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Abstract—In random sample voting, only a randomly chosen
subset of all eligible voters are selected to vote. This poses new
security challenges for the voting protocol used. In particular,
one must ensure that the chosen voters were randomly selected
while preserving their anonymity. Moreover, the small number
of selected voters leaves little room for error and only a few
manipulations of the votes may significantly change the outcome.

We propose Alethea, the first random sample voting protocol
that satisfies end-to-end verifiability and receipt-freeness. Our
protocol makes explicit the distinction between human voters
and their devices. This allows for more fine-grained statements
about the required capabilities and trust assumptions of each
agent than is possible in previous work. We define new security
properties related to the randomness and anonymity of the
sample group and the probability of undetected manipulations.
We prove correctness of the protocol and its properties both using
traditional paper and pen proofs and with tool support.

I. INTRODUCTION

The purpose of a democratic election is to reach a decision

based on the will of the voters. Direct democracy is not the best

way to achieve this goal as it is too expensive and the voters

do not have the resources to make well informed decisions

on all matters they can vote for. Thus alternative forms of

democracy have been considered [8], [16], [18] and studying

their benefits is an active research area in political economy.

Random sample voting, first proposed by Chaum [8], is an

alternative form of democracy that aims to improve the utility

of elections by polling a small number of randomly selected

citizens, the sample group. The size of this group is chosen

such that it accurately reflects the will of the entire electorate.

Elections with a small sample group are cheaper than elections

involving the entire electorate. Moreover, since each voter is

polled less frequently and believes that his vote has a larger

influence, the voters have more time and motivation to inform

themselves of the issues prior to voting.

Random sample voting gives rise to new challenges. The

first concerns the selection of the sample group. It is obviously

crucial that the voting authority should not be able to influence
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the selection of the sample voters. It must also be verifiable

that the voting authority correctly communicates the selected

group to the voters. Moreover, the selection must be random

and the sample group members must be anonymous, lest they

be unduly influenced, harassed, or made responsible for an

election outcome by those that were not selected.

Further challenges are posed by the sample group’s small

size. It is of paramount importance that the few votes cast are

not manipulated. We must therefore work with the realistic

assumption that the voters’ platforms are compromised and

prove that the voting protocol is end-to-end verifiable from the

human voter (as opposed to his platform) to the remote server.

This necessitates explicitly separating the roles of the human

voter and his computing devices, in contrast to the approaches

taken in previous work. We refer to Section VI-B for a

comparison. The small number of votes cast also leaves little

room for voter error. For a protocol to be end-to-end verifiable,

the voters must perform certain checks. Yet in practice many

voters will skip them. We must therefore explicitly quantify the

probability that vote manipulations remain undetected, given

assumptions on the number of checks and manipulations that

are made.

Contributions: We propose and formally verify Alethea1,

the first random sample voting protocol that satisfies end-

to-end verifiability and receipt-freeness. Compared to other

voting protocols, we make explicit the distinction between

voters and their devices. This enables us to state refined trust

assumptions with respect to voters and their platforms and

to analyze our protocol with respect to a more fine-grained

adversary model than was possible in previous work.

We formalize the properties that are necessary for and

specific to random sample voting as well as conventional

properties for e-voting. In particular, we introduce the concept

of global properties that express the probability that a cheating

authority is not detected as a function of how many individual

checks are made.

1Alethea is derived from the ancient Greek word aletheia meaning “the
state of being evident.” This name reflects one of our main goals: a verifiable
voting protocol where all necessary information is disclosed to auditors.
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Fig. 1. System Model

We model the protocol and its properties symbolically and

prove many of the properties using the Tamarin tool [20], [23].

We give hand-written proofs for those properties that cannot

be efficiently verified for an unbounded number of voters

by any state-of-the-art tool. This combination of automated

and manual proofs allows us to prove all relevant security

properties while benefiting from automation in many cases.

Organization: We introduce our setup in Section II and

Alethea in Section III. We analyze the protocol in Section IV.

We describe extensions and present related work in Sections V

and VI, respectively, and conclude in Section VII.

II. SETUP

We first introduce the protocol roles and communication

channel assumptions, then our adversary model and trust

assumptions, and finally our human agent model.

A. Roles and communication channels

Figure 1 depicts the roles and the communication channels

between them. We consider the following roles in our protocol:

the human voters H ,2 their platforms P , their personal devices

D, the voting authority or voting server S, a public bulletin

board BB, and the auditors A. In the actual protocol there

can be several instances of each of these roles, except for the

server S and bulletin board BB.

Following Maurer and Schmid [19], we write A −→ B, A •−→
B, A −→• B, and A •−→• B to denote insecure, authentic,

confidential, and secure channels from (instances of) role A
to role B, respectively, and refer to [4] for a formal semantics

for this notation. We write A ←→ B and A •←→• B for an

insecure and secure channel, respectively, between A and B.

The voting server S is responsible for setting up elections

and collecting and tallying the ballots. The platform P is used

by the voter to send his vote to S. We assume that the platform

can be compromised. Therefore, the channels between H and

P as well as between P and S are insecure. As some trust is

necessary for a voter to cast votes confidentially, we employ a

simple personal device D for this purpose. It is more realistic

to trust D than a general purpose platform as D can have

2We reserve the term v for the votes and refer to the voters by H .

limited capabilities and need not connect to the Internet. Each

voter has exactly one personal device D. We assume that D
is only accessible by the voter H to whom it is assigned and

that D stays in H’s possession, even if an adversary tries to

coerce him. This is modeled by the secure channel between H
and D. Also, there is an authentic channel from the server S
to the device D. This channel can, for example, be established

by S sending to H a QR code by post, which the voter H can

scan with D.

S can authentically publish information on the bulletin

board BB, which can then be read by voters and auditors over

an authentic channel. The auditor role A specifies checks that

must be performed by at least one honest party. By modeling

A as a separate role, we allow it to be instantiated by anyone,

including the voters. The direct link from BB to H indicates

that H can access BB by means other than his insecure

platform. The bulletin board’s contents can, for example, be

published in newspapers.

B. Adversary model and trust assumptions

We consider a Dolev-Yao adversary [13] who controls the

network by learning all messages sent over the network, con-

structing new messages, and delivering messages. Addition-

ally, the adversary can compromise some of the participating

agents to learn all their secrets and control their behavior. In

particular, the adversary has access to all channels to and from

the compromised agents and can make them send and receive

arbitrary messages. Uncompromised agents are called honest
and they strictly perform their roles as specified.

Trusting an agent means that we assume that the agent is

honest. To restrict the adversary, we make the following trust

assumptions.

Trust Assumption 1. The agents instantiating the voters’ de-

vices D and the bulletin board BB are honest.

Thus we assume that the devices and the bulletin board follow

their specifications and their keys remain secret. Furthermore,

the adversary cannot send messages on the authentic channels

from BB or receive or send messages on the secure channel to

and from D. Our assumption that the bulletin board is not

compromised implies that everyone agrees on its contents.

Hence, the bulletin board’s contents are binding values of the

election’s outcome and intermediate results.

Remark. Note that the voting server S can publish false

or inconsistent information on BB. However, all voters and

auditors will see the same information on BB. However, an

honest BB does not imply that each agent arrives at the same

conclusions when inspecting the BB. For example, a voter can

only decrypt his own vote and check whether it is included in

the tally. Thus one voter can conclude that his vote is missing,

while another voter cannot reach this conclusion because he

cannot decrypt the other voter’s vote. �
For a voting protocol, it is crucial that the outcome’s

integrity is guaranteed even if we do not trust the voting server

S. We must therefore examine verifiability properties under the

assumption that S is under the adversary’s full control. In our
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protocol, S is responsible for collecting the ballots and tallying

them. Hence, S naturally learns how each voter voted and if S
is not trusted, there are no privacy guarantees. Many protocols

distribute the trust in S over a number of tellers (or trustees)

using standard threshold cryptography techniques [10], [15].

As a result, only a threshold of all tellers must be trusted. As

with other authors [1], [8], we consider an abstraction of this

setup and model S as a single server that is trusted with respect

to privacy properties. This simplifies the protocol and allows

us to focus on its novel aspects. Thus, we model an honest S
when examining privacy properties, but allow the adversary to

compromise S when examining other security properties.

Trust Assumption 2. For privacy properties, we assume that

the agent instantiating the voting server S is honest.

Next, we state the trust assumptions on the voters. If

a voter is compromised, the adversary can dictate how he

votes. The same holds if an adversary is physically present

at all times. We therefore examine the security properties that

hold for honest voters. Nevertheless, for receipt-freeness it

is important to consider voters who are willing to cooperate

with the adversary, either because they get something in

return or because they are threatened. When analyzing receipt-

freeness, we therefore include voters that reveal all their secrets

to the adversary to prove how they vote. Note that except

for the potential disclosure of secrets, voters follow their

role specification and the adversary cannot access the secure

channel to their device.

Trust Assumption 3. The agents instantiating the voters H are

honest. For receipt-freeness, we assume that voters reveal all

their secrets to the adversary.

Finally, we assume that the auditors are honest. The ad-

versary can perform the same computations as the auditors

because she also learns all information on BB.

Trust Assumption 4. The agents instantiating the auditors A
are honest.

C. Human capabilities

In voting protocols, we require end-to-end guarantees from

the human voters to the server. To realistically model humans,

we assume that they cannot perform cryptography and that

they need a device to assist them with computations. They

can, however, read and learn terms, concatenate, split, and

compare terms, and output terms they have learned. Such a

human model was explored in detail in previous work on

Human-Interaction Security Protocols [4].

III. PROTOCOL

Alethea operates in two phases. In the selection phase, the

voting authority determines the random group of sample voters

by choosing a subset of the electorate based on a publicly

verifiable random event. In the voting phase, the sample voters

are authorized to vote. The main idea of our protocol is that

each voter’s personal device computes two codes: a voter code
that acts as the voter’s pseudonym and is used for the random

selection, and a (ballot) code that encrypts the voter’s ballot.

We first introduce the protocol model and specify each

phase. We then analyze Alethea’s complexity.

A. Protocol model

We model the protocol as a transition system, which gives

rise to a trace semantics. We present the protocol using

message sequence charts. Each role is depicted by a vertical

life line and named by the box on top. A role’s life line depicts

the role’s events, sequentially ordered. For example, the first

line in Figure 2 denotes the voter H’s role. A role’s sent and

received messages are depicted on top of arrows that start at

the sender and end at the receiver. We denote a role’s internal

computations by dashed squares and signals by solid squares.

Signals do not have an effect on a protocol’s execution, but

serve to label events in executions to facilitate reasoning about

the protocol’s security properties.

In executions, the roles are instantiated by agents and we

consider all possible interleavings of agents’ runs in parallel

with the adversary. A trace tr is a finite sequence of signals

that occur in an execution. It records the messages that are

sent and received by agents and the messages that are sent,

received, and computed by the adversary. Furthermore, a trace

contains the signals (containing auxiliary information) that

we explicitly add to the protocol specification. We denote by

TR(℘) the set of all traces of a protocol ℘.

1) Notation: If a receiver B parses a message differently

than the sender A, we write x/y, where x denotes the message

sent by A and y denotes the message pattern that is parsed by

B. We write x := y for the assignment of y to x and we write

[xi]i∈{1,...,n} to denote a list of n messages of the same kind.

Similarly, we write [f(xi, yi)]i∈{1,...,n} for a list of messages,

where each message has the same form, but its value differs

for each entry of the list. When it is clear from context over

which values we quantify, we omit the indices. For example,

we write [x] and [f(x, y)] for the above lists, respectively.

2) Term algebra: Our trace model is based on a term

algebra T that is generated from the application of functions

in the signature Σ to the set of names N and variables V .

We use standard notation to denote the functions for (left-

associative) pairing (〈·, ·〉), projection to the first (fst) and

second (snd) term of a pair, a cryptographic hash function

(h), asymmetric encryption (aenc), asymmetric decryption

(adec), and the public key (pk) corresponding to a private

key. We frequently write 〈a, b, c〉 for 〈〈a, b〉, c〉 and {m}k
for aenc(m, k) and the functions aenc, adec, pk obey the

equation adec(aenc(m, pk(k)), k) = m.

We write π[x] to denote the permutation of a list [x]. The

function rand(e) denotes a random term that depends on an

input value e. The function select(r, [x]) returns a sub-list of

the list [x] depending on r.

Alethea uses non-interactive zero knowledge proofs to de-

crypt ballots in a publicly verifiable manner. To this end,

we define the probabilistic asymmetric encryption scheme

(cp, dcp) by dcp(cp(m, r, pk(k)), k) = m, where r denotes

randomness, k is the private key, and pk(k) is the cor-

responding public key. We frequently write {m}rpk(k) for
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cp(m, r, pk(k)). We denote by PeqP([x], [y], k) the non-

interactive zero knowledge proof of plain text equivalence of

two lists [x] and [y], where k is the key used to generate the

proof. A proof of plain text equivalence can be verified by

any party with the function VeqP(proof, [x], [y]), which takes

as input the proof and the two lists [x] and [y] claimed to

contain the same plain texts up to permutation. A verification is

successful if the following three conditions hold. (1) The proof

was constructed with respect to permutations of the two lists

that were input to the verification function. (2) The elements

of the first list correspond to encryptions of the elements

of the second list, but can be permuted. (3) The proof was

constructed with the private key k corresponding to the public

key pk(k) used for the encryptions. The last condition means

that only someone who can decrypt the messages can construct

such a proof. The following equation models these conditions,

where π1, π2, and π3 denote arbitrary permutations.

VeqP(PeqP(π1[cp(m, r, pk(k))], π2[m], k),

π3[cp(m, r, pk(k))], [m]) = true

Such a function could, for example, be implemented by a

scheme based on Chaum-Pedersen due to Neff [21].
3) Execution model: As is standard, whenever a role re-

ceives a term that it already knows, we assume that it compares

the two terms and only proceeds with the protocol if they are

equal. In addition, we use the signal verify(X, p), where X
is a term and p is a predicate, to explicitly indicate that a

role checks whether the predicate p holds. In the protocol’s

traces, the verify signal is recorded as verify(X, p, b), with

b ∈ {true, false} indicating whether the predicate p is satisfied.

This allows us to refer both to the terms that are evaluated

in the predicate and the predicate’s truth value. For example,

verify(X, fst(〈m1,m2〉) = m3, true) occurs in a trace if the

instantiations of the terms m1 and m3 are equal. If the

predicate is not satisfied, the agent stops its role execution.

The signal sel(A, p), where p is a predicate, indicates

whether a voter A believes that he is in the sample group. As

with verify, sel is recorded in the traces as sel(A, p, b), where

b ∈ {true, false} indicates whether p is satisfied. The signal

BB(x) indicates that the term x is posted on BB, voter(A) that

A is a voter, device(D,A) that D is A’s device, and Vote(A, v)
that v is A’s vote. When necessary, we use literal indices to

distinguish between different signals of the same type. Finally,

recv(A,m) and send(A,m) indicate that a role A receives and

sends the message m, respectively, but we do not explicitly

include them in the message sequence charts.

We next describe the protocol phases. For readability, we

only describe the protocol from the perspective of one voter.

The same protocol is executed between each voter H , his

device D, the platform P he uses, and the unique server S and

bulletin board BB. Similarly, we describe one auditor role A,

which can be instantiated by the voters or an external auditor.

B. Selection phase

In this phase, as depicted in Figure 2, the server generates

for each voter a unique voter code and randomly selects the

sample group from the set of all voter codes.

First, the server S publishes a description of a random event

ev in the future. For example, S publishes a future date, time,

and the name of a stock market index from which it will

draw its publicly verifiable randomness. The source of the

randomness is chosen such that, at the time that S publishes

ev, it cannot predict the randomness that will result from this

event.3 Then, S generates for each voter a random secret x and

computes the voter code y as the hash of the voter’s identity

and this secret. S posts the list [y] of all voter codes to BB.

S sends the voter secret x encrypted for H’s device D over

an authentic channel. Then D computes y = h(H,x) and

displays it to the voter.

An alternative to the above is for the voter code y to be

directly sent from S to H on an authentic channel, for example

by letter. However, having D do part of the computation has

two advantages over protocols where the code is directly sent

to the voter. First, if we send a code directly to the voter,

we must send it in plain text because humans cannot, in

general, decrypt data themselves (without auxiliary devices).

This means, however, that an intruder who intercepts this

message can learn the voter code.4 If we use a device D that

can perform decryptions, the message can be sent encrypted

and protected from eavesdroppers. Second, we assume that

the server S can be compromised, but the honest D performs

computations according to the protocol. If the voter learns

the voter code from D, he knows that it is of the form

h(H,x′) for some x′ that D received from S. Of course, S
can send a wrong secret x′, therefore the voter must verify

that the received code yD is in the list of voter codes on

BB. As h is collision resistant, S cannot send an x′ �= x for

which h(H,x′) computed by D is equal to a y that has been

computed differently. Also, S cannot make two voters believe

that they have the same voter code because, for any x1 and

x2, H1 �= H2 =⇒ h(H1, x1) �= h(H2, x2).
After all voters have learned their respective voter codes,

a subset of the voter codes are selected to form the sample

group. To ensure that this selection is random and cannot be

influenced by S, it is based on the random event that was

previously posted to BB. We denote by the role E that the

environment produces the randomness r from the event ev and

assume that the agent instantiating E is honest. For example,

ev denotes a certain stock value, date, and time, and r is the

random stock value at this defined date and time. The authentic

sending of r from E to A and S denotes that both A and S
can observe the randomness. Furthermore, by sending ev from

E to A we model that A can observe that r was generated

according to the event ev.

Based on r, S computes the sample group [ySG], which

consists of a random subset of all voter codes in [y]. The

sample group is published on BB and each voter can check if

3In practice, one can combine different randomness sources so that an
adversary can only effectively influence the randomness by controlling all
sources.

4In the scenario where the voter code is sent from S to H by mail, the
postman, or anyone with access to the mail box, could learn the voter code.
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Fig. 2. Selection phase

〈
fstcode︷ ︸︸ ︷

{v, h(x, ind)︸ ︷︷ ︸
hV︸ ︷︷ ︸

pV

}rpkS ,
sndcode︷ ︸︸ ︷

{h(H,x)︸ ︷︷ ︸
y

, h(x)︸︷︷︸
hY︸ ︷︷ ︸

pY

}r′pkS〉

Fig. 3. Terms of the ballot code

his voter code is [ySG] (i.e. if he is chosen to vote), which is

denoted by the signal sel. The auditor reads the sample group

on the bulletin board and verifies that it was drawn according

to the function select and the random number r.

C. Voting phase

The sample voters, which were selected in the selection

phase, can cast their vote in the voting phase. To do this, a

voter sends an encrypted version of the vote to S, the ballot

code code. We first describe how the code is constructed by

the voter’s device D. Afterwards, we present the detailed steps

of the voting phase.

1) Construction of the ballot code: If the voter H casts the

vote v, his device D constructs the ballot code as

code := 〈{v, h(x, ind)}rpkS , {h(H,x), h(x)}r′pkS〉.

Figure 3 depicts the code’s subterms. The code is built from

two concatenated encryptions, which we denote by fstcode and

sndcode. Both encryptions use the public key of the server S.

The first part, fstcode, encrypts the vote. In fact, it encrypts

a pair pV consisting of the vote v and a hash hV of the voter

secret x and an index ind. The voter secret binds together

the two parts fstcode and sndcode and serves to authenticate

the voter H , since only H’s personal device D knows x. The

index ind is a number that is chosen by the device D each

time the voter enters a vote. When casting the vote, the voter

sends the index, along with the code, to the server. We explain

the advantage offered by this construction in Section V-B.
The code’s second part, sndcode, also encrypts a pair, pY,

and authenticates the voter by his voter code y = h(H,x).
As everyone knows the list of voter codes corresponding to

sample voters, this enables auditors to check that the recorded

votes were cast by sample voters. The second hash in pY ,

hY = h(x), again ensures the authenticity and binds the two

parts of the code together, as only D knows x.
Recall from Section III-A2 that cp has the property that

the holder of the secret key can decrypt and permute a list

of encryptions and construct a zero knowledge proof that

the decrypted messages correspond to the plain texts in the

encryptions, up to permutation. The construction of the codes

thus allows S to verifiably decrypt the votes and voter codes.
2) Detailed voting phase: Figure 4 depicts the voting phase.

First, the voter H enters his vote v on the device D. D then

computes the code as described above, and displays it to the

voter, together with the voter’s identity H and the index ind.

Using a trusted device to compute the code has advantages

similar to the ones described in the selection phase. To cast

the vote, the voter enters this code and the index on P , which

sends it on to S. A possible realization of this communication

from D to P that is triggered by H is that D displays a QR

code which is scanned by H with P .
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verifyv2(A, [fst(pV )] = [v])
verifyy2(A, [fst(pY )] = [y′])
verify(A, [y′] = [ySG])

Fig. 4. Voting phase

The server can interpret the code with the help of the

received index ind and only accepts it if it has the right

form. S collects all codes in the list [code]. To avoid revealing

private information, the codes are sorted in this list, denoted

by the permutation πS . S then decrypts the first parts of the

codes to the list of pairs [pV ]. The first elements of [pV ]
are the votes defining the final tally. Also, S decrypts the

codes’ second parts into [pY ], which contains the voter codes

[y′]. The permutations π1 and π2 ensure that the orders of

the elements do not reveal which decryptions correspond to

which encryptions. Additionally, S constructs zero knowledge

proofs that both parts have been decrypted correctly and posts

all these lists and the proofs on the bulletin board.

An auditor A then verifies the following properties: (1) The

two parts of the codes have been correctly decrypted to the

published lists of pairs pV and pY , as the proofs of plain

text equivalence are verified. (2) The first part of the elements

in [pV ] and [pY ] correspond to the published votes [v] and

voter codes [y′], respectively. (3) The published voter codes

[y′] correspond to the voters in the sample group. Each sample

voter also reads the list of codes from the bulletin board and

verifies that it includes his code.

3) Voting with abstention: We do not require that each

sample voter casts a vote. However, even voters who abstain

may perform the individual verifiability check that no vote was

recorded for them. If a voter decides not to cast a vote, signaled

by Vote(H, ‘empty’), a constant string ‘empty’ is recorded as

his vote. Compared to the standard voting protocol in Figure 4,

the difference is that the voter never sends anything to S over

P and therefore these steps are omitted. To learn the code

corresponding to the empty vote, the voter enters a designated

code word, or presses a designated ‘empty’ button on D.

As the voter does not cast a vote, it is impractical for him

to send ind to S. We therefore assume a predefined default

index ind0 and secret nonces r0 and r′0, known to both D and

S. When the voter enters ‘empty’, D uses ind0, r0, and r′0
to compute the code. After the vote casting phase has ended,

for each voter that has not sent a vote, S computes the empty

ballot code also using ind0, r0, and r′0.

D. Complexity

We briefly summarize the roles’ time complexities in terms

of the number of voters n and the number of sample voters

m ≤ n. We define the size of a term in our term algebra to be

the number of function symbols and names that occur in the

term. We consider the application of functions in the signature

Σ as well as the comparison, sending, and reception of terms

as basic operations, thus requiring time proportional to the size

of the terms. We prove the following lemma in Appendix A.
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Lemma 1. The time complexity of all roles is linear in the

number of voters n, except for the auditor role, which has

complexity O(n) +O(m log(m)).

IV. ANALYSIS

We assume that the voting phase only starts after the

selection phase has finished. Consequently, messages from the

two phases cannot be interleaved. We thus analyze the two

phases separately and use in the voting phase the fact that

a successful selection phase has already established certain

common knowledge shared between the agents.

We establish three main kinds of properties for Alethea: ver-

ifiability properties, global properties, and privacy properties.

Verifiability properties are trace properties that are conditional

on an agent performing a particular protocol step, typically

a verification step. We say that a protocol satisfies a trace

property if every trace of the protocol satisfies the property.

Our verifiability properties guarantee that a cheating server

is caught provided the voters and auditors follow the protocol

specification and perform the necessary verification steps. In

practice, however, not all voters will perform these checks. Our

global properties account for this and quantify the probability

that a server is not caught cheating when it manipulates a

number of voter codes or ballot codes. As these properties are

novel and require introducing additional notation, we describe

them in more detail in the next section.

Privacy properties express that an adversary cannot learn

certain relations, for example who voted for whom. We define

privacy properties as observational equivalence properties that

express that an adversary cannot distinguish between two

systems: a left system and a right system. For example, the

adversary cannot distinguish one system (left) where a voter

votes according to the adversary’s will from another system

(right) where the voter votes according to his own choice.

More specifically, we define a set S of trace pairs (trL, trR)
where trL is from the left system and trR from the right

system. A protocol satisfies a privacy property if for all its

traces in one system there exists a trace in the other system

such that the pair of traces is contained in S .

We use the Tamarin tool to verify verifiability and privacy

properties (see [24] for the Tamarin input files). For the

latter, we use Tamarin’s built in support for observational

equivalence [2]. We consider two models, one with an honest

and one with a compromised server S. As some of the

universal verifiability properties cannot be efficiently verified

with Tamarin for a large number of voters, we model two

voters in Tamarin. Whenever we prove properties for an

arbitrary number of voters, we use hand-written proofs for

this general case. In some cases, we need permutations of lists,

for example to state that a zero knowledge proof of plain text

equivalence is verified. To state that each permutation of the

inputs is valid, we explicitly model each possible permutation

in Tamarin.

Finally, we prove that S cannot influence the sample group

and that the sample group is random. In the symbolic model,

these properties follow directly from the assumptions on the

selection function select. However, as these properties are

crucial to the proper functioning of random sample voting, we

give details of how select could be realized and prove them at

this lower level of abstraction.

A. Global verifiability properties

To prove that a protocol satisfies a property, we consider

all possible interleavings of the agents instantiating their roles

with the adversary. In practice, humans do not follow their role

specification precisely. For example, it is unlikely that every

voter performs all the necessary checks to detect manipulation

by the server S. This implies that there will always be traces

where S successfully manipulates the election’s outcome.

Therefore, in addition to reasoning about the possibility of

attacks, our global properties are used to reason about the

probability that manipulations by S are not detected.

We define a probability space (Ω,F ,Prob), where Ω is the

set of all possible outcomes (the sample space), F ⊆ 2Ω is

the set of events, and Prob : F → [0, 1] is the probability

measure. F is a σ-algebra, i.e., closed under complementation

and countable unions. In addition to the set of traces TR(℘),
we include in Ω those traces that arise from voters skipping

their verification steps. Formally, we consider the protocol ℘′

obtained from ℘ by adding three voter roles that are identical

to role H except that the first, second, or both verify signals

specified for H in ℘ are missing. A voter then has the choice

of executing one of these four roles and this choice determines

which verification steps are skipped. Skipping verification

steps means that the voter will not notice a manipulation. We

set Ω = TR(℘′).
We assume that the probability measure Prob is such that

the event of a voter performing a check is independent of the

event that the voter’s check succeeds.

Definition 1. Let (Ω,F ,Prob) be a probability space of a

protocol ℘ as defined above. Let Vs(H), Vv(H) be the events

that H is a voter and H is a member of the sample group,

respectively. The indices s and v denote that an event is

associated with the selection and voting phase, respectively.

Let Xs(H), Xv(H) be the events that H’s voter code or ballot

code was manipulated. Finally, let Ys(H), Yv(H) be the events

that H checks that his voter code and his ballot code is on

BB, respectively. Formally,

Vs(H) = {tr ∈ Ω | voter(H) ∈ tr}
Vv(H) = {tr ∈ Ω | ∃v. Vote(H, v) ∈ tr}
Xs(H) = {tr ∈ Ω | ∃D. ∀x, [y], k. device(D,H) ∈ tr∧

¬(recv(D, {x}k) ∈ tr ∧ BBy([y]) ∈ tr ∧ h(H,x) ∈ [y])}
Xv(H) = {tr ∈ Ω | ∃cH , ind. ∀[code].

(send(H, ‘empty’) ∈ tr ∧ recv(H, 〈H, cH , ind〉) ∈ tr

∨send(H, 〈cH , ind〉) ∈ tr) ∧ ¬(BBc([code]) ∧ cH ∈ [code])}
Ys(H) = {tr ∈ Ω | ∃p, b. verifyyD

(H, p, b)}
Yv(H) = {tr ∈ Ω | ∃p, b. verifyv(H, p, b)}

We say that verification is independent of manipulation in

the probability space of a voting protocol ℘, if for all H ,
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Xs(H) and Ys(H) are conditionally independent events given

Vs(H) and if Xv(H) and Yv(H) are conditionally independent

events given Vv(H).

We define a global property for an event X ⊆ Ω, random

variables X1, . . . , Xn : Ω → N, a function F : N
n →

[0, 1], and relations ∼1, . . . ,∼n,∼ ∈ {=,≤,≥}. A global

property has the form {tr ∈ Ω | Prob(X|X1(tr) ∼1

j1, . . . , Xn(tr) ∼n jn) ∼ F (j1, . . . , jn)}. The global property

is satisfied if for every trace tr of the sample space the

conditional probability of X given the event characterized by

the relations on X1, . . . , Xn, satisfies the indicated relation.

In our global properties, X indicates that the voting server’s

manipulation is not detected. The random variables count the

number of voters, voters that perform verifiability checks, and

manipulated codes, and F gives a bound on the probability that

the voting server’s manipulation is not detected given those

counts. See e.g., Definition 5.

B. Analysis of selection phase

1) Verifiability properties: It is essential that S publishes

exactly one voter code for each voter. Otherwise, some voters

are never considered for the sample group. We therefore

require the verifiability of the voter codes. As the correspon-

dence between voters and voter codes must remain secret, we

define this property as an individual verifiability property. For

notational simplicity, when using set comprehension notation

like {a | F (a)}, all free variables b different from a in F are

implicitly universally quantified.

Definition 2.

Individual verifiability of voter code :=

{tr | verifyyD
(H, yD ∈ [y], true) ∈ tr =⇒

∃[y′], x.BBy([y
′]) ∈ tr ∧ yD ∈ [y′] ∧ yD = h(H,x)}

The definition states that whenever a voter H verifies that his

voter code yD is included in the list of voter codes [y], then yD
is really part of the published voter code list and was correctly

computed for the voter H . We establish the following lemma

with Tamarin.

Lemma 2. Alethea satisfies individual verifiability of voter

code, even with a compromised server S.

Additionally, a voter must be able to verify whether he was

selected into the sample group. We define that whenever H ,

who received voter code yD, concludes that he is selected,

then his voter code is included in the list of sample voters and

is correctly computed for H .

Definition 3.

Individual verifiability of the selection :=

{tr | sel(H, yD ∈ [ySG], true) ∈ tr =⇒ ∃[y′SG], x.

BBSG([y
′
SG]) ∈ tr ∧ yD ∈ [y′SG] ∧ yD = h(H,x)}

Tamarin verifies the following lemma.

Lemma 3. Alethea satisfies individual verifiability of the se-

lection, even with a compromised server S.

In addition to the individual verifiability properties, it must

be universally verifiable that S computed the sample group

from the list of eligible voters according to the protocol

specification.

Definition 4.

Universal verifiability of the selection :=

{tr | verifySG(A, [ySG] = select(r, [y]), true) ∈ tr =⇒
BBy([y]) ∈ tr ∧ BBSG([ySG]) ∈ tr ∧ [ySG] = select(r, [y])}

The first part states that an auditor A verifies that the sample

group [ySG] is correctly computed by the function select taking

as inputs the randomness r from the environment and the list of

voter codes [y]. The definition states that whenever this check

holds, BB contains the same lists [y] and [ySG] and thus the

sample voters [ySG] are correctly computed from r and [y].
We prove the following lemma for two voters in Tamarin and

for arbitrary many voters in Appendix B by hand.

Lemma 4. Alethea satisfies universal verifiability of the selec-

tion, even with a compromised server S.

2) Global properties: We have established that each voter

can verify that there is a voter code included for him. However,

not all voters will perform this check. Therefore, it is important

to examine what global property holds when only a fraction

of the voters verify the inclusion of their voter code.

Definition 5. Let V,X, Y : Ω → N be random variables that

count, respectively, the number of registered voters in a trace,

the number of voters whose voter code is not installed on their

device or incorrectly recorded on the bulletin board, and the

number of voters that check that their voter code is included

on the bulletin board. Let Z be the event that no manipulation

is detected. Formally,

V (tr) = |{H | voter(H) ∈ tr}|
X(tr) = |{H | ∃D. ∀x, [y], k. device(D,H) ∈ tr ∧

¬(recv(D, {x}k) ∈ tr ∧ BBy([y]) ∈ tr ∧ h(H,x) ∈ [y])}|
Y (tr) =

∣∣{H | ∃p, b. verifyyD
(H, p, b) ∈ tr}

∣∣
Z = {tr ∈ Ω | ∀H, p. verifyyD

(H, p, false) �∈ tr}
Global individual verifiability of voter codes is defined by the

following set of traces:

{tr | Prob(Z | V (tr)=n,X(tr)=o, Y (tr)=a) ≤
(
n−o
n

)a}.
The definition states that the probability that no manipulation

is detected is at most (n−o
n )a, when there are n registered

voters, o voter codes that are manipulated, and a voters check

that their voter code is on the bulletin board. For example, for

1000 voters, if 100 voter codes are manipulated and 50 voters

check whether their voter code is on BB, then the probability

that no one detects the manipulation is at most .005. But if

only one code is manipulated then, even when 900 voters

check their codes, the probability that the manipulation is not

detected is at most .406. In this case, however, a cheating

voting authority cannot substantially influence the selection.

We prove the following lemma in Appendix B.
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Lemma 5. Let the probability measure Prob be such that

verification is independent of manipulation (Definition 1).

Then Alethea satisfies global individual verifiability of voter

codes.

3) Privacy properties: In random sample voting, the set of

eligible voters is usually considerably smaller than in conven-

tional voting. Therefore, to change the election outcome, an

adversary needs to compromise fewer voters. To counter this

threat, it is crucial that the adversary cannot learn which voters

are in the sample group. We denote this property by sample
group anonymity and model it as a privacy property.

We define sample group anonymity as the property that an

adversary cannot distinguish the following two systems with

two voters, A and B. In both systems, S generates A’s and B’s

voter code as yA = h(A, xA) and yB = h(B, xB). In the left

system, the voter code yA is selected, thus A is in the sample

group, and in the right system B’s code yB is selected instead.

The next lemma states that the adversary cannot distinguish

whether A or B is in the sample group.

We write t1 ≈ t2 to denote that two traces are indistinguish-

able for an adversary. We use this definition informally here

and refer to [2] for a formal definition of ≈.

Definition 6. Let TR(℘L) be the set of all traces of ℘ with two

voters A and B where A is selected for the sample group. Let

TR(℘R) be defined similarly, except that B is selected instead

to be the sample voter.

Anonymity of the sample group :=

{(trL, trR) ∈ TR(℘L)× TR(℘R)|trL ≈ trR}

The set defines the pairs of traces that are observationally

equivalent, where the first traces are from the left and the

second traces are from the right system. If a protocol fulfills

this property, for each trace in the left system, where A is

selected, there exists an indistinguishable trace in the right

system, where B is chosen, and vice versa. An outside

adversary thus cannot determine if a given voter is in the

sample group. The following lemma is verified by Tamarin.

Lemma 6. Alethea satisfies anonymity of the sample group for

an honest server S.

C. Analysis of voting phase

1) Verifiability properties: In the voting phase, only the

voter must know his intended vote. Therefore, to check that

his vote was recorded as intended, each voter must carry out

an individual verifiability check. Our definition of individual

verifiability is based on [17].

Definition 7.

Individual verifiability := {tr | (Vote(H, vH) ∈ tr ∧
verifyv(H, 〈fstcodeH , sndcodeH〉 ∈ [code], true) ∈ tr)

=⇒ ∃hV, pkS, r, [code′].BBc([code′]) ∈ tr ∧
〈fstcodeH , sndcodeH〉 ∈ [code′] ∧ fstcodeH = {vH , hV }rpkS}

This states that whenever a voter verifies that his code

〈fstcodeH , sndcodeH〉 is in the list of all recorded codes [code],
then one of the recorded codes on BB corresponds to his vote

vH . The following lemma is established with Tamarin.

Lemma 7. Alethea satisfies individual verifiability, even with

a compromised server S.

We next establish the universal verifiability property that

any auditor can verify that the votes are counted as recorded.

This property is essential since we do not trust S with respect

to the integrity of the voting result. Recall that all the checks

can be done by the voter H himself who can also instantiate

the auditor role.

Definition 8.

Universal verifiability of the tally :=

{tr | (verifyv1(A,VeqP(proofV , [fst(code)], [pV ]), true) ∈ tr∧
verifyv2(A, [fst(pV )] = [v], true) ∈ tr)

=⇒ BBc([code]) ∈ tr ∧ BBv([v]) ∈ tr∧
∃[hV ], [sndcode], [r], k, π. π[code] = [〈{v, hV }rk, sndcode〉]}

The left side of the implication denotes that an auditor verifies

that the first parts of the codes were correctly decrypted into

the pairs [pV ] and the first elements of these pairs correspond

to the published votes. If these checks are verified, then the

bulletin board contains the same lists of codes and votes, such

that the codes are correct encodings of the votes, but their

order can be permuted. We establish the following lemma for

two voters in Tamarin and complete the proof for arbitrarily

many voters in Appendix C.

Lemma 8. Alethea satisfies universal verifiability of the tally,

even with a compromised server S.

End-to-end verifiability is the conjunction of individual and

universal verifiability. The following theorem therefore follows

from Lemmas 7 and 8.

Theorem 1. Alethea satisfies end-to-end verifiability, even with

a compromised server S.

For random sample voting, it must also be verifiable that

only the selected sample voters cast votes. For this purpose,

each ballot code includes the sender’s voter code in the second

encryption. We establish that it is verifiable that S correctly

decrypts this part of the codes. As it is public which voter

codes correspond to sample voters, auditors can then easily

check that all votes were sent by sample voters.

Definition 9.

Universal verifiability of voter codes := {tr |
(verifyy1(A,VeqP(proofY , [snd(code)], [pY ]), true) ∈ tr∧

verifyy2(A, [fst(pY )] = [y′], true) ∈ tr)

=⇒ BBc([code]) ∈ tr ∧ BBy′([y′]) ∈ tr∧
∃[hY ], [fstcode], [r′], k, π. π[code] = [〈fstcode, {y′, hY }r′k 〉]}

Similarly to universal verifiability of the tally, the definition

states that if an auditor verifies that the second part of the
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codes have correctly been decrypted to the pairs [pY ] and that

each first part of a pair pY corresponds to a unique voter

code y′ ∈ [y′], then all voter codes [y′] on BB are contained

in a unique code on BB. We automatically prove the following

lemma for two voters in Tamarin and manually prove it for

arbitrarily many voters in Appendix C.

Lemma 9. Alethea satisfies universal verifiability of voter

codes, even with a compromised server S.

2) Global properties: As in the selection phase, we exam-

ine the probability of an undetected manipulation by the server,

given the number of individual verifiability checks made. We

only considers the sample voters, as only they can cast a vote,

and denote the number of sample voters by m.

Definition 10. Let V,X, Y : Ω → N be random variables that

count, respectively, the number of sample voters in a trace, the

number of voters whose ballot code is not correctly included

on the bulletin board, and the number of voters that check

whether their code is included on the bulletin board. Let Z be

the event that no manipulation is detected. Formally,

V (tr) = |{H | ∃v. Vote(H, v) ∈ tr}|
X(tr) = |{H | ∃cH , ind.∀[code].

(send(H, ‘empty’) ∈ tr ∧ recv(H, 〈H, cH , ind〉) ∈ tr

∨send(H, 〈cH , ind〉) ∈ tr) ∧ ¬(BBc([code]) ∧ cH ∈ [code])}|
Y (tr) = |{H | ∃p, b. verifyv(H, p, b) ∈ tr}|

Z = {tr ∈ Ω | ∀H, p. verifyv(H, p, false) �∈ tr}

Global individual verifiability of votes is defined by the set

{tr |Prob(Z|V (tr) = m,X(tr) = o, Y (tr) = a) ≤
(
m−o
m

)a}.
The definition gives an upper bound for the probability that

no one detects that S has manipulated some ballot codes. The

probability is computed under the assumption that there are m
sample voters, a voters perform their individual checks, and

S did not correctly include o ballots. We prove the following

lemma in Appendix C.

Lemma 10. If the probability measure Prob is such that

verification is independent of manipulation (Definition 1), then

Alethea satisfies global individual verifiability of votes.

3) Privacy properties: Privacy denotes that an adversary

cannot link voters to their votes. We define it as the property

that an adversary cannot distinguish a left system where voter

A votes v1 and voter B votes v2 from a right system where

A votes v2 and B votes v1 [6], [12]. We use the notation

℘m1←m′
1,m2←m′

2
to denote the specification of the protocol ℘

where each occurrence of the terms m1 and m2 is replaced

by m′
1 and m′

2, respectively.

Definition 11. Let vA and vB be the term that denotes A’s and

B’s vote, respectively, and let v1 and v2 be message terms.

Vote privacy :=

{(trL, trR) ∈ TR(℘vA←v1,vB←v2)× TR(℘vA←v2,vB←v1) |
trL ≈ trR}

This set contains all indistinguishable trace pairs, such that the

first trace is from the left system, where A votes v1 and B
votes v2, and the second trace is from the right system, where

A votes v2 and B votes v1. Recall from Section II-B that we

establish privacy properties with respect to an honest server

S. The following lemma is proven by Tamarin.

Lemma 11. Alethea satisfies vote privacy with an honest server

S.

Even though we assume honest voters (Trust Assumption 3),

it is important that a protocol preserves privacy even if voters

are forced by an adversary to reveal private information. A

protocol is receipt-free, if it is not possible for a voter to

generate a receipt for how he voted, even if he reveals his

secrets to the adversary.

To model receipt-freeness, we consider two voters, A and

B, and change the original protocol ℘ to ℘′ where A sends all

his secrets to the adversary except that A always claims that

his vote is v1. As with vote privacy, A votes v1 in the left and

v2 in the right system. Voter B votes in each system opposite

to A so that the end result is the same in both systems [12].

We define receipt-freeness as privacy, but with respect to ℘′.

Definition 12. Let ℘′ be the protocol obtained from ℘ as

described above, let vA and vB be the term that denotes A’s

and B’s vote, respectively, and let v1 and v2 be message terms.

Receipt-freeness of the protocol ℘ is defined as follows.

Receipt-freeness :=

{(trL, trR) ∈ TR(℘′
vA←v1,vB←v2

)× TR(℘′
vA←v2,vB←v1

) |
trL ≈ trR}

This set defines all indistinguishable trace pairs such that the

traces are from two systems where A and B vote the opposite

way. The difference to privacy is that A reveals all secrets,

except he claims in both systems that he votes v1, which is

only true in the left system. We establish with Tamarin that

the following lemma holds.

Lemma 12. Alethea satisfies receipt-freeness with an honest

server S.

D. Randomness of the sample group

In this section we assume that the bulletin board contains

exactly one voter code per voter. We established by global

individual verifiability of voter codes the probability that no

one detects a manipulation if this does not hold. Under this

assumption and assuming that the output produced by the

environment E based on event ev is random, we show next

that S cannot influence the sample group’s selection, no matter

how S chooses the voter codes for the voters. Moreover,

we show that the sample group is indistinguishable from

random. To prove these properties on a more detailed level

than the symbolic model allows, we first define pseudo-random

permutations and explain how we construct the function select
based on them.

Let G be the group of all permutations of lists of length n.

A random permutation (RP) πR is chosen from G uniformly at
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Fig. 5. Game PR-PRP

random. A pseudo-random permutation (PRP) πPR is chosen at

random from a subset of G’s elements, denoted by subset(G).
As is standard, we assume that a PRP is indistinguish-

able from a RP for the adversary. More precisely, we de-

fine indistinguishability by the security game depicted in

Figure 5. In the game, the adversary provides the en-

vironment with an input [x]. The environment chooses

r ∈ {R,PR} and outputs πr[x]. The adversary must out-

put a decision r′. The adversary’s advantage is defined by

|Pr[r′ = PR | r = PR]− Pr[r′ = PR | r = R]| and we assume

that it is negligible as a function of n.

To define the function select that samples m voters from

n eligible voters, we first define the initialization list [v0] =
[1, 1, ..., 1, 0, 0, ..., 0], where the first m entries are 1 and the

remaining n−m entries are 0.

Definition 13. Let comb([vc], [b]) : voterList ×
selectionList → voterAssignment be a function of

two inputs, a list of voter codes and a list of bits. The

function’s output is a list of voter codes and zeros and all

three lists are the same length. The function combines the

lists element-wise as follows.

comb([vc], [b]) =

[{
vci if bi = 1

0 if bi = 0

]
i∈{1,...,n}

Let set([l]) be a function that takes a list [l] as input and

outputs the set of its nonzero elements. We define the sample

group as the set SG = set(comb([y], π [v0])), where the voter

codes [y] can be chosen by S, but such that each voter has

exactly one corresponding voter code. The randomness r in

the function select(r, [y]) can be understood to determine π.

Given this construction, we first assume a random permutation

π ∈ G and show that S cannot influence SG in this optimal

case. We prove the lemma in Appendix D.

Lemma 13. For each list of voter codes [y], if π ∈ G is selected

uniformly at random, then SG = set(comb([y], π[v0])) is a

uniformly random m-element subset of set([y]).

We next show that, even if π is a PRP, S cannot influence the

sample group by its choice of [y]. For this purpose, we define a

game INFL–SG that an adversary wins if she can successfully

influence the sample group as determined by a predicate g
that denotes the adversary’s goal. Given a set s, g(s) is true if

the adversary has reached her goal on the selection s. We are

only interested in goals for which a computationally bounded

adversary can judge whether she succeeded. Therefore, we

only consider polynomial time functions g.

Fig. 6. Game INFL–SG

Definition 14. The game INFL–SG is depicted in Figure 6 and

runs as follows. The environment fixes a permutation π and

the adversary outputs a goal g. Then the environment gives

the list [v0] to the adversary and the adversary outputs the

voter codes [y]. She wins the game if g(set(comb([y], π [v0])))
holds.

Let |SGg| = |{SG | ∃[y], π. SG = set(comb([y], π[v0])) ∧
g(SG)}| be the number of valid sample group choices that

meet the goal g and let SG# be the total number of possible

sample groups. We have shown in Lemma 13 that if π is

random, the choice of sample group SG is random. Thus, the

probability that the result meets the goal g is given by pR =
SGg

SG#
, independent of S’s choice of [y]. The following lemma

states that even if π is a PRP, S cannot significantly improve

the probability of influencing the sample group. We define

the adversary’s advantage in winning the INFL–SG game by

|Pr[g = true | r = PR] − Pr[g = true | r = R]|. We refer to

Appendix D for the proof.

Lemma 14. The adversary’s advantage in winning the INFL–

SG game with a PRP over an RP is bounded by her advantage

in the RP–PRP game.

If follows from the preceding lemma that the selection of

the sample group is indistinguishable from random for the

adversary even if a PRP π is used.

V. EXTENSIONS

We next present different protocol extensions and explain

informally how they achieve even stronger security guarantees.

A. Improved verifiability of voter codes

We established in Lemma 2 that for each voter who verifies

a check, there is a voter code on BB. Furthermore, Lemma 5

established that even if not all voters make a check, the

probability that no manipulation is detected is low. Next we

describe how to further decrease this probability by a factor
1
d for any positive integer d.

We propose a standard cut-and-choose mechanism where

the server S produces d sets of voter codes. That is, for each

voter, S computes d many secrets x and corresponding voter

codes y = h(H,x). S then posts commitments to all these

values on BB. Based on a second publicly verifiable random

event ev2, a random number k := rand(ev2) ∈ {1, . . . , d} is

drawn, which decides that the kth set of voter codes is the

one to be used in the election. S then posts the voter codes of

the kth computation on BB. Furthermore, S reveals all values

x and y from the remaining d− 1 sets. An auditor can verify

that all published values match the previous commitments
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and that S computed y correctly from x in all revealed sets.

An incorrect computation of S is not detected only with

probability 1
d .

B. Towards coercion resistance

We analyzed our protocol against a remote adversary who

can only learn those terms the voters send to the network. We

introduce an extension that allows an adversary to be with the

voter, except for the moment when the voter enters his vote

on the device. Recall the voting phase from Figure 4. A voter

can enter votes as often as he wants on his device D and,

each time, D computes a new code based on a fresh index

ind. This ensures that if a voter learns the ballot code in the

absence of the adversary, he cannot later reproduce a receipt

for the vote. Each produced code will be new, no matter what

vote-choice is entered.

Similarly, if a voter chooses to abstain from voting, he

enters on his device that he wants to cast the empty vote.

The first time he does so, the voter learns the correct code,

which is based on the index ind0. Each subsequent time he

enters ‘empty’, the device will use a new index. Thus, if the

adversary is not present at the time of the first check, she

cannot learn that a voter abstained from voting. This is similar

to the assumption that the adversary cannot be present at the

time when a voter who casts a vote learns his code.

Finally, note that a voter could video record his interaction

with D to prove to an adversary how he voted. This scenario is

similar to the case where the adversary is always with the voter

and we do not attempt to solve this. However, to mitigate the

motivation of a voter to engage in such an attack, the device

displays the voter’s identity H together with the code. If H
thus records the process and sends a video of it to somebody,

he risks that legal entities learn that he tried to sell his vote.

For this to work, the voter’s identity must be displayed in a

way that it is impossible for H to hide its identity and display

the code.

VI. RELATED WORK

We discuss related work on random sample voting, (classi-

cal) voting protocols, and security properties.

A. Random sample voting

Chaum’s [8] account of random sample voting is the closest

related work. In contrast to our analysis, Chaum does not for-

mally prove his claimed security properties. Another difference

is that Chaum considers a much weaker adversary. Chaum’s

adversary is rational and only performs attacks that benefit

her. We consider a standard Dolev-Yao adversary, who always

attacks, regardless of the benefit.

Alethea satisfies receipt-freeness in the Dolev-Yao adversary

model, as a voter cannot reveal any secrets to the adversary that

constitute a proof of how he voted. Chaum suggests to avoid

coercion by introducing decoy ballots. These are ballots that

can be sold to an adversary because they are indistinguishable

from real ballots; however they are not counted in the final

tally. Thus, Chaum’s protocol does not satisfy receipt-freeness

in a Dolev-Yao adversary model since a legitimate voter

can prove to the adversary how he voted. Nevertheless, the

adversary does not know if a given receipt is for a real or for

a decoy ballot. Therefore, a rational adversary is not motivated

to engage in vote buying.5

Chaum’s protocol and Alethea also differ in how the sample

group is published. With Alethea each voter learns whether he

is selected by checking the information on the BB. In contrast,

in Chaum’s protocol the sample voters learn that they have

been chosen to vote by the fact that they receive a ballot

without requesting it. To verify that each sample voter indeed

received his ballot, they must be explicitly asked by an external

auditor at the end of the protocol.

B. Voting protocols

Alethea’s voting phase is a remote voting protocol that

achieves both end-to-end verifiability and receipt-freeness.

There are many voting protocols that satisfy similar properties.

Several of these protocols, e.g. [9], [15], [22], are designed for

poll-site voting which is impractical for random sample voting

due to the small number of voters and the need to keep their

identity anonymous.

Helios [1] is a remote voting protocol that satisfies ver-

ifiability but not receipt-freeness. Two voting protocols that,

like Alethea, achieve both verifiability and receipt-freeness are

BeleniosRF [7] and Civitas [10]. Voters cast encrypted ballots

that are processed by homomorphic tallying in BeleniosRF and

by mixnets in Civitas. In both protocols, it is universally ver-

ifiable that the ballots are tallied as recorded but nevertheless

impossible for a voter to prove to an adversary how he voted.

In order for these protocols to work, a voter must encrypt his

ballot with the help of a machine.

For random sample voting, we must assume that a general

purpose platform is compromised. This necessitates that the

protocol specification contains separate roles for the human

voter and his devices. However, many existing remote voting

protocols do not make such a separation [7] or require that

the voter’s platform must be trusted [10].

We have therefore developed Alethea as new voting protocol

separating the human voter role and his devices from the

start and using [4] and [5] for guidance. This enabled us to

examine what properties hold under the realistic assumption

that a voter’s platform is compromised while the voter himself

is honest and casts his vote with the platform’s help. In

addition to a general purpose computing platform, we propose

a specialized trusted device. This device only needs limited

computing capabilities and need not be connected to the

Internet. We argue that it is more realistic to trust such a device

than a general purpose platform.

C. Security properties

We focus on definitions and formal models of standard

security properties for voting protocols. Delaune et al. [12]

introduce the first symbolic definition of receipt-freeness and

5The economic justification that decoy ballots are effective and stop vote
buying is extremely subtle and does not necessarily hold [3].
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coercion resistance in the applied pi calculus. Similarly to their

work, we define privacy and receipt-freeness as observational

equivalence properties. We model receipt-freeness by modi-

fying the protocol such that one voter communicates all his

secrets to the adversary in one system and only pretends to do

so in the other system. To better understand different notions

of privacy, receipt-freeness, and coercion resistance, Dreier
et al. [14] consider a new family of privacy properties that

includes attacks such as vote-copying and forced-abstention.

They also model these properties in the applied-pi calculus.

A review of existing definitions of verifiability is presented

by Cortier et al. [11]. They cast all definitions in the same

framework to analyze and compare them. In particular, they

analyze the definitions of individual and universal verifiability

by Kremer et al. [17] which are similar to our definitions but

defined in the applied pi calculus. Kremer et al. also define

eligibility verifiability as the property that everyone can check

that each vote in the final tally was cast by an eligible voter

and no voter could vote more than once. Even though this

property is defined with respect to all eligible voters, it is

comparable to our definition of universal verifiability of voter
codes, which ensures that all tallied votes were cast by sample

voters.

VII. CONCLUSION

As new forms of democracy are an active research area in

political economy, it is important to demonstrate the feasibility

and limitations of protocols that support them from a security

perspective. This work is a first step to better understand the

formal properties of random sample voting.

We have introduced Alethea, the first random sample voting

protocol that satisfies receipt-freeness. Alethea is also the first

formally verified random sample voting protocol.

To verify Alethea, we formulated and proved new as well

as standard security properties. In particular, we showed that

the voting server cannot influence the selection of the sample

group and that the selection is random and universally verifi-

able. Moreover, we established that the sample voters remain

anonymous and we proved that Alethea satisfies end-to-end

verifiability and receipt-freeness.

A premise of end-to-end verifiability is that the voters per-

form a number of verifications. With our new global properties

we make the realistic assumption that many voters will skip

some verification steps and we quantify the probability that

manipulations are not detected under this assumption. If this

probability is sufficiently small, the global property justifies

that proving end-to-end verifiability in a possibilistic trace

model is worthwhile. We have also defined and proved an

analogous global property for the selection phase of Alethea.

As future work, we intend to build on Alethea to develop

protocols for other alternative forms of democracy that require

a random group, such as Co-Voting [16].
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APPENDIX

We give proofs for the lemmas in Sections III-D to IV-D.

A. Proof of complexity

Proof of Lemma 1. We consider each role’s time complexity

for the two protocol phases. Recall that n is the number of

voters and m is the number of sample voters, where m ≤ n.

Voters: H’s time complexity is dominated by searching the

lists [y] and [ySG] in the selection phase and the list [code]
in the voting phase, which requires O(n) + O(m) + O(m)
operations and is dominated by O(n).

Server: In the selection phase, S requires O(n) time to

compute a voter code for each voter and to send them to the

devices and to BB. If select is realized as proposed in Section

IV-D, it includes the permutation of a list of length n and

the element-wise combination of two lists of length n. Thus

the selection phase’s time complexity is O(n). In the voting

phase, S has to process lists of length m, including unpairing

all elements, decrypting all elements, and permuting the lists,

which requires O(m) steps. If cp is implemented as in [21],

the generation of the zero knowledge proofs requires O(m)
steps. S’s total time complexity is thus dominated by O(n).

Auditors: In the selection phase, A computes the select
function (O(n)) and receives lists of sizes n and m (O(n)).
In the voting phase, A receives five lists of length m and two

proofs. If cp is realized as in [21], the verifications of the

zero knowledge proofs require O(m) time. Finally, A has to

test if the lists [y′] and [ySG] are equal, which are both of

length m. This can be done by sorting then comparing the

lists in O(m log(m)) steps. A’s total time complexity is thus

O(n) +O(m log(m)).

Bulletin Board: BB only receives and displays messages.

The time complexity of the selection phase is dominated by the

processing of the voter code list, O(n), and of the voting phase

by handling five lists of length m and to proofs of lengths

O(m). This results in O(n) total time complexity.

Device, platform, and environment: In both phases, D,

P , and E send, receive and compute a constant number of

messages. Their total time complexity is O(1).

Thus all roles have time complexity in O(n), except for the

auditor role, which has time complexity O(n)+O(m log(m)).

B. Proofs for selection phase

Proof of Lemma 4. Let tr ∈ TR(℘) be a trace. Since A is

honest, it only performs a verification if it has previously

received all necessary messages. Therefore

verifySG(A, [ySG] = select(r, [y]), true) ∈ tr

(1)
=⇒[ySG] = select(r, [y]) ∧ recv(A, [ySG]) ∈ tr ∧

∃e.recv(A, 〈e, [y]〉) ∈ tr

(2)
=⇒∃BB, e.send(BB, [ySG]) ∈ tr ∧ send(BB, 〈e, [y]〉) ∈ tr

(3)
=⇒BBSG([ySG]) ∈ tr ∧ BBy([y]) ∈ tr .

Implication (2) holds as A is honest and only accepts the

received values [ySG] and [y] over an authentic channel and

from BB. By the properties of an authentic channel, we

conclude that BB has sent [ySG] and [y]. Implication (3) holds

as BB is honest and only sends the values [ySG] and [y]
after the signals that these values are posted on the bulletin

board.

Proof of Lemma 5. By Lemma 2, for each voter who verifies

the individual verifiability of the voter code, there exists a

corresponding voter code on the bulletin board.

Consider a trace with n voters. By the lemma’s hypothesis

for each voter, the event that the voter code was manipulated

is independent of the event that the voter code was verified.

Hence, we compute the probability that no manipulation is

detected when there are n voters, o manipulated voter codes,

and a voters who verified their voter codes as follows.

Prob(Z|V (tr) = n,X(tr) = o, Y (tr) = a)

= n−o
n · n−o−1

n−1 · · · n−o−(a−1)
n−(a−1) ≤ (n−o

n )a

The inequality follows as x−1
y−1 < x

y when 1 < x < y.

C. Proofs for voting phase

Proof of Lemma 8. Let tr ∈ TR(℘) and suppose that

q = verifyv1(A,VeqP(proofV , [fst(code)], [pV ]), true) ∈ tr ∧
verifyv2(A, [fst(pV )] = [v], true) ∈ tr holds. Then q

(1)
=⇒q ∧ ∃[x], [r], k, π. [pV ]=[〈v, x〉] ∧ π[fst(code)] = [{pV }rk]
(2)
=⇒q ∧ ∃[x], [r], k, π. π[fst(code)] = [{v, x}rk]
(3)
=⇒q ∧ ∃[x], [r], [sndcode], k, π. π[code]=[〈{v, x}rk, sndcode〉]
(4)
=⇒∃[pY ], [y′], proofY .

recv(A, 〈[code], [pV ], [v], [pY ], [y′], proofV , proofY 〉) ∈ tr

(5)
=⇒∃BB, [pY ], [y′], proofY .

send(BB, 〈[code], [pV ], [v], [pY ], [y′], proofV , proofY 〉) ∈ tr

(6)
=⇒BBc([code]) ∈ tr ∧ BBv([v]) ∈ tr

Implication (1) holds because the verifications succeed as

indicated by the third argument (true) in the verify signal: The

list of votes corresponds to the list of the first elements of the

pairs [pV ]. This denotes a one-to-one correspondence between

votes v and vote pairs pV . The verification of the proof proofV
ensures that each element of [fst(code)] corresponds to an

encryption of a unique element of [pV ], but the lists can be

permuted differently. (2) holds by the facts that each pair pV
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corresponds to a unique vote v and each fst(code) encrypts

a unique pair pV . Thus, each fst(code) corresponds to the

encryption of a unique vote. (3) holds because for each vote

there is also a unique code that consists of the fst(code) and

some second part sndcode. In (4) we use the assumption that

the auditor A is honest and follows its role specification. We

conclude that A uses in the verifications only terms that it

has previously received. (5) holds because A only accepts the

receiving of these messages over an authentic channel from

BB. By the properties of an authentic channel, BB must thus

have sent these messages. (6) holds because BB is honest, so

it only sends these messages after having included the same

message terms in the signals.

We have thus verified universal verifiability of the tally.

Note that none of the implications rely on the server’s honesty.

Therefore, the proof holds for a compromised server S.

We only give a high level proof sketch of Lemma 9 as the

proof is analogous to the proof of Lemma 8.

Proof Sketch of Lemma 9. Assume a trace tr ∈ TR(℘) and

that the given verifications are true in the trace. Because the

verifications hold, we conclude that each voter code y′ is

contained in a unique pair in [pY ] and that each such pair pY is

encrypted in a unique element in [snd(code)]. As in the proof

of Lemma 8, we conclude from these properties that for each

voter code y′ there is a unique code 〈fstcode, {y′, hY }r′k 〉 ∈
[code] that contains it.

Moreover, we observe that an honest auditor A must have

received the terms [code], [pY], [y′], and proofY authentically

from BB. Therefore BB must have sent these terms. Also,

because BB is honest, the same terms are on the bulletin board.

Together, we conclude that the terms [code] and [y′], as used

in A’s verification signals, are present on BB and have the

required relation.

Proof of Lemma 10. By Lemma 7, if a voter verifies the indi-

vidual verifiability check, his ballot code is correctly included

in the list of ballot codes on BB.

Consider a trace with m voters in the sample group. By the

lemma’s hypothesis, for each voter the event that his ballot was

manipulated is independent of the event that it was verified.

Hence, we compute the probability that no manipulation is

detected when there are m voters, o ballots are manipulated,

and a ballots are verified as follows.

Prob(Z|V (tr) = m,X(tr) = o, Y (tr) = a)

= m−o
m · m−o−1

m−1 · · · m−o−(a−1)
m−(a−1) ≤

(
m−o
m

)a
The inequality follows as x−1

y−1 < x
y when 1 < x < y.

D. Proofs for sample group

Proof of Lemma 13. Let [y] be a list and SG a m-element sub-

set of set([y]). Thus there is a vector [v] ∈ {0, 1}n of Hamming

weight m = |SG| such that SG = set(comb([y], [v])).
We first prove that there exist at least m!(n − m)! many

choices of π ∈ G such that SG = set(comb([y], π[v0])). Since

Fig. 7. Reduction from RP-PRP to INFL–SG

G contains all permutations of lists of length n, there exists

π ∈ G, such that [v] = π[v0]. For each permutation π′ that

only permutes the ones and zeros of [v0], it also holds that

[v] = ππ′[v0]. Since there are m many ones and (n − m)
many zeros in [v0], there are m!(n−m)! many permutations

π that map an input [y] to SG.

We next prove that there are exactly m!(n − m)! many

choices of π ∈ G such that SG = set(comb([y], π[v0])). SG is

a selection of m voters out of n voters, so there are
(
n
m

)
=

n!
(n−m)!m! many possible outputs SG. Since for each output SG
there are at least m!(n − m)! many choices of π ∈ G such

that SG = set(comb([y], π[v0])) and there are n! permutations

in G, it follows that for each SG there are exactly m!(n−m)!
many choices of π ∈ G such that SG = set(comb([y], π[v0])).

Since the π ∈ G are chosen uniformly at random it follows

that the set of all possible outputs SG is a uniformly random

m-element subset of set([y]).

Proof of Lemma 14. Let pPR = Pr[g = true | r = PR] and

pR = Pr[g = true | r = R] be the probability that the adversary

wins the INFL–SG game given a PRP and an RP, respectively.

Suppose the adversary’s advantage in winning the INFL–SG

game with a PRP over an RP is greater than ε, i.e., |pPR−pR| >
ε. We show that she can use this to distinguish an RP from a

PRP in the RP–PRP game with an advantage greater than ε.
The reduction from the RP–PRP game to the INFL–SG

game is shown in Figure 7. The adversary first outputs

[x] = [v0] to the environment in the RP–PRP game. She then

plays the INFL–SG. That is, she outputs g, takes [v0], and

outputs [y]. Next, the adversary takes the input πr[v0] from

the environment in the RP–PRP game and the output [y] from

the INFL–SG game and computes g(set(comb([y], πr[v0]))).
If the predicate g is satisfied, she outputs r′ = PR otherwise

she outputs r′ = R. In case r = PR, the adversary wins the

inner game with probability pPR. The output of the outer game

is r′ = PR and the adversary wins the outer game in this

case with the same probability. In case r = R, the adversary

wins the inner game with probability pR. Thus, with the same

probability she incorrectly outputs r′ = PR in the outer game.

Thus her advantage in distinguishing an RP from a PRP

is |Prob[r′ = PR | r = PR] − Pr[r′ = PR | r = R]| =
|Prob[g = true | r = PR]− Pr[g = true | r = R]| > ε.
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