
Secure Data Deletion from Persistent Media

Joel Reardon
ETH Zurich, Switzerland
reardonj@inf.ethz.ch

Hubert Ritzdorf
ETH Zurich, Switzerland
rihubert@inf.ethz.ch

David Basin
ETH Zurich, Switzerland
basin@inf.ethz.ch

Srdjan Capkun
ETH Zurich, Switzerland

srdjan.capkun@inf.ethz.ch

ABSTRACT
Secure deletion is the task of deleting data irrecoverably
from a physical medium. In this work, we present a general
approach to the design and analysis of secure deletion for
persistent storage that relies on encryption and key wrap-
ping. We define a key disclosure graph that models the
adversarial knowledge of the history of key generation and
wrapping. We introduce a generic update function and prove
that it achieves secure deletion of data against a coercive
attacker; instances of the update function implement the
update behaviour of all arborescent data structures includ-
ing B-Trees, extendible hash tables, linked lists, and oth-
ers. We implement a B-Tree instance of our solution. Our
implementation is at the block-device layer, allowing any
block-based file system to be used on top of it. Using differ-
ent workloads, we find that the storage and communication
overhead required for storing and retrieving B-Tree nodes is
small and that this therefore constitutes a viable solution for
many applications requiring secure deletion from persistent
media.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.4.2
[Operating Systems]: Storage Management

Keywords
Secure deletion; privacy; persistent storage; B-Tree

1. INTRODUCTION
Secure data deletion is the task of deleting data irrecov-

erably from a physical medium. Persistent media, however,
are not amenable to secure deletion. Such media include off-
line tape archives, storage media under adversarial control,
or media that leave analog remnants [11]. Encryption is a
well-known technique to make data irrecoverable to those
unauthorized to access it. However, long-term encryption
keys are vulnerable to disclosure by coercive adversaries [3].

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’13, November 4–8, 2013, Berlin, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2477-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2508859.2516699.

Consequently, encrypted data is only securely deleted when
the user is unable to recover it [17]. To securely delete data,
it is therefore necessary to securely delete the key, a tech-
nique first used by Boneh and Lipton to securely delete data
written onto magnetic tape for off-line archiving [2].

Di Crescenzo et al. [6] first explicitly considered secure
deletion on a storage medium consisting of two parts: a
large persistent medium (such as a tape archive) and a small
securely-deleting medium (such as local storage). In the re-
lated work section we describe a variety of other schemes
that also securely delete from such mixed media. While
the specific media targeted by these solutions vary radically,
they all share the common premise that the securely deleting
storage is orders of magnitude smaller than the persistent
storage. Were this not the case, the user could eschew the
use of persistent storage altogether. Consequently, data is
stored on the persistent storage with the encryption keys re-
quired to access it stored on the securely-deleting medium.

Storing all the data keys on the securely-deleting medium
is not always possible. In order to efficiently delete one data
item while retaining all others, the system must provide
an appropriate deletion granularity [17]. A high deletion
granularity implies storing many keys—a different key for
each data unit. In the case of tape archives, the number of
keys required to achieve the appropriate deletion granularity
may easily overwhelm the capacity of the securely-deleting
medium. For instance, the securely-deleting medium may
be an expensive trusted platform module for added secu-
rity, or a portable smartcard so that a user can easily ac-
cess their data anywhere; in both cases we can expect to
store only a limited amount of data on the securely-deleting
medium. In Boneh and Lipton’s approach, all data keys are
encrypted with a single master key; while storing the master
key requires a fixed amount of data on the securely-deleting
medium, the deletion operation involves generating a new
master key and re-encrypting all data that was not deleted.

To overcome the limitations of Boneh and Lipton’s ap-
proach, Di Crescenzo et al. designed a tree-based approach
that also requires storing a fixed amount of data on the
securely-deleting medium but can delete with logarithmic
cost. Their approach arranges the persistent storage into
blocks that are indexed by a static binary tree: the tree al-
ways retains its size and shape; only the values associated
with the nodes can change. Both the data and the tree nodes
are stored (encrypted) on the persistent medium, such that
each internal node contains the decryption keys for its chil-
dren, and the leaf nodes for the data. The root key is then
stored on the securely-deleting medium.

This static key structure prevents both adding and remov-
ing nodes. To effect such a change, the user must construct
a new data structure and re-encrypt all the data into it.
An alternative, however, is to employ one of many dynamic
data structures, such as a B-Tree [5]. These data structures,
ubiquitously deployed in storage systems such as file sys-
tems and databases, change their internal structure based
on current storage requirements. However, ensuring secure
deletion with dynamic structures becomes less straightfor-
ward.
In this work, we describe a B-Tree-based dynamic struc-

ture that securely deletes data using a combination of a small
securely-deleting storage medium and a large persistent stor-
age medium. We prove the security of our solution by prov-
ing the security for a broad class of dynamic data struc-
tures: those whose underlying structure forms a directed
tree (henceforth called an arborescence [21]). This includes
self-balancing binary search trees and B-Trees [5], but also
linked lists and extendible hash tables [8]. We develop a
new approach to reasoning about this problem by modeling
adversarial knowledge as a directed graph of keys and verify-
ing the conditions that result in the secure deletion of data.
We define a generic shadowing graph mutation that models
how the adversary’s knowledge grows and prove that after
arbitrary sequences of such mutations one can still securely
delete data in a simple and straightforward way. We prove
that when using such mutations, data is securely deleted
against an adversary given full access to the history of the
persistent medium as well as access to all data stored on the
securely-deleting medium outside of the data’s lifetime. This
strong adversary subsumes all weaker ones, who may only
use coercive attacks once or obtain only recent history of
the persistent storage. The generic shadowing mutation can
express the update behaviour of any arborescent data struc-
ture; in the related work section we illustrate the resulting
key disclosure graph’s shape for existing approaches. Conse-
quently, when deploying a secure-deletion system that uses
an arborescent data structure to index data, the security
guarantees proved in this work extend to that data struc-
ture, provided that all its update behaviours are instances
of our generic shadowing graph mutation.
We implement our B-Tree-based instance of the secure

deletion solution and test it in practice. Our implementa-
tion offers a virtual block device interface, i.e., it mimics the
behaviour of a typical hard drive. This permits any block-
based file system to use the device as a virtual medium,
and so any medium capable of storing and retrieving data
blocks can therefore be used as the persistent storage. We
show that our solution achieves secure deletion from persis-
tent media without imposing substantial overhead through
increased storage space or communication. We validate this
claim by implementing our solution and analyzing its result-
ing overhead and performance. We examine our design’s
overhead and B-Tree properties for different caching strate-
gies, block sizes, and file system workloads generated by
filebench [12]. We show that the caching strategy approx-
imates the theoretical optimal (i.e., Bélády’s “clairvoyant”
strategy [1]) for many workloads and that the storage and
communication costs are typically only a small percentage
of the cost to store and retrieve the data itself.
To summarize, our contributions are the following:

• We propose an intuitive model that captures the growth
of adversarial knowledge in secure deletion systems.

• We define a generic shadowing graph mutation that
adheres to this model and can implement the update
behaviour of any arborescent data structure.

• We prove that secure deletion of data is easily accom-
plished with a single, simple mutation.

• We design a caching B-Tree whose update mechanism
is an instance of our generic mutation.

• We analyze different caching strategies and measure
the communication and storage overhead of our B-Tree
approach for different workloads; we show that caching
is quite effective and that the overhead is typically neg-
ligible.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the adversarial model. Section 3 describes
an example instantiation of a securely-deleting data struc-
ture in the form of a B-Tree. Section 4 presents the graph
theoretic details and proves the security of such schemes in
general. Section 5 provides implementation details for the
B-Tree. Section 6 then experimentally evaluates the B-Tree
approach. Finally, Section 7 discusses related work and Sec-
tion 8 draws conclusions.

2. SYSTEM AND ADVERSARIAL MODEL
Our system model consists of a user who stores data on

storage media such that the data can be retrieved during the
data’s lifetime but cannot be retrieved outside its lifetime.
A data’s lifetime is the time inclusively between two events:
the data’s initial creation and its subsequent secure deletion.
We assume that the user divides the data to store into dis-
crete data units that share a lifetime. These can be binary
data objects, files, or individual blocks of a block-based file
system. The user retains a sortable handle to recall these
objects (e.g., an object name or a block address). These
handles may also be stored on the persistent storage (e.g., a
master list of all objects, or by using a file system on top of
the block-based storage.)

The user has access to two storage media: a small securely-
deleting medium and a large persistent medium. We assume
that the securely-deleting medium automatically securely
deletes any data that is removed and correctly handles ana-
log remnants and other nuances of secure deletion. We also
assume that the persistent medium does not securely delete
any data; once (encrypted) data is written onto it, the data
cannot be removed. In practice, the persistent medium can
correspond to a wide range of use cases, such as sending data
over a channel with an eavesdropper, giving another entity
access to the storage medium through outsourced archiv-
ing or remote storage, storing data on media that do not
facilitate secure deletion, or simply neglecting to take ap-
propriate measures to ensure secure deletion. We assume
that the securely-deleting medium is orders of magnitude
smaller than the persistent storage; in particular, the data
being stored does not fit onto the securely-deleting medium.
It may even be the case that both media are the same phys-
ical device—it is only because ensuring secure deletion is
sufficiently expensive (e.g., on flash memory) that it must
be done at a smaller scale than the stored data.

We consider a computationally-bounded coercive adver-
sary who can compromise both the securely-deleting medium
and the persistent medium. The adversary has access to

the history of all data previously written onto the persistent
medium. The adversary has full knowledge of the algorithms
and implementation of the system and both the persistent
and securely-deleting media. The adversary, being coercive,
may perform multiple compromises of the user’s current se-
cret keys (those keys that the user holds at the time of com-
promise) as well as the contents of both storage media. As
the adversary is computationally bounded, it cannot recover
the plain-text message from a cipher-text message without
the corresponding encryption key. This strong attacker sub-
sumes all weaker ones, who may be able to coercively attack
a single time or may be given a limited amount of data from
the persistent storage.
Our environment models many different types of persis-

tent storage, which may vary greatly in what kind of data
and how much of it is ultimately stored persistently and be-
comes available to the adversary. Since we do not want the
security of our solution to rely on the chance that some per-
sistent data was not disclosed to the adversary, we instead
assume that all data written onto persistent storage is given
to the adversary. This obviates the need for any assump-
tions about the storage medium’s behaviour other than its
ability to store and retrieve data. Moreover, while an ad-
versary that coercively attacks the user at all times outside
a data’s lifetime is hard to conceive in the real world, the
additional effort to prove the security against such an ad-
versary is negligibly more than is required to defend against
the adversary who coercively attacks only once after some
data is deleted. Therefore, in this work we consider a very
powerful attacker, but our solution is not significantly more
complicated than would be necessary against a much weaker
attacker.
For clarity in our presentation, we assume that all keys

k have a name φ(k) ∈ Z
+, where φ is an injective one-

way function mapping keys to their name. The key’s name
φ(k) reveals no information about the key k—even to an
information-theoretic adversary. For example, the key’s name
could be the current count of the number of random keys
generated by the user. We further assume that the adversary
can identify the key used to encrypt data through the use of
a name function, which maps an encrypted block to the cor-
responding key’s name. Hence, given Ek(·), the adversary
can compute a name φ(k). This permits the adversary to
organize blocks by their unknown encryption key and rec-
ognize if these keys are later known. We do not concern
ourselves with the implementation of such a function, but
simply empower the adversary to use it.
Our security goal is to securely delete data, thus prevent-

ing the adversary from obtaining it. We want to achieve
this goal for all data; though if the adversary coercively
attacks the user during the data’s lifetime, then the adver-
sary obtains the data, preventing its subsequent secure dele-
tion. Therefore, we aim to securely delete all data that was
not compromised during its lifetime. Figure 1 shows exam-
ple data lifetimes along with an adversarial coercive attack
event. Data numbered 1 and 5 are compromised by this
event but the remaining data lifetimes (i.e., data numbered
2–4 and 6) are unaffected by it. Hence, our security goal
is to prevent the adversary from recovering any of the data
items unaffected by the attack.
Note that in our work we also describe the integrity prop-

erties of our solution’s design and implementation. This is
done to consistently describe the actual data format and be-

data
creation

data
deletion

coercive
attack

5
6

4
3
2
1

data lifetime

Time

Figure 1: Secure deletion timeline for different data
items. × marks data compromised by coercive ad-
versarial attacks. Data with lifetimes in dotted lines
are not affected by the coercive attack, while data
with lifetimes in solid lines are disclosed by the at-
tack.

haviour of our approach, but the used data integrity scheme
is not a novel contribution of this work.

3. B-TREE SECURE DELETION
This section details a B-Tree-based design to securely delete

data stored on a persistent medium as described in Section 2.
It is an example instance from the space of dynamic data
structures whose general security we prove in Section 4. The
B-Tree implements a securely-deleting key-value map that
maps data handles to data units; new pairs can be inserted,
existing pairs can be removed, and any stored data unit can
be updated. Our map is securely deleting in that data units
removed from the map are irrecoverable to an adversary,
including old data units that are updated to a new value.

3.1 B-Trees
A B-Tree is a self-balancing search tree [5] that imple-

ments a key-value map interface. B-Trees are ubiquitously
deployed in databases and file systems as they are well-suited
to accessing data stored on block devices—devices that im-
pose some non-trivial minimum I/O size.

A B-Tree of order N is a tree where each node has be-
tween ⌈N

2
⌉ and N child nodes, and every leaf has equal

depth [5]. (The root is exceptional as it may have fewer
than ⌈N

2
⌉ nodes.) The order of a B-Tree node is chosen to

fit perfectly into a disk block, which maximizes the benefit
of high-latency disk operations that return at minimum a
full block of data. B-Trees typically store search keys whose
corresponding values are stored elsewhere; leaf nodes store
the location where the data can be found. The basic mutat-
ing operations add, modify, and remove keys from the tree.
Because adding and removing children may violate the bal-
ance of children in a node, rebalance, fuse, and split are
used to maintain the tree balance property.

B-Tree Storage Operations.
The add, modify, and remove functions begin with a lookup

function, which takes a search key and follows a path in the
tree from the root node to the leaf node where the search
key should be stored. Add stores the search key and a ref-
erence to the data in the leaf node. Modify finds where the
data is stored and replaces it with new data; alternatively it
can store the new version out-of-place and update the refer-
ence. Remove removes the reference to data in the leaf node.
Both add and remove change the number of children in a
leaf node, which can violate the balance property.

B-Tree Balance Operations.
A B-Tree of order N is balanced when the number of chil-

dren of each non-root node is inclusively between ⌈N
2
⌉ and

N and the number of children in each root node is less than
or equal to N . When there are more or fewer children than
these thresholds, the node is overfull or underfull respec-
tively and must be balanced.
Overfull nodes are split into two halves and become sib-

lings. This requires an additional index in their parent,
which may in turn cause the parent to become overfull. If
the root becomes overfull, then a new root is created; this
is the only way the height of a B-Tree increases.
Underfull nodes can be either rebalanced or fused to

restore the tree balance property. Rebalancing takes excess
children from one of the underfull node’s siblings; this causes
the parent to reindex the underfull node and its generous sib-
ling and afterwards neither node violates the balance prop-
erties. If both the node’s siblings have no excess children,
then the node is fused with one of its siblings. This means
that the sibling is removed and its children are given to the
underfull node. This removes one child from their parent,
which can cause the parent to become underfull—possibly
propagating up to the root. The root node is uniquely al-
lowed to be underfull. If, however, after a fuse operation the
root has only one child, then the root is removed and its sole
child becomes the new root. This is the only way the height
of a B-Tree decreases.

3.2 Solution design
We use a B-Tree to organize, access, and securely delete

data. We assume that the size of the B-Tree nodes is suf-
ficiently large that the nodes cannot all be stored on the
securely-deleting storage—otherwise the client can simply
maintain a local list of keys, securely deleting them when
the corresponding data should be deleted. Consequently,
both data and B-Tree nodes are stored on the persistent
storage medium, and they are first encrypted before being
stored.
Data blocks are encrypted with a random key. The index

for the data block, along with its encryption key, is then
stored as a leaf node in the B-Tree. The nodes themselves
are encrypted with a random key and stored on the per-
sistent medium. Inner nodes of the B-Tree therefore store
the encryption keys required to decrypt their children. The
key that decrypts the root node of the B-Tree, however, is
never stored on the persistent medium; the root key is only
stored on the securely-deleting medium. Only one such key
is stored at any time. Old keys are securely deleted and
replaced with a new key.
In addition to encryption, each node also stores the cryp-

tographic digest (henceforth called hash) of its children for
integrity in a straightforward application of a Merkle tree [13].
An authentic parent node guarantees the authenticity of its
children. The root hash is stored with the key.
To improve efficiency, we keep a cache of nodes available

in memory to perform all B-Tree operations, which we call
the skeleton tree. Figure 2 illustrates an example skeleton
tree. The skeleton tree’s nodes are loaded lazily from persis-
tent storage and added to the skeleton tree after decryption
and verification. To store local changes on the persistent
storage, the skeleton tree is periodically committed, where
all dirty nodes (i.e., those that have local modifications) are

re-hashed for integrity and re-encrypted with a new key for
security, and written onto persistent storage.

To prevent data loss between commit operations, a mech-
anism must be used for crash safety. Our approach sim-
ply keeps a local record of changes on the securely-deleting
medium that can be replayed after a crash and is securely
deleted once committed. Another option, which does not
require using the securely-deleting medium, is DNEFS’s ap-
proach of writing fresh encryption keys to the persistent stor-
age ahead of time [18]. In particular, a block of fresh keys is
directly wrapped with the new root key and stored during
the commit operation; these keys are then sequentially used
to encrypt data written in the next commit interval.

Cryptographic Details.
All encrypted data—both the B-Tree’s node data and the

user’s actual data—are encrypted with AES keys in counter
mode with a zero IV. All keys are randomly generated using
a cryptographically-suitable entropy source. We use each
key only once to encrypt data. Therefore, an encryption
key’s lifetime is the following: it is generated randomly, it
is used once to encrypt data, and then it is used arbitrarily
many times to decrypt that data until it is securely deleted.

In addition to encryption, we also hash data to ensure
its integrity from the persistent storage. We use a crypto-
graphic hash to ensure that even an adversary who directly
controls the persistent storage cannot violate the data’s in-
tegrity. Mykletun et al. [15] propose a variation of Merkle
Hash Trees [13] designed specifically for B-Trees. We use a
variant of their approach in our scheme: each node is hashed
but the hashes of the children are independently stored in
their parent (alongside their decryption key). This increases
the space required to store each node; however, it allows us
to perform B-Tree updates without loading all of a node’s
siblings from persistent storage.

Skeleton Tree.
All the B-Tree nodes are stored on the persistent stor-

age. To improve efficiency, however, the actual B-Tree op-
erations are performed on a smaller subset of the B-Tree
cached in memory, which is called the skeleton tree. The
skeleton tree reduces the cost of computing decryption keys
for data when the relevant B-Tree nodes are available in
memory; this strongly benefits, in particular, sequential data
access. It also permits multiple updates to the B-Tree to be
batched and committed together, which reduces the total
number of B-Tree nodes to update. Finally, it allows the
user to control the frequency that the root secret changes
on the securely deleting medium; this is useful if updating
the securely-deleting medium has a non-trivial cost in la-
tency, wear, or human effort.

Initially, the skeleton tree only stores the root of the B-
Tree; other node references are loaded lazily. Figure 2 gives
an example of this configuration, where the persistent stor-
age has a stale B-Tree and the skeleton tree reflects some
combination of addition, removal, and rebalance operations.
When a B-Tree operation requires accessing a node miss-
ing from the skeleton tree, the corresponding B-Tree node is
read from persistent storage and decrypted. Its integrity is
checked by using its hash value stored at the parent; if the
check passes, then the missing reference is added to the skele-
ton tree. This new reference now stores the decryption keys
and integrity hashes corresponding to all its (missing) chil-

17 19

29

27 29 31 42 45 4926

dirty

2 3 5

29

dirty

dirty

24

dirtydirty

24

2 3 5 8 12 15 20 21 24

19158 24

31 42 45 49

5 8 19 24

clean

clean

(a) Skeleton Tree

12 15 197 8

data units

(b) Persistent Medium

Figure 2: Example of a B-Tree stored on the persistent medium along with an in-memory skeleton tree. (a)
shows the skeleton tree of B-Tree nodes, where node 42 was read and local changes were made: the node
7 was added and the node 17 was deleted, causing a split operation and a fuse operation respectively. (b)
shows the persistent medium which stores all the nodes in the tree, some of which are stale. Only the nodes
that have been needed are loaded into the skeleton tree.

dren, allowing the skeleton tree to grow further on request.
The size of the skeleton tree is limited: when it reaches its
capacity then nodes are evicted from the tree. In Section 6
we present our experimental results with eviction strategies.
All modifications to the B-Tree—e.g., deleting data and

rebalancing—are performed on the skeleton tree and peri-
odically committed in batch to persistent storage. A dirty
marker is kept with the skeleton nodes to indicate which of
them have local changes that need committing. Whenever
a tree node is mutated—i.e., adding, removing, or modify-
ing a child reference—it is marked as dirty. This includes
modifications made due to rebalance operations. B-Tree
nodes that are created or deleted—due to splitting or fus-
ing nodes—are also marked as dirty. Finally, dirtiness is
propagated up the skeleton tree to the current root.

Commitment.
The B-Tree commit operation writes new versions of all

the dirty nodes to persistent storage, thus achieving secure
deletion of deleted and overwritten data. Modifications to
the B-Tree are first cached and aggregated in the skeleton
tree, and then they are simultaneously committed. There-
fore, the time that deleted data remains available to the
user (and thus the adversary) is based on the frequency
that commit operations are performed. Depending on the
crash-safety mechanism, an encrypted block of fresh unused
encryption keys is written to the persistent storage medium
for use in the next commit period. Therefore, the data’s
lifetime effectively grows in both directions to the nearest
commit event; a compromise at one time point in a commit
interval is equivalent to a compromise at all time points in
that interval. The period between commit events is there-
fore a trade-off between system performance and deletion
latency [17]. Figure 3 builds on Figure 1 by including com-
mit operations.
The commit operation handles two kinds of dirty nodes:

deleted ones that have been deleted from the B-Tree through

Time
Commit operation

Uncompromised data
Coercive attack Exposed system state

Compromised data

Figure 3: Secure deletion timeline with commit op-
erations. × marks coercive attacks. Data with life-
times in dotted lines are not affected by coercive
attacks, while data with lifetimes in solid lines are
disclosed by the attacks.

the fuse operation, and valid ones that are still part of the
tree. Each valid dirty node is first associated with a fresh
randomly-generated encryption key. Because parent nodes
store the keys of their children, all parents of dirty valid
nodes are updated to store the new keys associated with
each child. After this, the sub-tree of valid dirty nodes is
traversed in post order to compute each dirty valid node’s
integrity hash, which is then stored in the parent. The root
node’s key and integrity hash are stored outside the tree
local to the user. The data for each valid dirty node (i.e.,
the keys, hashes, and search values for its children) is then
encrypted with its newly-generated key and stored on per-
sistent storage.

4. GRAPH-THEORETIC MODEL OF KEY
DISCLOSURE

This section describes the security of a broad class of mu-
table data structures when used to retrieve and securely
delete data stored on persistent storage. It relies heavily on
graph theory, which we first briefly review. Afterwards, we

present our three theoretical contributions. First, we define
a key disclosure graph and show how it models adversarial
knowledge. We then prove graph-theoretic conditions under
which data is securely deleted against our worst-case adver-
sary. Finally, we define a generic shadowing graph mutation
and prove that all instances of it preserve a graph property
that simplifies secure deletion.

4.1 Graph Theory Background
For completeness, and to commit to a particular nomen-

clature, we first briefly review the relevant aspects of graph
theory. A more detailed treatment can be found elsewhere [21].

Directed Graphs.
A directed graph (henceforth called a digraph) is a pair

of finite sets (V,E), where E ⊆ V × V . Elements of V are
called vertices and elements of E are called edges. If G is a
digraph, then we write V (G) for its vertices and E(G) for
its edges.
A digraph’s edges are directed. If (u, v) ∈ E(G), we say

the edge goes from the source u and to the destination v.
The edge is called outgoing for u and incoming for v. The
indegree and outdegree of a vertex is the number of all in-
coming and outgoing edges for that vertex.

Paths.
A non-degenerate walk W of a graph G is a sequence of

elements of E(G): (v1, u1), . . . , (vn, un) such that n ≥ 1 and
∀i : 1 < i ≤ n, ui−1 = vi. The origin of W is v1 and the
terminus is un. We say W visits a vertex v (or equivalently,
v is on W) if W contains an edge (v, u) or v is the terminus.
A non-degenerate path P is a non-degenerate walk such that
no vertex is visited more than once. Additionally, a graph
with n vertices has n degenerate paths—zero-length paths
that visit no edges and whose origin and terminus are v ∈
V (G). A cycle is a non-degenerate walk C whose origin
equals its terminus and all other vertices on the walk are
visited once. A directed acyclic graph is one with no cycles.
A vertex v is reachable from vertex u if there is a directed

path from u to v. If there is only one such path then we say
that v is uniquely reachable from u and use Pu

v to denote
this path. The ancestors of a vertex v, called ancG(v), is the
largest subset of V (G) such that v is reachable from each el-
ement. The descendants of a vertex u, called descG(u), is
the largest subset of V (G) such that each element is reach-
able from u. If Pu

v is a directed path from u to v, then u
is an ancestor of v and v is a descendant of u. Because of
degenerate paths, all vertices are their own ancestors and
descendants.

Subdigraphs.
A subdigraph S of a digraph G is a digraph whose vertices

are a subset of G and whose edges are a subset of the edges of
G with endpoints in S. Formally, a subdigraph has vertices
V (S) ⊆ V (G) and edges E(S) ⊆ E(G)|

V (S)×V (S). A subdi-

graph is called full if E(S) = E(G)|
V (S)×V (S). A subdigraph

induced by a vertex v, denoted Gv, is a full subdigraph whose
vertices are v and all vertices reachable from v in G. For-
mally, V (Gv) = descG(v) and E(Gv) = E(G)|

V (Gv)×V (Gv)
.

Arborescences and Mangroves.

Figure 4: An example mangrove. Shaded vertices
belong to the arborescent subdigraph induced by
the circled vertex.

An arborescence diverging from a vertex r ∈ V (A) (hence-
forth called arborescence) is a directed acyclic graphA whose
edges are all directed away from r and whose underlying
graph (i.e., the undirected graph generated by removing the
direction of A’s edges) is a (graph-theoretic) tree [21]. The
vertex r is called the root and it is the only vertex in A
that has no incoming edges; all other vertices have exactly
one incoming edge (Theorem VI.1 [21]). There is no non-
degenerate path in A with r as the terminus, and for all
other vertices v ∈ V (A) there is a unique path P r

v (Theorem
VI.8 [21]). To show that a graph A is an arborescence, it
is necessary and sufficient to show that A has the following
three properties (Theorem VI.26 [21]): (i) A is acyclic (ii) r
has indegree 0 (iii) ∀v ∈ V (A), v 6= r ⇒ v has indegree 1.

A directed graph is a mangrove if and only if the sub-
digraph induced by every vertex is an arborescence. This
means that, for every pair of vertices, either one is uniquely
and unreciprocatedly reachable from the other or neither one
is reachable from the other. Observe that an arborescence
is also a mangrove, as all its vertices induce arborescences.
Figure 4 shows an example mangrove as well as an arbores-
cent subdigraph induced by a vertex.

4.2 Key Disclosure Graph
In this section, we characterize the information obtained

by the adversary and describe a way to structure it. We
begin by limiting the functions the user computes on en-
cryption keys to wrapping and hashing. Wrapping means
that a key k is encrypted with another key k′ to create
Ek′(k). With k′ and Ek′(k) one can compute k, while Ek′(k)
alone reveals no information about k to a computationally-
bounded entity. Hashing means that a key k can be used to
compute a one-way digest function H(k) such that H(k) re-
veals no information about k to a computationally-bounded
entity. Furthermore, we require that no plain-text data is
ever written onto the persistent medium.

The process of generating keys and using keys to wrap
other keys induces a directed graph: nodes correspond to
encryption keys and directed edges correspond to the desti-
nation key being wrapped by the source key. Knowledge of
one key gives access to the data encrypted with it as well
as any keys corresponding to its vertex’s destinations. Re-
cursively, all keys corresponding to descendants of a vertex
are computable when the key corresponding to the ancestor
vertex is known. We call this graph the key disclosure graph,
whose definition follows.

Definition 1. Given a set K of encryption keys generated
by the user, an injective one-way vertex naming function
φ : K → Z

+, and a set of wrapped keys C, then the key
disclosure graph is a directed graph G constructed as fol-

lows: φ(k) ∈ V (G) ⇔ k ∈ K and (φ(k), φ(k′)) ∈ E(G) ⇔
Ek(k

′) ∈ C.

The user can construct and maintain such a key disclosure
graph by adding nodes and edges when performing key gen-
eration and wrapping operations respectively. The adver-
sary can also construct this graph using its name function:
whenever ciphertext is given to the adversary, the name cor-
responding to its encryption key is computed and added as
a vertex to the graph with the ciphertext stored alongside.
The adversary may only learn some parts of the key dis-
closure graph; we use Gadv ⊆ G to represent the subgraph
known to the adversary. For instance, the client may not
write all the wrapped key values it computes to the persis-
tent storage, or the adversary may not be able to read all
data in the persistent storage. In the worst case, however,
the adversary gets all wrapped keys and so Gadv = G; it is
this worst case for which we prove our security.
If the adversary later learns an encryption key (e.g., through

compromise), then the key’s corresponding ciphertext can be
decrypted. If the plaintext contains other encryption keys,
then the adversary can determine the names of these keys to
determine the edges directed away from this vertex. There-
fore, the adversary can follow paths in Gadv starting from
any vertex whose corresponding key it knows, thus deriving
unknown keys.
The adversary’s ability to follow paths in the key dis-

closure graph is independent of the age of the nodes and
edges. In our scenario and adversarial model, every time
data is stored on the persistent medium, the key disclosure
graph G—and possibly the adversary’s key disclosure graph
Gadv—grows. After learning a key, the adversary learns all
paths originating from the corresponding vertex in Gadv.
The keys corresponding to vertices descendant to that ori-
gin are then known to the adversary along with the data
they encrypt. Therefore, the user must perform secure dele-
tion while reasoning about the adversary’s key disclosure
graph. Moreover, if the user is unaware of the exact value
of Gadv ⊆ G, then they must reason about Gadv = G.

4.3 Secure Deletion
Secure data deletion against a coercive attacker requires

that the user who securely deletes data is thereafter unable
to recover the deleted data [17]. If the adversary already has
an encrypted copy of the data being deleted, then the user
must ensure that the corresponding decryption key is se-
curely deleted. The decryption key must be securely deleted
even with access to all secret keys managed by the user and
all data ever sent to persistent storage. The user must not
only securely delete the data’s encryption key, but also any
encryption key that decrypts any ancestor of the data’s cor-
responding vertex in the adversary’s key disclosure graph.
This is because a vertex v is reachable from another ver-
tex u in the key disclosure graph if and only if φ−1(v) is
computable from φ−1(u). Definition 2 now defines secure
deletion in terms of paths in the key disclosure graph.

Definition 2. Let G = (V,E) be the key disclosure graph
for a vertex naming function φ, a set of keys K, and a set of
ciphertexts C, and let Gadv ⊆ G be the adversary’s subdi-
graph of the key disclosure graph. Let R = {r1, . . . , rn} ⊆ K
be the set of keys stored by the user in the securely-deleting
medium. Let D be data stored on the persistent medium
encrypted with a key k ∈ K. Let Rlive ⊆ R be the set

of keys stored in the securely-deleting medium at all times
when D is alive (i.e., the times between the data’s creation
and deletion events).

ThenD is securely-deleted against a computationally-bounded
coercive adversary provided that no compromise of the securely-
deleting medium occurs when it stores an element of Rlive

and for all r ∈ R \Rlive, there is no path in Gadv from φ(r)
to φ(k).

This definition reflects the following facts: (i) a computationally-
bounded adversary cannot recover the data D without the
key k, (ii) the only way to obtain k is through compromise
or through key unwrapping, (iii) an adversary that compro-
mises at all permissible times can only obtain R \ Rlive di-
rectly and

⋃
r∈R\Rlive

desc(φ(r)) through unwrapping, and

(iv) k is not within this set.
Observe that this definition requires that no compromise

occurs during which time the securely-deleting medium stores
an element of Rlive—the set of keys stored in the secure-
deleting storage medium during the lifetime of the data be-
ing securely deleted. This is larger than or equal to the
data’s lifetime, e.g., by extending in both directions to the
nearest commit event.

We have shown that to securely delete the data corre-
sponding to a vertex v, we must securely delete data corre-
sponding to all ancestors of v that are not already securely
deleted. This is burdensome if it requires a full graph traver-
sal, because the adversary’s key disclosure graph perpetually
grows. We make this efficient by establishing an invariant
of the adversary’s key disclosure graph: there is at most one
path between every pair of vertices (i.e., it is a mangrove).
We now define a family of graph mutations that preserves
this invariant.

4.4 Shadowing Graph Mutations
Shadowing is a concept in data structures where updates

to elements do not occur in-place. Instead, a new copy of
the element is made and references in its parent are updated
to reflect this [19]. This results in a new copy of the par-
ent, propagating shadowing to the head of the data struc-
ture. We now define a generalized graph mutation, called a
shadowing graph mutation, and show that if any shadowing
graph mutation is applied to a mangrove, then the resulting
mutated graph is also a mangrove. The mangrove property
is therefore maintained throughout all possible histories of
shadowing graph mutations.

Mangroves have at most one possible path between every
pair of vertices. This simplifies secure deletion of data, as
illustrated in Figure 5. Computing the set of all ancestors of
a vertex—those vertices that must be also securely deleted—
is done by taking the union of the unique paths to that
vertex from each of the vertices whose corresponding keys
are locally stored by the user. Determining the unique path
to follow to find data is trivial by overlaying a search-tree
data structure (e.g., a B-Tree). Moreover, if the user only
stores one local key at any time, taking care to securely
delete old keys, then data can be securely deleted by just
securely deleting the vertices on a single path in the key
disclosure graph.

Figure 5 shows an example mutation, where the old key
disclosure graph G is combined with GS and the edges ê1, ê2
to form the new key disclosure graph G′. The new nodes and
edges correspond to the user generating new random keys
and sending wrapped keys to the adversary, respectively.

rS

1l l3 l4 l5 l6 l7

G’

(b) post−mutated graph

G
T

GS

e2

e1

W(G,T)

l2

(a) mutation parameters

’

r

r

Figure 5: An example shadowing mutation. (a)
shows the parameters of a shadowing graph muta-
tion and (b) shows the resulting graph. The pre-
mutated graph G is combined with the shadowing
graph GS and connecting edges Ê = {ê1, ê2} to form
G′. Shaded vertices are the vertices reachable from
the circled vertex.

The node r represents the user’s current stored secret key;
the shaded nodes are r’s descendants—those nodes whose
corresponding keys are computable by the user. In the re-
sulting graph G′, we see that r′ corresponds to the new user
secret, resulting in a different set of shaded descendant ver-
tices. In particular, the mutation securely deleted the leaves
l2 and l4 while adding new leaves l6 and l7.
To perform the mutation, the user prepares T—a graph

that contains the vertices to shadow. In the post-mutated
graph G′, no vertex in T is reachable from any vertex in
GS . The only vertices in G that are given a new incoming
edge from a vertex in GS are those in the set W (G, T):
vertices outside T but that have an incoming edge from a
vertex in T . Formally, if G is a mangrove, r ∈ V (G), and T
is an arborescent subdigraph of Gr diverging from r, then
W (G, T) = {v ∈ V (G) \ V (T)|∃ x ∈ V (T) . (x, v) ∈ E(G)}.
To ensure that G′ is a mangrove, we must constrain the

edges that connect GS to G. We require that any connecting
edge ê goes from GS to W (G, T) and that each vertex in
W (G, T) receives at most one such incoming edge.

Formally, a tuple (G, r,GS , T, Ê) is a shadowing graph mu-
tation if it has the following properties:
— G is a mangrove, called the pre-mutated graph.
— r is a vertex of G.
— GS is an arborescence diverging from rS such that V (G)∩
V (GS) = ∅. It is called the shadow graph.
— T is a subdigraph of Gr such that T is an arborescence
diverging from r. It is called the shadowed graph.

— Ê is a set of directed edges such that
(i) ∀(i, j) ∈ Ê . i ∈ V (GS) ∧ j ∈W (G, T) and

(ii) ∀(i, j)(i′, j′) ∈ Ê . i 6= i′ ⇒ j 6= j′ (i.e., Ê is injective).
A graph mutation contains the initial graph along with the

parameters of the mutation. We assume there exists a func-
tion µ that takes as input a graph mutation (G, r,GS , T, Ê)
and outputs the mutated graph G′, defined by V (G′) ←

V (G) ∪ V (GS) and E(G′) ← E(G) ∪ E(GS) ∪ Ê. Observe
that the sets in the unions are all disjoint. Moreover, ev-
ery resulting path in G′ has one of the following forms: P ,
PS , or (PS , ê, P), where P is a path visiting only vertices
in V (G), PS is a path visiting only vertices in V (GS), and

ê ∈ Ê.

Mangrove Preservation.
To simplify the enumeration of a vertex’s ancestors in the

key disclosure graph, which must be securely deleted in or-
der to delete that vertex, we require as an invariant that
the key disclosure graph is always a mangrove. We establish
this by showing that, given a shadowing graph mutation,
the mutated graph is always a mangrove. Since the graph
with a single vertex is a mangrove, all sequences of shadow-
ing mutations beginning from this mangrove preserve this
property.

Lemma 1. Let G be a mangrove, r ∈ V (G), and T an
arborescent subdigraph of Gr diverging from r. Then ∀i, j ∈
W (G, T), i 6= j ⇒ descG(i) ∩ descG(j) = ∅.

Proof. We prove the contrapositive. Suppose that v ∈
descG(i)∩ descG(j). Then there exist distinct paths P i

v and
P j
v . Since i, j ∈ V (Gr), there exist distinct paths P r

i and
P r
j . Consequently, P

r
i P

i
v and P r

j P
j
v are two paths from r to

v in Gr. Since Gr is an arborescence, these two paths must
be equal and so (without loss of generality) P r

v = P r
i P

i
jP

j
v

and P r
j = P r

i P
i
j . However, by definition of W (G, T), all

edges except the final one in P r
i and P r

j are in E(T). If

P i
j is non-degenerate, then P r

i P
i
j 6= P r

j as P r
i has an edge

outside of T followed by more than one edge. Therefore, P i
j

is degenerate and i = j, as needed.

Lemma 2. If (G, r,GS , T, Ê) is a valid shadowing muta-

tion and G′ ← µ(G, r,GS , T, Ê), then G′ is acyclic.

Proof. Since the mutation is valid, G is a mangrove.
Suppose to the contrary that G′ has a cycle C. By con-
struction of V (G′), there are three cases:
(i) All of C’s vertices are in V (G). Then C is a cycle in G,
which contradicts G being a mangrove.
(ii) All of C’s vertices are in V (GS). Then C is a cycle in
GS , which contradicts GS being an arborescence.
(iii) C’s vertices are a mixture of vertices from V (G) and
V (GS). Suppose C visits v ∈ V (G) and u ∈ V (GS). Then
C can be divided into two paths C = P v

uP
u
v , but no such

path P v
u exists.

Theorem 1. If (G, r,GS , T, Ê) is a valid shadowing mu-

tation and G′ ← µ(G, r,GS , T, Ê), then G′ is a mangrove.

Proof. By the definition of a mangrove, we must show
that all vertices in G′ induce arborescences. Suppose to the
contrary that there is some r ∈ V (G′) such that G′

r is not
an arborescence. Then (at least) one of the three necessary
and sufficient conditions of an arborescent graph is violated:
(i) G′

r is not acyclic. This implies that G′ is not acyclic,

G0

newly−added
root vertex

newly−added
vertex vertex

existing reachable existing unreachable
vertex

r

G1

r

G3

rrrr

G2

r0 r0 1 r0 1 2 r0 1 2 3

Figure 6: Example key disclosure graph evolving due to a shadowing graph mutation chain. All graphs except
G0 result from applying a shadowing graph mutation on the previous graph. Black nodes are ones added by
the most recent mutation with the root node circled; grey nodes are ones from the previous graph that are
still reachable from the new root; white nodes are ones from the previous graph that are no longer reachable.

which contradicts Lemma 2.
(ii) The indegree of r 6= 0. Then r must have at least one
incoming edge, from a vertex v. This results in a cycle, since
v is reachable from r by construction of the induced graph
G′

r, also contradicting Lemma 2.
(iii) There is some v ∈ V (G′

r) such that v 6= r and indegree
of v 6= 1.
As the first two conditions lead to immediate contradic-

tions, we assume that the final condition is violated. More-
over, since v is a vertex on an induced graph, there is a path
from r to v and thus v must have at least one incoming edge
and therefore the indegree of v ≥ 2. By the induced graph
G′

v’s construction, both parents of v are reachable from r,
and so there are two distinct paths P r

v and Qr
v in G′ from r

to v. We have two cases: either r ∈ V (G) or r ∈ V (GS).
Suppose that r ∈ V (G), and so all vertices of P r

v and Qr
v

are elements of V (G). Also, by construction, E(G′)|
V (G)×V (G) =

E(G), and thus all edges of P r
v and Qr

v are elements of E(G).
Therefore, P r

v and Qr
v are distinct paths from r to v in G,

contradicting G being a mangrove.
Now suppose that r ∈ V (GS). If v ∈ V (GS), then P r

v

and Qr
v are distinct paths entirely in GS , which contradicts

GS being an arborescence. So r ∈ V (GS) and v ∈ V (G).
We decompose the paths as follows: P r

v = P r
u , (u,w), Pw

v

and Qr
x, (x, y), Q

y
v, where (u,w) and (x, y) are elements of

Ê. We know that P r
v 6= Qr

v, and so there are four different
cases based on the edge in Ê:
(i) If (u,w) = (x, y), i.e., both paths cross from GS to G

over the same edge in Ê, then the two paths must differ
elsewhere. Either P r

u 6= Qr
x or Pw

v 6= Qw
v . As we have

seen before, however, this contradicts either GS being an
arborescence or G being a mangrove respectively.
(ii) If u 6= x and w = y, then (u,w) and (x,w) are distinct

edges in Ê, a violation of its construction. This contradicts
(G, r,GS , T, Ê) being a valid shadowing mutation.
(iii), (iv) If w 6= y then we have distinct paths Pw

v and Qy
v in

G. Since both paths terminate at the same vertex, either w
or y is the ancestor of one of the other’s descendants. This
contradicts Lemma 1.
In conclusion, such distinct paths P r

v and Qr
v cannot exist.

Therefore, for all r ∈ V (G′), G′
r is an arborescence and so

G′ is a mangrove.

Shadowing Graph Mutation Chains.
Definition 2 tells us that we can achieve secure deletion

with appropriate constraints on the shape of the key dis-
closure graph. We now show that performing a natural se-
quence of shadowing graph mutations satisfies these con-
straints, effecting simple secure deletion.

Definition 3. A shadowing graph mutation chain is a se-
quence of shadowing graph mutations M = (M0, . . . ,Mp)

such that: (i)Mi = (Gi, ri, GS,i, Ti, Êi), (ii)G0 = ({φ(0)} , ∅),
(iii) r0 = φ(0), (iv) ∀i > 0 . Gi = µ(Mi−1), and (v)
∀i > 0 . ri = rS,i−1.

A shadowing graph mutation chain describes a sequence of
mutations applied on a key disclosure graph. Figure 6 shows
an example key disclosure graph evolution as the result of
three mutations. Each mutation in the chain is applied on
the graph that results from the previous mutation, except
for the base case. Observe that ri—the root vertex in Ti—is
always rS,i−1 the root vertex added by the shadowing graph
in the previous mutation (or the ‘zero’ key for the base of
recursion).

We now prove our main result about the interplay of se-
cure deletion and shadowing graph mutation chains. For
convenience, given M = (G, r,GS , T, Ê), we say that a ver-
tex v ∈ V (G) is reachable in M if there exists a path from
r to v in G.

Lemma 3. Given a shadowing graph mutation chainM =
(M0, . . . ,Mp), any vertex v first reachable in Mi and last
reachable in Mi+k (k ≥ 0) is reachable in all intermediate
mutations Mi+1, . . . ,Mi+k−1.

Proof. Suppose to the contrary that there exists a j,
i < j < i + k, such that v is not reachable in Mj . By
construction of shadowing graph mutations, v ∈ V (Gi) ⇒
v ∈ V (Gj)⇒ v /∈ V (GS,j). Select the largest such j, so that
v is reachable in Mj+1, and so there exists a path P

rj+1
v in

Gj+1. Since rj+1 ∈ V (GS,i) and v /∈ V (GS,i), such a path

has the form P
rj+1

ê (ê, ê′)P ê′

v where (ê, ê′) ∈ Êj and P ê′

v is a

path in Gj . Then ê′ ∈ W (Gj , Tj) and so P
rj

ê′
is a path in

Gj , implying that P
rj

ê′
P ê′

v is a path from rj to v in Gj , a
contradiction.

Lemma 3 tells us that, when building shadowing graph
mutation chains as described, once some reachable vertex
becomes unreachable then it remains permanently unreach-
able. Secure data deletion is achieved by a single mutation
that makes the corresponding vertex unreachable from the
new root. We now prove our final result on achieving secure
deletion with shadowing graph mutation chains.

Theorem 2. LetM = (M0, . . . ,Mp) be a shadowing graph
mutation chain with resulting key disclosure graph G = µ(Mp).
Let T = (t0, . . . , tp) be the (strictly-increasing) sequence of
timestamps such that at time ti
(i) µ(Mi) is performed,
(ii) the value ki+1 = φ−1(ri+1) is stored in the securely-
deleting memory, and
(iii) all previous values stored are securely deleted.
Let D be data encrypted with the key k whose corresponding
vertex v = φ(k) is reachable only in Mi, . . . ,Mi+l. Then D’s
lifetime is bounded by ti and ti+l, and D is securely deleted
provided no compromise occurs during this time.

Proof. The proof is by establishing the premises required
for Definition 2. First, R = {k0, . . . , kp} andRlive = {ki, . . . , ki+l}
which means that Rdead = {k0, . . . , ki−1}∪{ki+l+1, . . . , kp}.
Because no compromise occurs from time ti until ti+l, to ap-
ply Definition 2 we must only show that for all kj ∈ Rdead,
there is no path from φ(kj) to v in G = µ(Mp).
Assume to the contrary that there is a kj = φ−1(rj) ∈

Rdead such that there is a path P
rj
v in G = µ(Mp). Since v

is unreachable in Mj , P
rj
v is not a path in Gj . So there must

be an edge (u, v) on P
rj
v such that u ∈ V (Gj), (u, v) ∈ E(G),

and (u, v) /∈ E(Gj). Then ∃m ≥ 0 : (u, v) /∈ E(Gj+m) ∧
(u, v) ∈ E(µ(Mj+m)), that is, some mutation adds (u, v) to
the key disclosure graph. By construction, E(µ(Mj+m)) =

E(Gj+m)∪E(GS,j+m)∪ Êj+m, and since u /∈ V (GS,j+m)⇒
(u, v) ∈ E(Gj+m), a contradiction. Definition 2 therefore
tells us that D is securely deleted.

5. IMPLEMENTATION DETAILS
We have implemented our B-Tree-based solution. We use

Linux’s network block device (nbd), which allows a listen-
ing TCP socket to receive and reply to block device I/O
requests. In our case, we have our implementation listen-
ing on that TCP socket. The nbd-client program and nbd

kernel module—required to connect a device to our imple-
mentation and format/mount the resulting device—remain
unchanged, ensuring that no modifications to the operating
system are required to use our solution. Our implementation
includes the encrypted B-Tree as described in Section 3 and
interacts with a variety of user-configurable storage back-
ends. Our implementation is written in C++11 and is freely
available with a GPL version 2 license.

Data Storage.
Our solution assumes the user somehow divides the data

into data units indexed by a handle for storage. There are
different ways this can be implemented. Trivially, a key-
value storage system can be built where values are binary
large objects (blobs) of data, and keys reference this data.
The blobs can be entire files, components of files, etc. This
allows our solution to implement a simple object storage
device (OSD) [14]. If each blob is uniquely indexed by the
B-Tree, then modifying the blob requires re-encrypting it

entirely with a new key and updating its reference in the B-
Tree. This inhibits the ability to efficiently securely delete
data from large files such as databases.

Alternatively, data can be divided into fixed-size blocks
indexed by the B-Tree. This facilitates random updates as
only a fixed-size block must be updated to make any change
to data. This is the construction we use in our implementa-
tion: a virtual array of data is indexed by offsets of fixed-size
blocks and exposed as a block-device interface. This block-
device can then be formatted as any block-based file system,
which is then overlaid on the B-Tree. Sparse areas of the file
system then do not appear as keys in the B-Tree; if written
to, the corresponding keys are added to the B-Tree.

Network Block Device.
The network block device is a block device offered by

Linux. It behaves as a normal block device that can be
formatted with any block-based file system and mounted
for use. However, it is actually a virtual block device that
forwards all block operations over TCP (i.e., reading and
writing blocks, as well as trim and flush commands). The
listening user-space program is responsible for actually im-
plementing the block device.

Virtual Storage Device.
While the default nbd-server program simply serves a lo-

cal file as a block device, we wrote our own implementation
of a virtual block device that interfaces with a variety of
back-end storage media. The reading and writing of blocks
pass through our shadowing B-Tree implementation. It uses
block addresses as indices in the B-Tree; the data’s remote
storage location in that block address is kept in the leaves
of the B-Tree. The user selects how the resulting data is
stored, including data blocks for nodes and data (persis-
tent medium) as well as the master key and integrity hash
(securely-deleting medium).

6. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of the B-Tree

under different workloads and investigate how the perfor-
mance can be improved through different caching strategies.

Workloads.
We test our implementation’s performance on a variety of

different file system workloads. We used the filebench util-
ity [12] to generate three workloads and we also created our
own workload by replaying our research group’s version con-
trol history. We used filebench’s directio mode to ensure
that all reads and writes are sent directly to the block de-
vice and not served by any file system page cache; similarly,
we synchronized the file system and flushed all file system
buffers after each version update in our version control work-
load. The workloads we use are summarized as follows:
—sequential writes a 25 GiB file and then reads it con-
tiguously. This tests the behaviour when copying very large
files to and from storage.
—random_1KiB performs random 1 KiB reads and writes on
a pre-written 25 GiB file. This tests the performance for a
near-worst-case scenario: reads and writes without any tem-
poral or spatial locality.
—random_1MiB performs random 1 MiB reads and writes
on a pre-written 25 GiB file. This tests the performance for

Cache size: 5 Cache size: 10 Cache size: 20 Cache size: 50
Workload block size LRU LFU Belady LRU LFU Belady LRU LFU Belady LRU LFU Belady
sequential 1 KiB 0.06 47.3 81.4 98.1 60.8 97.9 98.3 70.1 98.1 99.1 74.7 99

16 KiB 99.6 43.2 99.7 99.7 56.6 99.8 99.7 83.3 99.8 99.8 99.5 99.8
random (1KiB) 1 KiB 0.0023 12.2 15.9 11.8 15.3 19.8 15.6 21.3 25 26.4 26.3 33.5

16 KiB 47.3 32.2 52.2 49.3 40.1 58.2 53.6 56 64.5 63.4 67.2 70.3
random (1MiB) 1 KiB 0.0068 21.5 82.1 97.5 25.4 97.7 97.7 31.6 97.8 97.9 38 98

16 KiB 98.1 50.5 98.5 98.6 62.6 98.7 98.7 85.2 99 98.9 98.3 99.1
svn 1 KiB 95 35 95.6 96 47.2 96.1 96.5 57.1 96.9 97.1 75.9 97.4

16 KiB 97.2 68.7 97.7 97.8 81.2 97.8 98.2 88 98.2 98.6 96.2 99

Table 1: Caching Hit Ratio (%) for B-Tree Nodes

random access patterns with a larger block size that pro-
vides some spatial locality in accessed data.
—svn replays 25 GiB of our research group’s version control
history by iteratively checking out each version. This test
provides an example of a realistic usage scenario for data
being stored on a shared persistent storage medium.
We run our implementation behind an nbd virtual block

device, formatted with the ext2 file system. We mount the
file system with the discard option to ensure that the file
system identifies deleted blocks through TRIM commands.

Caching.
We experimentally determine the effect of the skeleton

tree’s cache size and eviction strategy. Using the sequence
of block requests characteristic of each workload, we use
our B-Tree implementation to output a sequence of B-Tree
node requests. A B-Tree node request occurs whenever the
skeleton tree visits a node; missing nodes must be fetched
from the persistent medium and correspond to cache misses.
Observe that for the same workload, the sequence of node
requests will vary depending on the B-Tree’s block size. We
output one B-Tree node request sequence for each block size
that we test. With this sequence of node requests, we then
simulate various cache sizes and caching behaviours.
We test three different strategies: Bélády’s optimal “clair-

voyant” strategy [1], least recently used (LRU), and least
frequently used (LFU). Bélády’s strategy is included as an
objective reference point to compare caching strategies. We
only maintain cache usage statistics for items currently in
the cache.
The results of our experiment are shown in Table 1. We

observe that caching nodes is generally quite successful; many
of the workloads and configurations have very high hit ra-
tios. This is because contiguous ranges of block address tend
to share paths in the B-Tree. Consequently, the cache size
itself is not so important; provided it is sufficiently large to
hold a complete path then sequential access occurs rapidly.
LRU is generally preferable to LFU. The only exception

is very small random writes with a small block size. This
is because such writes have no temporal locality and so the
frequency-based metric better captures which nodes contain
useful data. For random-access patterns, the cache size is
far more important than the eviction strategy, a feature also
observable from Bélády’s optimal strategy. For any form of
sequential access, LRU outperforms LFU because LFU un-
fairly evicts newly cached nodes, which may currently have
few visits but are visited frequently after their first caching.
We see that LRU often approaches Bélády’s optimal strat-
egy, implying that more complicated strategies offer limited
potential for improvement.

B-Tree block size
4 KiB 16 KiB 64 KiB 256 KiB

g
en

er
a
l total data blocks 6553600 1638400 409600 102400

tree height 5 3 2 2
cache size (nodes) 2048 512 128 32
MiBs sharing path 0.16 2.65 42.6 682.5

se
q
u
en

t. cache hits (%) 99.3 99.7 99.9 1
storage overhead (%) 2.4 0.6 0.1 0.03
comm overhead (%) 2.4 0.6 0.1 0.03
block size ovrhd (%) 0 5.3 26.3 58.1

ra
n
d
1
k cache hits (%) 64.7 59 43.2 73.8

storage overhead (%) 2.4 0.6 0.1 0.03
comm overhead (%) 1308.5 3129 8623.5 20671.4
block size ovrhd (%) 497.9 2293.2 9473 38191.8

ra
n
d
1
m cache hits (%) 99.2 98.9 96.5 95.5

storage overhead (%) 2.47 0.59 0.14 0.03
comm overhead (%) 4.9 3.7 7.8 17.7
block size ovrhd (%) 1 7.7 34.6 82.1

sv
n

cache hits (%) 99.2 98.9 96.5 95.5
storage overhead (%) 1.74 0.42 0.1 0.02
comm overhead (%) 4.4 4.9 5.4 2.6
block size ovrhd (%) 0 63.4 247.9 750.2

Table 2: B-Tree Secure Deletion Overhead

B-Tree Properties.
We investigate our system’s overhead with regards to the

fetching and storing of nodes that index the data. We now
characterize this with regards to different workloads and pa-
rameters, expressing the results with the following metrics:
—Cache hits: percentage of B-Tree node visits that do not
require fetching.
—Storage overhead: ratio of node storage size to data stor-
age expressed as a percentage.
—Communication overhead: ratio of the persistent medium’s
communication for fetching and storing nodes compared to
the sum of useful data read and written, expressed as a per-
centage.
—Block size overhead: ratio of additional network traffic
(beyond the I/O) for fetching and storing data compared
to the sum of data read and written by the file system, ex-
pressed as a percentage. (This is based only on the block
size / workload and is independent of the use of the secure
deletion B-Tree.)

Additionally, we characterize the following B-Tree prop-
erties common to all workloads:
—Total data blocks: 25 GiB divided by the block size.
—Tree height: the height of the B-Tree that indexes the
number of data blocks.
—Cache size (nodes): the fixed cache size of 8 MiB expressed
as nodes that fit into that capacity.
—MiBs sharing path: the size of contiguous data whose
blocks all share a unique path, that is, how much data is
indexed by a single leaf node.

(a) Boneh and Lipton (b) Di Crescenzo et al.

(c) Perlman’s Ephemerizer (d) Vanish, DNEFS

Figure 7: Mangrove key disclosure graphs for re-
lated work. Circled nodes represent the current
key(s) stored in the securely-deleting medium, and
shaded nodes represent the keys the adversary
would gain with a coercive attack.

Table 2 shows the results of our experiments. We see that
in all cases the storage overhead of the B-Tree nodes is a
few percent and decreases with the block size. In all work-
loads except random_1KiB, the communication overhead is
also reasonable. Large block sizes most benefit sequential
access patterns, because a large block size means more se-
quential data can be accessed without fetching new nodes
(e.g., using a block size of 256 KiB results in half a GiB
of data indexed by the same path in the B-Tree). Degen-
erate performance is observed for our worst-case workload:
where data blocks are accessed in a completely random fash-
ion without any spatial or temporal locality. Even the block
size overhead resulting from fetching unnecessary data shows
a large amount of waste, and we conclude that further engi-
neering effort is needed to optimize this use case.

7. RELATED WORK
Secure deletion has been studied in a variety of contexts

and has also been extensively surveyed [7, 9, 17]. Moreover,
a variety of work considers secure deletion in the context of
mixed-media storage devices consisting of a small securely-
deleting medium and a large persistent medium [2,6,10,16,
18]. In this section we discuss these works and, when rele-
vant, describe their corresponding key disclosure graphs. For
these cases, the update mechanism is a shadowing graph mu-
tation and the resulting key disclosure graph is a mangrove.
Hence, we can apply our secure deletion proof to these works
as well as our own. Figure 7 shows an example key disclo-
sure graph for each of these works and shows which vertices
would be revealed if a coercive attack occurred.
Boneh and Lipton’s original use of cryptography to se-

curely delete data considered an off-line large-capacity tape
archive and a local low-capacity computer. Data for archiv-
ing is encrypted with a random key and the key is added to
a list of valid keys. Each key on the list is encrypted with
a master key that is periodically randomly regenerated; the
new master key is used to re-encrypt the list of valid keys.
The master key is then stored locally and securely—the au-
thors propose floppy disks or writing the master key down
on paper—such that it can be securely deleted. Data is
deleted by removing its corresponding key from the key list

and waiting until the next time the master key is regener-
ated. This scheme’s corresponding key disclosure graph is
illustrated in Figure 7 (a); it is a mangrove with a maximum
path length of one.

Di Crescenzo et al.’s work explicitly assumes a large per-
sistent medium and a small securely-deleting medium. They
divide a fixed-size persistent medium into numbered blocks,
which are indexed by a pre-allocated binary tree. The keys
to decrypt data are stored in the leaves and the tree’s inter-
nal nodes store the keys to decrypt the children. The root
key is stored in a securely-deleting medium. Each change to
a data block indexed by the binary tree results in a new key
stored in a leaf node and all nodes on the path to the root are
rekeyed. This scheme’s corresponding key disclosure graph
is also a mangrove and is illustrated in Figure 7 (b).

Perlman’s Ephemerizer aims to make communication reli-
ably unrecoverable after an expiration time [16]. Exchanged
messages are encrypted using ephemeral keys with a pre-
determined lifetime. Secure deletion is used to ensure keys
are irrecoverable after they expire. Perlman’s scheme uses a
trusted third party—the Ephemerizer—to manage the eph-
emeral keys and ensure their irrecoverability after expira-
tion. Each message is encrypted with a random key, which is
then blinded and sent to the Ephemerizer along with the de-
sired message lifetime. The Ephemerizer encrypts the mes-
sage key with a corresponding ephemeral key based on the
desired lifetime. The message encrypted with the random
key, along with the random key encrypted with the ephem-
eral key, are sent as the message. The recipient uses the
Ephemerizer, with blinding, to determine the message key.
Once the ephemeral key expires, the Ephemerizer no longer
possesses it and is therefore unable to decrypt any keys
wrapped with it. In this scheme, the Ephemerizer acts as the
securely-deleting medium and the communication channel,
being vulnerable to eavesdroppers, is the persistent storage.
The resulting key disclosure graph, illustrated in Figure 7 (c)
is a mangrove similar to Figure 7 (a) except that there are
multiple keys stored in the securely-deleting medium, one
key for each future expiration time.

Tang et al.’s Fade extends Perlman’s Ephemerizer [20] by
explicitly considering cloud storage as the persistent medium
and by offering more expressive deletion policies than expira-
tion dates. An Ephemerizer-like entity acts as the securely-
deleting medium, but each key that it manages reflects a
specific policy that can expire or be revoked. Policies are
defined as boolean expressions of attributes.

Cachin et al.’s work also offers policy-based secure deletion
with a more expressive policy language [4]. Their system
builds a policy graph mapping attributes to policies. Each
node is a configurable threshold cryptographic operator; log-
ical ‘or’ and ‘and’ are then just special cases. Cachin et al.’s
approach assumes a securely-deleting medium to store mas-
ter keys, and can be implemented in a variety of ways with
different retrieval complexities and storage costs.

In both Tang et al. and Cachin et al., data is deleted
at the granularity of an entire policy, defined as boolean
expressions. For instance, one policy may say that data is
not securely deleted if its expiration time has not elapsed
and it has not been specifically redacted. Each conjunct is
associated with a key, both of which are needed to decrypt
the message. To achieve this, Tang et al. uses nested key
wrapping while Cachin et al. uses threshold cryptography.
Consequently, we cannot directly apply our work to these

schemes and leave the characterization of the key disclosure
graph for these cryptographic concepts as future work.
Geambasu et al.’s Vanish is designed for erasable commu-

nication on the Internet [10]. Messages are encrypted with a
unique key and published on the Internet (i.e., the persistent
medium). Encryption keys are split into shares that are also
stored on the Internet in a distributed hash table. The se-
curity of their scheme relies on the nodes in the distributed
hash table implementing the securely-deleting medium: it
requires—albeit contentiously [22]—that the nodes periodi-
cally delete the data and that the adversary is overwhelmed
by the scale of the distributed hash table to effectively copy
all the data therein. As their scheme does not use key wrap-
ping, the corresponding key disclosure graph is trivially a
mangrove as it lacks edges (Figure 7 (d)).
Reardon et al.’s data node encrypted file system [18] is

designed for flash memory, for which data deletion is an
expensive deletion operation. They divide the memory into
two areas: a small securely-deleting key storage area and
a large main storage which they assume to be persistent.
Each atomic unit of data in main storage is encrypted with a
unique key from the key storage area. The efficiency of this
approach comes from colocating and compressing the key
storage area thereby reducing secure deletion’s cost. Like
Vanish, their scheme does not use key wrapping and so the
key disclosure graph is also a mangrove.

8. CONCLUSIONS
We developed a general approach to the design and analy-

sis of secure deletion from persistent media. We used graph
theory to reason about adversarial knowledge and developed
a graph mutation that maintains properties on adversarial
knowledge that allows straightforward provable secure dele-
tion. Our mutation subsumes the update behaviour of all
arborescent data structures. We designed and implemented
a securely-deleting B-Tree based on this mutation. Our anal-
ysis showed that the communication and storage overhead is
typically negligible and the skeleton tree’s caching of B-Tree
nodes is very effective.

9. ACKNOWLEDGMENTS
This work was partially supported by the Zurich Informa-

tion Security Center. It represents the views of the authors.
We would like to thank our anonymous reviewers as well as
Roberto Di Pietro, Thomas Themel, and Nils Ole Tippen-
hauer for their helpful comments.

10. REFERENCES
[1] Laszlo A. Bélády. A study of replacement algorithms

for virtual-storage computer. IBM Systems Journal,
5(2):78–101, 1966.

[2] Dan Boneh and Richard J. Lipton. A Revocable
Backup System. In USENIX Security Symposium,
pages 91–96, 1996.

[3] Nikita Borisov, Ian Goldberg, and Eric Brewer.
Off-the-record communication, or, why not to use
PGP. In ACM workshop on Privacy in the electronic
society, pages 77–84, 2004.

[4] Christian Cachin, Kristiyan Haralambiev, Hsu-Chun
Hsiao, and Alessandro Sorniotti. Policy-based Secure
Deletion. Cryptology ePrint Archive, Report 152,
2013.

[5] Douglas Comer. The ubiquitous B-tree. ACM
Computing Surveys, 11:121–137, 1979.

[6] Giovanni Di Crescenzo, Niels Ferguson, Russell
Impagliazzo, and Markus Jakobsson. How to Forget a
Secret. In STACS, Lecture Notes in Computer
Science, pages 500–509. Springer, 1999.

[7] Sarah M. Diesburg and An-I Andy Wang. A survey of
confidential data storage and deletion methods. ACM
Computing Surveys, 43(1):1–37, 2010.

[8] Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger,
and H. Raymond Strong. Extendible hashing—a fast
access method for dynamic files. ACM Trans.
Database Syst., 4(3):315–344, 1979.

[9] Simson Garfinkel and Abhi Shelat. Remembrance of
Data Passed: A Study of Disk Sanitization Practices.
IEEE Security & Privacy, pages 17–27, January 2003.

[10] Roxana Geambasu, Tadayoshi Kohno, Amit A. Levy,
and Henry M. Levy. Vanish: increasing data privacy
with self-destructing data. In USENIX Security
Symposium, pages 299–316, 2009.

[11] Peter Gutmann. Secure Deletion of Data from
Magnetic and Solid-State Memory. In USENIX
Security Symposium, pages 77–89, 1996.

[12] McDougall, R. and Mauro, J. FileBench.
www.solarisinternals.com/si/tools/filebench/, 2005.

[13] Ralph C. Merkle. A certified digital signature. In
Proceedings on Advances in Cryptology, CRYPTO ’89,
pages 218–238. Springer-Verlag New York, Inc., 1989.

[14] Mike Mesnier, Gregory R. Ganger, and Erik Riedel.
Object-Based Storage. Communications Magazine,
IEEE, 41(8):84–90, 2003.

[15] Einar Mykletun, Maithili Narasimha, and Gene
Tsudik. Providing authentication and integrity in
outsourced databases using Merkle hash trees.
Technical report, University of California Irvine, 2003.

[16] Radia Perlman. The Ephemerizer: Making Data
Disappear. Technical report, Sun Microsystems, 2005.

[17] Joel Reardon, David Basin, and Srdjan Capkun. SoK:
Secure Data Deletion. In IEEE Symposium on
Security and Privacy, 2013.

[18] Joel Reardon, Srdjan Capkun, and David Basin. Data
Node Encrypted File System: Efficient Secure
Deletion for Flash Memory. In USENIX Security
Symposium, pages 333–348, 2012.

[19] Ohad Rodeh. B-trees, shadowing, and clones. Trans.
Storage, 3(4):2:1–2:27, 2008.

[20] Yang Tang, Patrick P. C. Lee, John C. S. Lui, and
Radia Perlman. FADE: Secure Overlay Cloud Storage
with File Assured Deletion. In SecureComm, pages
380–397, 2010.

[21] W. T. Tutte. Graph Theory. Encyclopedia of
Mathematics and its Applications. Addison-Wesley
Publishing Company, 1984.

[22] Scott Wolchok, Owen S. Hoffman, Nadia Henninger,
Edward W. Felten, J. Alex Haldermann,
Christopher J. Rossback, Brent Waters, and Emmet
Witchel. Defeating Vanish with Low-Cost Sybil
Attacks Against Large DHTs. In Proc. 17th Network
and Distributed System Security Symposium, February
2010.

