
Correct and Efficient Policy Monitoring,
a Retrospective

David Basin1(B) , Srđan Krstić1 , Joshua Schneider1 ,
and Dmitriy Traytel2

1 Institute of Information Security, Department of Computer Science, ETH Zurich,
Zürich, Switzerland

{basin,srdan.krstic,joshua.schneider}@inf.ethz.ch
2 Department of Computer Science, University of Copenhagen,

Copenhagen, Denmark
traytel@di.ku.dk

Abstract. The MonPoly project started over a decade ago to build
effective tools for monitoring trace properties, including functional cor-
rectness, security, and compliance policies. The original MonPoly tool
supported monitoring specifications given in metric first-order temporal
logic, an expressive specification language. It handled both the online
case, where system events are monitored as they occur, and the offline
case, monitoring logs. Our tool has evolved over time into a family of
tools and supporting infrastructure to make monitoring both scalable
and suitable for high assurance applications. We survey this evolution
which includes: (1) developing more expressive monitors, e.g., adding
aggregation operators, regular expressions, and limited forms of recur-
sion; (2) delimiting efficiently monitorable fragments and designing new
monitoring algorithms for them; (3) supporting parallel and distributed
monitoring; (4) using theorem proving to verify monitoring algorithms
and explore extensions; and (5) carrying out ambitious case studies.

Keywords: runtime verification · monitoring · temporal logic

1 Introduction

Monitoring is a Formal Method for system analysis where one analyzes a sys-
tem’s behavior as system events occur, or afterwards when reading the events
from logs. The objective is to decide whether the system’s observed behavior sat-
isfies a given specification and, if not, to report violations. This problem is general
and has wide ranging applications. The events can be at any level of abstraction
(machine instructions, operating system calls, I/O events, etc.) and one can apply
monitoring to hardware, operating systems, software programs and components,
network traffic, etc. Moreover, depending on the problem domain, the specifica-
tion may state ordering requirements on the events, real-time requirements on
when they occur, or requirements on the relationships between data referenced
by the events. The challenge then is to design monitors that are general enough
to handle many relevant problem domains and to make their decisions efficiently
and effectively, even in the presence of high-velocity event streams.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
É. André and J. Sun (Eds.): ATVA 2023, LNCS 14215, pp. 3–30, 2023.
https://doi.org/10.1007/978-3-031-45329-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45329-8_1&domain=pdf
http://orcid.org/0000-0003-2952-939X
http://orcid.org/0000-0001-8314-2589
http://orcid.org/0000-0001-8253-4513
http://orcid.org/0000-0001-7982-2768
https://doi.org/10.1007/978-3-031-45329-8_1

4 D. Basin et al.

Tool Logic Features Reference s Sect.

MonPoly MFOTL RANF
Ω,def online [20, 26, 28, 31] 4.1

CppMon MFOTL RANF
Ω,def online [56] 4.1

StaticMon MFOTL RANF
Ω,def,rec online, pre-compiled [57, 58] 4.1

HashMon MFOTL RANF
Ω,def online, randomized [91, 92] 4.1

VeriMon MFODL RANF
Ω,def,rec online, verified [16, 17, 20, 97] 4.1, 6

MFOTL2RANF MFOTL → MFOTLRANF translation [82, 85] 4.2
MonPoly-Reg MFOTL online [26, 28] 4.3
Aerial MDL equivalence verdicts [12, 35, 69] 4.4
Hydra MDL multi-head [81, 84, 87] 4.4
Vydra MDL multi-head, verified [81, 87] 4.4, 6
Slicing framework MFOTL RANF offline, parallel [15] 5.1
Slicing framework MFOTL RANF

Ω,def , QTL [62] online, parallel [43, 94, 96] 5.2
POLIMON MTL ↓ unordered input [32, 34] 5.3
TimelyMon MFOTL RANF unordered input [88] 5.3

Fig. 1. Our monitors and related tools

We have been working for over a decade on different aspects of this problem.
Parts of our research were project driven, tackling challenges that arose in apply-
ing monitoring to different problem domains and making our monitoring tools
scale. Other parts were curiosity driven, exploring different monitoring semantics,
algorithms, specification languages, parallelization techniques, and even formal
verification applied to monitoring itself. We provide here a retrospective on this
work, explaining the tools we have built, summarized in Fig. 1, and highlighting
their advances within the context of the larger field of runtime verification. We
hope this will be of value both for those researchers interested in understanding
our tools and the problems they address and those wishing to understand some
of the challenges in bridging theory and practice in this exciting research area.

Our aim has been to develop foundations and tools to cover the largest possi-
ble range of applications. Our starting point has been the expressive specification
language of metric first-order temporal logic (MFOTL) built on first-order logic
with equality and metric temporal logic (MTL) operators. For some applications
MFOTL is still not expressive enough. Hence we have systematically explored
extensions of MFOTL (Sect. 2), such as adding aggregation operators (−Ω in
Fig. 1), regular expressions from dynamic logic (−DL), and limited forms of recur-
sion (−rec). Unfortunately, monitoring using expressive specification languages
is computationally intractable in the standard monitoring setting (Sect. 3). We
have therefore explored ways to mitigate this problem by: delimiting efficiently
monitorable fragments of MFOTL (Sect. 4), such as those monitorable using rela-
tional data structures (−RANF), and designing monitoring algorithms for them;
weakening some of the requirements on monitors, such as how they present their
output; and providing support for parallel and distributed monitoring (Sect. 5).

As monitoring is often used in critical applications where correctness matters,
it is important that monitors themselves are correct. Part of our journey has been

Correct and Efficient Policy Monitoring, a Retrospective 5

Fig. 2. Semantics of MFOTL (gray background) and its extensions

in using theorem provers to formally verify our monitoring algorithms (Sect. 6).
The verified monitors can be run directly, with some performance slowdown
compared to their optimized but unverified brethren. Alternatively they can be
used to ascertain the correctness of other monitors using differential testing.

We describe our results here as well as substantial case studies that we carried
out to learn where bottlenecks and limitations are in practice (Sect. 7).

2 The Logic

We present a logic that unifies our tools’ specification languages. Presently, no
tool supports all presented features, but all features are supported by some tool
(see Fig. 1). We start with metric first-order temporal logic (MFOTL) [28,47] and
extend it with regular expressions [17,36], aggregations operators [24], a freeze
quantifier [32], and a recursion operator [102]. We refer to the cited publications
for detailed explanations and the historical background of each operator.

We fix a set of event names E and for simplicity assume a single infinite
domain of values D. We consider D to include integers, strings, and floats, as
well as POSIX regular expressions to match strings against (not to be confused
with the temporal regular expressions occurring in formulas). The event names
p ∈ E have associated arities ι(p) ∈ N. An event p(d1, . . . , dι(p)) is an element
of E × D

∗. We further fix infinite sets of variables V and registers R such that
V, R, D, and E are all pairwise disjoint. Let I be the set of nonempty intervals
[a, b) := {x ∈ N | a ≤ x < b}, where a ∈ N, b ∈ N ∪ {∞}, and a < b. Terms
T include V ∪ D and can also be constructed by applying operators defined
on D (e.g., + and × on integers) to terms. Formulas ϕ and temporal regular

6 D. Basin et al.

expressions r are defined (mutually) inductively, where t, p, r, x, and I range
over T, E, R, V, and I, respectively:

ϕ ::= p(t) | tpts(t, t) | t R t | ¬ϕ | ϕ ∨ ϕ | ∃x. ϕ | I ϕ | I ϕ | ϕ SI ϕ | ϕ UI ϕ |
↓rx. ϕ | x ← Ω(t;x) ϕ | def p(x) := ϕ in ϕ | rec p(x) := ϕ in ϕ | I r | I r

r ::= � | ϕ? | rr | r + r | r∗ .

Here R ∈ {=, <,≤,
RE⇐} is a rigid (i.e., non-changing) relation and Ω ∈

{CNT,SUM,AVG,MIN,MAX,MED} is an aggregation function on multisets, e.g.,
CNT⦃1, 1, 2⦄ = 3 and SUM⦃1, 1, 2⦄ = 4. We write a for a list of zero or more a.

MFOTL formulas are built from operators shown in gray background. For-
mulas p(t) are called (atomic) predicates. The special predicate tpts refers to
the current time(-point and time-stamp). Besides logical operators (¬, ∨, ∃) and
rigid relations (R), MFOTL has metric past and future temporal operators
(previous), (next), S (since), and U (until), which may be nested freely. Metric
temporal logic (MTL) is a fragment of MFOTL with nullary predicates and no
quantification.

The addition of (past match) and (future match) operators to MTL
and MFOTL results in their dynamic variants MDL and MFODL, respectively.
These operators use temporal regular expressions constructed from wildcard (�),
test (?), concatenation, alternation (+), and star (∗) operations. We also consider
formulas with freeze quantification ↓rx. α. In particular, MTL↓ is the extension
of MTL with freeze quantifiers. Finally, MFOTL is extended with aggregations
x ← Ω(t;x) α (called MFOTLΩ), and with non-recursive (MFOTLdef) and
recursive (MFOTLrec) definitions. The latter two are given by formulas of the
form def p(x) := α in β and rec p(x) := α in β, respectively. We derive additional
operators: truth � := 0 = 0, falsehood ⊥ := ¬�, inequality t1 = t2 := ¬(t1 = t2),
conjunction α ∧ β := ¬(¬α ∨ ¬β), implication α → β := ¬α ∨ β, current
time-point tp(i) := ∃t. tpts(i, t) and time-stamp ts(t) := ∃i. tpts(i, t), universal
quantification ∀x. α := ¬(∃x. ¬α), eventually I α := � UI α, always I α :=
¬I ¬α, once I α := � SI α, and historically I α := ¬I ¬α. A formula
is future-bounded iff all subformulas of the form αU[a,b) β and [a,b) r (including
derived operators) satisfy b < ∞.

Formulas are interpreted over temporal structures, which model execu-
tions of a monitored system. A temporal structure σ is an infinite sequence
(τσ

i ,Dσ
i , Rσ

i)i∈N, where τσ
i ∈ N is a time-stamp, the database Dσ

i ∈ P(E × D
∗)

is a finite set of events, and the register map Rσ
i assigns each register r ∈ R a

single domain value from D. Time-stamps must be monotone (∀i. τi ≤ τi+1) and
progressing (∀τ. ∃i. τ < τi). Note that different time-points i = j may have the
same time-stamp τi = τj .

Figure 2 shows the relation σ, v, i |= ϕ defining the satisfaction of the formula
ϕ for a temporal structure σ, a valuation v, and a time-point i. The valuation v
assigns domain values to ϕ’s free variables V(ϕ). Overloading notation, v is also
the extension of v to terms T in the obvious way, e.g., v(t1 + t2) = v(t1) + v(t2).
The valuation v[x �→d] is equal to v except that d is assigned to the variable x.
Similarly, trace σ[p�X] is equal to σ except that the set of events for predicate

Correct and Efficient Policy Monitoring, a Retrospective 7

p from Dσ
i is replaced by X(i) at each time-point i. The rigid relation x

RE⇐ r
is satisfied by all strings x matched by the POSIX regular expression r. The
other rigid relations behave as expected. Aggregations support grouping using
variables g and their semantics is defined using multiset union

⊎
. The addi-

tional operators are intuitive, e.g., unfolding a non-recursive definition (even
under temporal operators) results in an equivalent formula. The semantics of
recursive definitions is as expected provided all recursive occurrences of p in ϕ
are evaluated at past time-points.

For I ∈ I and n ∈ N, let I −n denote the interval {x−n | x ∈ I}∩ N and I−

the set of intervals {I −m | m ∈ N}\{∅}, which is always finite. We write SF(ϕ)
for the set of ϕ’s subformulas and define interval-skewed subformulas ISF(ϕ) as

SF(ϕ) ∪ {α SJ β | α SI β ∈ SF(ϕ), J ∈ I−} ∪ { J r | I r ∈ SF(ϕ), J ∈ I−}
∪ {α UJ β | α UI β ∈ SF(ϕ), J ∈ I−} ∪ {J r | I r ∈ SF(ϕ), J ∈ I−}.

3 Monitoring Setting

The central problem in monitoring is, given a policy and a trace from a monitored
system, to decide whether the trace satisfies the policy. The monitoring problem
has many variants that motivate specialized algorithms. For example, one may
grant the monitor random access to the trace for efficiency, or require the timely
detection of violations for some applications. Here we sketch the most important
problem dimensions as well as the setting in which we position our tools. A more
detailed taxonomy for runtime verification tools has been developed by Falcone
et al. [52] and extensive introductions to the topic by many others [11,72,90].

Offline monitors run after the monitored system has terminated and therefore
read the complete trace, typically stored as a log file. In contrast, online monitors
run while the monitored system executes and observe a trace’s prefix up to the
present. They typically receive the trace incrementally, as a stream of events,
one event at a time. Equivalently, online monitors read the trace with a single
one-way reading head that moves forward only, whereas offline monitors have
random access to the entire trace. Every online monitor can be used offline by
replaying the log file as a stream, but it may be less efficient than a dedicated
offline tool. We primarily develop online monitors, yet we propose a multi-head
approach that lies in between offline and online monitoring (Sect. 4.4).

The linear order of events observed by a monitor (be it in a log file or a stream)
does not necessarily coincide with the events’ temporal order of occurrence in the
monitored system. We speak of a trace only when they do coincide; otherwise,
we call the monitor’s input observations. For example, most distributed systems
do not provide traces in this strict sense because it is difficult to reconstruct the
true order of events [98]. Our monitors operate on traces by default. We discuss
two approaches that handle more general observations in Sect. 5.3.

All our approaches work with policies of the form ϕ where ϕ is future-
bounded. Such policies describe safety properties,1 characterized by bad pre-
1 Although not every safety property expressible in MFOTL has this form [47].

8 D. Basin et al.

fixes [5], which are finite traces with all their infinite extensions violating the
policy. Our monitors detect all bad prefixes of ϕ by evaluating the formula
¬ϕ at every time-point. Their output is monotonic with respect to time-points
and consists of exactly those time-points at which ¬ϕ is satisfied in all infinite
extensions. A non-empty output indicates that ϕ is violated. Dually, co-safety
properties [60] of the form ϕ′ can be monitored by evaluating ϕ′ directly.

A monitor’s output may range from a single bit to detailed proof trees [73].
As described above, to monitor a policy ∀x. ϕ, our monitors evaluate ¬∀x. ϕ
at every time-point. After pushing the negation in and dropping the leading exis-
tential quantifiers, they can evaluate ¬ϕ, which has free variables. The computed
valuations are output together with the corresponding time-points and provide
insight into the policy’s violations. The output is never provided for time-points
beyond the observed trace prefix. This cannot be avoided in general: a policy
ϕ is violated on all traces (and therefore also on all extensions of the empty
prefix) iff ϕ is unsatisfiable, which is undecidable for MFOTL [22].

4 Restrictions and Algorithms

We describe our algorithms for monitoring fragments of our logic. Restricting
the policy language has two advantages. First, without restrictions it may be
impossible to build a monitor that satisfies the desired properties. For example,
detecting bad prefixes is already undecidable for a much weaker form of quantifi-
cation than that of MFOTL [37]. Second, algorithms can be tailored to language
fragments yielding better performance in exchange for less expressiveness or con-
ciseness.

We focus primarily on fragments that retain MFOTL’s first-order aspects and
which can be monitored using finite relations (Sect. 4.1). A monitor-independent
translation makes these fragments more user-friendly by lifting syntactic restric-
tions (Sect. 4.2). We also compare the finite relation approach to automatic struc-
tures (Sect. 4.3). While less expressive, propositional languages are attractive
because they admit better complexity. Notably, we developed two algorithms
that achieve (almost) event-rate independence for MDL (Sect. 4.4).

4.1 Relational Algebra Normal Form

In database theory, Codd’s theorem [48] states that relational algebra and
domain-independent queries expressed using the relational calculus are equally
expressive. Relational algebra consists of effectively computable operations on
finite relations, whereas the relational calculus is essentially first-order logic.
Domain-independence [51] ensures finite query results, independently of the
domain that the query’s variables range over. Relational algebra normal form
(RANF) [1,55] is a syntactically defined, domain-independent fragment of the
relational calculus with a straightforward translation to the algebra.

The policy language fragment supported by MonPoly [27,31], VeriMon [16,
97], CppMon [56], StaticMon [58], and HashMon [92] is a generalization of RANF

Correct and Efficient Policy Monitoring, a Retrospective 9

Fig. 3. Relational algebra normal form for a subset of MFOTL

from first-order logic to MFOTL. We sometimes call it the monitorable frag-
ment [28] (not to be confused with other notions of monitorability [80]). The
motivation is the same as for databases: one can translate this fragment directly
to operations acting on (streams of) finite relations. In the following, we first
describe aspects common to the aforementioned RANF-based tools, thus speak-
ing of a single abstract monitor, before explaining the main differences between
the tools.

General Approach. The basic idea is to view the policy formula as a tree whose
nodes correspond to relational operations. The monitor processes the input trace
incrementally. Every time-point gives rise to a database that supplies the leaves
of the tree with relations. Then, the monitor evaluates the tree, bottom up.
The relation obtained at the root, which is appended to the in-order output
stream, contains the satisfying valuations of the formula. The main difference
to the database setting is that some tree nodes, namely those corresponding
to temporal operators, are stateful. Future operators are handled by delaying
intermediate computations that depend on those operators. Our monitors over-
approximate the required delay using the formula’s intervals. Hence they do not
detect minimal bad prefixes; however, they eventually report a bad prefix when
there is one.

Figure 3 defines the RANF fragment for a subset of our logic; we discuss more
advanced operators below for those tools that support them. The first column
contains patterns: any formula obtained by instantiating a pattern is in RANF
if the instantiations of α and β are in RANF, and the constraints in the second
column are satisfied. Formulas can often be rewritten to obtain an equivalent
RANF formula, e.g., by applying the distributive law to p(x, y) ∧ (q(x) ∨ q(y)).
However, finding suitable rewrite rules becomes difficult once temporal operators
are involved. MonPoly implements a simple but incomplete rewriting procedure.
We describe a more general translation in Sect. 4.2. The third column in Fig. 3
describes the relational algebra operation that is used to evaluate formulas match-

10 D. Basin et al.

ing the pattern. Most are standard [1]. The generalized projection evaluates the
term t on each tuple in the input relation to compute the value assigned to x in
the output relation. The anti-join generalizes set difference such that the “neg-
ative” relation may have a subset of the other relation’s variables. Aggregation
operators are computed by first partitioning the relation into groups (if there
are grouping variables) and afterwards, for each group, evaluating the term t on
the tuples and combining the results using the appropriate aggregation function
(e.g., sum, count, or average).

Temporal Operators. The implementation of the temporal operators is specific to
the monitoring setting, although temporal–relational algebras have been studied
previously [79,100]. A basic approach, used in MonPoly’s original implemen-
tation [26,28], employs auxiliary relations that are maintained as part of the
monitor’s state. For I α, the auxiliary relation is simply the evaluation result
for α at the previous time-point. For α SI β, the auxiliary relation extends the
tuples obtained from β with the corresponding time-stamp, which is used to
check the interval constraint I. All tuples must satisfy α since the time-point
when they were most recently added to the relation. Several optimizations are
possible. For example, the special cases and benefit from a sliding-window
algorithm [30]. A specialized data structure that improves the evaluation time
of S in general was first introduced in VeriMon [17]. The evaluation of future
temporal operators is not symmetric to the past operators. Specifically, α UI β
requires an additional auxiliary relation that stores the time-points at which
uninterrupted α sequences start.

Example. We explain how a MonPoly-style algorithm monitors the policy
∀x. p(x) →[0,3] q(x). Specifically, it evaluates ¬ϕ ≡ p(x) ∧ ¬χ, where
χ ≡ [0,3] q(x). All subformulas of ¬ϕ have a single free variable x and their
evaluation results are thus all unary relations, i.e., sets. The monitor maintains
an additional binary relation Sχ in its state, which is used for the[0,3] operator.
This relation stores pairs (τ, x) such that the event q(x) occurred most 3 time
units ago, and τ is the most recent time-stamp for the event. For each input
(τσ

i ,Dσ
i , Rσ

i), corresponding to the time-point i, the monitor proceeds as follows.

(1) Evaluate q(x) by computing Eq = {x | q(x) ∈ Dσ
i }.

(2) Remove pairs (τ, x) from Sχ where τσ
i − τ > 3 or x ∈ Eq, then add (τσ

i , x)
for all x ∈ Eq. This restores Sχ’s invariant.

(3) The result of χ is Eχ = {x | (τ, x) ∈ Sχ}.
(4) Evaluate p(x) by computing Ep = {x | p(x) ∈ Dσ

i }.
(5) Compute E¬ ϕ = Ep\Eχ as a special case of anti-join to evaluate p(x)∧ ¬χ.
(6) The formula ¬ϕ is satisfied (i.e., the policy is violated) at time-point i iff

E¬ ϕ is non-empty. In this case, the monitor outputs E¬ ϕ.

Tool-Specific Details and Extensions. The main difference between MonPoly’s
and VeriMon’s algorithms is the scheduling in the presence of delays due to
future operators. VeriMon uses buffers attached to every binary operator to

Correct and Efficient Policy Monitoring, a Retrospective 11

“align” the relations computed for the two operands. It evaluates the operator
whenever a pair of relations (for the same time-point) is available. The operands
are evaluated independently and eagerly. In contrast, MonPoly’s scheduling is
asymmetric: the second operand is evaluated only once the first has yielded a
result, which requires buffering for the atomic predicates. The two strategies dif-
fer in their memory usage, which is incomparable because the buffered relations’
size depends on the formula.

Extensions compatible with the RANF approach include the “dynamic” oper-
ators and , as well as the def and rec constructs. The operators and
generalize S and U to regular expressions. We have implemented them in VeriMon
using Antimirov’s partial derivatives [6]. The syntactic restrictions that guaran-
tee finite relations are subtle, and we refer to the corresponding paper [17] for
details. To evaluate def p(x) := α in β, our monitors evaluate α eagerly first
and buffer any results to be used in the subsequent evaluation of β. For rec ,
which is currently supported by VeriMon and StaticMon, we exploit that only
the valuations of p at past time-points are relevant when evaluating α. Hence no
fixpoint computation is required. The tools syntactically check that every use
of p in α is guarded by a strict past operator, such as or I , where I does
not include zero. This guarantees that the monitor can eventually evaluate every
time-point [102].

The monitors mentioned so far use immutable tree data structures to rep-
resent finite relations. CppMon [56] reimplements VeriMon’s algorithm in C++
using mutable hash tables. StaticMon develops this idea further by using C++
template metaprogramming [2] to generate an optimized monitor program tai-
lored for each formula. It outperforms MonPoly, VeriMon, and CppMon on
many benchmarks [58]. HashMon [92] reuses MonPoly’s evaluation algorithm.
In addition, HashMon can automatically replace large domain values, such as
long strings, by short, randomized hash values to reduce the monitor’s memory
usage.

4.2 Translation to RANF

The restrictions imposed by the RANF on negations and the subformula’s
free variables may hamper concise, intuitive formalizations. While one can
often rewrite a formula manually into an equivalent RANF representation, this
increases the risk of formalization errors. For example, it is difficult to rewrite the
formula p(x)∧ (q(x, y) S r(y)), which is not in RANF because of the subformula
q(x, y)S r(y). However, this formula is actually domain-independent as p(x) and
r(y) jointly provide an upper bound on the set of satisfying valuations.

Raszyk proposed an automatic translation for arbitrary relational calculus
queries [83] and MFOTL formulas [85] into RANF. The translation, implemented
in the tool MFOTL2RANF, introduces an additional free variable x∞. If x∞ = 1
in any satisfying valuation, the set of satisfying valuations for the given trace
prefix is infinite and no further guarantees are made. This case cannot occur if
the original formula is domain-independent. Otherwise, the satisfying valuations

12 D. Basin et al.

without x∞ correspond precisely to those of the original formula. For the above
example, we get (with minor simplifications)

(
p(x) ∧ (

q(x, y) S
(
(q(x, y)) ∧ r(y)

)) ∨
p(x) ∧ (

q(x, y) S
(
q(x, y) ∧ (

(q(x, y)) ∧ (¬ q(x, y)) ∧ r(y)
))) ∨

p(x) ∧ r(y) ∧ ¬ q(x, y)
)

∧ x∞ = 0 .

The translation detects the domain-independence and it sets x∞ to zero. The
three disjuncts correspond to a case distinction over possible origins of relevant
values for x in the evaluation of the subformula q(x, y) S r(y): either there is a
q(x, y) event concurrent with or before r(y), or the earliest occurrence of q(x, y)
is strictly within the span of S, or there is no such occurrence and p(x) serves
as the bound.

Adding the automatic translation to our monitors is ongoing work. It is an
open question whether and how the translation can be extended to cover addi-
tional features of MFOTL and our extensions, such as inequalities, aggregations,
and rec .

4.3 Automatic Structures

An alternative approach that lifts the restrictions of RANF is to replace finite
relations with automatic structures [42,68]. These structures represent each rela-
tion as a finite-state automaton that recognizes those (suitably encoded) tuples
that are in the relation. The main advantage is that automatic structures are
closed under all Boolean operations, including negation and projection. More-
over, they can represent and operate on (a subset of the) infinite relations.

Binary decision diagrams (BDDs) are an efficient implementation of auto-
matic structures. They are used in an alternative implementation of MonPoly’s
algorithm called MonPoly-Reg [26,28], as well as Havelund et al.’s DejaVu
tool [61,62]. The two monitors mainly differ in the encoding of tuples repre-
senting valuations. MonPoly-Reg, which supports only integer values, uses the
MONA library [64], whose automata natively read multiple variables in parallel.
DejaVu translates values to bitstrings, which it then concatenates into tuples.

The use of automatic structures has drawbacks. All operators in terms
(e.g., +) and all rigid relations (e.g., ≤), must be expressible as regular lan-
guages. This generally limits the scope to Presburger arithmetic and none of
the above tools handle aggregations. Moreover, the time and memory used by
the BDD operations depend on the internal variable ordering and can be unpre-
dictable [102].

4.4 Propositional Monitoring

A monitor’s time and memory performance depends on the sizes of its inputs, i.e.,
the formula and trace. The latter is typically larger than the former by orders of
magnitude. Therefore, one ideally uses trace-length independent monitors, whose

Correct and Efficient Policy Monitoring, a Retrospective 13

memory complexity is independent of the trace size. Moreover, for monitors that
support real-time constraints, it is desirable that the memory complexity be
independent of the trace’s event rate, i.e., the number of events per unit of time.
Traces arising in practice have a bound on their event rate, although the bound
may be unknown in advance. We henceforth focus on such (event-rate) bounded
traces.

Both event-rate independent (ERI) and trace-length independent (TLI) mon-
itoring algorithms are not attainable for first-order specifications. For example,
monitoring p(x) requires, in the worst case, memory proportional to the entire
trace prefix seen by the monitor. In contrast, TLI monitoring algorithms for the
propositional fragments of MFOTL (like MTL) have been proposed in the past.
These, however, deviate from our monitoring setting (Sect. 3): they either do not
support future operators [29,33,63], only produce a single Boolean verdict for a
formula at the trace’s first time-point [53,99], or access the trace in an offline
manner [89]. The challenge is to develop an online ERI algorithm that supports
both future operators and produces verdicts for every time-point. Our monitors
achieve this by operating in a slightly modified monitoring setting: they either
output out-of-order equivalence verdicts, or use multiple reading heads.

Equivalence Verdicts. Our Aerial tool [12,35] solves the above challenge by out-
putting verdicts differently. In addition to the standard Boolean verdicts, it out-
puts equivalence verdicts of the form j ≡ i stating that the verdict at time-point
j is identical to the verdict at an earlier time-point i < j, although both verdicts
are currently unknown. This makes Aerial’s output non-monotonic with respect
to time-points and requires slightly more effort to understand. To output equiva-
lence verdicts, the algorithm must refer to natural numbers encoding time-points,
which requires logarithmic space as time-points increase with the trace length.
Aerial refers to time-points using an offset within a block of consecutive time-
points labeled with the same time-stamp. It therefore requires logarithmic space
in the event rate, since the size of such a block is bounded by the event rate.
Due to this logarithmic dependence, Aerial is an almost ERI algorithm.

As an example, consider the policy (p →[0,3] q) similar to the one from
Sect. 4.1, only propositional and with a future [0,3] operator. The equation

σ, v, i |=I α iff σ, v, i |= α or σ, v, i + 1 |=I−(τi+1−τi) α

reduces the satisfaction of I α to a disjunction of the satisfaction of α at the
same time-point i and the satisfaction of I−(τi+1−τi) α at the next time-point
i + 1. The algorithm can immediately compute the satisfaction at the current
time-point i, but it must wait for the one at the next time-point. This also
means that after processing time-point i, the algorithm cannot store a Boolean
verdict for the formula I α in its state. Instead, it stores a dependency in
the form of a pointer to the part of its state referring to I−(τi+1−τi) α, which
becomes available after processing time-point i + 1. More generally, for every
(interval-skewed) subformula (recall ISF(·) from Sect. 2), the algorithm stores
a Boolean combination of such dependencies in the form of symbolic Boolean

14 D. Basin et al.

expressions. By processing the subsequent time-points, the algorithm may resolve
some expressions to Boolean values and output them as verdicts. Crucially, if
the algorithm detects two semantically equivalent Boolean expressions for the
top-level formula at different time-points, it outputs an equivalence verdict and
removes one of the two expressions from its state. As the number of semantically
different Boolean expressions only depends on the formula, so does the space
needed to store them. Aerial extends this idea to MDL operators and
using partial derivatives [6].

Multi-head Monitoring. Our Hydra tool [84,87] implements an ERI algorithm
that supports both past and future operators, but, unlike Aerial, produces
Boolean verdicts in time-point order. It achieves this by using multiple inde-
pendent and unidirectional reading heads. If an event is needed for subsequent
analysis after it was read, a standard online monitor must keep it in its memory.
The idea of using multiple heads is to avoid this memory usage and rely on one
of the reading heads to read the event again. The way Hydra reads its input
trace makes it neither an online nor an offline monitor. An online monitor does
not require the trace to be persistent, whereas Hydra requires this for the part of
the trace between its first and last reading head. In contrast, an offline monitor
has a reading head without movement constraints, while all of Hydra’s reading
heads are unidirectional.

Conceptually, a multi-head monitor for an MTL formula ϕ is built recursively
from multi-head (sub-)monitors, one for each direct subformula of ϕ. The total
number of reading heads equals the number of atomic predicates in ϕ. The
algorithm recursively steps the monitors in a loop, where a step either advances
one reading head or propagates a cached verdict from a sub-monitor to its parent.
Once every sub-monitor for ϕ has produced a verdict, the algorithm computes
as many verdicts for ϕ as possible (which may be none) based on the MTL
semantics of ϕ’s top-level operator. For example, Hydra monitors the policy
 (p →[0,3] q) using two reading heads for p and q. The[0,3] operator stores
a run-length encoded list of integers. In the list, zeros representing time-points
are interleaved with the (positive) time-stamp differences between them. The
list encodes a sequence of time-points, spanning a time-stamp difference of at
most 3, at which q is not satisfied. It is updated using the verdicts from the
head for q, which runs ahead. Specifically, whenever the head reports a q event,
all time-points in the list become positive verdicts for the [0,3] operator (after
checking the interval constraint). Finally, the → operator combines the verdicts
returned by its sub-monitors.

Hydra generalizes [86] the idea of multi-head monitoring to MDL operators
 and using a number of heads exponential in the formula’s size [87]. Both
Aerial and Hydra outperform MonPoly on their specialized fragment.

5 Parallelization

The algorithms described in Sect. 4 all execute sequentially. The only way to
make them faster (beyond clever optimizations) is to use a faster processor,

Correct and Efficient Policy Monitoring, a Retrospective 15

which clearly has its limits. It is thus natural to ask how one can parallelize the
existing algorithms or develop new parallel ones, which is not straightforward
as the linear nature of traces results in a bias towards sequential processing.
Theoretical results are promising: Kuhtz and Finkbeiner [70] and later Bundala
and Ouaknine [44] showed that LTL and MTL monitoring over finite traces is
in the highly parallelizable circuit complexity class NC. However, these results
do not generalize to first-order policies, where the complexity rises to PSPACE-
complete [37], which likely rules out fast parallel algorithms. We must therefore
resort to a best effort strategy.

We discuss task-parallel and data-parallel approaches. With task parallelism,
independent operations within the monitor are executed in parallel. Data par-
allelism partitions the data instead, i.e., the trace. While parallel monitoring,
distributed monitoring, and monitoring of distributed systems all have different
requirements, there are some connections that we discuss in Sect. 5.3.

5.1 Scalable Offline Monitoring

Offline monitors are more easily parallelized than online ones because all data
is available from the start. We summarize results on applying the MapReduce
framework [49] to offline monitoring. MapReduce is suitable for computations
on large sets of data items. There are two phases. In the first phase, each data
item is mapped (transformed) individually and the results are each assigned a
key, which is used for grouping. In the second phase, each group is independently
reduced to a result. Clearly, both phases are parallelizable provided the groups
are not too large.

Barre et al. [10] evaluate LTL formulas bottom up using one round of MapRe-
duce for each layer of the formula tree. They combine task and data parallelism:
the map phase operates on all time-points and operators in the current layer,
whereas the reduce phase is organized by operators only. Follow-up work gen-
eralized this approach to MTL with aggregations [41] and a more fine-grained
partitioning of temporal operators based on their interval constraints [40].

We developed a slicing framework [14,15] based on MapReduce and data
parallelism. The map phase applies slicers to partition the input trace into a
finite collection of slices, which are again traces. Each slice is associated with
a restriction, a subset of the valuations and time-stamps that the monitor may
output for a given policy formula. In the reduce phase, MonPoly is used as a
submonitor that evaluates the formula on each slice. Its outputs are intersected
with the corresponding restriction and combined. For correctness, it is important
that the slices are sound and complete with respect to their restrictions. Slices
need not be (and, in general, are not) disjoint. However, by choosing the slicers
carefully, each slice has significantly fewer events than the input trace, such that
each parallel invocation of MonPoly runs for a shorter amount of time and uses
less memory.

There are two fundamental types of slicers, which may be composed. A data
slicer selects events as a function of the events’ parameters (domain values). It
is parametrized by one of the formula’s free variables x and a subset Sx of the

16 D. Basin et al.

domain. Any event that may be involved in a satisfying valuation v of the formula,
such that v(x) ∈ Sx, is included in the slice. This is determined using a static
over-approximation. For example, for the formula p(x)∧¬ (∃y. q(x, y) ∨ q(y, x)),
the slice Sx = {3} receives the events p(3), q(3, c), and q(c, 3) for all c.

In contrast, the time slicer considers the events’ time-stamps. The basic idea
is to split the trace into contiguous chunks. However, if the formula uses tem-
poral operators, they cannot be evaluated correctly near the chunk boundaries.
Therefore, there must be a sufficient overlap between adjacent chunks. This over-
lap can again be computed statically in advance based on the formula’s relative
intervals. The relative interval of p ∧[1,2] (q ∨[7,7] r) is [−2, 6], for instance,
as any relevant event is contained within that interval relative to the current
time-stamp.

5.2 Scalable Online Monitoring

MapReduce was designed for offline (batch) processing and it is not directly
suitable for low-latency online monitors. In contrast, the data stream model of
computation is tailored to continuous queries over rapidly changing data [9],
which online monitoring can be seen as an instance of. Data stream manage-
ment systems (DSMS) are generic platforms that provide high-level abstractions,
while taking care of common issues in large-scale data stream processing such as
scheduling, distributed execution, and fault tolerance [4,46,101].

Our online slicing framework [94,96] transplants the data slicing approach
onto the Apache Flink DSMS [4], which parallelizes stream processing using
multiprocessing or a distributed cluster. Data slicing is more useful for online
monitoring than time slicing as the reduction in the maximum number of events
across all slices is often higher over short periods of time. The main criterion for
choosing Flink was its support for distributed snapshots [45], which enables fault-
tolerance. If a machine in a distributed monitoring cluster fails, for example, the
monitor can restart from the latest snapshot, which reduces the latency until
it catches up with the event stream. To this end, we implemented a custom
operator for Flink’s data flow that can extract MonPoly’s state.

We improved the slicing framework along several dimensions. The joint data
slicer takes all free variables of the policy formula into account. Parametrized
by a slicing strategy (an assignment of valuations over the free variables to slice
identifiers), it computes for every event a subset of target slices that the event
must be included in. We extended the joint data slicer with support for def and
rec and identified a policy fragment for which the submonitors’ outputs need
not be filtered against the slicing strategy [93], which is otherwise required by
(joint) data slicers.

Moreover, we developed an automatic slicing strategy selection for the joint
data slicer. It adapts the hypercube algorithm for the parallel processing of rela-
tional joins [3,38] to our setting. The algorithm is so called because it partitions
the domain of every variable separately, such that each slice corresponds to a
hypercube of the product space over all variables. The number of splits per vari-
able is optimized to minimize event duplication. This requires specific statistics

Correct and Efficient Policy Monitoring, a Retrospective 17

of the event stream, such as the relative frequency of the different event names.
These statistics may change substantially over time in a long-running stream and
so may the corresponding optimal strategy. To change the strategy at runtime,
we developed a state splitting and merge interface for MonPoly [95], since the
submonitors’ states must be kept consistent with the current slicing strategy.

Both the offline and the online framework are black box approaches because
they rely on a standard, non-parallelized monitoring tool. This is convenient
because all tool optimizations are readily available and the implementation can
be changed relatively easily. For example, we have used not only MonPoly but
also DejaVu with our online framework. However, it is known specifically for joins
that redistributing data in multiple rounds may improve performance [38]. This
corresponds to exchanging data between individual operators in the monitor’s
execution. We describe such a parallel white box monitor in Sect. 5.3.

5.3 Monitoring Distributed Systems

We focus on centralized specifications, which take a holistic view of a distributed
system and abstract away from its structure [52]. Many temporal logics for cen-
tralized specifications—including MFOTL—assume that a total order is defined
over all events. Yet it is often difficult to determine the true order of events
generated by different components in an asynchronous distributed systems. The
uncertainty about the ordering can be reduced, but not eliminated, using logi-
cal clocks such as vector clocks [75]. A global physical (real-time) clock may be
approximated by employing synchronization protocols, but it has limits in envi-
ronments with high event rates [39]. The RV community has developed many
approaches that try to circumvent these obstacles [54]. Here we summarize our
contributions to this area.

The interleaving-sufficient fragment [21,22] is a syntactically defined subset
of MFOTL that can be monitored correctly on any interleaving of traces from
different sources (e.g., components), meaning that the formula is either satis-
fied or violated on any interleaving. The only assumption is that a global clock
with a possibly low resolution creates the time-stamps across all traces. The
collapse-sufficient fragment is contained in the interleaving-sufficient fragment
and consists of formulas that can be monitored correctly on the collapse, where
all events with the same time-stamp are combined into a single time-point. Such
fragments are useful because determining whether any (or all) interleavings sat-
isfy a propositional formula is already (co-)NP-complete [22].

We used the collapse-sufficient fragment with the online slicing framework
to parallelize slicing itself [19]. In the original framework, the slicer can become
a bottleneck if the event rate (number of events per second) is too high. The
idea is to slice the streams from each source in parallel and then merge the
incoming slices at each submonitor. If the monitored policy is collapse-sufficient,
it suffices to sort and group the events by their time-stamp using a (small)
buffer. However, this approach still requires a low-resolution global clock. For a
propositional fragment, we have shown that monitoring is possible even if the
clock has bounded error [23].

18 D. Basin et al.

When the monitor is operating in a distributed setting, messages sent may
get lost or arrive out-of-order and components may even crash. Basin et al. [32,
34] developed a monitoring algorithm that uses a three valued Kleene logic to
soundly operate in the presence of knowledge gaps; the third value ⊥ stands
for “unknown”. Reasoning is monotonic with respect to a partial order on truth
values where t and f are incomparable, and both are greater than ⊥. Hence
verdicts, once emitted, are never retracted, even when knowledge gaps are filled
as events come in, out-of-order. The out-of-order monitor (POLIMON) supports
the language MTL↓, which is MTL augmented with freeze quantifiers, where ↓
is a quantifier that extracts data values from registers and bind these values to
logical variables.

A second, recently developed monitor for the out-of-order-setting is Time-
lyMon [88]. TimelyMon supports the RANF fragment of MFOTL with proper
quantification and is thus more expressive than POLIMON, which is limited to
freeze quantification. TimelyMon can receive individual events (not databases)
in any order, but expects them to be labeled with the correct time-points and
time-stamps (as defined by the temporal structure). It outputs assignments
out-of-order, which allows it to signal policy violations much earlier than Mon-
Poly and VeriMon, whose verdicts are delayed by the future interval bounds.
Technology-wise, TimelyMon is implemented in the Timely Dataflow DSMS [76]
and thus constitutes a white box implementation of a data-parallel online mon-
itor (Sect. 5.2). Initial experiments confirm TimelyMon’s good scalability with
increasing numbers of workers, which is simply a parameter in Timely Dataflow.

6 Verification

Monitors use complex, optimized algorithms to efficiently support expressive
specification languages. These algorithms’ correctness is rarely obvious. Even
worse, pen-and-paper proofs of correctness usually reason about idealized pseu-
docode. These proofs can be faulty, and so can be the translation from pseu-
docode to code. Over the years, we have found and fixed various errors in Mon-
Poly’s code.

VeriMon [16,17,97,102] was conceived out of our frustration with this build-
break-fix cycle. Our original goal was to create a simplified version of Mon-
Poly with strong correctness guarantees, machine-checked using the interactive
theorem prover Isabelle/HOL [78]. To this end, we have formalized MFOTL’s
syntax and semantics, the simplified monitor’s specification, and its correctness
statement. We then defined invariants on the monitor’s state and proved in
Isabelle that they are preserved by the monitor’s steps and imply the correct-
ness statement. Finally, using Isabelle’s code generator [59], we extracted exe-
cutable OCaml code from our formalization. The resulting functional program,
augmented with MonPoly’s unverified formula and log parsers and user interface
is what we call VeriMon.

Is VeriMon more trustworthy than MonPoly? Isabelle will not accept a vague
or incomplete argument: all reasoning passes through Isabelle’s kernel, which is

Correct and Efficient Policy Monitoring, a Retrospective 19

a trustworthy guardian. Since Isabelle accepts the proof of VeriMon’s correct-
ness statement (expressing that the monitor’s output complies with the speci-
fied MFOTL semantics), errors can only happen in reused, unverified parts of
MonPoly’s code or in the formal specification of MFOTL. The actual monitoring
algorithm, arguably the most complex part of a monitor, is error-free. To further
increase trustworthiness, we are working on verifying the unverified code used by
VeriMon and validating MFOTL’s specification by manual inspection, asserting
that it faithfully represents what we intend to model.

VeriMon proved useful beyond its trustworthiness. Verifying a monitor has
significantly improved our own understanding of the matter and provided us with
a platform for experimentation and growth. VeriMon has become the incubator
for first-order monitoring research. For example, new constructs like temporal
regular expressions [17] and recursive definitions [102], previously unseen in any
first-order monitor supporting future temporal operators, were introduced in
VeriMon. We have also optimized VeriMon’s simplified algorithms, sometimes
inspired by optimizations used in MonPoly, other times going beyond, e.g.,
by incorporating multi-way joins from databases [17]. Moreover, we developed
entirely new components, such as a type system and a type inference algorithm.
In all cases, we took care, with Isabelle’s help, to maintain or extend the correct-
ness proof.

Eventually, the new features started migrating to other, unverified monitors,
which still outclass VeriMon in efficiency. We have also used VeriMon as a reliable
testing oracle. Differential testing on random inputs revealed several previously
unknown implementation errors in MonPoly and helped us to localize them [17].

VeriMon is not our only verified monitor. The multi-head monitor Hydra
(Sect. 4.4) has a verified counterpart, Vydra, and the online slicing framework’s
core (Sect. 5.2) is also formally verified. We firmly believe that theorem proving
is a must when the goal is to develop and implement complex algorithms one
can trust.

7 Applications

Research in monitoring strongly benefits from the plethora of immediate applica-
tions and the close interplay between theory and practice. Theoretical advances
in monitoring lead to performance improvements in terms of memory use, execu-
tion time, parallelism, and even metatheoretic guarantees about what monitoring
achieves. Conversely, applications provide insights on which features are useful
in practice and whether tools scale in realistic settings. Although the scope of
applications for monitoring is wide, our focus has been on problems in security,
data protection, and protocols for distributed systems.

7.1 Security and Anomaly Detection

Security policies regulate which actions may and must not happen within a sys-
tem. The vast majority of these policies constitute safety properties (the excep-
tions are typically information flow policies, which are hyperproperties). Hence,

20 D. Basin et al.

they are excellent candidates for monitoring since policy violations are detectable
on finite traces. Also relevant for security is that monitors can be used to detect
anomalous behavior, for example for intrusion detection. Such applications ben-
efit from statistical computations as offered by our logic’s aggregations.

A prototypical security policy has the form ∀x. action(x) → authorized(x).
Namely, every occurrence of some action must be authorized. The x are param-
eters associated with the action, e.g., attributes of the user responsible for the
action, the resource(s) used, or the environment. Moreover, authorized specifies
that authorization is present or, alternatively, is a formula specifying the condi-
tions for authorization. As a concrete example

∀u, a, o. exec(u, a, o) → ∃r. UA(u, r) ∧ PA(r, a, o)

might formalize access restrictions in a system implementing an access control
mechanism based on some variant of Role-based Access Control (RBAC). It
states that whenever a user u carries out an action a on an object o, then the
user is assigned to the role r under the user assignment relation UA and moreover
the role r is granted the privilege to carry out action a on the object o, under the
permission assignment relation PA. We provide extensive examples of how secu-
rity policies can be formalized in MFOTL [25], ranging from simple access control
requirements like the above to more complex policies formalizing history-based
access control policies like so-called Chinese Wall policies, where access rights
change dynamically with each access, and separation-of-duty requirements.

We carried out a large-scale case study with Google, monitoring compliance
to access control policies of Google employees using Google’s infrastructure [15].
Policies concerned configurations of accessing computers, time limits on the use
of authentication tokens, and restrictions on software used during access. We
used offline monitoring, taking events from a distributed logging infrastructure
recording log data on roughly 35,000 computers accessing sensitive resources over
a period of two years. The log data contained roughly 77.2 million time-points
and 26 billion events, and required 0.4 TB to store in a compressed form. For
each policy, we used 1,000 computers for slicing and monitoring. The original
MonPoly system was used together with the offline slicing framework (Sect. 5.1)
leveraging Google’s MapReduce infrastructure. Namely, we split the log into
10,000 slices whereby each computer processed 10 slices on average. Overall,
processing time was on the order of hours (2–12 h), with the vast majority of
time being spent on monitoring, and it scaled well with the introduction of more
computing resources.

In the context of anomaly detection, we developed policies that aim at iden-
tifying fraudulent reviews in an e-commerce setting. The first policy, based on
an algorithm by Heydari et al. [65], detects outliers in the number of reviews
received by a brand. This required encoding a tumbling window [46] by com-
bining aggregations and temporal operators. We applied the policy to a dataset
of reviews published on Amazon [77] to evaluate HashMon. Hashing the review
texts reduced the memory usage by a third [92]. The other policies detect brands
whose products receive identical reviews (as determined by the score and, option-

Correct and Efficient Policy Monitoring, a Retrospective 21

ally, the text) from the same user. These policies were designed to be challeng-
ing for our monitors as it is difficult or impossible to rewrite them in RANF
(Sect. 4.1). The formulas obtained from the MFOTL2RANF tool outperformed
other approaches, including MonPoly-Reg, on synthetic data and the Amazon
data [85].

7.2 Privacy and Data Protection

We have also carried out case studies on using monitoring to check compliance
to privacy and data protection policies. We first used MonPoly in a case study
with Nokia [22], which revolved around the use of cell-phone data of participants
and ensuring compliance to privacy policies by auditing logs for proper usage of
this data. For example, policies required that data would only be propagated to
certain systems, that appropriate anonymization steps would be taken prior to
sharing, data requested for deletion would actually be deleted from all appropri-
ate systems, etc.

In more recent work [8], we formalized a substantial part of the GDPR in
MFOTL. The GDPR has challenges that go beyond traditional access control.
For example, once access is granted, data may only be used when there is a legal
basis for the usage or users have granted explicit consent. Users may also restrict
how their data is processed at any time and have the right to have their data
deleted. Our formalization of such rights provided a basis for using MonPoly to
determine GDPR compliance. We carried out a case study on the use of sensitive
data by a research foundation concerning how they evaluated and awarded grant
applications.

Finally, we have used MonPoly as an enforcement component [67] in a data
protection framework called Taint, Track, and Control (TTC) [66]. Applications
developed in TTC natively use dynamic information-flow control to track the
provenance information of every value in their memory and persistent storage.
This information includes the identifiers of all user whose data affected the value.
Users can formulate their data protection policies in MFOTL, and TTC deter-
mines if revealing a value conforms to the policies. In particular, the application’s
execution trace (including the provenance information) is monitored by MonPoly
and, based on its output, all attempted violations are prevented.

7.3 Distributed Systems

A significant challenge in the Nokia case study mentioned above was that the
data was stored in multiple logs collected from components of a distributed sys-
tem. Hence, even assuming synchronized clocks, there is only a partial order
on time-stamped data rather than a total order assumed by MFOTL’s seman-
tics. We tackled this problem by expressing policies with formulas in MFOTL’s
collapse-sufficient fragment and monitoring the collapse of the trace (Sect. 5.3).

We also used MonPoly in a case study to check properties of the Internet
Computer (IC) [18]. The IC is a complex distributed system that facilitates gov-
ernance and execution of Web3 applications and spans over 1,200 nodes world-

22 D. Basin et al.

Fig. 4. The Internet Computer’s logging-behavior policy [18]

wide. Web3 applications process data with decentralized ownership (e.g., finan-
cial assets). Hence the integrity of their execution must be ensured on devices
beyond the asset owner’s control. The IC ensures this by combining an efficient
consensus protocol and state machine replication [50]. The efficiency of the IC’s
consensus protocol is achieved by grouping all IC nodes into subnets of man-
ageable size. The configuration of the IC (e.g., the assignment of the nodes to
subnets) is highly dynamic and the IC possesses numerous other features that are
challenging to monitor, such as a long-lived high event-rate execution, a layered
software architecture, and continuous evolution. The policies we have formalized
range from common symptoms of the IC’s production incidents to properties
of the IC’s consensus protocol, including malicious behaviors and infrastructure
outages that the protocol must tolerate.

For example, Fig. 4 shows our formalization of the logging-behavior IC
policy. The policy first computes the current assignment of nodes to subnets
(predicate InSubnet) based on the IC’s initial configuration (InSubnet0) and the
nodes that have joined (RegistryAddNodeTo) or left (RegistryRemoveNodeFrom) a
subnet. Next, for each subnet the policy compares its nodes’ logging frequencies
computed over a 10min sliding window (MsgCount) against the median logging
frequency over all nodes in the subnet (TypicalBehavior). Only messages con-
taining orchestrator in their component name are relevant for the frequency
calculation.

Correct and Efficient Policy Monitoring, a Retrospective 23

The IC’s execution traces were recorded in a detailed JSON format, which
required a non-trivial mapping to more abstract events (e.g., RegistryAddNodeTo)
with appropriate parameters. This motivated a recent extension of MFOTL and
MonPoly with complex data types, like records, variants, and recursive types [74].

8 Conclusions and Open Problems

Monitoring is a fascinating research area given the rich interplay between theory
and practice. While the gold standard for system verification is the full verifica-
tion of implementations using model-checkers and theorem provers, monitoring
offers an attractive alternative. Not only is monitoring relatively lightweight and
easy to use, it has a larger scope. Namely, one can monitor extremely complex
systems, even involving humans and non-technical components, provided one
has policies for their behavior. Moveover the verdicts returned are statements
about the actual system’s behavior, rather than a mathematical model thereof.
Below we discuss some research questions and open problems that have arisen
from our work.

Whenever monitoring is used in practice, the question arises how to handle
policy violations. We learned from our IC case study (Sect. 7.3) that engineers
value detailed and precise information about violations, as it helps them identify
and fix the root cause more quickly. As a first step towards explainable and
certifiable monitor verdicts, we have developed a monitor for MTL that outputs
minimal proof objects [13,73]. Can one go farther and design a feedback loop that
aids with fault localization by matching such certificates against the monitored
system?

Both a monitor’s performance and correctness are critical. VeriMon is fre-
quently outperformed by the unverified tools MonPoly and StaticMon. We
believe there are two main reasons for this performance gap: the exclusive use
of immutable data structures and the layers of abstractions that were vital for
the proofs but cannot be simplified by the compiler. Our long-term goal is to
refine VeriMon to a highly efficient, imperative implementation. Despite impres-
sive advances in verified refinement [7,71], the complex, recursive invariants of
VeriMon’s state require new ideas to break this effort down into manageable and
composable parts.

Complex policies are often built from abstract concepts that must be made
precise for monitoring. For example, in the IC case study from Sect. 7.3, the
predicate TypicalBehavior was defined as the median logging frequency of nodes
in a subnetwork. One could well imagine that what constitutes typical behavior
is something that can be learned, using machine learning, rather than specified
a priori. Combining monitoring with machine learning is an exciting topic, with
many applications, e.g., in security, anomaly detection, and beyond.

Acknowledgments. This paper has four authors, but it reports on a decade of col-
laboration with numerous other researchers. We would like to explicitly name some of

24 D. Basin et al.

them here. First and foremost, we thank Felix Klaedtke, Martin Raszyk, and Eugen
Zălinescu. Felix and Eugen were key contributors during the inception of MonPoly. Mar-
tin arrived later but left his mark through his work on Hydra, Vydra, MFOTL2RANF,
and VeriMon.

We also thank the past and present monitoring aficionados from our groups at
ETH Zürich and the University of Copenhagen: Bhargav Bhatt, Rafael Castro G.
Silva, Matús Harvan, François Hublet, Jonathan Julián Huerta y Munive, Leonardo
Lima, Srđan Marinović, Samuel Müller, Lennard Reese. In addition, we are grateful
to those B.Sc. and M.Sc. students who contributed to our journey: Berkay Aydogdu,
Marc Bolliger, Frederik Brix, Thibault Dardinier, Christian Fania, Artur Gigon Almada
e Melo, Matthieu Gras, Emma Pind Hansen, Nico Hauser, Lukas Heimes, Andrei Herasi-
mau, Hróbjartur Höskuldsson, Valeria Jannelli, Nicolas Kaletsch, Jeniffer Lima Graf,
Emanuele Marsicano, Galina Peycheva, Sarah Plocher, Jonathan Rappl, Pascal Schärli,
Dawit Legesse Tirore, Adrian Wortmann, Simon Yuan, Stefan Zemljic, Sheila Zingg,
and Remo Zumsteg. We would also like to thank our external collaborators from the
past and present: Emma Arfelt, Daniel Bristot de Oliveira, Germano Caronni, Søren
Debois, Daniel Stefan Dietiker, Sarah Ereth, Yliès Falcone, Heiko Mantel, Birgit Pfitz-
mann, Yvonne-Anne Pignolet, Giles Reger, Arshavir Ter-Gabrielyan, as well as the
participants of the ARVI COST Action and many (mostly) anonymous reviewers.

Finally, we acknowledge the generous external funding we have received for research
on monitoring from the Swiss National Science Foundation (grant 167162 “Big Data
Monitoring” and grant 204796 “Model-driven Security & Privacy”), the US Air Force
Research Laborarory (grant FA9550-17-1-0306 “Monitoring at Any Cost”), and the
Novo Nordisk Foundation (start package grant NNF20OC0063462).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools,
and Techniques from Boost and Beyond. Addison-Wesley, Boston (2004)

3. Afrati, F.N., Ullman, J.D.: Optimizing multiway joins in a map-reduce environ-
ment. IEEE Trans. Knowl. Data Eng. 23(9), 1282–1298 (2011). https://doi.org/
10.1109/TKDE.2011.47

4. Alexandrov, A., et al.: The Stratosphere platform for big data analytics. VLDB
J. 23(6), 939–964 (2014). https://doi.org/10.1007/s00778-014-0357-y

5. Alford, M.W., Lamport, L., Mullery, G.P.: Basic concepts. In: Paul, M., Siegert,
H.J. (eds.) Distributed Systems: Methods and Tools for Specification, An
Advanced Course. LNCS, vol. 190, pp. 7–43. Springer, Cham (1984). https://
doi.org/10.1007/3-540-15216-4_12

6. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155(2), 291–319 (1996). https://doi.org/10.
1016/0304-3975(95)00182-4

7. Arasu, A., et al.: FastVer2: a provably correct monitor for concurrent, key-value
stores. In: Krebbers, R., Traytel, D., Pientka, B., Zdancewic, S. (eds.) 12th ACM
SIGPLAN International Conference on Certified Programs and Proofs (CPP
2023), pp. 30–46. ACM (2023). https://doi.org/10.1145/3573105.3575687

8. Arfelt, E., Basin, D., Debois, S.: Monitoring the GDPR. In: Sako, K., Schneider,
S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 681–699. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-29959-0_33

https://doi.org/10.1109/TKDE.2011.47
https://doi.org/10.1109/TKDE.2011.47
https://doi.org/10.1007/s00778-014-0357-y
https://doi.org/10.1007/3-540-15216-4_12
https://doi.org/10.1007/3-540-15216-4_12
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1145/3573105.3575687
https://doi.org/10.1007/978-3-030-29959-0_33

Correct and Efficient Policy Monitoring, a Retrospective 25

9. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues
in data stream systems. In: Popa, L., Abiteboul, S., Kolaitis, P.G. (eds.) 21st
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS 2002), pp. 1–16. ACM (2002). https://doi.org/10.1145/543613.543615

10. Barre, B., Klein, M., Soucy-Boivin, M., Ollivier, P.-A., Hallé, S.: MapReduce for
parallel trace validation of LTL properties. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 184–198. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35632-2_20

11. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification: Introductory
and Advanced Topics. LNCS, vol. 10457. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-75632-5

12. Basin, D., Bhatt, B.N., Krstić, S., Traytel, D.: Almost event-rate independent
monitoring. Formal Methods Syst. Des. 54(3), 449–478 (2019). https://doi.org/
10.1007/s10703-018-00328-3

13. Basin, D., Bhatt, B.N., Traytel, D.: Optimal proofs for linear temporal logic on
lasso words. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
37–55. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_3

14. Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable
offline monitoring. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS,
vol. 8734, pp. 31–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11164-3_4

15. Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable
offline monitoring of temporal specifications. Formal Methods Syst. Des. 49(1–2),
75–108 (2016). https://doi.org/10.1007/s10703-016-0242-y

16. Basin, D., et al.: VeriMon: a formally verified monitoring tool. In: Seidl, H., Liu, Z.,
Pasareanu, C.S. (eds.) ICTAC 2022. LNCS, vol. 13572, pp. 1–6. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-17715-6_1

17. Basin, D., et al.: A formally verified, optimized monitor for metric first-order
dynamic logic. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12166, pp. 432–453. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51074-9_25

18. Basin, D., et al.: Monitoring the internet computer. In: Chechik, M., Katoen, J.-
P., Leucker, M. (eds.) FM 2023. LNCS, vol. 14000, pp. 383–402. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-27481-7_22

19. Basin, D., Gras, M., Krstić, S., Schneider, J.: Scalable online monitoring of dis-
tributed systems. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol.
12399, pp. 197–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
60508-7_11

20. Basin, D., et al.: MonPoly and VeriMon. https://bitbucket.org/jshs/monpoly
21. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: Monitoring usage-control poli-

cies in distributed systems. In: Combi, C., Leucker, M., Wolter, F. (eds.) 18th
International Symposium on Temporal Representation and Reasoning (TIME
2011), pp. 88–95. IEEE (2011). https://doi.org/10.1109/TIME.2011.14

22. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: Monitoring data usage in
distributed systems. IEEE Trans. Softw. Eng. 39(10), 1403–1426 (2013). https://
doi.org/10.1109/TSE.2013.18

23. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: On real-time monitoring
with imprecise timestamps. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014.
LNCS, vol. 8734, pp. 193–198. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11164-3_16

https://doi.org/10.1145/543613.543615
https://doi.org/10.1007/978-3-642-35632-2_20
https://doi.org/10.1007/978-3-642-35632-2_20
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/s10703-018-00328-3
https://doi.org/10.1007/s10703-018-00328-3
https://doi.org/10.1007/978-3-030-01090-4_3
https://doi.org/10.1007/978-3-319-11164-3_4
https://doi.org/10.1007/978-3-319-11164-3_4
https://doi.org/10.1007/s10703-016-0242-y
https://doi.org/10.1007/978-3-031-17715-6_1
https://doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1007/978-3-031-27481-7_22
https://doi.org/10.1007/978-3-030-60508-7_11
https://doi.org/10.1007/978-3-030-60508-7_11
https://bitbucket.org/jshs/monpoly
https://doi.org/10.1109/TIME.2011.14
https://doi.org/10.1109/TSE.2013.18
https://doi.org/10.1109/TSE.2013.18
https://doi.org/10.1007/978-3-319-11164-3_16
https://doi.org/10.1007/978-3-319-11164-3_16

26 D. Basin et al.

24. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal first-
order properties with aggregations. Formal Methods Syst. Des. 46(3), 262–285
(2015). https://doi.org/10.1007/s10703-015-0222-7

25. Basin, D., Klaedtke, F., Müller, S.: Monitoring security policies with metric first-
order temporal logic. In: Joshi, J.B.D., Carminati, B. (eds.) 15th ACM Sympo-
sium on Access Control Models and Technologies (SACMAT 2010), pp. 23–34.
ACM (2010). https://doi.org/10.1109/TSE.2013.18

26. Basin, D., Klaedtke, F., Müller, S.: Policy monitoring in first-order temporal logic.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 1–18.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_1

27. Basin, D., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring of met-
ric first-order temporal properties. In: Hariharan, R., Mukund, M., Vinay, V.
(eds.) IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2008), Volume 2 of LIPIcs, pp. 49–
60. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2008). https://doi.org/
10.4230/LIPIcs.FSTTCS.2008.1740

28. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1–15:45 (2015). https://doi.org/10.1145/
2699444

29. Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for monitoring real-time prop-
erties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 260–275.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-8_20

30. Basin, D., Klaedtke, F., Zălinescu, E.: Greedily computing associative aggrega-
tions on sliding windows. Inf. Process. Lett. 115(2), 186–192 (2015). https://doi.
org/10.1016/j.ipl.2014.09.009

31. Basin, D., Klaedtke, F., Zălinescu, E.: The MonPoly monitoring tool. In: Reger,
G., Havelund, K. (eds.) International Workshop on Competitions, Usability,
Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools (RV-
CuBES 2017), Volume 3 of Kalpa Publications in Computing, pp. 19–28. Easy-
Chair (2017). https://doi.org/10.29007/89hs

32. Basin, D., Klaedtke, F., Zălinescu, E.: Runtime verification of temporal properties
over out-of-order data streams. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 356–376. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63387-9_18

33. Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for monitoring real-time prop-
erties. Acta Informatica 55(4), 309–338 (2018). https://doi.org/10.1007/s00236-
017-0295-4

34. Basin, D., Klaedtke, F., Zălinescu, E.: Runtime verification over out-of-order
streams. ACM Trans. Comput. Log. 21(1), 5:1–5:43 (2020). https://doi.org/10.
1145/3355609

35. Basin, D., Krstić, S., Traytel, D.: AERIAL: almost event-rate independent algo-
rithms for monitoring metric regular properties. In: Reger, G., Havelund, K. (eds.)
International Workshop on Competitions, Usability, Benchmarks, Evaluation, and
Standardisation for Runtime Verification Tools (RV-CuBES 2017), Volume 3 of
Kalpa Publications in Computing, pp. 29–36. EasyChair (2017). https://doi.org/
10.29007/bm4c

36. Basin, D., Krstić, S., Traytel, D.: Almost event-rate independent monitoring
of metric dynamic logic. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol.
10548, pp. 85–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67531-2_6

https://doi.org/10.1007/s10703-015-0222-7
https://doi.org/10.1109/TSE.2013.18
https://doi.org/10.1007/978-3-642-14295-6_1
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1740
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1740
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1007/978-3-642-29860-8_20
https://doi.org/10.1016/j.ipl.2014.09.009
https://doi.org/10.1016/j.ipl.2014.09.009
https://doi.org/10.29007/89hs
https://doi.org/10.1007/978-3-319-63387-9_18
https://doi.org/10.1007/978-3-319-63387-9_18
https://doi.org/10.1007/s00236-017-0295-4
https://doi.org/10.1007/s00236-017-0295-4
https://doi.org/10.1145/3355609
https://doi.org/10.1145/3355609
https://doi.org/10.29007/bm4c
https://doi.org/10.29007/bm4c
https://doi.org/10.1007/978-3-319-67531-2_6
https://doi.org/10.1007/978-3-319-67531-2_6

Correct and Efficient Policy Monitoring, a Retrospective 27

37. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order moni-
toring. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-1_4

38. Beame, P., Koutris, P., Suciu, D.: Communication steps for parallel query pro-
cessing. J. ACM 64(6), 40:1–40:58 (2017). https://doi.org/10.1145/3125644

39. Becker, D., Rabenseifner, R., Wolf, F., Linford, J.C.: Scalable timestamp syn-
chronization for event traces of message-passing applications. Parallel Comput.
35(12), 595–607 (2009). https://doi.org/10.1016/j.parco.2008.12.012

40. Bersani, M.M., Bianculli, D., Ghezzi, C., Krstić, S., San Pietro, P.: Efficient large-
scale trace checking using MapReduce. In: Dillon, L.K., Visser, W., Williams,
L.A. (eds.) 38th International Conference on Software Engineering (ICSE 2016),
pp. 888–898. ACM (2016). https://doi.org/10.1145/2884781.2884832

41. Bianculli, D., Ghezzi, C., Krstić, S.: Trace checking of metric temporal logic with
aggregating modalities using MapReduce. In: Giannakopoulou, D., Salaün, G.
(eds.) SEFM 2014. LNCS, vol. 8702, pp. 144–158. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10431-7_11

42. Blumensath, A., Grädel, E.: Automatic structures. In: 15th Annual IEEE Sym-
posium on Logic in Computer Science (LICS 2000), pp. 51–62. IEEE Computer
Society (2000). https://doi.org/10.1109/LICS.2000.855755

43. Brix, F., Fania, C., Gras, M., Krstić, S., Schneider, J.: Scalable online monitor.
https://bitbucket.org/krle/scalable-online-monitor

44. Bundala, D., Ouaknine, J.: On the complexity of temporal-logic path checking.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014.
LNCS, vol. 8573, pp. 86–97. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-43951-7_8

45. Carbone, P., Ewen, S., Fóra, G., Haridi, S., Richter, S., Tzoumas, K.: State
management in Apache Flink®: consistent stateful distributed stream process-
ing. Proc. VLDB Endow. 10(12), 1718–1729 (2017). https://doi.org/10.14778/
3137765.3137777

46. Carney, D., et al.: Monitoring streams - a new class of data management applica-
tions. In: 28th VLDB Conference (VLDB 2002), pp. 215–226. Morgan Kaufmann
(2002). https://doi.org/10.1016/B978-155860869-6/50027-5

47. Chomicki, J., Niwinski, D.: On the feasibility of checking temporal integrity con-
straints. J. Comput. Syst. Sci. 51(3), 523–535 (1995). https://doi.org/10.1006/
jcss.1995.1088

48. Codd, E.F.: Relational completeness of data base sublanguages. Technical report
RJ987, IBM Research Laboratory, San Jose, California (1972)

49. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Brewer, E.A., Chen, P. (eds.) 6th Symposium on Operating System Design and
Implementation (OSDI 2004), pp. 137–150. USENIX Association (2004). http://
www.usenix.org/events/osdi04/tech/dean.html

50. DFINITY Team: The Internet Computer for geeks. Cryptology ePrint Archive,
Paper 2022/087 (2022). https://eprint.iacr.org/2022/087

51. Fagin, R.: Horn clauses and database dependencies. J. ACM 29(4), 952–985
(1982). https://doi.org/10.1145/322344.322347

52. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime
verification tools. Int. J. Softw. Tools Technol. Transfer 23(2), 255–284 (2021).
https://doi.org/10.1007/s10009-021-00609-z

53. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. For-
mal Methods Syst. Des. 24(2), 101–127 (2004). https://doi.org/10.1023/B:FORM.
0000017718.28096.48

https://doi.org/10.1007/978-3-642-40787-1_4
https://doi.org/10.1145/3125644
https://doi.org/10.1016/j.parco.2008.12.012
https://doi.org/10.1145/2884781.2884832
https://doi.org/10.1007/978-3-319-10431-7_11
https://doi.org/10.1007/978-3-319-10431-7_11
https://doi.org/10.1109/LICS.2000.855755
https://bitbucket.org/krle/scalable-online-monitor
https://doi.org/10.1007/978-3-662-43951-7_8
https://doi.org/10.1007/978-3-662-43951-7_8
https://doi.org/10.14778/3137765.3137777
https://doi.org/10.14778/3137765.3137777
https://doi.org/10.1016/B978-155860869-6/50027-5
https://doi.org/10.1006/jcss.1995.1088
https://doi.org/10.1006/jcss.1995.1088
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
https://eprint.iacr.org/2022/087
https://doi.org/10.1145/322344.322347
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1023/B:FORM.0000017718.28096.48
https://doi.org/10.1023/B:FORM.0000017718.28096.48

28 D. Basin et al.

54. Francalanza, A., Pérez, J.A., Sánchez, C.: Runtime verification for decentralised
and distributed systems. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime
Verification. LNCS, vol. 10457, pp. 176–210. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-75632-5_6

55. Van Gelder, A., Topor, R.W.: Safety and translation of relational calculus queries.
ACM Trans. Database Syst. 16(2), 235–278 (1991)

56. Gras, M.: CPPMon. https://github.com/matthieugras/cppmon
57. Gras, M.: StaticMon. https://github.com/matthieugras/staticmon
58. Gras, M.: Explicit meets implicit monitoring. Master’s thesis, ETH Zurich,

Switzerland (2022)
59. Haftmann, F.: Code generation from specifications in higher-order logic. Ph.D.

thesis, Technical University Munich, Germany (2009). http://mediatum2.ub.tum.
de/node?id=886023

60. Havelund, K., Peled, D.: Runtime verification: from propositional to first-order
temporal logic. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp.
90–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_7

61. Havelund, K., Peled, D., Ulus, D.: DejaVu: a monitoring tool for first-order tem-
poral logic. In: 3rd Workshop on Monitoring and Testing of Cyber-Physical Sys-
tems (MT@CPSWeek 2018), pp. 12–13. IEEE (2018). https://doi.org/10.1109/
MT-CPS.2018.00013

62. Havelund, K., Peled, D., Ulus, D.: First-order temporal logic monitoring with
BDDs. Formal Methods Syst. Des. 56(1), 1–21 (2020). https://doi.org/10.1007/
s10703-018-00327-4

63. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0_24

64. Henriksen, J.G., et al.: Mona: monadic second-order logic in practice. In:
Brinksma, E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.)
TACAS 1995. LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-60630-0_5

65. Heydari, A., Tavakoli, M., Salim, N.: Detection of fake opinions using time series.
Expert Syst. Appl. 58, 83–92 (2016). https://doi.org/10.1016/j.eswa.2016.03.020

66. Hublet, F., Basin, D., Krstić, S.: User-controlled privacy: taint, track, and control.
Proc. Priv. Enhancing Technol. 2024(1) (2024, to appear)

67. Hublet, F., Basin, D., Krstić, S.: Real-time policy enforcement with metric first-
order temporal logic. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.)
ESORICS 2022, Part II. LNCS, vol. 13555, pp. 211–232. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-17146-8_11

68. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant,
D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60178-3_93

69. Krstić, S., Traytel, D.: Aerial. https://bitbucket.org/traytel/aerial
70. Kuhtz, L., Finkbeiner, B.: Efficient parallel path checking for linear-time temporal

logic with past and bounds. Log. Methods Comput. Sci. 8(4), 10:1–10:24 (2012).
https://doi.org/10.2168/LMCS-8(4:10)2012

71. Lammich, P.: Refinement of parallel algorithms down to LLVM. In: Andronick,
J., de Moura, L. (eds.) 13th International Conference on Interactive Theorem
Proving (ITP 2022), Volume 237 of LIPIcs, pp. 24:1–24:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ITP.2022.
24

https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/978-3-319-75632-5_6
https://github.com/matthieugras/cppmon
https://github.com/matthieugras/staticmon
http://mediatum2.ub.tum.de/node?id=886023
http://mediatum2.ub.tum.de/node?id=886023
https://doi.org/10.1007/978-3-030-03769-7_7
https://doi.org/10.1109/MT-CPS.2018.00013
https://doi.org/10.1109/MT-CPS.2018.00013
https://doi.org/10.1007/s10703-018-00327-4
https://doi.org/10.1007/s10703-018-00327-4
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-60630-0_5
https://doi.org/10.1007/3-540-60630-0_5
https://doi.org/10.1016/j.eswa.2016.03.020
https://doi.org/10.1007/978-3-031-17146-8_11
https://doi.org/10.1007/3-540-60178-3_93
https://bitbucket.org/traytel/aerial
https://doi.org/10.2168/LMCS-8(4:10)2012
https://doi.org/10.4230/LIPIcs.ITP.2022.24
https://doi.org/10.4230/LIPIcs.ITP.2022.24

Correct and Efficient Policy Monitoring, a Retrospective 29

72. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Alge-
braic Methods Program. 78(5), 293–303 (2009). https://doi.org/10.1016/j.jlap.
2008.08.004

73. Lima, L., Herasimau, A., Raszyk, M., Traytel, D., Yuan, S.: Explainable online
monitoring of metric temporal logic. In: Sankaranarayanan, S., Sharygina, N.
(eds.) TACAS 2023, Part II. LNCS, vol. 13994, pp. 473–491. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-30820-8_28

74. Lima Graf, J., Krstić, S., Schneider, J.: Metric first-order temporal logic with
complex data types. In: Katsaros, P., Nenzi, L. (eds.) RV 2023, LNCS 14245, pp.
126–147. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44267-4_7

75. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL spec-
ifications in distributed systems. In: 29th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2015), pp. 494–503. IEEE (2015).
https://doi.org/10.1109/IPDPS.2015.95

76. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad:
a timely dataflow system. In: Kaminsky, M., Dahlin, M. (eds.) 24th ACM SIGOPS
Symposium on Operating Systems Principles (SOSP 2013), pp. 439–455. ACM
(2013). https://doi.org/10.1145/2517349.2522738

77. Ni, J., Li, J., McAuley, J.J.: Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.)
Conference on Empirical Methods in Natural Language Processing (EMNLP-
IJCNLP 2019), pp. 188–197. Association for Computational Linguistics (2019).
https://nijianmo.github.io/amazon/index.html

78. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Cham (2002). https://doi.org/
10.1007/3-540-45949-9

79. Orgun, M.A., Wadge, W.W.: A relational algebra as a query language for temporal
DATALOG. In: Tjoa, A., Ramos, I. (eds.) DEXA 1992, pp. 276–281. Springer,
Vienna (1992). https://doi.org/10.1007/978-3-7091-7557-6_48

80. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers.
In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
573–586. Springer, Heidelberg (2006). https://doi.org/10.1007/11813040_38

81. Raszyk, M.: Hydra and Vydra. https://github.com/mraszyk/hydra
82. Raszyk, M.: MFOTL2RANF. https://github.com/mraszyk/mfotl2ranf
83. Raszyk, M.: Efficient, expressive, and verified temporal query evaluation.

Ph.D. thesis, ETH Zurich, Switzerland (2022). https://doi.org/10.3929/ethz-b-
000553221

84. Raszyk, M., Basin, D., Krstić, S., Traytel, D.: Multi-head monitoring of metric
temporal logic. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019.
LNCS, vol. 11781, pp. 151–170. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-31784-3_9

85. Raszyk, M., Basin, D., Krstić, S., Traytel, D.: Practical relational calculus query
evaluation. In: Olteanu, D., Vortmeier, N. (eds.) 25th International Confer-
ence on Database Theory (ICDT 2022), Volume 220 of LIPIcs, pp. 11:1–11:21.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.
4230/LIPIcs.ICDT.2022.11

86. Raszyk, M., Basin, D., Traytel, D.: From nondeterministic to multi-head deter-
ministic finite-state transducers. In: Baier, C., Chatzigiannakis, I., Flocchini,
P., Leonardi, S. (eds.) 46th International Colloquium on Automata, Languages,
and Programming (ICALP 2019), Volume 132 of LIPIcs, pp. 127:1–127:14.

https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1007/978-3-031-30820-8_28
https://doi.org/10.1007/978-3-031-44267-4_7
https://doi.org/10.1109/IPDPS.2015.95
https://doi.org/10.1145/2517349.2522738
https://nijianmo.github.io/amazon/index.html
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-7091-7557-6_48
https://doi.org/10.1007/11813040_38
https://github.com/mraszyk/hydra
https://github.com/mraszyk/mfotl2ranf
https://doi.org/10.3929/ethz-b-000553221
https://doi.org/10.3929/ethz-b-000553221
https://doi.org/10.1007/978-3-030-31784-3_9
https://doi.org/10.1007/978-3-030-31784-3_9
https://doi.org/10.4230/LIPIcs.ICDT.2022.11
https://doi.org/10.4230/LIPIcs.ICDT.2022.11

30 D. Basin et al.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.
4230/LIPIcs.ICALP.2019.127

87. Raszyk, M., Basin, D., Traytel, D.: Multi-head monitoring of metric dynamic logic.
In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 233–250.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_13

88. Reese, L., Silva, R.C.G., Traytel, D.: TimelyMon. https://git.ku.dk/kfx532/
timelymon

89. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Eng. 12(2), 151–197 (2005). https://doi.org/10.1007/s10515-005-
6205-y

90. Sánchez, C., et al.: A survey of challenges for runtime verification from advanced
application domains (beyond software). Formal Methods Syst. Des. 54(3), 279–
335 (2019). https://doi.org/10.1007/s10703-019-00337-w

91. Schneider, J.: HashMon. https://bitbucket.org/jshs/hashmon
92. Schneider, J.: Randomized first-order monitoring with hashing. In: Dang, T.,

Stolz, V. (eds.) RV 2022. LNCS, vol. 13498, pp. 3–24. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-17196-3_1

93. Schneider, J.: Scalable and trustworthy monitoring. Ph.D. thesis, ETH Zurich,
Switzerland (2023). https://doi.org/10.3929/ethz-b-000614295

94. Schneider, J., Basin, D., Brix, F., Krstić, S., Traytel, D.: Scalable online first-order
monitoring. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp.
353–371. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_20

95. Schneider, J., Basin, D., Brix, F., Krstić, S., Traytel, D.: Adaptive online first-
order monitoring. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019.
LNCS, vol. 11781, pp. 133–150. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-31784-3_8

96. Schneider, J., Basin, D., Brix, F., Krstić, S., Traytel, D.: Scalable online first-order
monitoring. Int. J. Softw. Tools Technol. Transfer 23(2), 185–208 (2021). https://
doi.org/10.1007/s10009-021-00607-1

97. Schneider, J., Basin, D., Krstić, S., Traytel, D.: A formally verified monitor for
metric first-order temporal logic. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019.
LNCS, vol. 11757, pp. 310–328. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-32079-9_18

98. Stoller, S.D.: Detecting global predicates in distributed systems with clocks. Dis-
trib. Comput. 13(2), 85–98 (2000). https://doi.org/10.1007/s004460050069

99. Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications.
In: Havelund, K., Roşu, G. (eds.) 4th Workshop on Runtime Verification (RV
2004), Volume 113 of Electronic Notes in Theoretical Computer Science, pp. 145–
162. Elsevier (2004)

100. Tuzhilin, A., Clifford, J.: A temporal relational algebra as basis for temporal
relational completeness. In: McLeod, D., Sacks-Davis, R., Schek, H.-J. (eds.) 16th
International Conference on Very Large Data Bases (VLDB 1990), pp. 13–23.
Morgan Kaufmann (1990)

101. Xing, Y., Zdonik, S.B., Hwang, J.-H.: Dynamic load distribution in the Borealis
stream processor. In: Aberer, K., Franklin, M.J., Nishio, S. (eds.) 21st Interna-
tional Conference on Data Engineering (ICDE 2005), pp. 791–802. IEEE Com-
puter Society (2005). https://doi.org/10.1109/ICDE.2005.53

102. Zingg, S., Krstić, S., Raszyk, M., Schneider, J., Traytel, D.: Verified first-order
monitoring with recursive rules. In: Fisman, D., Rosu, G. (eds.) TACAS 2022.
LNCS, vol. 13244, pp. 236–253. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-99527-0_13

https://doi.org/10.4230/LIPIcs.ICALP.2019.127
https://doi.org/10.4230/LIPIcs.ICALP.2019.127
https://doi.org/10.1007/978-3-030-59152-6_13
https://git.ku.dk/kfx532/timelymon
https://git.ku.dk/kfx532/timelymon
https://doi.org/10.1007/s10515-005-6205-y
https://doi.org/10.1007/s10515-005-6205-y
https://doi.org/10.1007/s10703-019-00337-w
https://bitbucket.org/jshs/hashmon
https://doi.org/10.1007/978-3-031-17196-3_1
https://doi.org/10.3929/ethz-b-000614295
https://doi.org/10.1007/978-3-030-03769-7_20
https://doi.org/10.1007/978-3-030-31784-3_8
https://doi.org/10.1007/978-3-030-31784-3_8
https://doi.org/10.1007/s10009-021-00607-1
https://doi.org/10.1007/s10009-021-00607-1
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.1007/s004460050069
https://doi.org/10.1109/ICDE.2005.53
https://doi.org/10.1007/978-3-030-99527-0_13
https://doi.org/10.1007/978-3-030-99527-0_13

	Correct and Efficient Policy Monitoring, a Retrospective
	1 Introduction
	2 The Logic
	3 Monitoring Setting
	4 Restrictions and Algorithms
	4.1 Relational Algebra Normal Form
	4.2 Translation to RANF
	4.3 Automatic Structures
	4.4 Propositional Monitoring

	5 Parallelization
	5.1 Scalable Offline Monitoring
	5.2 Scalable Online Monitoring
	5.3 Monitoring Distributed Systems

	6 Verification
	7 Applications
	7.1 Security and Anomaly Detection
	7.2 Privacy and Data Protection
	7.3 Distributed Systems

	8 Conclusions and Open Problems
	References

