
cut off the system’s power. It might however be valid for a weaker adversary. A secu-
rity case here explains why a given system and adversary cannot communicate over this
particular side channel in the environment E . Alternatively, if the system leaves the door
locked when the power is disrupted, then the security case can argue that although an
adversary can affect the system over this side channel, the result does not adversely af-
fect RQ’s satisfaction. To complete the argument for EAS ’s validity, all possible chan-
nels should be considered. These, however, cannot all be enumerated and argued for.
The security case must therefore ultimately rely on the closed-world assumption that
the considered side channels are the only ones relevant for RQ’s satisfaction. 4

5 Security Testing

In this section, we define functional testing and security testing, and clarify their re-
lationship. We then introduce two types of security tests, and illustrate them through
examples from practice. Finally, we discuss vulnerabilities and their remediation, asso-
ciated with these two test types.

By functional testing we refer to any process aimed at refuting the hypothesis that
a system satisfies its (functional, security, or other) specifications. That is, given a sys-
tem S and a specification SP , functional testing aims at refuting the hypothesis S |=

9

SP . Here we do not distinguish between black-box and white-box analysis. By secu-
rity testing we refer to any process aimed at refuting the hypothesis S‖E‖A |= RQ ,
for a system S, environment E , adversary A, and security requirement RQ . Note that
the purpose of both types of testing is to refute a hypothesis, rather than to verify it.
This understanding, which is well-established in the literature [9,21], sharply separates
constructing security cases from security testing.

We remark that our notion of functional testing is more general than the term’s
conventional denotation in the literature, e.g., [2, 4, 21]. This is simply because, in our
theory, a specification need not be confined to a system’s desired functions, distilled,
say, from its use cases. A bound on the system’s delay in producing outputs, as well
as a threshold on the system’s electromagnetic radiation level are examples of system
specifications. Tests aiming to refute these specifications therefore constitute functional
tests in our theory. Conventionally, they are usually not deemed as functional tests be-
cause a system’s delays and radiation levels are typically not considered to be part of
a system’s functionality; see also [10] for the murky boundary between functional and
non-functional specifications. In our theory, the essence of a functional test is that it
applies to the system’s communication channels that are described in and constrained
by the system’s specification. To avoid confusion, we refer to the conventional forms of
functional tests as restricted functional tests.

We now turn to security testing. Suppose that, in an environment E , a require-
ment RQ is intended to be satisfied based on a rationale for (E ,RQ ,SP ,EA). Let
S be a system deployed in E that is intended to satisfy (‡), in the presence of an ad-
versary A. Perhaps surprisingly, refuting either conjunct of (‡) does not entail refut-
ing S‖E‖A |= RQ , which is the objective of security testing. However, the refutation
of S |= SP or S‖E‖A |= EA does, of course, demonstrate that the intended ratio-
nale’s premises are false for the system S and the adversary A: the condition (†) is
true due to the failure of its antecedent and one cannot construct a security case here.
Therefore, the refutation of one of (‡)’s conjuncts suggests that the requirement RQ is
violated because it is unlikely that RQ is satisfied due to unintended causes. This ob-
servation motivates the following hypothesis: If S‖E‖A |= RQ , for a system S and an
adversary A, then S |= SP and S‖E‖A |= EA. We call this the intentional security
hypothesis, in short H.

Intuitively, H states that a security requirement is never satisfied unintentionally:
a system addresses a security requirement by design, not by accident. Note that the
hypothesis amounts to the condition (†)’s converse. This is expected: the condition (†)
supports constructing security cases for verifying a security requirement’s satisfaction.
Security testing, whose goal is to refute the requirement’s satisfaction, must rely on (†)’s
converse, namely H. We show in §5.2 that H has been tacitly assumed in the literature.

5.1 S-Tests and E-Tests

Based on H, the tester can refute the hypothesis S‖E‖A |= RQ by refuting one of (‡)’s
conjuncts. This results in the following two types of security tests.

S-Tests: Test the system with respect to its specification.

10

Restricted Functional Tests

S-Tests E-Tests

Fig. 3. S-tests, whose purpose is to refute the hypothesis that a system satisfies its specification,
include restricted functional tests, which apply to the functionalities the system must offer. E-
tests, in contrast, attempt to violate an environmental assumption in an adversarial environment.

A test of this type, called an S-test, is intended to refute S |= SP , which is an in-
stance of functional testing. Tools and techniques for generating and automating func-
tional tests can therefore be used here; see for example [2, 4]. Note that S-tests pertain
to symbol manipulating entities and are therefore independent of the adversary. More-
over, restricted functional tests are instances of S-tests. For example, suppose a radio
transmission system must satisfy the specification that transmitted messages should be
encrypted with 1024-bit keys. Restricted functional tests can be applied to this system
because the specification describes a use case of the system.

E-Tests: Test the validity of the environmental assumptions.

A test of this type, called an E-test, is intended to refute the hypothesis S‖E‖A |=
EA. Refuting this hypothesis is what distinguishes security testing from functional test-
ing. Namely, functional tests pertain to a system’s behaviors over its interface, described
by a specification. In contrast, security E-tests apply not only to systems but also to a
nebulous environment and an adversary with no interface (see §2). Therefore, testing
the validity of environmental assumptions cannot be reduced to providing an input and
observing an output over a definite interface. These tests are therefore not an instance of
functional tests: they pertain to actual entities in the world. In particular, they depend on
the adversary’s capabilities. The diagram of Figure 3 illustrates the relationship between
these two types of tests.

Example 8. Consider the scenario of Example 5, with the reduction tree depicted in
Figure 2 for the requirement RQ . The purpose of security testing is to refute the hy-
pothesis that RQ is satisfied in the presence of a given adversary A. As previously
explained, refuting the validity of the reduction tree’s leaves (which is the goal of E-
tests and S-tests) does not entail that RQ is violated, because RQ can be satisfied due
to unanticipated reasons. It is only by H that design errors imply RQ’s violation. We
consider the task of violating some of Figure 2’s leaves in the following.

To violate the leaf SP , the tester tries to refute the hypothesis that the lock system
satisfies the specification SP . The tester may, for instance, input very large keys into the
lock system, where a key is a sequence of bits. If a buffer overflow is discovered, then
the adversary might be able to take control of the lock and produce an open signal
without possessing a valid key. Note that to violate SP the tester need not elicit the
adversary’s capabilities. The lock system must satisfy SP on its nominal channel for all
possible inputs and outputs. This is an S-test. In contrast, the tests below are E-tests.

11

To violate EAI , the tester checks if the lock system’s local variables are misinter-
preted, for example, the set validKeys might not actually consist of valid keys. If a
staff member leaves the R&D team, then his key might still be stored in validKeys.
The tester also checks whether the lock system is susceptible to replay attacks. If so,
then EAI is violated because the adversary can simply record the interaction between a
valid key and the lock system and later send a valid key to the lock without legitimate
possession of the key. Whether these scenarios refute EAI ’s validity in the presence of
a given adversary clearly depends on the adversary’s capabilities.

To violate EA2, the tester may try to intercept the communication between the lock
and the door to inject an open signal. The tester may also assess the feasibility of break-
ing, or unhinging, the lab’s door. To violate EA3, the tester may try climbing through the
window. The feasibility of these attacks naturally depends on the environment and the
adversary’s capabilities. If, for instance, the window is barred and the adversary neither
has a metal saw nor is capable of squeezing through the bars, then climbing in through
the window is infeasible, indicating that EA3 is not refuted in these scenarios. 4

As the above example illustrates, when testing environmental assumptions and re-
quirements, the tester must take the adversary’s capabilities into account. For each goal
the tester may ask whether the adversary can achieve it. Specific goals, such as unhing-
ing a door, lead to specific questions regarding the adversary’s capabilities. General
goals, such as violating the assumption EA2, which excludes a wide range of adversar-
ial actions, lead to generic questions that cannot be directly answered. The tester must
then elicit a list of attack scenarios and determine whether the adversary can realize
them. This list can be developed by brainstorming and using experience with similar
requirements. This can also be aided by consulting sources like [7], which go beyond
enumerating common system vulnerabilities and consider malicious interaction from
the environment. The investigated scenarios will however never be complete, because
accounting for all possible interactions in the world is infeasible. Security testing is
therefore an open-ended processes, hence inherently incomplete. Note that this incom-
pleteness is orthogonal to the incompleteness of functional tests, which is rooted in the
infinite cardinality of the domains where test inputs are selected. The difference is that
in functional testing one picks inputs from a delimited, albeit infinite, domain, whereas
E-tests come from a domain with no boundaries.

The following example illustrates the essentially unlimited creativity required by a
security tester to anticipate all possible attack scenarios.

Example 9. A British secret operation, known as the Four Square Laundry affair, was
carried out in Northern Ireland to collect information about the residents of a troubled
neighborhood [20]. A rogue laundry service van visited the neighborhood regularly,
and sent the collected laundry for various tests and inspections before washing it. The
tests included checking for traces of explosive material or blood. The service also noted
changes in the amount or kinds of clothing sent by each household for washing, which
could indicate the presence of guests, and so forth. 4

The separation between S-tests and E-tests explains why security testing is harder
than functional testing. A system specification describes the system’s behaviors over its
interface. It can therefore be used to construct functional tests, for example S-tests, in-
dependently from the adversary’s capabilities and the environment in which the system

12

is deployed. When it comes to security testing, the tester must also check the validity
of requirements in an adversarial environment. Environments and adversaries are neb-
ulous entities, with no clear interface. How, say, an environmental assumption can be
violated depends on the adversary’s capabilities, the environment’s properties, and the
system’s behaviors. E-tests for checking an assumption’s validity are only as thorough
as the attack scenarios the tester anticipates.

5.2 S-Tests and E-Tests in Practice

Applying security testing in practice is challenging. If the security case (or the security
rationale) intended to guarantee a resource’s security is unavailable, then the tester must
reconstruct, or approximate, it. This includes eliciting the adversary’s capabilities and
explicating specifications and environmental assumptions. These tasks are notoriously
hard in practice; see for example [14,30]. Even when the security case and the security
rationale are available, security E-tests amount to anticipating how the adversary can
invalidate an environmental assumption or a requirement. This task defies prescriptive
guidelines such as those available for functional testing. The effectiveness of E-tests
therefore depends largely on the tester’s creativity and resources; see the Four Square
Laundry example above.

These observations imply that security testing is largely a manual task that defies
specific, thorough guidelines. It is therefore not surprising that existing methods fall
short when it comes to E-tests. Below, we substantiate this claim by showing that exist-
ing security testing techniques have little to say in this regard.

Risk-Based Security Testing. Risk-based security testing [18, 19, 24] starts by explicat-
ing system specifications from risk analysis, misuse case diagrams, and other design
and analysis documents. Roughly speaking, a risk corresponds to a security require-
ment that demands the risk’s mitigation. The countermeasure that is intended to re-
duce or eliminate the risk can then be seen as a specification that defines how a system
must implement the mechanisms that address the corresponding requirement. After-
ward, risk-based security testing reduces security testing to S-tests applied to the miti-
gation mechanisms. E-tests are absent here because the environmental assumptions and
the adversary that would make up a corresponding security rationale are not identified.

Fuzz Testing and Fault Injection. Fuzz testing [11,27] and fault injection techniques [29]
aim at refuting generic system specifications such as: the system does not access unallo-
cated memory areas. That is, they refute S |= SPg , for generic specifications SPg and
they therefore amount to S-tests. These techniques can be seen as generating S-tests
guided by security-relevant fault models. For example, programs often fail to check
their inputs length or format, and they have inadequate exception handling when de-
pendency relations fail. Such fault models reflect how an adversarial environment may
interact with the system. Consequently, they give rise to tests that are tailored to violate
security-relevant specifications. E-tests are nonetheless absent here, simply because the
resulting tests pertain to a system’s nominal channels only; they do not analyze side
channels and environmental assumptions.

13

Vulnerability-Driven Security Testing. Tests that try to identify a known, anticipated
vulnerability in a particular system are sometimes said to be driven by that vulnerability.
Since these tests are concerned with systems, they are clearly S-tests. OWASP’s security
test patterns fall under this class of security tests [24].

A more elaborate example of vulnerability-driven security testing is the NIST pro-
posal [23] that associates security tests with security features of cryptographic modules.
An example is that “environmental failure protection [. . .] features shall protect the
cryptographic module against unusual environmental conditions or fluctuations (acci-
dental or induced) outside of the module’s normal operating range that can compromise
the security of the module” [23]. The document associates a number of tests to this se-
curity feature, including “the tester shall extend the temperature and voltage outside of
the specified normal range and determine that the module either shuts down to prevent
further operations or zeroizes all plaintext secret and private keys and other unpro-
tected [critical security parameters]”. The NIST proposal is helpful in explicating how
a module should behave in abnormal conditions, but it cannot describe under which
assumptions on the adversary’s capabilities and the environment a security requirement
can be translated into the specifications subjected to functional tests. Note that although
the NIST’s suggested tests are not instances of restricted functional tests, they neverthe-
less apply to a system’s communication channel that has been regulated by the system’s
specifications. They are therefore S-tests. E-tests are absent here as well.

In short, existing security testing methods and tools ignore E-tests. Since they all
address security specifications, they tacitly assume that if the system violates its speci-
fication, then the security requirement is also violated. This amounts to the intentional
security hypothesis, introduced in §5, about which the literature has not been explicit.
The aforementioned shortcomings should not be construed as a criticism of the existing
techniques’ value. Rather, our security test types should be seen as a tool for delimiting
their scope and reach. As mentioned before, E-tests depend on the adversary and target
closed-world environmental assumptions that are impossible to delimit. It is therefore
not surprising that, in contrast to S-tests, E-tests do not admit automation.

We conclude this section with two remarks. First, adversary models themselves are
not subjected to E-tests (or S-tests). For example, discovering that a safe can be opened
using standard office equipments demonstrates that the assumption that a curious co-
worker could not open the safe has been false all along. It however does not help us
decide whether a curious co-worker is a suitable adversary model for the documents
protected by the safe. In general, E-tests and S-tests do not account for flaws rooted
in unelicited requirements or weak attacker models. Requirements and the adversary
are the parameters with respect to which these test types are defined. They are not
themselves subject to these tests.

Second, the observations above shed light on the notion of adequacy for security
tests. It is immediate that the adequacy of S-tests can be defined based on functional ad-
equacy measures, such as coverage [31] and mutation analysis [8], and security-specific
metrics such as [28]. The adequacy of E-tests, however, is an entirely different matter.
Ideally, the validity of each environmental assumption must be “adequately” tested.
These assumptions are however not only hard to explicate, but their validity also re-
lies upon closed-world assumptions that can never be thoroughly tested. No finite set

14

of security tests can therefore constitute an adequate set of E-tests. We return to this
conundrum in §6.

5.3 Vulnerability Remediation

We can classify security vulnerabilities based on our test types. Let S be a system, E
an environment, A an adversary, and RQ a security requirement. By a security vul-
nerability we refer to any cause for the violation of the security requirement, i.e., the
violation of S‖E‖A |= RQ . Clearly this notion of a vulnerability is more general than,
say, programming flaws.

We introduce two classes of vulnerabilities: S-vulnerabilities, and E-vulnerabilities.
S-vulnerabilities are those vulnerabilities in the system S that lead to a violation of
its specification SP . Due to H, these are indeed vulnerabilities as they lead to a viola-
tion of RQ . These vulnerabilities are revealed through S-tests, and remediating them
amounts to fixing the system. E-vulnerabilities are those vulnerabilities that invalidate
the environmental assumption EA. That is, vulnerabilities in this class cause the re-
lation S‖E‖A |= EA to fail. These too are vulnerabilities due to H, as they lead to a
violation of RQ . To remediate an E-vulnerability, fixing the system alone is insufficient.
The system must be re-engineered and the security rationale must be updated.

After fixing a system to address an S-vulnerability, only the system must be ana-
lyzed using S-tests; carrying out E-tests is unnecessary. Moreover, since the system’s
specification has not changed, these S-tests can be seen as regression tests. However,
after re-engineering the design and updating the security rationale to address an E-
vulnerability, both S-tests and E-tests must, in general, be carried out to analyze the
security of the new design. Since these tests must address the new design’s specifica-
tion and environmental assumptions, they cannot be seen as simple regression tests. The
following example illustrates these classes.

Example 10. Consider the scenario of Example 5, analyzed in part in Example 8. A
window through which the adversary can enter the office is an E-vulnerability. To ad-
dress it, new systems, such as window bars, can be installed in the environment. This
system must then be tested with respect to its specification. As a second example, sup-
pose that former staff members still have keys that are accepted by the lock system.
This causes the environmental assumption EA1 to fail. To address this E-vulnerability,
the specification SP must be extended with the specification of a suitable key revoca-
tion mechanism. This likely entails changing the lock system entirely, installing a key
revocation server, and so forth. These systems must then be tested with respect to the
extended specification. 4

We have ignored flaws due to changes in the requirements or a mismatch between
the stake-holder’s expectations and the requirements. Although such cases are common
in practice [15], they fall outside this paper’s scope.

6 Concluding Remarks

Starting with the fundamental distinction between a system specification and a security
requirement, we have provided a simple theory of security testing. Its ingredients — se-

15

curity rationales, security cases, the intentional security hypothesis, S-tests and E-tests
— provide a basis for explaining the verification and refutation of security require-
ments in general, and security testing in particular. Our theory highlights the limitations
of many testing and other quality assurance methods for reasoning about the security of
systems: the vast majority of methods target the relationship between systems and their
specifications, but not the assumptions made on their environments.

Targeting environmental assumptions is hard. One must ultimately resort to a closed-
world assumption and posit that the adversary can only interact with the system and the
environment in limited ways. As a result, the set of possible counter-examples is not
only infinite, its domain cannot be precisely delimited. Hence, E-tests, which target
environmental assumptions, defy automation and systematization.

The above difficulties raise the question of how practitioners can best approach E-
testing and judge the quality of the resulting E-tests. We do not have the answer to this
question. And any answer will certainly not be in terms of a logical method or formal-
ism with conventional notions of completeness or coverage. Since testers’ creativity and
experience play a central role in refuting environmental assumptions, there is value in
studying and learning from attacks [3, 6]. We believe our theory can help in this regard
as it suggests a frame of reference for documenting, classifying, and reusing the knowl-
edge obtained through such studies. This includes explicating the assumptions that have
been violated, associating common assumptions with attacks, and exploring possibili-
ties for generalizations. Moreover, threats on different classes of systems and environ-
ments can be cataloged along with countermeasures; see, e.g., [7]. These catalogs can
be analyzed using this frame of reference, highlighting cases where the attacks and
mitigation methods refer to assumptions or specifications that are left implicit. Making
these explicit can contribute to the body of knowledge developed around E-tests.

Security testing requires an open mind and a vivid imagination. It goes far beyond
the well-charted territory of functional tests. One must raise one’s sights to look beyond
the machine and target the world as well.

Acknowledgment. We thank Peter Müller and Petar Tsankov for their comments on
this paper.

References

1. Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edition, 2010.

2. Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge University Press,
2008.

3. David A. Basin and Srdjan Capkun. The research value of publishing attacks. Commun.
ACM, 55(11):22–24, 2012.

4. Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold, 2nd edition, 1990.
5. Dines Bjorner. Software Engineering 3: Domains, Requirements, and Software Design (Texts

in Theoretical Computer Science. An EATCS Series). Springer, 2006.
6. BSI. A penetration testing model, 2003. The German Federal Office for Information Security.
7. BSI. IT Grundschutz Kataloge, 2014 (Version: 14). The German Federal Office for Infor-

mation Security.

16

8. R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the
practicing programmer. Computer, 11(4):34–41, April 1978.

9. Edsger W. Dijkstra. Notes on structured programming. Technical Report T.H. Report 70-
WSK-03, Technological University Eindhoven, April 1970.

10. Martin Glinz. On non-functional requirements. In 15th IEEE International Requirements
Engineering Conference, RE, pages 21–26. IEEE Computer Society, 2007.

11. Patrice Godefroid, Michael Y. Levin, and David A. Molnar. SAGE: whitebox fuzzing for
security testing. ACM Queue, 10(1):20, 2012.

12. Daniel Jackson. A direct path to dependable software. Commun. ACM, 52(4):78–88, 2009.
13. Michael Jackson. The world and the machine. In Proceedings of the 17th International

Conference on Software Engineering, ICSE ’95, pages 283–292, New York, NY, USA, 1995.
ACM.

14. Michael Jackson. Problem Frames. Addison-Wesley, 2001.
15. Ann Johnson. Hitting the Brakes: Engineering Design and the Production of Knowledge.

Duke University Press, 2009.
16. Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee, Chris Wilk-

erson, Konrad Lai, and Onur Mutlu. Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors. In ACM/IEEE 41st International Sympo-
sium on Computer Architecture, ISCA, pages 361–372. IEEE Computer Society, 2014.

17. R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy/mechanism separation in
Hydra. SIGOPS Oper. Syst. Rev., 9(5):132–140, November 1975.

18. Gary McGraw. Software Security: Building Security In. Addison-Wesley Professional, 2006.
19. C.C. Michael, Ken van Wyk, and Will Radosevich. Risk-based and functional security test-

ing, Last revised: July 05, 2013. https://buildsecurityin.us-cert.gov/.
20. Ed Moloney. A Secret History of IRA. Penguin Canada, 2003.
21. Glenford Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing. Wiley, 3

edition, 2011.
22. Ruth Nelson. What is a secret - and - what does that have to do with computer security? In

Proceedings of the Workshop on New Security Paradigms, pages 74–79. IEEE, 1994.
23. Derived test requirements for FIPS PUB 140-2, security requirements for cryptographic

modules, 2011. NIST, CSEC and CMVP Laboratories Draft.
24. OWASP. Testing guide v. 4, Accessed on 9/3/2014. https://www.owasp.org.
25. Raymond Reiter. On closed world data bases. In Logic and Data Bases, pages 55–76.

Plenum Press, 1978.
26. Herbert A. Simon. The architecture of complexity. Proceedings of the American Philosoph-

ical Society, 106(6):467–482, 1962.
27. Ari Takanen, Jared DeMott, and Charlie Miller. Fuzzing for Software Security Testing and

Quality Assurance. Artech House, Inc., Norwood, MA, USA, 1 edition, 2008.
28. Petar Tsankov, Mohammad Torabi Dashti, and David A. Basin. Semi-valid input coverage

for fuzz testing. In International Symposium on Software Testing and Analysis, ISSTA, pages
56–66. ACM, 2013.

29. Jeffrey Voas and Gary McGraw. Software Fault Injection. Wiley, 1998.
30. Rui Wang, Yuchen Zhou, Shuo Chen, Shaz Qadeer, David Evans, and Yuri Gurevich. Expli-

cating SDKs: Uncovering assumptions underlying secure authentication and authorization.
In Proceedings of the 22nd USENIX Conference on Security, pages 399–414, 2013.

31. Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage and adequacy.
ACM Comput. Surv., 29(4):366–427, 1997.

17

