
Formalizing Constructive Cryptography using
CryptHOL

Andreas Lochbihler
Digital Asset (Switzerland) GmbH

Zurich, Switzerland
mail@andreas-lochbihler.de

S. Reza Sefidgar
Dept. of Computer Science

ETH Zürich, Switzerland
reza.sefidgar@inf.ethz.ch

David Basin
Dept. of Computer Science

ETH Zürich, Switzerland
basin@inf.ethz.ch

Ueli Maurer
Dept. of Computer Science

ETH Zürich, Switzerland
maurer@inf.ethz.ch

Abstract—Computer-aided cryptography increases the rigour
of cryptographic proofs by mechanizing their verification. Ex-
isting tools focus mainly on game-based proofs, and efforts to
formalize composable frameworks such as Universal Composabil-
ity have met with limited success. In this paper, we formalize an
instance of Constructive Cryptography, a generic theory allowing
for clean, composable cryptographic security statements. Namely,
we extend CryptHOL, a framework for game-based proofs, with
an abstract model of Random Systems and provide proof rules
for their equality and composition. We formalize security as a
special kind of system construction in which a complex system
is built from simpler ones. As a simple case study, we formalize
the construction of an information-theoretically secure channel
from a key, a random function, and an insecure channel.

I. INTRODUCTION

A. Problem Context

Since the emergence of provable security, cryptographers
have proposed various frameworks to tackle the complexity
of security proofs. For example, game-based frameworks [7],
[32] support the verification of cryptographic schemes and
simulation-based frameworks [1], [13], [20], [23] enable
the modular reasoning about cryptographic protocols. These
frameworks have significantly improved the comprehensibility
of security arguments; however, the resulting proofs are
still informal, often sketchy, and sometimes even technically
incomplete or wrong.

In response to the crisis of rigor in cryptography [7],
[18], the formal-methods community has developed tools that
enable cryptographers to use computers to mechanically check
security proofs. Prominent examples are CryptoVerif [10],
CertiCrypt [2], EasyCrypt [3], Verypto [9], FCF [30], and
CryptHOL [6]. All these tools focus primarily on the game-
based paradigm, and the results on formalizing simulation-
based proofs are limited to those that study individual protocols,
e.g., [12], [17].

The lack of formal-methods tools for simulation-based
frameworks is due, by and large, to their complexity. These
frameworks are popular since they support the composition
of security proofs. However, the level of details in these
frameworks surpasses what the formal-methods community
can reasonably handle with existing techniques. Formalizing
security in a framework such as Universal Composability would
require formal notions of algorithms, runtime, and complexity,
which would be both challenging and detailed due to the

way these foundations are modeled. For example, algorithms
are modeled as Turing Machines, which are too concrete for
efficient mechanized proof checking.

B. Our Solution

To alleviate the above obstacle and raise the abstraction
level of our reasoning, we take a different view of composable
security statements and follow the Abstract Cryptography
approach [26], [27]. In particular, we extend CryptHOL [6],
[24], a framework for formalizing game-based proofs in
Isabelle/HOL [29], to support the formalization of security
proofs in the Constructive Cryptography framework [26], [27].
Constructive Cryptography, an instance of Abstract Cryp-
tography, supports clean, composable cryptographic security
statements in which every cryptographic scheme constructs a
resource from a set of assumed resources.

First, we introduce new coalgebraic datatypes that model
resources and resource transformers as abstract probabilistic
input-output systems. Our formalization constitutes an instance
of Maurer’s theory of Random Systems [28] where the
coalgebraic approach makes it amenable for mechanized
proof checking. Second, we formalize an algebra of abstract
systems built using different composition operators. Third, we
define equality of the abstract systems as trace equivalence.
This enables us to formalize asymptotic information-theoretic
security as a special type of construction that resembles the
well-known ideal-world real-world paradigm [15]. Finally, as
a simple case study, we use our framework to formalize the
security of a protocol that constructs a secure channel from a
key, a random function, and an insecure channel.

We chose to formalize information-theoretic security so that
we can focus on studying composability without the distractions
of a computational model. Our coalgebraic approach, trace
equivalence, and our proof rules also work in a computational
setting, which we leave as future work.

The complete formalization, including our case study, is
available online [25]. Appendix A provides entry points to the
source files. Besides the fact that CryptHOL uses Isabelle/HOL,
our formalization builds on Isabelle/HOL since it supports
coalgebraic datatypes that recurse through non-free functors
like discrete probability distributions. In principle, we could
have carried out our formalization in other proof assistants
like Coq or Lean, where constructing the codatatypes probably

would require more effort, but dependent types would simplify
the formalization of interfaces.

C. Contributions

By combining ideas from cryptography, formal methods,
and programming languages research, we develop a framework
that facilitates the mechanized checking of composable crypto-
graphic security proofs. In doing so, we make contributions to
both the cryptology and the formal-methods community:
• On top of CryptHOL, we formalize an instantiation of

Constructive Cryptography where resources have multiple
interfaces. This includes formalizing the composition of
multi-interface resources. We demand that outputs must
be provided over the same interface as the query. This
allows us to reason algebraically about composition.

• We model resources coalgebraically as probabilistic input-
output systems. We introduce a notion of probabilistic
traces and show that a resource’s probabilistic traces
precisely capture the behaviour that the adversary can
observe. We also present a novel bisimulation-style proof
rule that is sound and complete for establishing the trace
equivalence of resources. Existing logics like pRHL [5]
are incomplete for trace equivalence and simulation-based
proofs in particular suffer from this incompleteness.

• We formalize two standard constructions in Constructive
Cryptography as case studies: the construction of an au-
thentic channel from a shared random function (idealizing
a pseudo-random function applied to a shared secret key),
and the one-time pad construction of a secure channel
from an authentic channel and another secret key. We use
composition theorems to compose these construction steps.

D. Structure

We start by reviewing the essentials of CryptHOL and
Constructive Cryptography in Section II. In Section III, we
introduce our running example. In Section IV, we describe
our formalization of abstract systems and their composition
operators. In Section V, we define trace equality of abstract
systems and derive the corresponding proof rule. In Section VI,
we define information-theoretic security in terms of abstract
systems construction and prove the composition theorems and
that trace equivalence is the right equality notion. In Section VII,
we delve into our case study, illustrating our framework’s
applicability. Finally, in Sections VIII and IX, we compare
with related work and draw conclusions.

II. BACKGROUND

This section summarizes the background needed for under-
standing the rest of this paper. More details can be found in
the references cited.

A. CryptHOL

With the CryptHOL framework [6], [24], game-based
cryptographic proofs can be formalized in higher-order logic
(HOL) [16]. The proofs are mechanically checked by the
proof assistant Isabelle/HOL [29], which ensures that every

proof step is a valid application of HOL’s logical inference
rules. Games in CryptHOL are expressed as probabilistic
functional programs whose semantic is expressed using discrete
probabilities and Generative Probabilistic Values (GPV), a
denotational domain for probabilistic systems with inputs
and outputs. Formally, we write D(α) for discrete probability
distributions over elementary events of type α, and G(α, β, γ)
for probabilistic input-output (IO) systems that interact with
their environment through queries of type β with responses of
type γ and, upon termination, return a result of type α. All IO
systems terminate with probability one.1 From the semantics,
CryptHOL derives proof rules for program equivalences and
typical cryptographic arguments in game-based proofs.

B. Constructive Cryptography
Maurer and Renner’s Abstract Cryptography framework [26],

[27] proposes a top-down paradigm for developing a theory
of cryptography. In the conventional bottom-up approach, the
notions of algorithms, complexity, and efficiency are fixed
before the security of cryptographic constructs can be defined.
In contrast, theorems in Abstract Cryptography can be proved
at a (high) level of abstraction without the instantiation of
the lower levels. The lower levels inherit these theorems if
they satisfy the postulated axioms of the higher level. Each
abstraction level can thus focus on specific aspects, such as
composability or efficiency.

At the highest level, Abstract Cryptography studies how
complex systems can be built from simpler ones. Consider
a Component set Ω equipped with a parallel composition
operator ‖ and a Constructor set Γ equipped with serial
composition ◦ and parallel composition |. A construction
R x−→ S expresses that the component S ∈ Ω can be built
from the component R ∈ Ω using the constructor x ∈ Γ.
Maurer and Renner show that the following properties are
sufficient (and necessary) for General Composability:

1) R id−→ R, where id denotes the identity constructor.
2) If R x−→ S and S y−→ T , then R x◦y−−→ T .
3) If R x−→ S , then R‖T x|id−−→ S ‖T and T ‖R id|x−−→ T ‖S .

To make the building blocks of a construction more concrete,
they introduce an abstract theory of systems. In this theory,
every aspect of a component, including the adversary’s
capabilities and the communication network, is made
explicit as a Resource system with input-output interfaces.
Constructors are modeled as (possibly multiple) Converter
systems. Attaching a converter x to the interfaces of a resource
R results in a new (more complex) resource xR.

Constructive Cryptography [26], [27] models resources
as Random Systems [28] and converters as transformers of
random systems. A random system is a family of conditional
probabilities: the probability of each output is conditioned on

1CryptHOL’s semantic domains D and G also contain sub-probability distri-
butions and non-terminating IO systems, which are convenient for formalizing
probabilistic termination, conditional probabilities and failure events [6]. The
formalized versions of this paper’s theorems therefore assume probabilistic
termination explicitly and we have proved probabilistic termination for all
formalized examples. Our presentation omits this technicality for readability.

2

the current input and all previous input-output pairs. Resources
have one interface for every party—e.g., A for Alice and B for
Bob—plus the adversary’s interface E. Let xAR denote that
the converter x is attached to the interface A of the resource
R. A new resource is constructed by attaching a constructor,
which consists of one or more converters, to each interface of
an existing resource. For example, xAyBzER represents the
resource that is constructed from the attachment of converters
x, y, and z to R’s interfaces A, B, and E, respectively.

Security is defined using distinguishers following the ideal-
world real-world paradigm [15] with a simulator. Let d(R,S)
denote the least upper bound on the advantages of all dis-
tinguishers in distinguishing R from S. In the information-
theoretic setting, this includes computationally unbounded
distinguishers. In a two-party setting, with parties A and
B, a protocol with converters x and y (securely) constructs
the resource S from the resource R within ε, denoted as
R (x,y)−−−→ε S , if the following conditions hold:

1) d(xAyBS ↪→E
RR,S) ≤ ε, where the converter S ↪→R

embeds S’s E-interface into R’s.
2) ∃σ. d(xAyBR, σES) ≤ ε, where σ is the Simulator.

The first condition ensures functional correctness, namely that
the two resources have the same behaviour when the adversary
does not use the additional capabilities that R exposes on the
E interface; they are disabled by the converter S ↪→R, which
is determined by the pair of interfaces R and S. The second
condition demands that the simulator can mimick the real-world
interface using only the ideal-world interface.

III. RUNNING EXAMPLE

We now introduce our running example: the construction of
a secure communication channel. In this section, we consider
the case where, using encryption, we construct such a channel
from an authentic channel and a key shared between two
parties Alice and Bob. In Section VII, we will extend this
construction using a message authentication code. Following
the constructive cryptography approach, we start with two
resources: the authentic communication channel Auth and a
shared key Key . Alice then attaches an encryption converter
Enc on her side of the channel and Bob the decryption converter
Dec on his side. Figure 1a shows the construction. Eve controls
the communication network, and here this is formalized via
the adversary interface to the channel. Eve can generally look
at the contents and delay or drop messages. However, as the
channel here is authentic, Eve cannot modify messages or inject
new ones. By definition, Eve cannot access the key resource.

We say that an encryption scheme parametrizing the con-
verters Enc and Dec is secure if it securely constructs a
secure channel from an authentic channel and a key. A
secure channel differs from an authentic channel only in the
adversary’s interface: The adversary learns just the length of
sent messages, but not their content. Recall from the previous
section that a secure construction means that—in addition to
functional correctness—there exists a simulator Sim that can
simulate Eve’s interface of the authentic channel using only her

Enc

Key

Auth Dec

E D
Alice Bob

Eve

(a) The real world

Sec

Sim

Alice Bob

Eve

(b) The ideal world with the simulator

Fig. 1: Alice, Bob, and Eve are the interface names which
correspond to the A, B, and E interfaces in the background
section’s security definition. E and D denote the encryption
and the decryption functions, respectively. Each gray rectangle
represents the resource built from the resources and converters
in its interior.

interface of the secure channel. That is, the security proof must
exhibit a simulator Sim such that the real world in Fig. 1a is
indistinguishable from the ideal world in Fig. 1b.

IV. FORMALIZING RESOURCES AND CONVERTERS

Resources and converters are the building blocks of cryp-
tographic systems and constructions, respectively. We now
formalize these building blocks (Sections IV-A, IV-B) and
how they can be composed to build more complex systems
(Section IV-C). The trace equivalence and security notions in
Sections V and VI will be based on this novel coalgebraic
formalization of resources.

A. Resources

A resource is a probabilistic reactive system that responds to
inputs with outputs. For example, a randomness resource takes a
natural number n as input and outputs n random bits. In general,
the resource’s outputs may depend on its previous inputs and
outputs. For example, a random oracle takes an input and
produces a random output for that input—unless the same input
has previously been queried, in which case it returns the same
output as before. It is therefore convenient to think of a resource
as a probabilistic transition system given by a transition function
δ and an initial state s0; the transition function δ(s, x) returns
for every state s and every possible input x a probability
distribution over the responses and the successor states.

In this representation, the internal state s is explicit. This
complicates composition arguments that involve distinguishing
resources based on their input-output behaviour. We therefore
introduce an abstraction that hides the resource’s internal state.

3

Formally, the resource type quantifies existentially over the state
type in the pair of the transition function and the initial state:

R(α, β) ≡ ∃σ. (σ⇒ α⇒ D(β × σ))× σ,

where α represents the type of inputs, β the type of outputs,
and D(γ) probability distributions over γ.

Fortunately, this abstraction can be expressed without exis-
tential types, which do not exist in HOL. In the co-algebraic
view on reactive systems [31], the transition function run :
R(α, β)⇒α⇒D(β×R(α, β)) for interacting with a resource
defines a co-algebra on resources. That is, when we supply
a resource with an input, we obtain a probability distribution
over an output and a successor resource. In Isabelle/HOL, we
formalize this view using the following co-datatype:

codatatype R(α, β) = Resource (α⇒ D(β × R(α, β))).

The codatatype is the final coalgebra for the transition
function run. Finality means that two resources with the
same input-output behaviour are equal. As we will show
in Section V, equality corresponds to bisimilarity of the
probabilistic transition systems.

CryptHOL’s GPVs are dual to our resources in the sense that
GPVs query the environment and process the responses whereas
resources produce responses to queries. In Section VI-A, we
use GPVs to model distinguishers of resources.

1) Defining Concrete Resources: While hiding the internal
state is suitable for reasoning abstractly about resources,
keeping the state explicit is convenient for defining concrete
resources and reasoning about them, since we can then specify
properties of the internal states. We therefore introduce a func-
tion RES(δ, s0) that converts a probabilistic transition system
with explicit states (given by the transition function δ and
initial state s0) into a resource. Categorically, this conversion
is the morphism that makes the codataype the final coalge-
bra. Conceptually, it seals the resource and makes the state
inaccessible, i.e., it introduces the existential type quantifier.

Such probabilistic transition systems with explicit states
have already been formalized as part of CryptHOL, where
they are used to model cryptographic oracles. So we can reuse
CryptHOL’s infrastructure for formalising and reasoning about
oracles. In particular, CryptHOL’s oracle composition operator
+O makes it possible to construct a resource from simpler parts.
It interleaves two transition functions δi : σ⇒αi⇒D(βi× σ)
(for i = 1, 2) operating on a shared state of type σ into one
transition function δ1 +O δ2 : σ⇒α1 +α2⇒D((β1 +β2)×σ),
where “:” denotes each term’s type and α + β denotes the
disjoint union of the types α and β.

As an example, we define a generic two-party single-usage
communication channel. Following constructive cryptography,
we model this as a resource with three asynchronous interfaces
for the sender (Alice), the receiver (Bob), and the adversary
(Eve). They can all query their designated interface and receive
an answer that depends on the channel’s state. The channel
can have the following states:
• empty, i.e the initial state.
• unusable, which cannot be revived to become usable again.

• containing a message of type M, which is on Alice’s
side or on Bob’s side, and where Bob can only receive
messages that are on his side.

Alice can send a message to an empty channel and receives �,
an arbitrary but fixed symbol, as an acknowledgement. Bob’s
query polls the channel; the response is either the message
that is on his side or otherwise the special symbol None (the
type constructor M(α) adds this symbol to the type α). The
adversary’s interface determines the kind of channel. In all
channels that we consider in this paper, the adversary Eve can
forward a message from Alice’s side to Bob’s side and drop it.
Eve can read the message sent over an insecure or authenticated
channel, but a secure channel leaks only the message’s length,
not its contents. An insecure channel additionally allows Eve
to replace the message in the channel or insert a new message.
Let Q(M) denote the type of Eve’s queries. The outputs of
type X on Eve’s interface also depend on the channel’s type.
For example, a secure channel responds to a read request with
the message length, whereas authentic and insecure channels
return the message itself.

In Figure 2a, we show how +O and RES can be used to
formalize the notion of a channel. The parties’ interaction
with the channel is modeled using three probabilistic transition
systems Osnd, Orcv, and Oadv. The operator +O composes these
oracles into a single transition system. Formally, inputs and
outputs are tagged according to their location in the dotted term
tree using the injections Left and Right for disjoint unions. For
example, the queries to Orcv and their corresponding answers
are tagged with Right Right. In the presentation, we usually
omit these tags when they are clear from the context. The RES
operator, visualized as the bold rectangle, seals the result of
the composition and produces a channel resource Rchn(Oadv)
as shown in Fig. 2b. Formally, we write this as follows, where
empty denotes the initial state:

Rchn(Oadv) ≡ RES(Oadv +O Osnd +O Orcv, empty).

Figure 2c shows the same resource in the notation from
Section III. In the remainder of this paper, we use the notation
from Fig. 2b, where the different interfaces are combined into
one using disjoint unions. In particular, we will not further
describe the internal construction of resources, although all our
concrete example resources are defined using RES.

The above construction is parametrized by the transition
function Oadv for the adversary interface. We thus obtain secure
Rsec, authentic Raut, and insecure Risc channels by providing the
appropriate argument. For example, Rsec ≡ Rchn(Osec) gives a
secure channel, for an appropriate definition of Osec.

2) A type system for interfaces: Encoding several interfaces
into one using tagging has a drawback: The type of resources
does not enforce that the response is sent via the same interface
as the query. For example, in Fig. 2, a query Q(M) to Oadv must
be responded over Oadv’s response port (of type X) and not over
Orcv’s. Clearly, resources constructed with RES and +O ensure
this property. But unless we look at the internal construction, it
is not obvious that this property holds—and we do not want to
constantly unfold our definitions. Yet, this property is crucial

4

Oadv

Osnd

Orcv

+O

+O

Q(M)

X

M

�

�

M(M)

(a) Internal construction

Rchn(Oadv)

Eve

Alice

Bob

(b) Sealed channel resource

Channel

Alice

Eve

Bob

(c) Channel resource with nota-
tion from Section III

Fig. 2: Formalisation of a communication channel between
Alice and Bob.

when reasoning about resources and converters. We therefore
introduce a type system for interfaces that allows us to express
arbitrary relations between inputs and outputs, i.e. arbitrary
non-temporal, non-probabilistic properties of the resource.

An interface type I = (A,B) consists of a set A of inputs
and a non-empty set of responses B(a) for each input a ∈ A.
We write IA and IB(a) for A and B(a), respectively. Note
that IA is characterized by IA = {a | IB(a) 6= {}}.

Definition 1 (Respectfulness). A resource R respects the
interface type I (notation I `R) iff upon any input a ∈ IA,
all responses of R are in IB(a) and the resulting resource
also respects I. Formally, I `R is defined co-inductively by
the following rule:

∀a ∈ IA. P
[
run(R, a) ∈ IB(a)× {R′ | I `R′}

]
= 1

I `R
,

where P[X ∈ A] denotes the probability that the discrete
random variable X takes a value in the set A.

For example, let Ilen be given by IBlen(m) = {c | ‖c‖ =
‖m‖}, where ‖x‖ denotes the length of a list. Then, Ilen `R
denotes that R is length preserving, i.e., the response has the
same length as the input.

This notion of a resource respecting an interface type can
express our desired property that responses are sent with the
same tag as the queries. To that end, we define an operator ⊕
that combines interface types similarly to how +O combines
transition functions. Formally, given two interface types I1 and
I2, their combination I1 ⊕ I2 is given by

(I1 ⊕ I2)B(a) =

{
IB1 (a) if a ∈ IA1
IB2 (a) if a ∈ IA2 .

For example, let Ix be Ox’s interface type for x ∈
{adv, snd, rcv}. Then the channel resource Rchn in Fig. 2
respects Iadv⊕Isnd⊕Ircv by construction. Once we have proven
respectfulness, Isabelle’s reasoning engine can exploit this
property without exposing the resources’ internal construction.

3) Parallel composition: When building complex systems
from simple resources, many resources are typically available
at the same time. For example, in Fig. 1a, both a key and an
authentic channel are available We model this using parallel
composition for resources.

Definition 2 (Parallel composition). Let R1 : R(α1, β1) and
R2 : R(α2, β2) be resources. The parallel composition R1||R2 :
R(α1 + α2, β1 + β2) directs queries α1 to R1 and α2 to R2

and forwards the responses accordingly.

In our formalisation, we define parallel composition by
primitive corecursion, exploiting the coalgebraic structure of
the codataype R. This applies to all operators on resources and
converters that we present in this section. Often, CryptHOL
provides a suitable operator on probabilistic transition systems
that we just have to wrap into a resource or converter using
primitive corecursion. This operator respects interface types:
If I1 `R1 and I2 `R2, then I1 ⊕ I2 `R1 ||R2.

Note that RES (δ1+Oδ2, s) and RES (δ1, s)||RES (δ2, s) are
not the same. Parallel resource composition ensures that the two
resources do not share their state. In particular, probabilistic
choices in one resource are independent of those in other
resources. So || allows the occurrences of the states s to evolve
independently, whereas +O interleaves δ1 and δ2 on the shared
state s. Consequently, if correlation or state sharing is required,
+O and RES must be used. Hence, +O cannot be lifted to the
abstract level of resources.

B. Converters

Converters are probabilistic reactive systems that internally
use other reactive systems. In other words, a converter trans-
forms a resource into another resource. For example, suppose
that we want to construct a uniform randomness resource,
whose outputs are uniformly distributed over {1, . . . , n} upon
input n, from the randomness resource mentioned in Sec-
tion IV-A. Such a converter could be deterministic, taking all
randomness from the interaction with the randomness resource.

A converter has two interfaces: Inputs and outputs are sent
over the external interface, and to compute a response, the
converter itself may send queries over the internal interface and
wait for responses. So a converter is a probabilistic transition
system with two layers: On the outer, external layer, it appears
like a resource. However, every transition may consist of many
internal transitions that drive the interaction with the resource
that the converter transforms. This is the second, internal layer.
In Fig. 1a, the converters Enc and Dec transform the resources
Key and Auth . In our diagrams in the remainder of the paper,
the external interface is always on the left and the internal
interface on the right of a converter.

The probabilistic transition system for the internal layer
has already been formalized in CryptHOL as generative
probabilistic values (GPVs): G(X,Y,Z) represents the GPVs
with result X, queries Y, and responses Z. To obtain a converter,
we embed them into the outer layer using a transition function
that returns a GPV rather than a probability distribution over

5

the response and successor state. Analogous to resources, we
define converters coalgebraically to hide the converter’s state:

codatatype C(α, β, γ, η) =

Converter (α⇒G(β × C(α, β, γ, η), γ, η)).

Note the similarity to R’s definition: we have merely replaced
the probability functor D with the GPV functor G(_, γ, η).

Similar to RES for resources, we define the operator
CNV(δ, s0) that seals a CryptHOL interceptor and hides the
internal state. In CryptHOL, interceptors express reductions
between games. As before, this operator allows us to reuse
CryptHOL’s infrastructure for GPVs. Furthermore, we extend
the notion of respecting interface types to converters.

Definition 3 (Respectfulness). A converter C respects interface
types I1 and I2 (notation I1 ` C a I2) iff for any input
x ∈ IA1 , the converter C will only issue queries in IA2 on its
internal interface and, provided that the responses to these
queries y are in IB2 (y), the converter’s response will be in
IB1 (x) and the resulting converter also respects I1 and I2.

Converters come with sequential and parallel composition,
enabling complex systems to be built from simpler ones.
Consider the following examples.
• Let C1 : C(α1, β1, γ1, η1) and C2 : C(α2, β2, γ2, η2)

be two converters. Their parallel composition C1 | C2 :
C(α1+α2, β1+β2, γ1+γ2, η1+η2) makes both converters
available at the same time, analogous to parallel resource
composition. If I1 ` C1 a I ′1 and I2 ` C2 a I ′2, then
I1 ⊕ I2 ` C1 | C2 a I ′1 ⊕ I ′2.

• Let C1 : C(α, β, γ, η) and C2 : C(γ, η, χ, δ) be two
converters. Their sequential composition C1 � C2 :
C(α, β, χ, δ) uses C2 to answer C1’s queries on C1’s
internal interface. If I1 ` C1 a I2 and I2 ` C2 a I3, then
I1 ` C1 � C2 a I3.

• The identity converter 1 : C(α, β, α, β) simply forwards
all queries and responses from the external to the internal
interface and vice versa. It is the neutral element for
sequential composition: 1 � C = C � 1 = C. Clearly,
I ` 1 a I.

Sometimes we will embed one interface type I1 into another
I2. An embedding ↪→ = (f, g) consists of two functions f
and g such that f maps IA1 to IA2 and g maps IB2 (f(x))
to IB1 (x) for all x ∈ IA1 . An embedding converter for an
embedding is a converter C that merely applies these two
functions. That is, when it receives an input x ∈ IA1 , it sends
f(x) on its internal interface, and when it receives the response
y ∈ IB2 (f(x)) on the internal interface, it outputs the response
g(y) on its external interface. In particular, we have I1 ` C a
I2. The identity converter 1 is an embedding converter for the
trivial embedding f = g = id. The sequential composition of
embedding converters is again an embedding converter.

C. Constructing Systems

We now show how to build complex systems. In the simplest
case, we want to attach a converter to a resource (Fig. 3). Let

C R
α

β

γ

δ

Fig. 3: Attaching a converter to a resource.

C : C(α, β, γ, δ) be a converter and R : R(γ, δ) be a resource.
Attaching C to R creates a new resource C � R : R(α, β),
where R responds to C’s queries.

Formally, the attachment operator � is defined using
CryptHOL’s exec operator for composing GPVs and oracles.
Attachment respects interface types: If I1 ` C a I2 and I2`R,
then I1 ` C � R. Attachment also interacts nicely with the
other composition operators:

(C � C ′) �R = C � (C ′ �R) (1)
(C | C ′) � (R ||R′) = (C �R) || (C ′ �R′)

1 �R = R

These properties are much more concise than the correspond-
ing equations in CryptHOL, where the internal state is not
hidden in the coalgebraic view. For example, the CryptHOL
equivalent to (1) reads as follows, where D̂(f)(X) applies the
function f to the random variable X .

exec((R, s), inline((C ′, s′), C)) = D̂(λ(x, (s′, s)). ((x, s′), s))(

exec((λ((s′, s), y). D̂(λ((x, s′), s). (x, (s′, s)))(
exec((R, s), C ′(s′, y))

), (s′, s)), C))

The equation is structurally the same (inline corresponds to �),
but the essence is buried under the clutter that explicit state-
passing introduces. This demonstrates the gain in abstraction
that our formalisation provides over CryptHOL.

Wiring: The order of converter queries does not always
correspond to the resource interfaces, which happens when
resources’ and converters’ interfaces are composed in a different
order. For example, I1 ⊕ (I2 ⊕ I3) is not the same as (I1 ⊕
I2)⊕I3 because disjoint union is not associative in HOL. We
therefore introduce three embedding converters, called Wiring
Converters, that rearrange interfaces into the desired order, as
shown in Fig. 4.2

1) lassocr re-associates disjoint unions from left to right,
2) rassocl re-associates disjoint unions from right to left, and
3) swap exchanges the two sides of a disjoint union.
By composing the identity and wiring converters sequentially

and in parallel, we can express arbitrary attachments of
converters and resources. More precisely, we can express that a
converter should be attached only to a subset of the interfaces of
a resource, and we can arbitrarily reassociate and permute this
subset since every permutation can be expressed as a sequence
of transpositions of adjacient positions. Figure 5a shows an

2In Fig. 4, the arrow’s closeness indicates the association of the disjoint
union, i.e., the order of interface composition. Except for Figs. 4 and 5, we
omit this detail in the diagrams. Of course, we take care of reassociations in
our formalisation.

6

(a) lassocr (b) rassocl (c) swap

Fig. 4: Wiring converters. The arrows’ closeness signify the
order of interface composition.

C
R1

R2

R3

(a) Abstract representation

C

1 1

1

R1

R2

R3

(b) Detailed construction

Fig. 5: The result of attachment is the new resource shown
with dark-gray.

example where a converter C with two external interfaces and
three internal interfaces (associated to the right) is attached to
two resources R1 and R2. Another resource R3 is available,
but not involved in the attachment. Figure 5b visualizes how
such a diagram is formalized using the wiring converters:
• Parallel composition of C with 1 focuses on the interfaces
R1 and R2 and leaves R3’s interface unchanged.

• The actual attachment C ′ combines three wiring con-
verters: rassocl on the left and lassocr on the right
bring together the two interfaces whose order must be
swapped, and swap then swaps the order where the parallel
composition with 1 determines on which interfaces swap
acts.

Formally, the attachment focused on R1 and R2’s interfaces is
expressed as C ′ = rassocl� (swap |1)� lassocr and the whole
system is given by (C | 1) � (C ′ | 1) � ((R1 ||R2) ||R3).

V. EQUIVALENCE OF RESOURCES

To reason about the construction of cryptographic systems,
we need an equivalence notion on these systems, i.e., resources.
In this paper, we introduce three equivalences on resources:
bisimilarity, trace equivalence, and indistinguishability (with
negligible advantage). Bisimilarity is stronger than trace
equivalence (Cor. 1) and trace equivalence is stronger than
indistinguishability (Thm. 2). Indistinguishability is used in
the security definition in Section VI. Yet, indistinguishability

is unwieldy in proofs because negligibility requires asymptotic
reasoning. In this section, we therefore introduce the two
stronger notions first. They are useful as many steps in security
proofs actually establish one of the stronger equivalences;
our case study in Section VII gives some examples. Stronger
equivalences simplify the reasoning in two respects. First,
their proof rules are simpler: Trace equivalence does not
need asymptotics, only relational reasoning about distributions
on states (Thm. 1), and for bisimilarity, relations between
individual states suffice. Second, when two systems satisfy
a stronger equivalence, we may replace one with the other
in more contexts, so we must check fewer conditions on the
context to justify the replacement.

In the co-algebraic view of systems, bisimilarity is the canon-
ical equivalence notion. For resources, it is defined as follows:

Definition 4 (Bisimilarity). Consider two resources R1 and R2

of type R(α, β) that respect the interface type I . Without loss
of generality, assume that Ri = RES (δi, si) for i ∈ {1, 2}.3 A
relation X between the state spaces σ1 and σ2 is a bisimulation
relation if and only if

1) X relates the two initial states s1 and s2, and
2) whenever (s′1, s

′
2) ∈ X and a ∈ IA, there is a joint

probability distribution d : D(β× σ1× σ2) with marginal
distributions δ1(s′1, a) and δ2(s′2, a) whose support is
contained in IB(a)×X .

Two resources are bisimilar iff there is a bisimulation relation
for them.

Bisimilarity is well-suited for proving resource equivalence
since it is compositional and has elegant connections with
relational parametricity (see Basin et al. [6]). For example,
probabilistic relational Hoare logic [4], [5] as used in EasyCrypt
[2] establishes bisimilarity. In fact, if the interface type I
allows all queries and responses (i.e., I(a) = UNIV for all
a where UNIV denotes the set of all elements of a type),
then bisimilarity coincides with logical equality in HOL as we
model resources as a codatatype.

Unfortunately, bisimilarity sometimes is too strong. For
example, consider two resources that accept � as input and
respond with an element from the set {a, b, c}. The diagrams in
Fig. 6 show the behaviour of the two resources as probabilistic
transition systems. Every edge is labelled with the response
and the probability that the edge is taken during an interaction.
Starting in the state at the top, both systems respond with a
to the first query and with b and c with probability 1/2 each
to the second query. Thus, no distinguisher can distinguish
the two systems through interaction. However, the system on
the left decides already in the first interaction whether it will
respond with b or c in the second interaction. In contrast, the
system on the right makes this choice only during the second
interaction. The two systems are therefore not bisimilar: For if
X was a bisimulation relation, it would have to relate s1 and
s′1 each with t1. However, this is impossible because t1 can

3Every resource R can be expressed as RES (δ, s) by choosing δ = run
and s = R.

7

s0

s1

s2

b|1

a|1/2

s′1

s′2

c|1

a|1/2
t0

t1

t2

b|1/2

t′2

c|1/2

a|1

Fig. 6: Two probabilistic transition systems that are trace
equivalent, but not bisimilar.

output both b and c whereas s1 and s′1 can each only produce
one of them.

In a non-deterministic setting, when considering outputs
without probabilities, this is the standard example that separates
bisimilarity from the coarser notion of trace equivalence.
Intuitively, the problem in Fig. 6 is that the states s1 and
s′1 encode hidden non-determinism that will be unveiled later.
An observer of the system on the left does not yet know whether
the system is in s1 or s2. It knows only a distribution over
those states, where each state is assigned with the likelihood
that the system is in that state. This distribution is given by the
transition probabilities of the system conditioned on the past
interactions. Here, this conditional distribution is uniform over
s1 and s′1. These conditional distributions are the probabilistic
equivalent of the well-known powerset construction for non-
deterministic automata. If we ignore the probabilities, then the
support of the conditional distribution denotes the set of states
reachable under the given input.

In the remainder of this section, we will define trace
equivalence for resources and present a sound and complete
proof rule for trace equivalence. The trace definition and our
proof rule follows the unwinding style of bisimilarity in Def. 4:
We use the conditional distribution to summarize a partial
trace. This way, we can extend the partial trace with the next
interaction by combining the transitions from the states in
the support of the conditional distribution according to their
weight in the distribution. This is a local operation since we
only need to consider the transitions from states in the support.
Accordingly, we can establish trace equivalence by a local
argument too: it suffices to exhibit a relation between these
summaries that is preserved by the transitions. In Section VI-A,
we will show that trace equivalence of resources captures the
notion of perfect indistinguishability that is typically used in
cryptography. We thus obtain a local proof rule that is complete
for perfect indistinguishability.

Traces and trace equivalence and their unwinding character-
istics have previously been studied in the coalgebraic approach
to modelling systems [19], [21], [22], [33]. Unfortunately,
none of these results can be applied directly to resources
in our setting because they need either a ccpo structure or a
decomposition of the coalgebra’s functor F into a functor G and
a monad T such that F (X) = G(T (X)) or F (X) = T (G(X)).
For resources, we have F (R) = α ⇒ D(β × R) with
T = D as the monad, but no ccpo structure and no suitable
decomposition. Abstractly, this is because the summaries, i.e.,
conditional distributions over states, are not explicit in our

representation. Fortunately, a distribution D(β ×R) over pairs
can be equivalently represented as two parts: the marginal
distribution over the first component D(β) and a family
of conditional distributions over the second component (the
summaries), indexed by the support of the first component:
β⇒ D(R). Thus, we can think of resources as a coalgebra of
the functor F ′(R) = α⇒(D(β)×(β⇒D(R))), which we can
decompose as G(D(R)) with G(Y) = α⇒ (D(β)× (β⇒Y)).
To our knowledge, this functor has not yet been considered
in the literature. In the remainder of this section, we apply
the abstract theory to resources and define traces and trace
equivalence.

The trace of a resource R is a function from past input-
output pairs to a family of sub-probability distributions over
outputs, indexed by inputs, i.e.,

trace : R(α, β)⇒ L(α× β)⇒ α⇒ D(β),

where L(α× β) denotes the type of lists of pairs α× β.
In the example resource on the left of Fig. 6, the trace of

the top state probabilistically combines the traces of its two
successor states. When a system interacts with this resource, it
knows after the first interaction only that the resource is in state
s1 with probability 1/2 and in s2 with the same probability.
The system will learn whether it is s1 or s2 only during the
second interaction.

This example shows that we must support reasoning about
probability distributions on the states. This entails that we
define traces for distributions over resources.4 The trace of
a single resource R then is the special case for the one-
point distribution dirac(R). Formally, if p : D(R(α, β)) is
a distribution of resources, let run(p, a) denote the weighted
combination of running the resources from p with input a, i.e.,

P[run(p, a) = (b, R′)] =∑
R∈support(p)

P[p = R] · P[run(R, a) = (b, R′)].

We next define the traces by recursion over the list of past
input-output pairs:

trace : D(R(α, β))⇒ L(α× β)⇒ α⇒ D(β)

trace(p, [], a) = D̂(π1)(run(p, a))
trace(p, (x, y) · l , a) = trace(run(p, x)�y, l , a)

4If we ignore probabilities and consider non-deterministic systems, we can
directly define the traces for a state, without first going to sets of states. We now
show that this does not work for probabilistic systems. In a non-deterministic
system, the corresponding trace function returns the set of possible responses
(rather than their distribution) for every input given the previous input-output
pairs, i.e., trace : R(α, β)⇒ L(α × β)⇒ α⇒ P(β) where P(β) denotes
the powerset of β. This function can be defined recursively over the list
of input-output pairs by taking the union over the possible successor states:
trace(s, (x, y) · l, a) =

⋃
(y,s′)∈δ(s,x) trace(s′, l, a).

This definition only works because conditioning on the output y distributes
over unions: {s | (s, y) ∈

⋃
A} =

⋃
A∈A{s | (s, y) ∈ A} holds for all y

and A. For probability distributions, the corresponding identity, taking the
weighted combination instead of the union, does not hold. Therefore, our
generalisation to distributions over states (or resources) is necessary. (The
pointwise non-deterministic definition can be interpreted in probabilities too, but
this leads to the wrong definition of trace equivalence.) Categorically speaking,
the powerset functor P is additive, but the distribution functor D is not [14].

8

Here, [] denotes an empty list and (x, y) · l represents the
prepending of list l with a pair (x, y). Furthremore, D̂(π1)(p)
denotes p’s marginal on the first component and p�x conditions
the subprobability distribution p : D(α × β) on the event
{(x, y) | y ∈ β} and projects the result to the second
component. That is,

P[p�x = y] =

{ P[p=(x,y)]∑
y′ P[p=(x,y′)] if x ∈ support(p)

0 otherwise.

Two resources are now trace equivalent if they have the
same traces. Formally:

Definition 5 (Trace equivalence). Let p1 and p2 be two
distributions over resources that respect I. They are trace
equivalent iff trace(p1, l , x) = trace(p2, l , x) for all x ∈ IA
and lists l of pairs whose first component is in IA. Two
resources R1 and R2 respecting I are trace equivalent iff
dirac(R1) and dirac(R2) are trace equivalent.

Trace equivalence is a property of a resource as a whole as
the above example has shown. Consequently, we cannot easily
prove trace equivalence by inspecting the individual steps
of the underlying transition function like in a bisimulation
proof. Nevertheless, the following characterisation yields a
proof principle for establishing trace equivalence similar to a
bisimulation-style proof rule:

Theorem 1 (Trace equivalence characterisation). Two resources
R1 and R2 respecting I are trace equivalent iff there exists a
relation X between distributions of resources such that

1) X relates dirac(R1) to dirac(R2), and
2) Whenever (p, q) ∈ X and a ∈ IA, then run(p, a)

and run(q, a) have the same marginal distribution on
outputs and (run(p, a)�b, run(q, a)�b) ∈ X for all (b, _) ∈
support(run(q, a)).

Corollary 1. Bisimilar resources are trace equivalent.

For example, Thm. 1 allows us to prove trace equivalence
of the two resources in Fig. 6 in a bisimulation style. We
pick as the relation X the following four pairs of probability
distributions, identifying a state with the resource with that
initial state. The notation [x1|p1, x2|px, . . . , xn|pn] denotes
the probability distribution where the elementary event xi has
probability pi.
• ([s0|1], [t0|1])
• ([s1|1/2, s′1|1/2], [t1|1])
• ([s2|1], [t2|1])
• ([s′2|1], [t′2|1])

It is easy to verify that X satisfies the two conditions in
Thm. 1. The key is the second tuple, which relates the uniform
distribution over s1 and s′1 to the one-point distribution on t1.
Although the transition system on the left has already decided
in states s1 and s′1 what the next output will be, the uniform
distribution hides this decision. Accordingly, both outputs b
and c have probability 1/2 as the transition probabilities for the
two states are combined according to the distribution on the
states, i.e., uniformly.

VI. SECURE CONSTRUCTIONS

Trace equivalence expresses that two systems are identical
from an observer’s point of view. This equivalence notion
is still too strong for cryptographic constructions as there is
in general a small probability that the two systems are not
the same, for example, if the adversary guesses a secret. In
this section, we define a coarser equivalence notion based on
distinguishers and the ideal-real paradigm.

A. Distinguishers

A distinguisher is a probabilistic system that interacts
with a resource and returns a Boolean. Unlike resources
and converters, a distinguisher is not activated by external
inputs; the distinguisher itself drives the system. Formally, a
distinguisher of type A(α, β) is a generative probabilistic value
(GPV) that outputs a Boolean:

type-synonym A(α, β) = G(B, α, β).

When we connect a distinguisher D : A(α, β) to a resource R :
R(α, β), we obtain a probability distribution D�R : D(B) over
Booleans. The connect operator � corresponds to CryptHOL’s
operator for connecting an adversary with an oracle.

Moreover, a distinguisher D : A(α, β) can absorb a converter
C : C(α, β, γ, η). The result D � C : A(γ, η) is again a
distinguisher, but for resources of type R(γ, η). The absorption
operator (�) corresponds to CryptHOL’s inline operator.
Connection and absorption satisfy two important identities:

D � (C �R) = (D �C) �R

D � (C � C ′) = (D �C) �C ′

Like converters, a distinguisher must respect the interface
type of a resource. The predicate D a I expresses that the
distinguisher D queries a resource only with inputs x ∈ IA,
provided that the resource’s responses are in IB(x). The
absorption operator preserves the interface types: If D a I1
and I1 ` C a I2, then D �C a I2.

Definition 6 (Advantage). Let R1, R2 be two re-
sources for the same interface type I. The advantage
adv(D,R1, R2) of a distinguisher D with D a I is given
by |P[D �R1 = True]− P[D �R2 = True]|.

The next theorem shows that trace equivalence captures the
notion of perfect indistinguishability, i.e., with advantage zero.

Theorem 2 (Characterisation of trace equivalence). Let R1

and R2 be two resources respecting I . Then the following are
equivalent:
• R1 and R2 are trace equivalent.
• D �R1 = D �R2 for all distinguishers D with D a I.

B. Security model

We now define the security of a construction following
the ideal-real paradigm. The ideal resource defines the secure
“functionality”, and we would like to show that a real resource
realizes the same functionality, although it may differ with small
probability. We focus on information-theoretic security as we do

9

not restrict the class of distinguishers. Computational security
could be defined similarly except that we would need to for-
malize a computational model, which we leave as future work.

Formally, we consider three interfaces: the user interface
with type IU to the actual functionality and the adversary’s
interfaces with types II and IR to the ideal and real resources,
respectively. The ideal resource RI : R(α+ γ, β + η) provides
the ideal interface and the user interface: II ⊕ IU ` RI. The
real resource RR : R(χ+ γ, δ + η) provides the real interface
and the user interface: IR ⊕ IU ` RR. Technically, everything
depends on a security parameter η, which we leave implicit
in our presentation, but which is explicit in the formalization.
An advantage is negligible if, as a function of the security
parameter, it approaches 0 faster than any inverse polynomial.

In the running example, the two users Alice and Bob have
their own interface. So in this setting, we combine Alice’s
interface Isnd and Bob’s Ircv into a single channel user interface
IU = Isnd ⊕ Ircv. Similarly, when the channel resource is
combined with a key resource like in Fig. 1a, parallel resource
composition leads to a combined interface that is the disjoint
union of disjoint unions of the adversary and user interfaces.
We therefore rearrange the interfaces using wiring converters
such that they obey the format “adversary interface ⊕ user
interface”; Theorem 5 below shows the construction.

Clearly, the real resource should provide the functionality
that the ideal resource promises. In general, this functionality
may involve the adversary. For example, the adversary must
explicitly forward the messages in our channels because the
adversary controls the communication network. We therefore
define when the real resource functionally realizes the ideal
resource. Since the adversary interface may differ between the
ideal and real resource, we assume that there is an embedding
of the ideal adversary interface into the real adversary interface.
We write RI

↪→RR
for the corresponding embedding converter.

In the running example, e.g., the embedding transforms the
responses that return the channel’s content: While the authentic
channel reveals the entire message, the secure channel exposes
only the length. The embedding function applies the length
function to such a response of the authentic channel.

Definition 7 (Functional realisation). Let the resources RI

and RR be given with the above interfaces and let bound
be a natural number or infinity. We say that RR functionally
realises RI up to bound interactions iff all distinguishers D :
A(α + γ, β + η) that respect the interface type II ⊕ IU and
that make at most bound queries have negligible advantage to
distinguish between RI and (RI

↪→RR
| 1) � RR, i.e., the real

resource with the ideal adversary interface.

Figure 7 illustrates the definition: All distinguishers subject
to the restrictions must have negligible advantage to distinguish
the grey resource in Fig. 7a from the one in Fig. 7b. In the
remainder of this section, we visualize indistinguishability in
this way by showing two resources with the same interfaces.

Providing the functionality alone is not enough: The real
resource typically provides a richer adversary interface than
the ideal resource. For a secure realisation, we demand that a

RI
↪→RR

RR

II

IU

IR

(a) Real resource with
ideal interface

RI

II

IU

(b) Ideal resource

Fig. 7: Functional realisation of a resource.

RR

IR

IU

(a) Real resource

S

RI

IR

IU

II

(b) Ideal resource with
simulator

Fig. 8: Secure realization of an ideal resource.

simulator S can mimick the real interface based only on the
ideal. Figure 8 illustrates the indistinguishability condition.

Definition 8 (Secure realisation). Let the resource RR func-
tionally realise RI up to bound interactions, with the interfaces
as in Def. 7. We say that RR securely realises RI up to
bound interactions iff there exists a simulator, i.e., a converter
S : C(χ, δ, α, β) with IR ` S a II between the two adversary
interfaces such that all distinguishers D : A(χ+ γ, δ+ η) that
respect the interface IR ⊕ IU and that make at most bound
queries have negligible advantage to distinguish between RR

and (S | 1) � RI, i.e., the ideal resource with the simulator
attached only to the adversary interface.

Theorem 3 (Reflexivity). Every resource securely realises itself
up to any bound with simulator 1 and embedding converter 1.

C. Composability

We now show that secure realisation composes. That is,
secure realisation is closed under three kinds of composition:

1) concatenation (transitivity),
2) parallel composition, and
3) attaching a converter to the user interface.

We will illustrate each of these in the case study in Section VII.
(Functional realisation has analogous composition theorems,
which we do not present.)

Concatenation stacks secure realisations on top of each
other. Suppose that R1 securely realises R2 and R2 itself
securely realises R3. Then, R1 securely realises R3. So, secure
realisation is a transitive relation. The next theorem captures
this property and the associated construction is visualized in
Fig. 9.

Theorem 4 (Composability). Let II⊕IU`RI and IM⊕IU`RM

and IR ⊕ IU ` RR such that RM securely realises RI up to
bound1 interactions and RR securely realises RM up to bound2

10

RR

IR

IU

(a) Real construction

S2
RM

IR

IU

IM

(b) Intermediate step

S2 S1
RI

IR

IU

IM II

(c) Ideal construction

Fig. 9: Composability of secure realizations. The real resource
RR is constructed from the middle resource RM using converter
S2. RM is constructed from the ideal resource RR using
converter S1. Thefore, RR can be directly constructed from
RI using the sequential composition of of S1 and S2, depicted
using bold black rectangle.

R1

R2

IR1

IR2

IU1

IU2 pa
ra

lle
l

IR1

IU1

IR2

IU2

(a) Real Construction

S1

S2
R1’

R2’

IR1

IR2

IU1

IU2

II1

II2

pa
ra

lle
l

II1

IU1

II2

IU2

(b) Ideal construction

Fig. 10: Parallel composition of secure realizations.

interactions. Let S1 and S2 be the respective simulators and
boundS be a bound on the number of queries that S2 makes
during one invocation. If bound2 ∗max(boundS , 1) ≤ bound1,
then RR securely realises RI up to bound1 interactions with
simulator S2 � S1.

Moreover, secure realisation is closed under parallel compo-
sition (Fig. 10).

Theorem 5 (Parallel composition). Let R1 securely realise
R′1 up to bound1 interactions and let R2 securely realise R′2
up to bound2 interactions. Let parallel denote the converter
lassocr� (1 | (rassocl� (swap | 1)� lassocr))� rassocl. Then,
the parallel composition parallel� (R1 |R2) securely realises
parallel�(R′1|R′2) up to min(bound1, bound2) interactions. The
new simulator is the parallel composition of the old simulators.

Together with Thm. 3, Thm. 5 yields that secure realisation
is preserved under parallel composition contexts, i.e., if we add
an arbitrary resource in parallel to a real and an ideal resource,
then the resulting real resource securely realises the resulting
ideal resource.

Third, secure realisation is preserved when we attach

C
R1

IR

IU′ IU

(a) Real Construction

C

S
R2

IR

IU′ IU

II

(b) Ideal construction

Fig. 11: Attaching a converter to the user interface

a converter to the user interfaces (Fig. 11). There is no
corresponding theorem for attaching a converter to the adversary
interface. Changes to the adversary interface must be expressed
as a composition of secure realisations (Thm. 4).

Theorem 6 (Secure attachment). Let R1 securely realise R2 up
to bound interactions. Let C be a converter on the user inter-
face that performs at most boundC many interactions in a single
invocation. Then, (1 | C) �R1 securely realises (1 | C) �R2

up to bound′ interactions if bound′ ∗max(boundC , 1) ≤ bound
with the same simulator and embedding converter.

VII. WRAPPING-UP THE RUNNING EXAMPLE

We now use our framework to formalize the construction of a
secure channel from a key, a random function, and an insecure
channel. For brevity, we only provide a high-level summary
and use pictures to present the main proof steps. Similar to
the Section IV, the visualisations are a direct translation of the
formal text, i.e. they have corresponding syntax and semantics,
and are thus meaningful. The readers can refer to the online
source [25] for more details.

In each subfigure in the Figure 12, resources are depicted
on the right, and the attachment of abstract systems � is
presented using arrows. Moreover, the resources or converters
that are in the same column are composed in parallel using ‖
or | respectively. Following the lemmas about the sequential
composition � of converters in the Section IV-C, the arrow
connecting two converters, e.g. the arrow between S2 and
S1, can be understood as either the attach operation or the
sequential composition of converters.

We use two cryptographic schemes in our construction. First,
an encryption scheme with converters Cenc and Cdec that is
used to construct a secure channel from an authentic channel
and a key. Second, a message authentication code (MAC)
scheme with converters Cmac and Cchk that is used to construct
an authentic channel from an insecure channel and a random
function.5 We have formalized these schemes in a generic way
that admits multiple instantiations. We instantiate the encryption
scheme with a one-time-pad, and we use the random function’s
mapping of each message as the message authentication code.

We work with five kinds of resources in our proof. The
first three are the insecure channel Risc, the authentic channel
Raut, and the secure channel Rsec that, as discussed in the

5It is possible to construct these resources differently. For instance, an
authentic channel can be constructed from a key, an unpredictable function,
and an insecure channel.

11

Rr2

Risc

Rrf

Rkey

Cenc

Cdec

Cmac

Cchk

(a) Construction using an insecure
channel

Ri2

Rr1

Raut

Rkey

Cenc

Cdec

S2

(b) Replacing an authentic channel

Ri1

Rsec

S2 S1

(c) Replacing a secure channel

Fig. 12: Composing two secure constructions using the com-
position theorem.

Section IV-A, are simply built by instantiating the channel
resource Rchn. Furthermore, we use the random function
resource Rrf and the key resource Rkey that behave as their
names suggest: Rkey always outputs a key that is generated
upon the first query to it; and Rrf returns a new random value
for each new message query. Similar to the converters, the
resources are generic and can be instantiated with respect to
the cryptographic schemes used in the construction. In our
case, both Rrf and Rkey draw values according to a uniform
distribution.

In the first step of the proof, we use the notion of trace
equivalence (Def. 5) to prove that the encryption scheme,
instantiated with one-time pad, securely constructs a secure
channel from a key and an authentic channel. That is, we
show that a distinguisher, subject to the side conditions of
our security definition in the Section VI, cannot distinguish
between resources Rr1 and Ri1, the areas with dashed lines in
the Figure 12. Rr1 is the resource resulting from attaching Cenc
and Cdec to Raut and Rkey; and Ri1 is the resource resulting
from attaching S1 to Rsec. For the one-time-pad encryption,
the simulator S1 generates random bit-strings of a given length
obtained from querying the secure channel Rsec.

Interestingly, the necessity of trace equivalence over bisumu-
lation can be seen even in a simple security proof that involves
a one-time-pad. Consider the case where a distinguisher is
attached to the open interfaces of Ri1 and Rr1 and where

the distinguisher submits a message m to the send interface.
The outputs that the distinguisher expects to receive for his
subsequent queries can be modeled using random variables
that depend on Ri1’s and Rr1’s internal states after the send
query. In the distinguisher’s view, the channel inside Ri1, i.e.
Rsec, can only contain m. However, the channel inside Rr1, i.e
Raut, contains every bit-string of length ‖m‖ with the same
probability since Cenc uses a one-time-pad. Therefore, to prove
the perfect indistinguishability of Ri1 and Rr1 with a local
argument, one must correlate a single-point state distribution
with a uniform distribution over a set of states. Standard
bisimulation relations are not suitable for this purpose since
they always relate individual states. Our proof rule for trace
equivalence handles such a case because it demands a relation
between distributions of states.

In the next step, we prove the security of our simple
MAC scheme by showing that it securely constructs an
authentic channel from a random function and an insecure
channel. This construction is presented using dark gray areas in
Figure 12. Let Rr2 denote the resource resulting from attaching
Cmac and Cchk to Risc and Rrf, and let Ri2 be the resource
resulting from attaching the simulator S2 to Raut. We prove
the indistinguishability of Rr2 and Ri2 in three intermediate
steps. (i) We show the trace equivalence of Rr2 with its lazy
variant. The main difference between the standard (eager) and
the lazy systems is the way in which they treat MACs: in
a lazy-Rr2, messages are inserted into the channel without
generating a MAC and the receiver does not check MACs
by default; however, in a scenario where an adversary looks
into the channel’s content, a MAC is generated on the fly
and the receiver is triggered to check its correctness later.
This preparatory step aligns the samplings in the real system
with those in the ideal system with the simulator, where the
simulator generates a fake MAC on the fly. (ii) We define a
restricted variant of lazy-Rr2 with a special random function
that avoids generating the authentication codes queried by the
adversary, and we show that any distinguisher has negligible
advantage for distinguishing the restricted and non-restricted
instances of lazy-Rr2. Here, the requirement for the notion of
indistinguishability with negligible advantage becomes clear:
neither the bisimulation nor the trace-equivalence notions are
sufficient for this step since the two systems are actually not
equal. In the final intermediate step, (iii) we show that the
restricted-lazy-Rr2 and Ri2 are trace equivalent. Hence, using
the triangular inequality, we can combine the three steps and
show that Rr2 and Ri2 are indistinguishable.

In the final proof step, we just instantiate our composition
theorem, i.e. Theorem 4 with the two aforementioned con-
structions. Figure 12 depicts how the composition theorem
combines the two constructions.

VIII. DISCUSSION AND RELATED WORK

In this section, we discuss how our formalisation relates to
Constructive Cryptography and to the existing approaches to
computer-aided cryptography.

12

Constructive cryptography [26] models resources as random
systems [28], i.e., families of conditional probability distri-
butions. The trace of a resource is exactly a random system.
Conversely, every random system is the trace of some resource.
The novel part here is the recursive definition of a trace (Def. 5),
which gives rise to an unwinding rule for random systems
(Thm. 1). This notion of traces has been inspired by abstract
theory of modelling systems coalgebraically. This provides
evidence that we have found the right coalgebraic model for
Constructive Cryptography.

Maurer and Renner [27] already noted that the theory of
random systems supports only a single interface but constructive
cryptography needs support for multiple interfaces. Our theory
of interfaces and interface types provides this extension. We
can safely combine several interfaces into one and rearrange
them as needed with wiring converters. The crucial insight
here is that an interface type is like a dependent function type:
The set of possible responses depends on the concrete input
value. This allows us to express that the response will be sent
on the same interface as the query.

Our proof that trace equivalence captures perfect indistin-
guishability (Thm. 2) shows that bisimulations are necessarily
incomplete for proving indistinguishability. This incomplete-
ness is practically relevant, as our case study shows. Typical
cryptographic arguments like switching between lazy and
eager sampling cannot be handled by bisimulations. This
restriction is particularly relevant for simulation-based proofs,
because the switch happens in a context that is controlled
by an unknown adversary. This insight applies not only to
Constructive Cryptography, but also to other approaches to
computer-aided cryptography and relational reasoning about
probabilistic programs in general.

Let us expand on this last point with several examples.
EasyCrypt [3] and CertiCrypt [2] develop a separate theory
for code motion. Our result shows that there is no way
around that: probabilistic relational Hoare logic (pRHL) [5]
establishes bisimilarity and therefore cannot justify code motion
in a compositional way. Recently, Barthe et al. [4] wondered
whether their extension of pRHL is complete for hoisting
random assignment out of loops. Our result gives a negative
answer: they establish bisimilarity, which is too strong.

To make this precise, let � c1 ∼ c2 : Φ⇒ Ψ denote that if
we start the two probabilistic programs c1 and c2 in the initial
memories m1 and m2, respectively, such that (m1,m2) ∈ Φ,
then the probability distributions d1 and d2 over the final
memories are related in the lifted relaton lift(Ψ).6 Here, two
distributions d1 and d2 are in the lifted relation lift(R) iff
there is a joint distribution d with support contained in R such
that d1 and d2 are the two marginal distributions of d. (Note
that bisimilarity in Def. 4 uses a special case of lifting for
the bisimulation relation X .) Following traditional relational
Hoare logic [8], pRHL consists of a set of compositional,
syntax-directed rules for judgements ` c1 ∼ c2 : Φ⇒ Ψ that

6Results and outputs of the program are written to special memory locations
and therefore need no special treatment.

establish � c1 ∼ c2 : Φ⇒ Ψ. For example, the pRHL rule for
sequential composition c; c′ is as follows:

` c1 ∼ c2 : Φ⇒ Ξ ` c′1 ∼ c′2 : Ξ⇒ Ψ

` c1; c′1 ∼ c2; c′2 : Φ⇒ Ψ
.

Here, Ξ relates the intermediate memories, which are the
outputs of running c1 and c2 that become the inputs for c′1 and
c′2. Rules of this shape cannot justify cryptographic arguments
based on code motion like lazy sampling where c1; c′1 eagerly
samples a value in c1, whereas c2; c′2 does so lazily in c′2. This
is because Ξ relates individual intermediate memories instead
of conditional distributions on intermediate memories. In fact,
the shape of pRHL judgements cannot accomodate relations
between conditional distributions due to the lifting operator
lift. In practice, pRHL’s rules are therefore extended with other
proof principles like equational reasoning for code motion.

The same argument applies to CryptHOL’s relational proof
rules, which Basin et al. [6] derive from relational parametricity,
and to FCF’s rules [30]: They establish bisimilarity, not trace
equivalence. In contrast, our proof rule (Thm. 1) establishes
trace equivalence and is therefore complete. In our case study,
we use this rule to hoist the random assignment (the one-time-
pad key) out of the key resource and into the simulator.

The composition theorems (Thms. 3-5) show that our
formalisation meets the requirements for general composability
(Section II-B). This is an improvement to the state of the
art where there are only few results on formally verified
composable cryptographic proofs. Existing formal-methods
tools mainly focus on game-based proofs, which in general
are not composable. There are some results about specific
class of protocols’ composability in such tools. For example,
Blanchet [11] has formalized CryptoVerif’s composition theo-
rems to compose a key providing protocol and a protocol that
uses this key and utilized them in TLS 1.3’s formal verification.
Furthermore, there are few results on formalized simulation-
based proofs [12], [17]. They do not formalize (or report on)
any composability statement, yet the individual protocols that
are formalized in these works should be composable in the
context of a simulation-based frameworks such as Universal
Composability.

IX. CONCLUSION AND FUTURE WORK

We have presented the semantic foundation of our frame-
work and demonstrated that it supports the formalization of
composable cryptographic security statements. We work in an
asymptotic information-theoretic security setting that makes the
general composability statements more concise. Nevertheless,
our approach would also work in a concrete security setting.
Computational security statements and more complex case-
studies are left as future work.

ACKNOWLEDGMENTS

We thank Christoph Sprenger, Esfandiar Mohammadi, Chris-
tian Badertscher, and Fabio Banfi for their helpful discussions
and feedback.

13

REFERENCES

[1] M. Backes, B. Pfitzmann, and M. Waidner. A general composition
theorem for secure reactive systems. In Theory of Cryptography (TCC
2004), Proceedings, volume 2951 of LNCS, pages 336–354. Springer,
2004.

[2] G. Barthe, B. Grégoire, and S. Z. Béguelin. Formal certification of code-
based cryptographic proofs. In Principles of Programming Languages
(POPL 2009), Proceedings, pages 90–101. ACM, 2009.

[3] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin. Computer-
aided security proofs for the working cryptographer. In Advances in
Cryptology (CRYPTO 2011), Proceedings, volume 6841 of LNCS, pages
71–90. Springer, 2011.

[4] G. Barthe, B. Grégoire, J. Hsu, and P.-Y. Strub. Coupling proofs are
probabilistic product programs. In Principles of Programming Languages
(POPL 2017), Proceedings, pages 161–174. ACM, 2017.

[5] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Probabilistic relational
hoare logics for computer-aided security proofs. In Mathematics of
Program Construction (MPC 2012), Proceedings, volume 7342 of LNCS,
pages 1–6. Springer, 2012.

[6] D. A. Basin, A. Lochbihler, and S. R. Sefidgar. CryptHOL: Game-based
proofs in higher-order logic. IACR Cryptology ePrint Archive, 2017:753,
2017.

[7] M. Bellare and P. Rogaway. The security of triple encryption and
a framework for code-based game-playing proofs. In Advances in
Cryptology (EUROCRYPT 2006), Proceedings, volume 4004 of LNCS,
pages 409–426. Springer, 2006.

[8] N. Benton. Simple relational correctness proofs for static analyses and
program transformations. In POPL 2004, pages 14–25, New York, NY,
USA, 2004. ACM.

[9] M. Berg. Formal Verification of Cryptographic Security Proofs. PhD
thesis, Saarland University, 2013.

[10] B. Blanchet. A computationally sound mechanized prover for security
protocols. In Security and Privacy (S&P 2006), Proceedings, pages
140–154. IEEE Computer Society, 2006.

[11] B. Blanchet. Composition theorems for cryptoverif and application to
TLS 1.3. In Computer Security Foundations (CSF 2018), Proceedings,
pages 16–30. IEEE Computer Society, 2018.

[12] D. Butler, D. Aspinall, and A. Gascón. How to simulate it in isabelle:
Towards formal proof for secure multi-party computation. In Interactive
Theorem Proving (ITP 2017), Proceedings, volume 10499 of LNCS,
pages 114–130. Springer, 2017.

[13] R. Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In Foundations of Computer Science (FOCS
2001), Proceedings, pages 136–145. IEEE Computer Society, 2001.

[14] D. Coumans and B. Jacobs. Scalars, monads, and categories. In Quantum
Physics and Linguistics: A Compositional, Diagrammatic Discourse,
pages 184–216. Oxford University Press, 2013.

[15] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208,
1989.

[16] M. J. C. Gordon and A. M. Pitts. Chapter 3 - the hol logic and system. In
Towards Verified Systems, volume 2 of Real-Time Safety Critical Systems,
pages 49–70. Elsevier, 1994.

[17] H. Haagh, A. Karbyshev, S. Oechsner, B. Spitters, and P.-Y. Strub.
Computer-aided proofs for multiparty computation with active security.
In Computer Security Foundations (CSF 2018), Proceedings, pages 119–
131. IEEE Computer Society, 2018.

[18] S. Halevi. A plausible approach to computer-aided cryptographic proofs.
IACR Cryptology ePrint Archive, 2005:181, 2005.

[19] I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via
coinduction. Logical Methods in Computer Science, 3(4):1–36, 2007.

[20] D. Hofheinz and V. Shoup. GNUC: A new universal composability
framework. Journal of Cryptology, 28(3):423–508, 2015.

[21] B. Jacobs, A. Silva, and A. Sokolova. Trace semantics via determinization.
Journal of Computer and System Sciences, 81(5):859–879, 2015.

[22] A. Kurz, S. Milius, D. Pattinson, and L. Schröder. Simplified coalgebraic
trace equivalence. In Software, Services, and Systems, volume 8950 of
LNCS, pages 75–90. Springer, 2015.

[23] R. Küsters and M. Tuengerthal. The IITM model: A simple and expressive
model for universal composability. IACR Cryptology ePrint Archive,
2013:25, 2013.

[24] A. Lochbihler. Probabilistic functions and cryptographic oracles in higher
order logic. In European Symposium on Programming (ESOP 2016),
Proceedings, volume 9632 of LNCS, pages 503–531. Springer, 2016.

[25] A. Lochbihler and S. R. Sefidgar. Constructive Cryptography using
CryptHOL. Archive of Formal Proofs, 2018. http://isa-afp.org/entries/
Constructive_Cryptography.html.

[26] U. Maurer. Constructive cryptography - A new paradigm for security
definitions and proofs. In Theory of Security and Applications - Joint
Workshop (TOSCA 2011), Revised Selected Papers, volume 6993 of
LNCS, pages 33–56. Springer, 2011.

[27] U. Maurer and R. Renner. Abstract cryptography. In Innovations
in Computer Science (ICS 2010), Proceedings, pages 1–21. Tsinghua
University Press, 2011.

[28] U. M. Maurer. Indistinguishability of random systems. In Advances in
Cryptology (EUROCRYPT 2002), Proceedings, volume 2332 of LNCS,
pages 110–132. Springer, 2002.

[29] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-order Logic, volume 2283 of LNCS. Springer, 2002.

[30] A. Petcher and G. Morrisett. The foundational cryptography framework.
In Principles of Security and Trust (POST 2015), Proceedings, volume
9036 of LNCS, pages 53–72. Springer, 2015.

[31] J. J. M. M. Rutten. Universal coalgebra: A theory of systems. Theoretical
Computer Science, 249(1):3–80, 2000.

[32] V. Shoup. Sequences of games: A tool for taming complexity in security
proofs. IACR Cryptology ePrint Archive, 2004:332, 2004.

[33] A. Silva, F. Bonchi, M. M. Bonsangue, and J. J. M. M. Rutten.
Generalizing the powerset construction, coalgebraically. In Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2010),
Proceedings, volume 8 of LIPIcs, pages 272–283. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2010.

APPENDIX

A. Guide to the source theory files

For brevity, in the body of this paper, we only provided
informal text and used pictures to present the main lemmas
and theorems. However, all the definitions and lemmas are
formalized and verified in the Isabelle/HOL proof assistant. In
what follows, we provide a guide for the reader to navigate
the source theories, which are available online [25].

The root directory contains many theory files and an
Examples folder that stores the case study’s formalization.
Each theory file contains the lemmas and definitions which
correspond to its name:
• Resource.thy formalizes resources, their parallel com-

position, and the notion of interface respecting resources
(Section IV-A).

• Converter.thy formalizes converters, their sequential
and parallel composition, the notion of interface respecting
converters, and the attachment of converters to resources
(Sections IV-B, IV-C).

• Wiring.thy formalizes the wiring converters (Sec-
tion IV-C).

• Random_System.thy formalizes the notion of trace
and trace equivalence, where the propositions trace’_-
eqI_sim and trace_callee_complete prove the
two directions of Theorem 1.

• Distinguisher.thy formalizes the notion of distin-
guishers, where lemmas connect_cong_trace and
distinguish_trace_eq formalize the two directons
of Theorem 2.

• Constructive_Cryptography.thy formalizes
the notion of secure realisation (Def. 8) using
the locale constructive_security. The

14

http://isa-afp.org/entries/Constructive_Cryptography.html
http://isa-afp.org/entries/Constructive_Cryptography.html

composability theorems 3–6 are formalized by the
theorems constructive_security_trivial,
composability, parallel_constructive_-
security, and lifting respectively.

• Converter_Rewrite.thy formalizes the notion of
equivalence of resources and converters subject to assump-
tions on the context given by interface types. The paper
does not delve into this technicality.

The case study has four main theory files, which are stored
in folder Secure_Channel listed inside the examples folder.
• System_Construction.thy contains the generic

formalization of channels, encryption schemas, and mes-
sage authentication schemas.

• One_Time_Pad.thy formalizes the first part of our
case study, where we instantiate a one-time-pad encryption
scheme and use it to construct a secure channel from a
key and an authentic channel (lemma one_time_pad).

• Message_Authentication_Code.thy constitutes
the formal construction of an authentic channel from a ran-
dom function and an insecure channel. Lemmas trace_-
eq_lazy, game_difference, and trace_eq_sim
constitute the three reduction steps and the lemma
secure_mac states the constructive security of our
simple message authentication code.

• Secure_Channel.thy stores the final composition
lemma mac_otp that states the constructive security of
the aforementioned construction’s composition.

15

	Introduction
	Problem Context
	Our Solution
	Contributions
	Structure

	Background
	CryptHOL
	Constructive Cryptography

	Running example
	Formalizing Resources and Converters
	Resources
	Defining Concrete Resources
	A type system for interfaces
	Parallel composition

	Converters
	Constructing Systems

	Equivalence of Resources
	Secure Constructions
	Distinguishers
	Security model
	Composability

	Wrapping-up the Running Example
	Discussion and Related Work
	Conclusion and Future Work
	References
	Appendix
	Guide to the source theory files

