
User Account Access Graphs
Sven Hammann

Department of Computer Sciene
ETH Zurich
Switzerland

sven.hammann@inf.ethz.ch

Saša Radomirović
School of Science and Engineering

University of Dundee
UK

s.radomirovic@dundee.ac.uk

Ralf Sasse
Department of Computer Sciene

ETH Zurich
Switzerland

ralf.sasse@inf.ethz.ch

David Basin
Department of Computer Sciene

ETH Zurich
Switzerland

basin@inf.ethz.ch

ABSTRACT
The primary authentication method for a user account is rarely
the only way to access that account. Accounts can often be ac-
cessed through other accounts, using recovery methods, password
managers, or single sign-on. This increases each account’s attack
surface, giving rise to subtle security problems. These problems
cannot be detected by considering each account in isolation, but
require analyzing the links between a user’s accounts. Furthermore,
to accurately assess the security of accounts, the physical world
must also be considered. For example, an attacker with access to a
physical mailbox could obtain credentials sent by post.

Despite the manifest importance of understanding these interre-
lationships and the security problems they entail, no prior methods
exist to perform an analysis thereof in a precise way. To address this
need, we introduce account access graphs, the first formalism that
enables a comprehensive modeling and analysis of a user’s entire
setup, incorporating all connections between the user’s accounts,
devices, credentials, keys, and documents. Account access graphs
support systematically identifying both security vulnerabilities and
lockout risks in a user’s accounts. We give analysis algorithms and
illustrate their effectiveness in a case study, where we automati-
cally detect significant weaknesses in a user’s setup and suggest
improvement options.

CCS CONCEPTS
• Security and privacy→ Formal security models; Authenti-
cation.

1 INTRODUCTION
There is a rich body of work on authentication methods for user ac-
counts. An often ignored aspect is that most accounts do not exist in
isolation, but are linked directly or indirectly to other accounts. For

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3354193

example, websites often allow password resets via e-mail, thereby
linking control of the website account to control of the user’s e-mail
account. Other links between a user’s accounts are reused pass-
words or single sign-on services such as Sign In With Google. The
links between a user’s accounts result in security problems that are
not apparent when considering each account in isolation.

The links for accessing and recovering accounts extend into the
physical world. Devices commonly have active account sessions
or may be used for two-factor authentication. Thus, the physical
location of a device and how that location is physically secured is
an important factor in determining whether an attacker can obtain
access to an account. Other aspects of the physical world must
also be considered. For example, when a user loses access to an
online banking account, a common recovery option is a code sent
via physical mail. Obtaining this code then requires access to the
mailbox, which, in turn, may require a physical key. Furthermore,
some recovery options may require personal identification in the
real world. Then, physical credentials such as identity documents
combined with a person’s appearance become relevant.

A user’s entire setup of both digital accounts and credentials
as well as physical documents, keys, and devices form an intri-
cate web of connections. Attacks can arise from any weak link
in these connections. A single weakly secured account, device, or
physical element can be used as a backdoor, allowing an attacker
to circumvent other strong authentication mechanisms.

Thus, from a security perspective, account recovery should be
restrictive. However, users become frustrated if it takes too much
time or effort to regain access to one of their accounts [16]. There
is a conflict between providing security against adversaries and the
risk of locking users out of accounts. There is no single optimal
trade-off between these two aspects, since the context of the account
within the user’s entire setup must be considered.

Both security vulnerabilities and lockout risks in account con-
nection setups arise due to links between accounts from different
service providers, and thus cannot be detected locally by any partic-
ular service provider. Identifying suchweaknesses requires stepping
back and analyzing the big picture. However, despite the practical
importance and ubiquity of account recovery mechanisms, there
is a lack of systematic understanding of how to perform such an
analysis. To find weaknesses within account connection setups and
to manage their complexity, we need a precise model of the links

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1405

https://doi.org/10.1145/3319535.3354193

between a user’s credentials and accounts, encompassing both the
digital and physical world.

Approach. We present account access graphs, a formalism for
evaluating account setups with respect to security and recoverabil-
ity. An account access graph is a directed graph. Each vertex repre-
sents either a credential or an account. An edge from a credential to
an account denotes that the credential is used in an authentication
mechanism of that account. An edge from one account to another
denotes that the first account can be used to access the second,
using for example a recovery method or single sign-on.

We provide a method for analyzing the security of accounts.
First we present an algorithm to compute an account’s access base,
which contains all minimal sets of credentials necessary to obtain
access to the account. Then, we show how to compute security
scores from this access base. For this, we define scoring schemes to
compute scores for each account based on initial scores assigned to
credentials. These initial scores may be derived from a risk analysis,
and should reflect the difficulty of compromising each credential.
Our scoring schemes are not limited to numerical scores, and may
take values from any partially ordered domain, depending on the
properties that we wish to express. In particular, we give a secu-
rity scoring scheme that measures how vulnerable accounts are to
attackers of different types and skills.

We also provide a method for analyzing the recoverability of
accounts. Namely, we give an algorithm to compute an account’s
lockout base, which contains all minimal sets of credentials that the
user must lose to be locked out of her account permanently. We
show how to use this to compute recoverability scores.

Finally, we define predicates that identify concrete weaknesses in
an account setup based on the scores assigned by a scoring scheme.
In particular, we formalize the concept of account backdoors.

Contributions. We provide the first method for the analysis
of a user’s entire account connection setup. This setup includes
digital accounts and credentials, such as passwords, as well as phys-
ical components, such as devices, keys, mailboxes, and identity
documents. We model all possibilities how one or more such com-
ponents provide access to other components. This allows us to
systematically identify subtle weaknesses in the overall setup that
were previously hard to detect.

We show how to identify both security vulnerabilities and lock-
out risks for a wide range of scenarios. This includes attackers
that can compromise credentials and directly exploit vulnerabili-
ties of services, users that can lose credentials, and services that
can become unavailable. Our formalism is general and thereby
can be easily adapted to analyze the particular aspects of account
connection setups that one is interested in.

We have implemented all presented algorithms. The code is
available for download at [10] and can be run to directly reproduce
all presented results.

Finally, we illustrate the effectiveness of our method in a case
study showing that even seemingly simple parts of a user’s setup
contain weaknesses that are not apparent without rigorous analysis.

Outline. In Section 2, we describe the basic aspects of our model,
namely accounts, credentials, and connections between them. We

develop our formalism in Sections 3-6. In Section 3, we define ac-
count access sets uponwhich we compute security scores in Section 4.
In Section 5, we define account lockout sets upon which we com-
pute recoverability scores. In Section 6, we define predicates based
on scoring schemes that identify weaknesses in an account connec-
tion setup. We present a case study in Section 7. We compare with
related work in Section 8 and draw conclusions in Section 9.

2 SYSTEM MODEL
We explain the concepts that we model, and how we model them.

2.1 Basic concepts
Users are persons that interact with services and have accounts with
these services. An account can be accessed by providing credentials.
We shall take a broad view of these concepts to also model the
physical world. An account provides access to a service or resource,
which can be digital or physical. Credentials can also be digital or
physical, and must be presented to access, or unlock, an account.
For example, we can model a physical key unlocking a room by
modeling the key as a credential, and physical access to the room,
or a device located in the room, as an account.

A set of credentials provides access to an account if presenting
these credentials is sufficient to access the account. Losing all cre-
dentials in a set of credentials locks a user out of an account if at
least one of these credentials is necessary to access the account.

2.2 Graph model
We model a user’s account setup as an account access graph. Ver-
tices represent credentials or accounts. We model the relation of
providing access to a vertex v as follows. When v represents an
account, we consider the access mechanisms of v . We draw edges
of the same color from vertices (credentials or accounts) that are all
needed to access the account (i.e., multi-factor authentication). We
draw edges of different colors from vertices that represent alterna-
tive access methods. When v represents a credential, we draw an
edge to v when an account provides access to that credential. For
example, a password manager is an account that provides access to
its stored passwords.

Note that the semantics of colors is local to each target vertex:
whether two edges have the same color is only relevant if they are
edges to the same target vertex. We reuse colors for simplicity in
our examples for different target vertices. We use different types of
lines (dashed, dotted, and solid) for different colors to distinguish
them also in the black-and-white version of this paper.

Definition 1. An account access graph is a directed graph G =
(VG ,EG ,CG), where VG are vertices, CG are colors, and EG ⊆ VG ×

VG ×CG are directed colored edges.

Example 1. We introduce our running example in Figure 1. There
is a webshop account accshop that can be accessed with password
pwdshop or recovered from the e-mail account accmail. The e-mail
account requires two-factor authentication with password pwdmail
and a code. The code is generated by an authentication app on a
(mobile) device. The device can be unlocked using either a fingerprint
(finger) or a PIN.

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1406

pwdshop

accshop

accmail

pwdmail code

device finger PIN

Figure 1: Same colors denote conjunction (all necessary for
access), different colors denote disjunction (alternative)

3 ACCESS SETS
In this section, we define an account’s access sets, which denote the
minimal sets of credentials that are sufficient to provide (possibly
transitively) access to the account. An account’s access sets model
the possibilities an attacker has to compromise the account. In
Section 4, we use an account’s access base to compute a security
score for that account, enabling a detailed security evaluation.

We first define what it means that a set of vertices provides access
to another vertex. A set of vertices V directly provides access to a
vertex v if it includes v or includes, for some color c , all vertices
with a c-colored edge to v .

Definition 2. For an account access graph, Inc (v) is the set of
all vertices that have a c-colored edge to v . Formally, for an account
access graph G = (VG ,EG ,CG),

Inc (v) := {v ′ ∈ VG | e = (v ′,v, c) ∈ EG }.

We next define accessFrom(V) as the set of vertices that can
directly or transitively be accessed from a set of vertices V .

Definition 3. For an account access graphG , the set accessFrom(V)

for a vertex setV ⊆ VG is the smallest set that satisfiesV ⊆ accessFrom(V)

and is closed under the rule

∃c ∈ CG : ∅ (Inc (v) ⊆ accessFrom(V)

v ∈ accessFrom(V) .

Example 2. In the graph from Figure 1,

accessFrom({pwdmail, device, PIN}) =
{pwdmail, device, PIN, code, accmail, accshop} .

We now use accessFrom(V) to define AccessTo(v) as the sets of
vertices that provide access to a vertex v .

Definition 4. AccessTo(v) is the set of all sets of vertices that
provide access to a vertex v , that is

AccessTo(v) := {V ⊆ VG | v ∈ accessFrom(V)} .

We call an element of AccessTo(v) an access set of v .

We use uppercase names for sets of sets, such as AccessTo(v),
and lowercase names for sets, such as accessFrom(v). Constants,
e.g., accmail, use lowercase except for acronyms, e.g., PIN.

Example 3. For the graph in Figure 1, AccessTo(accmail) contains
these sets, and all of their supersets:

{accmail}, {pwdmail, code}, {pwdmail, device, finger},
{pwdmail, device, PIN} .

As this example illustrates, AccessTo(v) may contain many el-
ements, but we are often only interested in the minimal sets that
provide access to a vertex.

Definition 5. The minimal access sets of a vertex v are all mini-
mal sets that provide access to v . Formally, MinAccessTo(v) :=

{V ⊆ VG | V ∈ AccessTo(v) ∧ (∀ V ′ (V : V ′ < AccessTo(v))} .

For the graph in Figure 1, MinAccessTo(accmail) contains the
sets listed in Example 3, but not any of their supersets.

We are particularly interested in those minimal access sets that
suffice to gain access to a target accountv and only contain vertices
from a given set of initial verticesVinit. This set contains all vertices
that a user may initially have access to, or that an adversary may
compromise directly. That is, we assume that an adversary can only
directly compromise the vertices in Vinit, and must derive access to
any other vertex using the interconnections modeled in the account
access graph. In most of our examples with acyclic graphs, Vinit
is the set of all leaves. However, we show in Section 4.5 that Vinit
can also include intermediate vertices to model that an adversary
could compromise accounts directly, i.e., without presenting any
credentials, by exploiting a vulnerability in the underlying service.

Definition 6. The access base AccessBase(v,Vinit) of a vertex
v with respect to a set of initial vertices Vinit consists of the minimal
access sets V that only contain vertices from Vinit.

AccessBase(v,Vinit) := {V ∈ MinAccessTo(v) | V ⊆ Vinit} .

An account’s access base models all possibilities that an adver-
sary has to compromise that account by compromising credentials
or accounts in Vinit. Each access set contained in the access base
models one such possibility.

Example 4. Let Vinit be the set of all leaves in the graph from
Figure 1. AccessBase(accshop,Vinit) =

{ {pwdshop}, {pwdmail, device, finger}, {pwdmail, device, PIN} } .

Note that account access graphs may have cycles. We illustrate
this with the following example.

Example 5. The account access graph from Figure 2 contains an
account accbackup on a backup platform. This account can be accessed
using the password pwdbackup and a code generated by a two-factor
authentication app on a device. The account accbackup then provides
access to the password pwdmanager for a password manager, and the
seed to reset the two-factor authentication app, usable to obtain a
code without access to the device. The password manager provides
access to the password pwdbackup.

Note that the graph contains only a single leaf, device. SettingVinit
to all leaves would result in an empty access base for accbackup: it is
impossible to obtain access to that account starting from device only.
A more natural initial set to consider is

Vinit := {pwdbackup, pwdmanager, device, seed} .

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1407

It contains all vertices that represent credentials in Vinit but does not
include vertices that represent accounts. Then,

AccessBase(accbackup,Vinit) = {{pwdbackup, device},
{pwdbackup, seed}, {pwdmanager, device}, {pwdmanager, seed} } .

accbackup

pwdbackup

manager

pwdmanager

code

device seed

Figure 2

Algorithms. The set accessFrom(V) can be computed by starting
from V and computing the least fixpoint of the rule from Defini-
tion 3. For a query v ∈? accessFrom(V), computation can stop if
v ∈ accessFrom(V) is deduced before a fixpoint is reached. We com-
pute AccessBase(v,Vinit) as follows. We compute access sets of in-
creasing size, skipping supersets of access sets computed previously.
That is, we only perform a query of the form v ∈? accessFrom(V)

if there is no previously computed access set V ′ such that V ⊇ V ′.
The algorithms are described in more detail in Appendix B.

We also show in Appendix B how an account access graph can
be translated into a theory of Horn clauses, and a query v ∈?

accessFrom(V) into an entailment problemV →? v . This enables us
to leverage algorithms from the area, e.g., the linear time algorithm
by Dowling and Gallier [7].

4 SECURITY SCORING SCHEMES
The security of a user’s account setup depends on many factors. Not
all accounts are equally valuable. Some users share their credentials
with friends or family and other users are at particular risk of
having their physical devices stolen. A security evaluation of a
user’s account setup should thus depend on the user’s threat model.
There can therefore be no single evaluation method that fits all use
cases. For regular users, it may be sufficient to point out critical
flaws in a setup that could easily be exploited. For users where the
risk of targeted attacks is higher, such as reporters or politicians,
analyzing security with respect to both local and remote attackers
would be appropriate. Moreover, our account access graphs are
general enough to be applicable not only to individual users but
also to organizations. These organizations may want to perform an
even more fine-grained analysis, incorporating our methods into
their threat modeling process. They can also combine our methods
with insights obtained from existing risk analysis.

To allow for a flexible yet expressive security analysis, we in-
troduce security scoring schemes. These schemes provide a general

method to evaluate an account’s security using its access base. Re-
call that an account’s access base consists of the credential sets that
are sufficient to compromise that account. From these sets, security
scoring schemes compute a security score for the account. A score is
a general concept that can be defined over various domains. These
domains are (partially) ordered, and a higher score denotes a more
secure account.

We give three examples of scoring schemes of increasing com-
plexity to illustrate the flexibility of our method. The first is a simple
numerical score. The second is a generalization of the first to sets of
multisets; this scheme is more expressive and allows for a more nu-
anced security analysis. The third is non-numerical, and considers
the type of attacker and skill required to compromise an account
or credential.

While there is no single security scoring scheme that is suitable
for all account access graphs, we require that every scoring scheme
must satisfy a simple soundness condition: If access to account A
implies access to account B then A’s score must be at least as high
as B’s. This condition supports what-if analyses on account access
graphs. Even very basic schemes can provide useful feedback in
the form of a simple “sanity check” that the user’s highly valued
accounts do not receive lower security scores than lower value
accounts.

Formally, a security scoring scheme assigns a score to each ver-
tex v based on that vertex’s access base. Given initial scores of
vertices inVinit, the scoring scheme evaluates each access set in v’s
access base, assigning it an intermediate score. It then combines
the intermediate scores of all access sets in v’s access base into a
single score for v . Here, and in the remainder of the paper, we use
PM (S) to denote the set of multisets over S , and P(S) to denote
the powerset of S . Moreover, ⦃⦄ denotes a multiset.

Definition 7. A security scoring scheme for an account access
graph G is a 6-tuple (D, ≼,Vinit, Init,Eval,Combine), where:

• D is the domain over which scores are defined.
• ≼ is a partial order relating elements in D.
• Vinit ⊆ VG is called the set of initial vertices.
• Init : Vinit → D maps initial vertices to initial scores.
• Eval : PM (D) → D maps a multiset of initial scores (of
vertices in an access set) to an intermediate score (for that
access set).

• Combine : P(D) → D maps a set of intermediate scores (of
access sets in a vertex’s access base) to a score (for that vertex).

Given Eval, we define an auxiliary function EvalSet : P(Vinit) →
D that directly maps an access set to its intermediate score by first
computing the initial scores of its vertices and then applying Eval.

EvalSet(S) := Eval(⦃Init(v ′) | v ′ ∈ S⦄) .

We then define the following score function Score : VG → D, which
directly maps a vertex to its (final) score:

Score(v) := Combine({EvalSet(S) | S ∈ AccessBase(v,Vinit)}) .

We usually instantiate Eval with a maximum or sum function,
which captures an and-semantics: All credentials in an access set
are necessary to access an account. We usually instantiate Combine
with a minimum function, which captures an or-semantics: Any

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1408

one access set is sufficient to access an account. We formalize the
expected semantics for Eval and Combine in Section 4.2.

4.1 A simple scoring scheme
We next give a simple scoring scheme that assigns a single natural
number to each vertex.

Definition 8. The sum-then-min scoring scheme is given as

D = N, ≼ = ≤, Eval(M) =
∑
m∈M

m, Combine(S) = min
s ∈S

(s),

where ≤ is standard comparison of natural numbers.

Example 6. We illustrate the scoring scheme with an example in
Figure 3. We extend the running example introduced in Figure 1 by
assigning initial security scores to the leaves.

Score(accshop) = Combine(
EvalSet({pwdshop}),EvalSet({pwdmail, device, finger}),
EvalSet({pwdmail, device, PIN})) = min({1, 5, 4}) = 1 .

pwdshop : 1

accshop

accmail

pwdmail : 1 code

device : 2 finger : 2 PIN : 1

Figure 3

Unfortunately for many setups, this scoring scheme is too sim-
plistic. We give an example that illustrates this.

Example 7. In the graph in Figure 4, account accA requires two
passwords, while accB requires a code generated by a device. We
assign initial security scores to the leaves, and get

Score(accA) = Score(accB) = 2 .

Whether obtaining two passwords is more or less difficult than ob-
taining a device depends on many factors, and assigning the same
score to both accounts oversimplifies the situation.

accA accB

pwdA : 1 pwdB : 1 device : 2code

Figure 4

To solve this problem, we will give a more fine-grained scoring
scheme in Section 4.3. Despite this problem, the sum-then-min scor-
ing scheme respects the expected semantics of Eval and Combine
mentioned before. We next formalize the necessary conditions for
enforcing these semantics.

4.2 Requirements for scoring schemes
A security scoring scheme should meaningfully measure the secu-
rity of accounts. In particular, whenever one account is at least as
secure as another, a scoring scheme should assign at least as high
a score to the first account as to the second. In this section, we
formalize this requirement.

We define the notion of an account being at least as secure as
another by implication. If an attacker that can access an account
vertex vB can also always access another account vertex vA, then
we say that vB is at least as secure as vA.

Example 8. In Figure 5, consider an account where some features
are available after only logging in with a password pwdacc. We denote
this basic access to the account by accbasic. For security-critical fea-
tures, a second factor code generated by a device, is necessary. We de-
note access to these features by accfull. For Vinit = {pwdacc, device},

AccessBase(accbasic,Vinit) = {{pwdacc}}, and
AccessBase(accfull,Vinit) = {{pwdacc, device}} .

Whenever we can access accfull, we can also access accbasic. Therefore,
accfull is at least as secure as accbasic.

pwdacc code device

accbasic accfull

Figure 5

Based on this intuition, we next define a relation on access bases.
We will then use this relation to define a soundness condition for
scoring schemes.

Definition 9. Let vA, vB be vertices in an account access graph
G. An access base for a vertex vB is at least as secure as that for vA
if and only if any set of vertices V that provides access to vB also
provides access to vA. Formally,

AccessBase(vA,Vinit) ≼ AccessBase(vB ,Vinit) :⇔
∀ V ⊆ Vinit : vB ∈ accessFrom(V) → vA ∈ accessFrom(V) .

We also write A ≺ B to denote A ≼ B ∧A , B. We now state a
necessary and sufficient condition for A ≼ B.

Theorem 1. Let vA, vB be vertices in an account access graph
G and let Vinit ⊆ VG be given. Let A := AccessBase(vA,Vinit) and
B := AccessBase(vB ,Vinit). Then

(∀Bi ∈ B ∃Aj ∈ A : Aj ⊆ Bi) ⇔ A ≼ B .

The proof is given in Appendix A.

Example 9. In Example 8,

AccessBase(accbasic,Vinit) ≺ AccessBase(accfull,Vinit) ,

since {pwdacc} ⊆ {pwdacc, device} , where {pwdacc, device} is the
only element in AccessBase(accfull,Vinit).

Based on this, we define soundness of a scoring scheme.

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1409

Definition 10. A security scoring scheme
(D, ≼S ,Vinit, Init,Eval,Combine)with score function ScoreS is sound
if, for any two vertices vA and vB

AccessBase(vA,Vinit) ≼ AccessBase(vB ,Vinit) ⇒
ScoreS (vA) ≼S ScoreS (vB) .

We next give sufficient conditions for the Eval and Combine
functions for a scoring scheme to be sound.

Theorem 2. A security scoring scheme
(D, ≼,Vinit, Init,Eval,Combine) is sound if the following two condi-
tions hold.

(1) ∀A,B ⊆ Vinit : A ⊆ B ⇒ EvalSet(A) ≼ EvalSet(B) .
(2) ∀S,T ∈ P(D) : (∀Ti ∈ T ∃Sj ∈ S : Sj ≼ Ti) ⇒

Combine(S) ≼ Combine(T) .

The proof is given in Appendix A. All scoring schemes that we
present in this paper are sound. The soundness proofs are given
in Appendix A as well. We next present a scoring scheme that is
more expressive than the previous one, addressing the problem
illustrated in Example 7.

4.3 A multiset-based scoring scheme
We present a scoring scheme where each score is a set of multisets
S . Each multiset in an account’s score S represents an alternative
access method for that account. Thus, this scoring scheme consid-
ers more details about an account’s access sets than the previous
scheme, which reduced the information from all different access
sets to a single number.

Consider a multisetM that is associated with one access method.
Each element in the multiset represents a credential as a single
numeric value, where a higher number represents a credential that
is more difficult to compromise. For example, ⦃1, 1⦄ denotes an
access method that requires two credentials with value 1 each. Then,
the score S of an account represents all different access methods for
that account, including (transitively) the different access methods
for accounts linked to S . For example, a score of {⦃1, 1⦄,⦃2⦄}
denotes that the account can (transitively) be accessed either by
two credentials with value 1 each, or a single credential with value 2.

For comparing scores, we first define a partial order on multisets.
For twomultisetsM andN ,M ≼ N holds if and only if each number
inM can be injectively mapped to a number in N that is at least as
high. Then, M represents a less (or equally) secure access method
than N .

Definition 11. For two multisets M and N over N, M ≼ N if
and only if k = |M | ≤ |N | = n, and there exists an indexing of
their elements such that M = ⦃m1, . . . ,mk⦄, N = ⦃n1, . . . ,nn⦄,
and ∀ 1 ≤ i ≤ k :mi ≤ ni .

Example 10. ⦃1, 1⦄ ≺ ⦃1, 2⦄ and ⦃1, 2⦄ ≺ ⦃1, 1, 2⦄, but ⦃1, 2⦄
and ⦃1, 1, 1⦄ are incomparable.

Note that this multiset ordering is specialized to our needs and
differs from standard multiset orderings [5].

We next define a partial order on sets of multisets based on the
same idea of implication for comparing access bases explained in
Theorem 1. Consider a set of multisets S that represents a score

for an account. Recall that each multiset in S is associated with an
alternative access method. Thus, a set of multisets S1 represents a
lower score than another set S2 if and only if, for every multiset
in S2, there is a multiset representing a less secure access method
in S1.

Definition 12. For two sets of multisets S1, S2, S1 ≼ S2 if and
only if ∀ N ∈ S2 ∃M ∈ S1 : M ≼ N .

Note that the empty set is the highest possible score, since it
denotes an account that cannot be accessed at all.

Example 11. {⦃1, 1⦄,⦃1, 2⦄} ≺ {⦃1, 2⦄,⦃1, 1, 2⦄}, but {⦃1, 2⦄}
and {⦃1, 1⦄,⦃1, 1, 1⦄} are incomparable.

To define our scoring scheme, we will employ a definition of
distributed product from [15] for Eval:

Definition 13. The distributed product of two sets of multisets
S1 and S2 is defined as

S1 ⊗ S2 = {M ⊎ N | M ∈ S1,N ∈ S2} ,

where ⊎ denotes multiset sum (union). Moreover, we define
⊗
Si ∈S

as

the generalization of ⊗ with unit element {∅}, where S is a multiset
containing sets of multisets.

Example 12.⊗
⦃{⦃1⦄}, {⦃2, 2⦄}, {⦃3⦄,⦃4⦄}⦄ =

{⦃1, 2, 2, 3⦄,⦃1, 2, 2, 4⦄} .

Definition 14. The sets of multisets scoring scheme is given as

• D = PM (N), the sets of multisets over N.
• ≼ is given according to Definition 12.
• Eval =

⊗
.

• Combine(S) = minimal(S∪), where S∪ :=
⋃

Si ∈S
Si , and

minimal(S∪) := {M | M ∈ S∪ ∧ ¬(∃M ′ ∈ S∪ : M ′ ≺ M)} .

Eval takes the distributed product of sets of multisets given in
Definition 13. Combine then takes the minimal values of the union.
For example, given a set of two multisets {M1,M2} withM1 ≺ M2,
M1 is a minimal value butM2 is not, sominimal({M1,M2}) = {M1}.

This scoring scheme addresses the problem illustrated in Exam-
ple 7, where two accounts with very different setups were assigned
the same score.

Example 13. Consider the graph in Figure 6.

Score(accA) = Combine(EvalSet({pwdA, pwdB})) = {⦃1, 1⦄}, and
Score(accB) = Combine(EvalSet({device})) = {⦃2⦄} .

Note that {⦃1, 1⦄} and {⦃2⦄} are incomparable. Thus, the scor-
ing scheme assigns incomparable scores to setups that should be
considered incomparable.

While this scoring scheme is more fine-grained, it still requires
assigning initial numerical scores to credentials. These numbers can
be obtained from a risk analysis, but may not always be precise. We
next present a scoring scheme with a non-numerical domain based
on an attacker model, illustrating the flexibility of our formalism.

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1410

accA accB

pwdA : {⦃1⦄} pwdB : {⦃1⦄}

device : {⦃2⦄}

code

Figure 6

4.4 An attacker model scoring scheme
An important measure of an account’s security is which kinds of
attackers could potentially compromise the account. We consider
the possibility of compromise by different kinds of attackers. We
associate each account with the weakest attacker that could po-
tentially compromise that account. Note that possibility here only
means that such a compromise could occur, but not necessarily
that it is likely. For example, an account that is only protected by
a password could be compromised by a remote attacker, while an
account that requires authentication from a device not connected
to the Internet could only be compromised by a local attacker.

We formalize these concepts with a security scoring scheme
based on n attribute sets A1, . . . ,An modeling attacker capabilities.
We model an attacker as an n-tuple (a1, . . . ,an) ∈ A1 × · · · ×An .

Example 14. Consider the following attribute sets:
• Location = {rem, loc}, with rem < loc .
• Skill = {none, some, exp}, with none < some < exp .

For Location, remmeans the attacker acts remotely, e.g., from another
country, while loc means that the attacker is local, and may thus
obtain access to physical devices owned by the user. The relation
rem < loc means that a local attacker has more capabilities than
a remote one, that is, a local attacker could always also act like a
remote attacker. For Skill, nonemeans that the attacker has no special
skills, somemeans that he has special skills, e.g., he can exploit known
vulnerabilities, and exp denotes an expert hacker. For example, the
tuple (rem, some) models a remote attacker with special skills.

We next give an ordering on such attacker tuples.

Definition 15. Let A1, . . . ,An be totally ordered attribute sets
with order relations ≤1, . . . , ≤n . Then, for t ,u ∈ A1 × · · · × An , we
define the following partial order ≼ on tuples: t ≼ u if and only if each
component of t is less than or equal to the corresponding component
in u. That is:

t ≼ u :⇔ ∀1 ≤ i ≤ n : proji (t) ≤i proji (u) ,

where proji (t) maps t to its i-th component.

We will define a scoring scheme that denotes the minimal at-
tribute values an attacker must have to compromise a credential or
account. The values assigned to vertices by the scoring scheme are
sets of attribute tuples. Each tuple denotes one kind of attacker who
could compromise the account. An attacker who has only better
attributes as denoted in a tuple could also compromise the account.

Example 15. An account with a score of {(rem, some), (loc, none)}
could be compromised by a remote attacker with special skills, rep-
resented by (rem, some), or by a local attacker without any special

skills, represented by (loc, none). An attacker stronger than at least
one of these options, for example a remote attacker with expert skills,
(rem, exp), or a local attacker with some skills, (loc, some), could also
compromise the account. However, a remote attacker without special
skills, (rem, none), cannot compromise the account.

We can also compare sets of attribute tuples as follows. Consider
a set of attacker tuples S2. Another set S1 is smaller or equal to S2 if
and only if for each attacker tuple in S2, there is a tuple representing
a weaker (or equal) attacker, in S1. That is, any attacker that could
compromise the account with score S2 could also compromise the
account with score S1.

Definition 16. For S1, S2 ∈ P(A1 × · · · × An), S1 ≼ S2 if and
only if ∀ u ∈ S2 ∃ t ∈ S1 : t ≼ u.

This ordering is analogous to the ordering for sets of multisets.
The empty set is the highest possible score, since it denotes that no
attacker could ever compromise the account.

Definition 17. Let A1, . . . ,An be totally ordered attribute sets.
We define the attacker attribute security scoring scheme based on
these attribute sets as follows:

• D = P(A1, . . . ,An), sets of attribute tuples.
• ≼ is given according to Definition 16.
• Eval(M) = compMax(M∪), where M∪ :=

⋃
Mi ∈M

Mi , and

compMax is a singleton set that contains the component-wise
maximum of tuple setM∪.

• Combine(S) = minimal(S∪), where S∪ :=
⋃

Si ∈S
Si , and

minimal(S∪) := {t | t ∈ S∪ ∧ ¬(∃t ′ ∈ S∪ : t ′ ≺ t)} .

Note that minimal is defined analogous to the sets of multisets
scoring scheme given in Definition 14.

Example 16. In Figure 7, we extend the graph from Figure 1 by
assigning attacker tuple security scores to the leaves.

Score(accshop) = Combine(EvalSet({pwdshop}),
EvalSet({pwdmail, device,finger}),EvalSet({pwdmail, device, PIN}))
= Combine({(rem, some)}, {(loc, exp)}, {(loc, some)}) =
minimal({(rem, some), (loc, exp), (loc, some)}) = {(rem, some)} .

pwdshop : {(rem, some)}

accshop

accmail

pwdmail : {(rem, some)} code

device :
{(loc, none)}

finger :
{(loc, exp)}

PIN :
{(loc, some)}

Figure 7

That is, a remote attacker with special skills could potentially
compromise the accshop account.

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1411

4.5 Inherent account vulnerabilities
Our modeling and analysis so far was based on the assumption that
an account can be accessed only by presenting credentials. In reality,
services may have vulnerabilities that allow an attacker to access
an account without credentials. We can model such vulnerabilities
by also including intermediate vertices representing accounts in
Vinit, and assigning initial scores to them. An account’s initial score
denotes how difficult it is for an attacker to compromise it by means
other than compromising the user’s credentials.

Example 17. In Figure 8, we extend the example given in Figure 3
by assigning initial security scores also to the intermediate vertices,
setting Vinit = VG . Note that AccessBase(v,VG) = MinAccessTo(v).
We assign an initial score of 3 to accshop and accmail, measuring the
risk of direct account compromise through a service vulnerability.
We assign an initial score of 5 to code, which means that we deem it
difficult to compromise the codewithout access to the unlocked device.
We then compute the access bases, which also contain intermediate
vertices:

AccessBase(accmail,VG) = {{accmail}, {pwdmail, code},
{pwdmail, device,finger}, {pwdmail, device, PIN} } .

AccessBase(accshop,VG) = {{accshop}, {accmail}, {pwdshop},
{pwdmail, code}, {pwdmail, device,finger}, {pwdmail, device, PIN} } .

From these sets, we then compute the final security scores.

Score(accmail) = min({3, 6, 5, 4}) = 3 .
Score(accshop) = min({3, 3, 1, 6, 5, 4}) = 1 .

The score of 3 for accmail is less than the score of 4 obtained previ-
ously. Score(accmail) = Init(accmail), i.e., the final score computed for
accmail is equal to its initial score. This shows that the highest risk for
the e-mail account is direct compromise, without compromising the
user’s credentials.

The score of 1 for accshop is the same as the score obtained previ-
ously. Score(accshop) < Init(accshop), i.e., the final score computed
for accshop is lower than its initial score. This shows that compromise
of the credentials is the highest risk for the web shop account (in
particular, the credential pwdshop).

pwdshop : 1

accshop : 3

accmail : 3

pwdmail : 1 code : 5

device : 2 finger : 2 PIN : 1

Figure 8

5 LOCKOUT SETS AND RECOVERABILITY
In the previous sections, we showed how to analyze the security of
accounts against compromise. However, if security were our only

concern, then accounts should not contain any recovery methods
at all. In reality, security must be balanced against the risk of lock-
ing users out of their accounts. Thus, we now introduce a way to
analyze lockout risk. We say that an account with low lockout risk
achieves high recoverability. We can then analyze both security
and recoverability of an account setup and understand whether the
setup achieves a good balance between the two.

Lockout analysis is analogous to access analysis, and the main
idea of the analogy is the following. To obtain access, an attacker
must compromise all the necessary credentials for one accessmethod.
To be locked out, a user must lose one of the necessary credentials
for each access method.

5.1 Definitions
We define the minimal lockout sets for a vertex. A lockout set for v
is a set of vertices V such that, if the user does not have access to
any credential in V and is locked out of all accounts in V , the user
cannot access v . We define lockoutFrom(V) for a set of vertices V
analogous to accessFrom(V). We assume that the user is initially
locked out of all vertices in V . Then, lockoutFrom(V) also contains
all vertices that the user can no longer transitively access.

We construct lockoutFrom(V) as follows. For a vertex v , con-
sider all colors for which v has at least one incoming edge. When
lockoutFrom(V) contains the source vertex of an edge for each
such color, then this means that the user lacks one vertex for each
possible access mechanism of v . Thus, she cannot access v , so
v ∈ lockoutFrom(V).

Definition 18. For an account access graph G, the set
lockoutFrom(V) for a vertex set V is the smallest set that satisfies
V ⊆ lockoutFrom(V) and is closed under the following rule:

∃c ∈ CG : Inc (v) , ∅ ∧

∀c ∈ CG : (Inc (v) , ∅) → (Inc (v) ∩ lockoutFrom(V) , ∅)

v ∈ lockoutFrom(V)

Example 18. In Figure 8, lockoutFrom({pwdshop, device}) =

{pwdshop, device, code, accmail, accshop} .

We next define the set Lockout(v) in terms of lockoutFrom(V)

analogous to the relation between AccessTo(v) and accessFrom(V),
and then define minimal lockout sets and lockout bases.

Definition 19. The set of lockout sets of a vertex v , Lockout(v),
is defined as Lockout(v) := {V ⊆ VG | v ∈ lockoutFrom(V)} .

Definition 20. We define the set of minimal lockout sets of a
vertex v as MinLockout(v) :=

{V ⊆ VG | V ∈ Lockout(v) ∧ (∀ V ′ (V : V ′ < Lockout(v))} .

Definition 21. The lockout base LockoutBase(v,Vinit) of a ver-
texv with respect to a set of initial verticesVinit consists of the minimal
lockout sets that only contain vertices from Vinit.

LockoutBase(v,Vinit) := {V ∈ MinLockout(v) | V ⊆ Vinit} .

For lockout analysis, Vinit denotes the vertices that a user might
directly get locked out of. It should contain any credential that the
user could lose or forget. IfVinit also contains accounts, this models
accounts that could be unavailable even if the user has all required

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1412

credentials. This models that the service provider shut down or is
unavailable. We give examples for this in Section 5.2.

Example 19. Let Vinit be the set of all leaves in the graph from
Figure 8. LockoutBase(accshop,Vinit) =

{ {pwdshop, pwdmail}, {pwdshop, device}, {pwdshop,finger, PIN} } .

Algorithms. The algorithms for computing lockout sets are anal-
ogous to those for access sets. A vertex’s lockout base can be
computed analogously to computing an access base by answer-
ing queries of the form v ∈? lockoutFrom(V). These queries can be
answered by computing the least fixpoint of the rule given in Defi-
nition 18. A translation to Horn clauses analogous to that for access
sets to leverage linear time algorithms is also given in Appendix B.

Scoring Schemes. Most concepts from the previous sections can
naturally be adapted to apply to recoverability rather than secu-
rity by replacing the access base with the lockout base. We define
recoverability scoring schemes and their soundness. A higher re-
coverability score for an account denotes that a user is less likely
to get locked out of the account.

Definition 22. A recoverability scoring scheme is defined anal-
ogously to a security scoring scheme, with the score function operating
on the lockout base rather than the access base:

Score(v) := Combine({EvalSet(S) | S ∈ LockoutBase(v,Vinit)}) .

Definition 23. Let vA and vB be vertices in an account access
graph G. A lockout base for vB is at least as recoverable as that for
vA when being locked out of vB implies being locked out of vA.

LockoutBase(vA,Vinit) ≼ LockoutBase(vB ,Vinit) :⇔
∀ V ⊆ Vinit : vB ∈ lockoutFrom(V) → vA ∈ lockoutFrom(V) .

Definition 24. A recoverability scoring scheme
(D, ≼R ,Vinit, Init,Eval,Combine)with score function ScoreR is sound
if, for any two vertices vA and vB ,

LockoutBase(vA,Vinit) ≼ LockoutBase(vB ,Vinit) ⇒
ScoreR (vA) ≼R ScoreR (vB) .

The numerical scoring schemes given in Definition 8 and Defini-
tion 14 can also be interpreted as recoverability scoring schemes.
In this case, the initial scores assigned to credentials express how
easily the user could lose the credential. A credential that could
more easily be lost receives a lower score.

5.2 Inherent lockout risk
Wementioned that we consider inherent lockout from accounts, for
example, due to a service provider shutdown. We can also reflect
these possibilities with recoverability scoring schemes by including
intermediate vertices in Vinit. In Section 4.5, we considered addi-
tional compromise possibilities by giving the attacker more options:
he might compromise an account without possessing sufficient
credentials. Now, we consider additional lockout possibilities by
giving the user fewer options: she might not be able to access an
account despite having sufficient credentials. The difference can be
subtle, and we illustrate it with the following examples.

Example 20. In the graph from Figure 9, there is an account accSSO
with a service that provides single sign-on, and an account accshop
with aweb shop using this single sign-on. ForVinit := {pwdSSO, accSSO},

AccessBase(accshop,Vinit) = LockoutBase(accshop,Vinit) =
{{pwdSSO}, {accSSO} } .

Note the different interpretation of the set {accSSO} in the access base
and the lockout base. In the access base, the set denotes that an attacker
who directly compromises accSSO can access accshop. In the lockout
base, it denotes that, when accSSO is (inherently) unavailable, the user
is locked out of accshop.

We apply the sum-then-min scoring scheme as a recoverability
scoring scheme, and assign a score of 1 to pwdSSO, and a score of
2 to accSSO. Then, the final score for accshop is 1. This means that
the highest lockout risk is due to the user losing or forgetting the
password, and not due to a service provider shutdown. If we added
recovery mechanisms to accSSO, then this could change, and service
provider shutdown could become the greatest lockout risk.

pwdSSO : 1 accSSO : 2 accshop

Figure 9

Example 21. In the graph from Figure 10, there is an account accA
with a password pwdA that is saved in a password manager. For
Vinit := {manager, pwdA},

AccessBase(accA,Vinit) = LockoutBase(accA,Vinit) =
{{manager}, {pwdA} } .

There is again a different interpretation of the set {pwdA} in the
access base and the lockout base. In the access base, the set denotes
that an attacker who directly compromises pwdA can access accA. In
the lockout base, however, it reflects the possibility that pwdA could
be unavailable such that it could not be retrieved even with access to
the password manager. This models the accidental deletion of pwdA
from manager’s database. If this scenario is considered unlikely, then
pwdA should be assigned a higher initial recoverability score than
passwords that are not stored in a password manager, and could thus
be forgotten. If this scenario is even considered impossible, then pwdA
should not be included in Vinit for computing lockout sets, and thus
not be assigned an initial recoverability score at all.

manager pwdA accA

Figure 10

6 IDENTIFYING ACCOUNT SETUP
WEAKNESSES

In this section, we show how to leverage scoring schemes to answer
concrete questions about an account setup, such as which accounts
contain backdoors, or whether more important accounts are always
better secured than less important accounts. That is, we discover
critical weaknesses without manually analyzing each score.

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1413

Formally, we define predicates, which are Boolean-valued func-
tions on vertices that evaluate to true when there is a potential
weakness. We will give example predicates for concrete weaknesses,
but note that this is a general definition that can be instantiated to
answer many relevant questions about account setups.

Definition 25. An n-vertex predicate is a function PS,Add :
V n
G → {true, false} that is defined with respect to a scoring scheme

S and additional information Add, and takes as input an n-tuple of
vertices (with n ≥ 1, where a 1-tuple is a single vertex).

6.1 Recovery paths and backdoors
One kind of weakness in an account access graph is a backdoor. An
account has a backdoor when it can be accessed more easily using
recovery access methods than using its primary authentication
method.

We formalize this notion with a predicate. For this, we first ex-
plicitly define the subset of edges that are associated with recovery
methods. We then consider for an account access graph G a re-
duced version G ′ of that graph that does not contain the recovery
edges. An account has a backdoor with respect to a security scoring
scheme if its score in G is lower than its score in G ′, i.e., it is easier
to access this account by using at least one recovery method.

Definition 26. Let S be a security scoring scheme with scoring
function Score and Erec (EG a set of edges used in recovery methods.
Let G ′ be the graph obtained from G by removing the edges in Erec,
G ′ := (VG ,EG \ Erec,CG) . Then, we define the following predicate.
HasBackdoorS,Erec (v) := ScoreG (v) ≺ ScoreG′(v) .

Example 22. In the account access graph G given in Figure 11,
we evaluate the predicate HasBackdoor(accbank). We apply the sum-
then-min security scoring scheme S withVinit containing all leaves. Let
Erec := {(accmailA, accbank, red), (accmailB, accmailA, red)} . Then, the
backdoor predicate is evaluated as follows.

AccessBaseG (accbank,Vinit) = {{pwdbank, device},
{pwdmailA, device}, {pwdmailB} } .

AccessBaseG′(accbank,Vinit) = {{pwdbank, device}} .
Thus, HasBackdoorS,Erec (accbank) since
ScoreG (accbank) = 1 < 3 = ScoreG′(accbank) .

The backdoor of accbank is not directly due to its recoverymethod,
using accmailA, but due to the recovery method of accmailA , using
accmailB. Thus, the predicate also identifies indirect backdoors.

pwdbank : 1 codebank

device : 2

codemailA

pwdmailA : 1

pwdmailB : 1

accbank accmailA accmailB

Figure 11

From a recoverability point of view, we are interested in the
effectiveness of recovery methods. The analogous weakness to
backdoors are ineffective recovery methods, namely those that do
not actually improve an account’s recoverability.

Definition 27. Let R be a recoverability scoring scheme with
scoring function Score and Erec (EG a set of edges used in recovery
methods. Let G ′ be given as in Definition 26. Then, we define the
predicate IneffectiveRec as follows:

IneffectiveRecR,Erec (v) := ScoreG (v) ≼ ScoreG′(v) .

This predicate identifies accounts whose recoverability scores in
G , the graph that contains recovery methods, are not better than in
G ′, the graph without any recovery methods. Thus, the account’s
recovery methods are ineffective.

Example 23. In the graph in Figure 12, the device provides access
to two-factor codes as well as to a password manager. Let Erec :=
{(accmail, accshop, red)} , Vinit := {pwdmail, pwdshop, device} . We
apply the sum-then-min recoverability scoring scheme. We assign an
initial score of 1 to pwdmail and an initial score of 2 to the device.
However, we assign an initial score of 3 to pwdshop, as its initial score
reflects the unlikely scenario of the password being deleted from the
password manager’s database, as explained in Example 21.

We obtain the following lockout bases.

LockoutBaseG (accshop,Vinit) = {{device}, {pwdmail, pwdshop}} .
LockoutBaseG′(accshop,Vinit) = {{device}, {pwdshop}} .

This results in ScoreG (accshop) = ScoreG′(accshop) = 2 and thus
IneffectiveRecR,Erec (accshop) .

The reason is that device loss is the highest lockout risk with
or without the recovery method. The recovery method only helps
in case pwdshop would be deleted from the password manager’s
database, a scenario we deemed unlikely.

pwdshop: 3

accshopaccmail

pwdmail: 1 codemail codeshop

device: 2 manager

Figure 12

6.2 Account importance
Different accounts are of varying value and importance for the user.
For example, an online banking account may be more valuable than
other accounts. A risk analysis may indicate that a lower score is
acceptable for a less important account. When importance values
are assigned to each account, we can then combine this information
with a scoring scheme to discover inconsistencies.

Definition 28. Let S be a security or recoverability scoring scheme
with a scoring function Score and let I : V → DI be a function that

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1414

assigns to a vertex an importance value from a partially ordered
domain DI . Then, the predicate Inconsistent is given as follows.

InconsistentS, I (v1,v2) := I (v1) ≻ I (v2) ∧ Score(v1) ≼ Score(v2) .

That is, v1 represents a more important account than v2, but receives
the same or a lower score value.

The definition is sensible for both security and recoverability
scoring schemes, since it only depends on more important accounts
receiving higher scores.

Example 24. In Figure 13, we use the attacker security scoring
scheme S given in Definition 17 and DI = {low,med, high} with the
expected ordering. There are two accounts, which both require two-
factor authentication. However, accbank, the more important account,
can also be accessed with the answers to security questions.

I (accbank) = high ≻ med = I (accshop), but
Score(accbank) = {(rem, some)} ≺ {(loc, some)} = Score(accshop) .
Thus, InconsistentS, I (accbank, accshop) .

pwdbank :
{(rem, some)} codebank

device :
{(loc, none)}

codeshop
pwdshop :

{(rem, some)}

accbank : high accshop : med

answers :
{(rem, some)}

Figure 13

That is, even though accbank is the more important account
compared with accshop, it is less secure.

7 CASE STUDY
We have performed an extensive case study on one of the author’s
account connection setups. We present here a reduced version of
this case study, considering only a subset of the setup, for reasons
of space and simplicity. The full version is presented in Appendix C.
Even in the reduced setup, we still find several weaknesses, that we
report upon here.

7.1 Setup
We consider a user who has a Google account as well as an account
with the cryptocurrency exchange Binance. The user’s account
access graph is given in Figure 14.

Account structure. The user has a smartphone, a work laptop,
and a home PC. The smartphone can be unlocked by entering a PIN
or providing a fingerprint. The work laptop requires a password
to be unlocked. For clarity, we here explicitly denote the unlocked
version of a device d by d∗.

Login to the Google account requires two-factor authentication
with an authenticator app or SMS, and a recovery e-mail address
has been set up. Additionally, the user is logged into his Google

account on his phone, his work laptop, and his home PC. We denote
access to an existing session by Googlebasic. Some functionality,
such as changing security settings, requires authentication again.
We denote access to this functionality by Googlefull.

Furthermore, we discovered (in December 2018) that an old pass-
word and a code sent to the recovery e-mail address was sufficient
to access the user’s Google account via Tor [6]. While the same
computer was used as for previous logins, the use of a different
browser and Tor makes it unlikely (if not impossible) that the com-
puter was used as an authentication factor. Thus, we model the
possibility of logging in to Google with the old password and the
code only.

Next, consider the user’s Binance account. Binancebasic denotes
access to the account, which is protected with a password and a
second-factor authentication code. Binancefull additionally denotes
access to cryptocurrency withdrawals, for which a verification link
sent to the user’s Gmail address must be followed. The account pass-
word can be reset by an e-mail sent to the user’s Gmail address, so
Gmail access can replace the password for accessing Binancebasic.

Scoring schemes. Weuse two different security scoring schemes
and one recoverability scoring scheme. We include passwords, de-
vices, and physical keys in Vinit, that is

Vinit := {homeKey, officeKey, phone, PIN,finger,
pwdGoogle, pwdBinance, oldpwdGoogle, pwdmail, pwdlaptop} .

The first security scoring scheme is a simple attacker attribute
scoring scheme according to Definition 17, with only the Location =
{rem, loc} attribute. We assign an initial score of loc to devices and
keys, and rem to passwords.

The second security scoring scheme is a multiset-based scoring
scheme according to Definition 14. The weakest credential, receiv-
ing a score of {⦃1⦄}, is oldpwdGoogle. The reason is that an old
password should not be considered secure; the user might have
changed the password because the old one was compromised. We
then assign a score of {⦃2⦄} to other passwords and the phone,
and a score of {⦃3⦄} to the keys. This models that the user is more
likely to leave his phone unattended than his keys.

The recoverability scoring scheme is also multiset-based, using
similar scores. One difference is that we assign an initial score of
{⦃2⦄} to the keys only, modeling that the user is just as likely to
lose his keys as his phone.

Additional information. The following edges belong to recov-
ery methods.

Erec := {(oldpwdGoogle,Googlefull, green),
(accmail,Googlefull, green), (Gmail,Binancebasic, green),

(codeBinance,Binancebasic, green)} .

Furthermore, we assign importance med to Binancebasic and
Googlebasic as well as importance high to Binancefull andGooglefull.

7.2 Evaluation
We evaluated the HasBackdoor and IneffectiveRec predicates on
Binancebasic, Binancefull, Googlebasic, and Googlefull. We also eval-
uated the Inconsistent predicate on the pairs

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1415

phonefingerPINofficeKeyhomeKey

pwdlaptoplaptop

phone∗laptop∗homePC∗

Googlebasic

Googlefull

codeGoogle SMS

pwdGoogle

oldpwdGoogle

pwdmail

accmail

pwdBinance codeBinance

Binancebasic

Binancefull

Gmail

Figure 14

(Binancefull, Binancebasic) and (Googlefull,Googlebasic). We evalu-
ated each predicate with respect to both given scoring schemes.
Evaluation of all predicates including access and lockout base com-
putation took an average of 60 seconds over 10 runs on a laptop
computer with an Intel i7-6600U processor and 8 GB of RAM run-
ning Windows 10. We next present the most important identified
weaknesses. The full results can be reproduced by the Haskell pro-
gram available at [10].

We identified backdoors in Googlefull and Googlebasic with re-
spect to both scoring schemes. For Googlefull, the algorithm com-
puted the following access bases. G is the original graph and G ′ is
the graph after removing the edges belonging to recovery methods.

AccessBaseG′(Googlefull,Vinit) = {{pwdGoogle, phone,finger},
{pwdGoogle, phone, PIN}, {pwdGoogle, homeKey} } .

AccessBaseG (Googlefull,Vinit) = AccessBaseG′(Googlefull,Vinit) ∪
{{oldpwdGoogle, pwdmail} } .

For the attacker attribute scoring scheme, this results in

HasBackdoorS,Erec (Googlefull), since
ScoreG (Googlefull) = {rem} ≺ ScoreG′(Googlefull) = {loc} .

That is, the primary authentication mechanisms could only be
compromised by a local attacker, whereas the recovery mechanism
is potentially vulnerable even to a remote attacker. The recovery
mechanism thus constitutes a backdoor into the account. The user
could fix this issue by removing the recovery e-mail option or by
additionally securing the recovery e-mail account with a second
factor device.

Furthermore, we identified an inconsistency between Binancefull
and Binancebasic. The accounts’ access bases are equal.

AccessBase(Binancefull,Vinit) = AccessBase(Binancebasic,Vinit) =
{ {pwdBinance, phone,finger}, {pwdBinance, phone, PIN} } .

Thus, for any security scoring scheme S ,

InconsistentS, I (Binancefull,Binancebasic), since
I (Binancefull) ≻ I (Binancebasic) ∧
Score(Binancefull) = Score(Binancebasic) .

That is, the additional verification code sent to the Gmail account
for withdrawing cryptocurrency does not add any security. The
two-factor authentication already requires access to the unlocked
smartphone, and there is an active Google account session on the
phone, which is sufficient to access Gmail as well. The user could
fix this issue by configuring a different e-mail address on Binance
for which he does not have an active session on his phone or by
logging out of the active Gmail session on his phone.

This case study illustrates how our analysis identifies concrete
weaknesses of an account connection setup, and we also show how
the user could improve his setup.

8 RELATEDWORK
We consider three kinds of related work: (i) graph-based threat
modeling, (ii) logic programming, and (iii) end-user authentication
and account recovery in general.

First, there are many graph-based threat modeling formalisms
that are related to our model, originating from safety engineer-
ing techniques such as fault trees [21]. The most popular model
used for threat modeling today is attack trees [18, 20]. Different
formalizations of attack trees have been given, such as that by
Mauw et al. [15]. The survey by Kordy et al. [12] provides an ex-
tensive overview of attack and defense models based on directed
acyclic graphs (DAGs). In contrast, account access graphs are gen-
eral directed graphs, and our formalism naturally handles cycles.
Furthermore, we model many concepts that are specific to the do-
main of account recovery and the evaluation of account security

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1416

and recoverability. Many existing techniques focus on a single sys-
tem, and hierarchically refine a top-level event. Account access
graphs do not have this hierarchical structure.

Second, logic programming [13] is also well-suited for prob-
lems of the kind we consider. In particular, its stable model seman-
tics [8, 9], which is the basis of answer set programming [1, 14],
is commonly used for problems of a similar form as our access
and lockout set computation. For example, a query of the form
v ∈? accessFrom(V) can be answered using Horn clause resolution.
Nevertheless, our domain-specific formalism offers many advan-
tages. It facilitates visualization, and is well suited to directly ana-
lyze both access and lockout. The translation to Horn clauses given
in Appendix B requires different sets for access and lockout, respec-
tively, and also requires the introduction of auxiliary variables that
do not directly correspond to any particular account or credential.
In contrast, in our formalism, each vertex directly corresponds to
an account or credential.

Third, there is extensive previous work on end-user authentica-
tion with services; the survey by Bonneau et al. [3] provides a good
overview. However, there is substantially less work on account re-
covery, and existing work mostly belongs to one of two categories:
empirical studies of existing systems and proposals for new systems.
Since these are not directly related to our work, we only give a
few examples. Bonneau et al. [2] and Rabkin [17] have conducted
studies on security questions. Social recovery systems based on
trustees have been proposed by Brainard et al. [4] and Schechter et
al. [19]. Jakobsson et al. [11] suggest the use of personal preference
questions as a replacement for traditional security questions. To
our knowledge, there is no previous work analyzing a user’s entire
account connection setup.

9 CONCLUSION
We have presented account access graphs, the first formalism that
enables the systematic analysis of a user’s accounts encompassing
the user’s entire digital and physical context. Our formalism facili-
tates the discovery of account setup weaknesses: (i) with respect
to security that could allow an attacker to compromise an account,
and (ii) with respect to recoverability that could result in a user
being permanently locked out of an account.

Our case study illustrates the complex and subtle nature of iden-
tified weaknesses. For example, we identified a weakness that is
due to interconnections between a user’s device, an active account
session on that device, an account using the device for two-factor
authentication, and a confirmation e-mail sent to one of the user’s e-
mail accounts. A user’s entire account connection setup is typically
much larger, and is likely to contain even more subtle weaknesses.

Our formalism is precise, simple, and general enough to support
the representation of organizations’, developers’, and users’ account
setups and enables the evaluation of bespoke security and recov-
erability scoring schemes. It thus paves the way to a large-scale

study of account graphs and the subsequent understanding and
mitigation of account setup vulnerabilities.

REFERENCES
[1] Chitta Baral. 2003. Knowledge Representation, Reasoning and Declarative Problem

Solving. Cambridge University Press.
[2] Joseph Bonneau, Elie Bursztein, Ilan Caron, Rob Jackson, and Mike Williamson.

2015. Secrets, Lies, and Account Recovery: Lessons from the Use of Personal
Knowledge Questions at Google. In Proceedings of the 24th International Confer-
ence onWorldWideWeb, WWW 2015. InternationalWorldWideWeb Conferences
Steering Committee, 141–150.

[3] Joseph Bonneau, Cormac Herley, Paul C van Oorschot, and Frank Stajano. 2012.
The Quest to Replace Passwords: A Framework for Comparative Evaluation of
Web Authentication Schemes. In IEEE Symposium on Security and Privacy, SP
2012. IEEE, 553–567.

[4] John G Brainard, Ari Juels, Ronald L Rivest, Michael Szydlo, and Moti Yung. 2006.
Fourth-factor authentication: somebody you know. In Proceedings of the 13th
ACM Conference on Computer and Communications Security, CCS 2006. ACM,
168–178.

[5] Nachum Dershowitz and Zohar Manna. 1979. Proving termination with multiset
orderings. Commun. ACM 22, 8 (1979), 465–476.

[6] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The second-
generation onion router. Technical Report. Naval Research Lab Washington DC.

[7] William FDowling and JeanHGallier. 1984. Linear-time algorithms for testing the
satisfiability of propositional Horn formulae. The Journal of Logic Programming
1, 3 (1984), 267–284.

[8] Michael Gelfond and Vladimir Lifschitz. 1988. The Stable Model Semantics for
Logic Programming. In Logic Programming, Proceedings of the Fifth International
Conference and Symposium, Vol. 88. MIT Press, 1070–1080.

[9] Michael Gelfond and Vladimir Lifschitz. 1991. Classical Negation in Logic Pro-
grams and Disjunctive Databases. New Generation Computing 9, 3-4 (1991),
365–386.

[10] Sven Hammann, Saša Radomirović, Ralf Sasse, and David Basin. 2019. Haskell
code for Account Access Graphs. https://infsec.ethz.ch/research/software/
account_access_graphs.html.

[11] Markus Jakobsson, Erik Stolterman, Susanne Wetzel, and Liu Yang. 2008. Love
and authentication. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 197–200.

[12] Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick Schweitzer. 2014. DAG-
based attack and defense modeling: Don’t miss the forest for the attack trees.
Computer Science Review 13 (2014), 1–38.

[13] John W Lloyd. 2012. Foundations of logic programming. Springer Science &
Business Media.

[14] Victor W Marek and Miroslaw Truszczyński. 1999. Stable models and an alterna-
tive logic programming paradigm. In The Logic Programming Paradigm. Springer,
375–398.

[15] Sjouke Mauw and Martijn Oostdijk. 2005. Foundations of attack trees. In Interna-
tional Conference on Information Security and Cryptology. Springer, 186–198.

[16] Ron Miller. 2017. That time I got locked out of my Google
account for a month. https://techcrunch.com/2017/12/22/
that-time-i-got-locked-out-of-my-google-account-for-a-month/. Accessed:
2019-05-15.

[17] Ariel Rabkin. 2008. Personal knowledge questions for fallback authentication:
Security questions in the era of Facebook. In Proceedings of the 4th symposium on
Usable privacy and security. ACM, 13–23.

[18] Chris Salter, O Sami Saydjari, Bruce Schneier, and Jim Wallner. 1998. Toward a
secure system engineering methodolgy. In Proceedings of the 1998 workshop on
New security paradigms. ACM, 2–10.

[19] Stuart E Schechter, Serge Egelman, and Robert W Reeder. 2009. It’s not what
you know, but who you know: a social approach to last-resort authentication. In
Proceedings of the 27th International Conference on Human Factors in Computing
Systems, CHI 2009. ACM, 1983–1992.

[20] Bruce Schneier. 1999. Attack trees. Dr. DobbâĂŹs journal 24, 12 (1999), 21–29.
[21] William E Vesely, Francine F Goldberg, Norman H Roberts, and David F Haasl.

1981. Fault tree handbook. Technical Report. Nuclear Regulatory Commission
Washington DC.

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1417

https://infsec.ethz.ch/research/software/account_access_graphs.html
https://infsec.ethz.ch/research/software/account_access_graphs.html
https://techcrunch.com/2017/12/22/that-time-i-got-locked-out-of-my-google-account-for-a-month/
https://techcrunch.com/2017/12/22/that-time-i-got-locked-out-of-my-google-account-for-a-month/

A PROOFS
A.1 Requirements for scoring schemes
We prove Theorem 1.

Proof. We first show ⇒: We want to show that, given the left-
hand side, we have A ≼ B, that is:

∀ V ⊆ Vinit : vB ∈ accessFrom(V) → vA ∈ accessFrom(V) .

Consider any V ⊆ Vinit such that vB ∈ accessFrom(V). Then, V
must contain all elements of some set in the access base B, i.e., we
must have ∃Bk ∈ B : Bk ⊆ V . Thus, from the left-hand side, we
have

∃Aj ∈ A : Aj ⊆ Bk ⊆ V ⇒ Aj ⊆ V .
Thus, V contains all elements of Aj , an element of the access base
of A, giving us vA ∈ accessFrom(V).

To show ⇐, consider

¬(∀Bi ∈ B ∃Aj ∈ A : Aj ⊆ Bi) ⇒ ¬(A ≼ B) .

The left-hand side can be rewritten as:

∃Bk ∈ B ∀Aj ∈ A : ¬(Aj ⊆ Bk) .

Consider such a Bk . We clearly havevB ∈ accessFrom(Bk) since Bk
is a set in vB ’s access base. We also have ¬(vA ∈ accessFrom(Bk))
since Bk is not a superset of any set in vA’s access base. Thus,

vB ∈ accessFrom(Bk) ∧ ¬(vA ∈ accessFrom(Bk))

and hence

∃V ⊆ Vinit : vB ∈ accessFrom(V) ∧ ¬(vA ∈ accessFrom(V)) ,

which is exactly ¬(A ≼ B). �

We now prove Theorem 2.

Proof. LetvA,vB be two vertices inG . LetA := AccessBase(vA,Vinit)
andB := AccessBase(vB ,Vinit), and letA ≼ B. Let S = {EvalSet(Ai) |Ai ∈
A} and T = {EvalSet(Bi) | Bi ∈ B}. We want to show

Score(v) = Combine(S) ≼ Combine(T) = Score(v ′) .

We show that, given conditions (1) and (2), as well as A ≼ B, that
Combine(S) ≼ Combine(T).

From A ≼ B and Theorem 1, we have

∀Bi ∈ B ∃Aj ∈ A : Aj ⊆ Bi .

Combining this with condition (1) yields

∀Ti ∈ T ∃Sj ∈ S : Sj ≼ Ti .

From condition (2), this yields Combine(S) ≼ Combine(T). �

A.2 Soundness proof for scoring schemes
We prove that all scoring schemes we presented are sound by show-
ing that they fulfill the conditions given in Theorem 2.

Theorem 3. The sum-then-min scoring scheme given in Defini-
tion 8 is sound.

Proof. We show that the conditions of Theorem 2 are fulfilled.
Condition (1): LetA ⊆ B. We show that EvalSet(A) ≤ EvalSet(B):

EvalSet(A) =
∑
v ∈A

Init(v) ≤

(
∑
v ∈A

Init(v)) + (
∑

v ∈B\A

Init(v)) =∑
v ∈B

Init(v) = EvalSet(B) .

The first step here is justified since all Init(v) are non-negative, and
the second step holds since, for A ⊆ B, we have B = A ∪ (B \A).

Condition (2): When we have

∀Ti ∈ T ∃Sj ∈ S : Sj ≤ Ti ,

then in particular, ∃Sj ∈ S : Sj ≤ min(T). Furthermore,min(S) ≤ Si
for any Si ∈ S . Thus,

Combine(S) = min(S) ≤ Sj ≤ min(T) = Combine(T) .

�

Theorem 4. The set of multisets scoring scheme given in Defini-
tion 14 is sound.

Proof. We show that the conditions of Theorem 2 are fulfilled.
Condition (1): LetA ⊆ B. We show that EvalSet(A) ≤ EvalSet(B).

EvalSet(A) =
⊗
v ∈A

Init(v) ≼

(
⊗
v ∈A

Init(v)) ⊗ (
⊗

v ∈B\A

Init(v)) =⊗
v ∈B

Init(v) = EvalSet(B) .

The first step holds since we have S1 ≼ S1 ⊗ S2 for any sets of
multisets S1 and S2. This can be seen as follows: Any element of
S1⊗S2 is of the formM⊎N withM ∈ S1 andN ∈ S2, andM⊎N ≼ M .
The second step holds since, for A ⊆ B, B = A ∪ (B \A).

Condition (2): We assume

(*) ∀Ti ∈ T ∃Sj ∈ S : Sj ≼ Ti

and want to show

Combine(S) = minimal(S∪) ≼ minimal(T∪) = Combine(T) .

To show minimal(S∪) ≼ minimal(T∪), we must show:

∀N ∈ minimal(T∪) ∃M ∈ minimal(S∪) : M ≼ N .

Consider such a multiset N ∈ minimal(T∪). There is a set of multi-
sets Ti ∈ T such that N ∈ Ti . Then, due to assumption (*), there is
a set of multisets Sj ∈ S such that Sj ≼ Ti . Thus, by definition of
≼ on sets of multisets, there is a multiset Mk ∈ Sj with Mk ≼ N .
Then, eitherMk ∈ minimal(S∪), or ∃M ′

k ∈ minimal(S∪) such that
M ′
k ≼ Mk ≼ N . In either case, ∃M : M ≼ N . �

Theorem 5. LetA1, . . . ,An be totally ordered attribute sets. Then,
the attacker attribute scoring scheme given in Definition 17 based on
these attribute sets is sound.

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1418

Data: G,Vinit ⊆ VG ,v ∈ VG
Result: AccessBase(v,Vinit)
AccessBase := ∅ ;
for v ′ ∈ Vinit do

if v ∈ accessFrom({v ′}) then
AccessBase := AccessBase ∪ {{v ′}} ;

end
end
for i := 2 to |Vinit | do

for V ⊆ Vinit with |V | = i do
for V ′ ∈ AccessBase do

if V) V ′ then
skip V ;

end
end
if v ∈ accessFrom(V) then

AccessBase := AccessBase ∪ {V } ;
end

end
end
return AccessBase ;
Algorithm 2: Algorithm for computing an access base

Proof. We show that the conditions of Theorem 2 are fulfilled.
Condition (1): Let A ⊆ B. Let MA := ⦃Init(v) | v ∈ A⦄ and

MB := ⦃Init(v) | v ∈ B⦄. Then,

EvalSet(A) = compMaxt ∈MA∪
(t) ≼

compMaxt ∈MA∪∪(MB∪\MA∪)
(t) =

compMaxt ∈MB∪
(t) = EvalSet(B) .

The first step holds since, for each component, considering addi-
tional elements can only increase the maximum. The second step
holds since, for A ⊆ B, we have B = A ∪ (B \A), and thus also

MB∪ = MA∪ ∪ (MB∪ \MA∪) .

The proof for condition (2) is analogous to the proof of Theorem 4
for sets of multisets, since the proof only depends on the definition
of Combine, which is analogous to the one for sets of multisets. �

B ALGORITHMS
We give details on our algorithms and their complexity.

B.1 Fixpoint computation for access and
lockout

The function for computing whether v ∈? accessFrom(V) for a set
of vertices V is described in Algorithm 1, where

accessFromStep(V) := V ∪

{v | ∃c ∈ CG : ∅ (Inc (v) ⊆ V }

applies a single step of the rule given inDefinition 3. Since accessFrom(V)

is defined as the smallest set closed under that rule, it can be com-
puted as the least fixpoint of iterating this stepwise function.

Data: G,V ⊆ VG ,v ∈ VG
Result: v ∈? accessFrom(V)

if v ∈ V then
return true ;

end
Vnext := V ;
repeat

Vprev := Vnext ;
Vnext := accessFromStep(Vprev) ;
if v ∈ Vnext then

return true ;
end

until Vprev = Vnext;
return false ;

Algorithm 1: Algorithm for answering a query v ∈?

accessFrom(V)

This algorithm runs inO(n2), wheren = |VG |, as accessFromStep(V)

must consider all vertices, and O(n) calls to accessFromStep(V) are
necessary in theworst case.v ∈? lockoutFrom(V) is computed in an
analogous way, using a single step of the rule given in Definition 18.

We use Algorithm 2 for computing access bases. Lockout bases
are computed analogously by replacing v ∈ accessFrom(V) with
v ∈ lockoutFrom(V).

These are the algorithms used in our implementation, and they
are suitable for graphs the size of our case study. We next show
how a better worst-case complexity can be achieved by translating
account access graphs into Horn clauses, where different sets of
Horn clauses are required for access and lockout, respectively.

B.2 Translation into Horn clauses
An account access graph can be translated into Horn clauses. This
allows leveraging Horn clause resolution algorithms for access and
lockout set computation. Different sets of Horn clauses are required
for access and lockout computation, respectively.

Definition 29. Let G be an account access graph. V(G) is called
the set of G’s equivalent variables, and is given as follows. For each
vertex v ∈ VG , we introduce a variable v ∈ V(G) and an additional
auxiliary variable vc ∈ V(G) for each color for which v has at least
one incoming edge. That is, the set of variables is

V(G) := VG ∪ {vc | v ∈ VG ∧ c ∈ CG ∧ Inc (v) , ∅} .

Definition 30. Let G be an account access graph. CAccess(G) is
called the set ofG’s equivalent access-clauses, and is given as follows
over the variables in V(G).

CAccess(G) :=

{vc → v | v ∈ VG , Inc (v) , ∅} ∪ {
∧

v ′∈Inc (v)
v ′ → vc } .

Theorem 6. Let G be an account access graph. In the set of Horn
clauses CAccess(G), a variablev that corresponds to a vertex is entailed
by the variables V corresponding to vertices, written V → v , if and
only if v ∈ accessFrom(V).

Proof. We first show that v ∈ accessFrom(V) implies V → v
for the Horn clause variables. We show this by structural induction
on the derivation tree of v ∈ accessFrom(V) using the rule from

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1419

Definition 3. The base case is v ∈ V . In this case, v ∈ V also over
the variables V(G) and thus trivially V → v .

For the induction step, consider an application of the rule with
conclusion v ∈ accessFrom(V). From the induction hypothesis, for
any previous deduction of v ′ ∈ accessFrom(V), V → v ′ for the
Horn clause variables. Now, consider the current rule’s premise
∃c ∈ CG : ∅ (Inc (v) ⊆ accessFrom(V). Let c ′ be a fixed color
such that ∅ (Inc ′(v) ⊆ accessFrom(V). For any v ′ ∈ Inc ′(v), v ′ ∈

accessFrom(V), and thus, due to the induction hypothesis, V → v ′.
We can therefore apply the Horn clause

∧
v ′∈Inc′ (v)v

′ → vc ′ to
obtain vc ′ , and then apply vc ′ → v to obtain v .

We now show the converse by structural induction on the deriva-
tion of v by applying Horn clauses. The base case is again v ∈ V , in
which case v ∈ V also for the graph and thus v ∈ accessFrom(V).

For the induction step, consider the derivation step that yields
v . This step must apply a clause of the form vc → v , since any
other clauses only yield auxiliary variables of the formvc . Note that
vc < V , since V does not contain any auxiliary variables. Thus, vc
must have been derived from a clause of the form

∧
v ′∈Inc′ (v)v

′ →

vc ′ , where Inc (v) , ∅. Thus, we must have V → vi for all vi on
the left-hand side of that clause. Due to the induction hypothesis,
also vi ∈ accessFrom(V) for all of these vi . Thus, ∅ (Inc ′(v) ⊆
accessFrom(V), and therefore also ∃c ∈ CG : ∅ (Inc (v) ⊆

accessFrom(V). We apply the rule from Definition 3 and obtain
v ∈ accessFrom(V).

�

Definition 31. Let G be an account access graph. CLockout(G)
is called the set of G’s equivalent lockout-clauses, and is given as
follows over the variables in V(G).

CLockout(G) := {
∧

Inc (v),∅
vc → v | v ∈ VG , ∃c ∈ CG : Inc (v) , ∅} ∪

{v ′ → vc | v ′ ∈ Inc (v)} .
Theorem 7. Let G be an account access graph. In the set of Horn

clauses CLockout(G), , a variable v that corresponds to a vertex is
entailed by the variables V corresponding to vertices, written V → v ,
if and only if v ∈ lockoutFrom(V).

Proof. We first show that v ∈ lockoutFrom(V) implies V → v
for the Horn clause variables. We show this by structural induction
on the derivation tree of v ∈ lockoutFrom(V) using the rule from
Definition 18. The base case is v ∈ V . In this case, v ∈ V also over
the variables V(G) and thus trivially V → v .

For the induction step, consider an application of the rule with
conclusion v ∈ lockoutFrom(V). By the induction hypothesis, for
any previous deduction of v ′ ∈ lockoutFrom(V), V → v ′ for the
Horn clause variables. Now, consider the current rule’s premise

∃c ∈ CG : Inc (v) , ∅ ∧

∀c ∈ CG : (Inc (v) , ∅) → (Inc (v) ∩ lockoutFrom(V) , ∅) .

As ∃c ∈ CG : Inc (v) , ∅, there exists a clause of the form∧
Inc (v),∅ vc → v . From the rule’s premise, for all such c with

Inc (v) , ∅, Inc (v) ∩ lockoutFrom(V) , ∅. Thus, for each such c ,
there is a v ′ ∈ Inc (v) with v ′ ∈ lockoutFrom(V). By the induction
hypothesis, V → v ′ for all of these v ′. We can therefore apply the
Horn clause v ′ → vc to obtain vc for each c with Inc (v) , ∅, and
then apply

∧
Inc (v),∅ vc → v to obtain v .

We now show the converse by structural induction on the deriva-
tion of v by applying Horn clauses. The base case is again v ∈ V , in
which case v ∈ V also for the graph and thus v ∈ lockoutFrom(V).

For the induction step, consider the derivation step that yields v .
This step must apply a clause of the form∧

Inc (v),∅ vc → v (with ∃c : Inc (v) , ∅), since any other clauses
only yield auxiliary variables of the form vc . Note that vc < V ,
since V does not contain any auxiliary variables. Thus, all the vc ’s
must have been derived from clauses of the form v ′ → vc , where
v ′ ∈ Inc (v). Thus, for each c with Inc (v) , ∅, V → v ′ for at least
one such v ′ with v ′ ∈ Inc (v). By the induction hypothesis, v ′ ∈

lockoutFrom(V) for all of thesev ′. Thus, Inc (v)∩lockoutFrom(V) ,
∅ for each such c . Since also ∃c : Inc (v) , ∅, we obtain

∃c ∈ CG : Inc (v) , ∅ ∧

∀c ∈ CG : (Inc (v) , ∅) → (Inc (v) ∩ lockoutFrom(V) , ∅) .

We apply the rule from Definition 18 to obtainv ∈ lockoutFrom(V).
�

These results allow for the use of efficient decision procedures
for Horn clause entailment, such as the linear time algorithm by
Dowling and Gallier [7], for computing access and lockout bases.

C FULL CASE STUDY
We present the full version of the case study, a reduced version of
which was presented in Section 7.

C.1 Model
To manage complexity and reduce access and lockout base compu-
tation times, we split the account graph into different parts, which
we call layers. When two layers of the graph are independent of
each other, i.e., no edge exists from one layer to another, they can
be analyzed independently. We define a base layer, which is always
included. Any other layer may either only depend on the base layer,
or on other layers. Any layers it depends on must then also be
included for its analysis.

Base layer. We depict the base layer in Figure 15. It includes
physical devices, keys, and documents, as well as a mail account
used for many recovery methods. The homeKey, officeKey, and
mailboxKey are keys held on a physical keychain. We model the
keychain as a separate credential that gives access to the keys, and
include only the keychain in Vinit. This models that one either has
access to the whole keychain or to none of the keys at all. The user
has a smartphone, a work laptop, and a home PC.

The smartphone can be unlocked by entering a PIN or providing
a fingerprint. The work laptop requires a password to be unlocked.
For a device d , we denote the unlocked device by d∗. Accessing the
work laptop or home PC requires access to the respective location,
so they are not included in Vinit but access must be derived from
the respective keys. The smartphone could be stolen directly, so it
is included in Vinit.

The credential IdDocument models an official document suffi-
cient to identify the user, such as a passport, or, in some parts of
the world, a driver’s license. The inPerson credential models that
the user must go somewhere in person and that another person
compares his appearance, e.g., with his portrait on an IdDocument.

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1420

Furthermore, the physicalMailbox credential represents access to
physical mail sent to the user, which is used in some recovery
methods and is unlocked with the mailboxKey.

Google layer. We depict the Google layer in Figure 16. This layer
contains the same vertices and edges as already described in the
case study from Section 7.

Binance layer. We depict the Binance layer in Figure 17. This
layer is also the same as already described in Section 7. This layer
depends on the Google layer due to the connection from Gmail. To
analyze it, we must thus include the Google layer in the graph.

University layer. We depict the university layer in Figure 18. This
layer includes the user’s university account. The main authentica-
tion method is a password, which is also saved on the user’s laptop.
The following recovery methods exist. The answersuni to security
questions can be combined with either a code entered by SMS or
sent via physical mail. Alternatively, the university’s service desk
offers help. We model that this recovery path requires the user to
present an IdDocument in person.

Online Banking layer. We depict the online banking layer in
Figure 19. The user’s online banking works as follows. The homePC,
laptop, and phone are configured as trusted devices.

The account bankingbasic allows read access and transactions to
trusted parties. It can be accessed by entering a password on one
of the trusted devices. The account bankingfull additionally allows
transactions to untrusted parties, which must be confirmed using
a second trusted device. This can be any trusted device that is not
used for the main session.

The password can be reset with an activationCode. However,
activationCode does not give access to the current password, it al-
lows one to reset the password. To model this accurately, we denote
by currentpwdbanking the current password, which gives access to
pwdbanking, but pwdbanking can also be accessed by activationCode.
We could alternatively allow activationCode to replace the pass-
word in each authentication method, but this would greatly in-
crease the number of edges. An activationCode can be obtained by
physical mail after answering some personal knowledge questions,
denoted by answersbanking. An activationCode can also be used in
combination with one trusted device to add an additional trusted
device. Thus, it can be used to replace the second trusted device to
provide access to bankingfull.

Scoring Schemes. The scoring schemes used for the case study
are an extension of those presented in Section 7. In particular, the
attribute scoring scheme also considers attacker skill. We assign
an initial score of (rem, some) to passwords, but of (rem, none) to
answers for security questions. This denotes that compromising
an average password usually requires at least some skills, while
answers to security questions can often be guessed or may be
gleaned from a person’s online presence. We assign an initial score
of (loc, some) to the keychain but of (loc, none) to the phone, mod-
eling, as mentioned in Section 7, that the user is more likely to leave
his phone unattended than his keys. Furthermore, we assign an
initial score of (loc, exp) to the inPerson credential, denoting that it
would require significant skills to physically impersonate the user
in real life. This difficulty is also reflected in the multiset scoring,
where we assign an initial score of {⦃5⦄} to inPerson. The full list
of scores is given in the Haskell code available at [10].

C.2 Evaluation
We highlight some results here. The full results can be reproduced
by compiling and running the Haskell code available at [10].

We presented the results for the Google and Binance layer in
Section 7. We additionally note that we discovered backdoors to
Binancebasic and Binancefull with respect to the multiset scoring
scheme, but not the attribute scoring scheme. This is unsurprising
since the multiset scoring scheme is more fine-grained, and thus de-
tects finer differences. The backdoors reflect that pwdBinance can be
circumvented with access to the phone by sending a recovery code
to the Gmail account, for which the phone has an active session.
This constitutes additional evidence that the active Gmail session
is a weakness of the setup.

In the banking layer, we also discovered backdoors to bankingbasic
and bankingfull with respect to the multiset scoring scheme, but
not the attribute scoring scheme. These backdoors are due to the
answersbanking being able to replace the pwdbanking. A positive
result is that bankingbasic and bankingfull can both only be compro-
mised by a local attacker, namely one with access to the keychain.

For the university layer, we obtain another positive result: accuni
contains no backdoors with respect to either scoring scheme, and
the recovery methods increase the recoverability score. That is,
the recovery methods manage to improve recoverability without
decreasing security.

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1421

mailboxKeyofficeKeyhomeKey

keychain

phonefingerPIN

pwdlaptoplaptop

phone∗laptop∗homePC∗

SMS

IdDocument inPerson

physicalMailbox

pwdmail accmail

Figure 15: Base layer

phone∗laptop∗homePC∗

Googlebasic

Googlefull

codeGoogle SMS

pwdGoogle

oldpwdGoogle

accmail

Gmail

Figure 16: Google layer

phone∗

pwdBinance codeBinance

Binancebasic

Binancefull

Gmail

Figure 17: Binance layer

answersuni

physicalMailbox SMS pwduni laptop∗

accuni

IdDocument

inPerson

Figure 18: University layer

laptop∗ homePC∗ phone∗

bankingbasic

bankingfull

pwdbanking

currentpwdbanking
activationCode

physicalMailbox answersbanking

Figure 19: Online banking layer

Session 6E: Passwords and Accounts CCS ’19, November 11–15, 2019, London, United Kingdom

1422

	Abstract
	1 Introduction
	2 System Model
	2.1 Basic concepts
	2.2 Graph model

	3 Access Sets
	4 Security Scoring Schemes
	4.1 A simple scoring scheme
	4.2 Requirements for scoring schemes
	4.3 A multiset-based scoring scheme
	4.4 An attacker model scoring scheme
	4.5 Inherent account vulnerabilities

	5 Lockout Sets and Recoverability
	5.1 Definitions
	5.2 Inherent lockout risk

	6 Identifying account setup weaknesses
	6.1 Recovery paths and backdoors
	6.2 Account importance

	7 Case Study
	7.1 Setup
	7.2 Evaluation

	8 Related Work
	9 Conclusion
	References
	A Proofs
	A.1 Requirements for scoring schemes
	A.2 Soundness proof for scoring schemes

	B Algorithms
	B.1 Fixpoint computation for access and lockout
	B.2 Translation into Horn clauses

	C Full Case Study
	C.1 Model
	C.2 Evaluation

