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A Theory of Black-Box Tests

Mohammad Torabi Dashti∗ David Basin†

Abstract

The purpose of testing a system with respect to a requirement is to refute the hypothesis

that the system satisfies the requirement. We build a theory of tests and refutation based on

the elementary notions of satisfaction and refinement. We use this theory to characterize the

requirements that can be refuted through black-box testing and, dually, verified through such tests.

We consider refutation in finite time and obtain the finite falsifiability of hyper-safety temporal

requirements as a special case. We extend our theory with computational constraints and separate

refutation from enforcement in the context of temporal hyper-properties. Overall, our theory

provides a basis to analyze the scope and reach of black-box tests and to bridge results from

diverse areas including testing, verification, and enforcement.
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1 Introduction

Problem. In black-box testing, the internal structure of the system under test, including its hardware

and the algorithms and data structures implemented, are unknown to the tester. The need for black-box

testing arises when testers have no access to, or auxiliary information about, the system under test,

other than what they can observe by interacting with the system over its interface, e.g., by providing

the system with inputs and observing its outputs.

Despite the simplicity of the black-box setting and the manifest importance of testing in general,

the theory of black-box testing is under-developed and a solid understanding of its strength and limi-

tations is lacking. For instance, it is commonly agreed upon that the purpose of testing a system with

respect to a requirement is to refute the hypothesis that the system satisfies the requirement [16, 36].

Yet existing testing theory is inadequate for answering basic questions in the black-box setting such

as: which class of requirements are refutable, given a class of tests? Or, which class of tests, if any,

can refute a class of requirements?

We develop a theory of black-box testing that explicates what can be determined about systems by

observing their behavior. Our theory fully characterizes the class of refutable and verifiable require-

ments. This means it precisely specifies for which system requirements the violation (respectively

satisfaction) can, or cannot, be demonstrated through black-box tests. Establishing the limits of test-

ing this way is analogous to establishing elementary results in complexity theory that delimit the

boundaries of effective computation. Moreover, our theory helps testers understand the consequences

of implicit assumptions they may be making when carrying out tests, for example, that systems are

deterministic. Our theory also provides a foundation for bridging results in testing with related disci-

plines.
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Approach. We start with an abstract model of systems and requirements (§2) and introduce two

types of requirements: obligations and prohibitions (§3). A requirement is an obligation if it obliges

the systems to exhibit certain (desired) behaviors, and it is a prohibition if it prohibits the systems from

exhibiting (undesired) behaviors. Here, a behavior could be, for example, sets of input/output pairs, or

sets of traces. Functional requirements are typically obligations, and security requirements are, by and

large, prohibitions. We show that these two requirement types admit a straightforward order-theoretic

characterization. Namely, given a refinement (or abstraction) partial-order on a set of systems, the

satisfaction of an obligation is abstraction-closed, and for a prohibition it is refinement-closed.

We turn next to black-box tests (§4). Given a black-box system, the tester can observe its input

and output, but cannot observe how the latter is produced from the former. The tester can therefore

analyze such a system only by interacting with it over its interface, and not by, for example, analyzing

its software. In black-box testing, sometimes called “testing by sampling” [16], testing amounts

to inspecting a sample of system behaviors. The sample obtained through tests can be seen as a

refinement of the system under test, a notion we make precise in subsequent sections. All a tester

learns by sampling is that the system exhibits certain behaviors. From this, the tester cannot infer

that the system does not exhibit other behaviors as well. Such a conclusion could only be justified

through the sample’s exhaustiveness, which black-box testing alone cannot establish. A requirement

is therefore refutable through tests if, for any system that violates the requirement, the hypothesis that

the system satisfies the requirement can be refuted by inspecting a refinement of the system.

It follows that a requirement whose violation is contingent upon demonstrating the absence of

behaviors cannot be refuted through black-box testing. Based on this, we prove that any refutable

requirement is a prohibition, and all non-trivial obligations are irrefutable (§5). We then define the

notion of verification dual to refutation, and show that any verifiable requirement is an obligation and

that non-trivial prohibitions cannot be verified through tests (§6).

The theory sketched above is aimed to delimit the scope and reach of black-box testing in general.

However, it does not account for two central limitations of black-box tests in practice: testing must

proceed in a finite amount of time, and test oracles must be computable. We specialize our theory

to accommodate these limitations. Namely, we introduce the notions of finite refutability (and dually

finite verifiability), and characterize the class of finitely refutability (verifiable) requirements (§7).

Our main result here relates finitely refutable temporal requirements to safety properties and hyper-

safety hyper-properties. We further specialize the theory by considering the case when test oracles are

constrained to be computable (§8). We use this specialization to separate properties that are refutable

from those that are enforceable by runtime monitoring.

While §7 and §8 pertain to specializations of our black-box testing theory, in §9 we consider a

generalization: testing in the grey-box setting where testers may have partial information about the

system under test. It is not surprising that access to auxiliary information can enlarge the set of

refutable requirements. Our main result here is to show that refutation with the help of auxiliary

information can be reduced to the task of refuting a prohibition. This result further illustrates the tight

connection between prohibitions and refutability mentioned above. We also use this generalization to

explicate the assumptions that are implicit in several well-known testing techniques (§10).

Overall, we present a basic theory for reasoning about the strength and limitations of black-box

testing. Our theory is abstract and has minimal formal machinery, which makes it easy to extend. We

present specializations and generalizations that account for refutation in finite time, refutation under

computational constraints, and refutation aided by auxiliary information. We use these to prove new

results and to obtain known results as special cases, as explained in the following.
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Contributions. Our first contribution is the theory sketched above. We use it to fully characterize

the requirements that can be refuted and those that can be verified through black-box tests. Our proofs

are short; they often amount to simply unrolling definitions. This suggests that our theory is at the

right level of abstraction for reasoning about black-box tests, a claim which is further supported by

observing that the theory lends itself to direct, straightforward extensions, as discussed above.

Our second contribution is to show how our theory can be used to derive both known and new

results in a straightforward way. In particular, we present different applications of our theory of finite

refutability (§7). For instance, we demonstrate that the finite falsifiability of hyper-safety temporal

requirements established by Clarkson and Schneider [14] can be derived as a special case in our

theory. As another example, we use our characterization to separate refutability from enforceability:

we show that any enforceable temporal requirement is refutable, but refutable requirements need not

be enforceable. This separation hinges upon analyzing the computational constraints of refutation

(and enforcement) via a notion of algorithmically refutable requirements (§8). Moreover, the abstract

nature of our theory allows us to establish connections between algorithmic refutability, topology, and

recursion theory.

Our third contribution is to use our characterization of refutability through black-box tests to

augment and shed light on the folkloric understanding of testing that exists in the community. As

an example, consider Dijkstra’s statement that “program testing can be used to show the presence

of bugs, but never to show their absence”, which is widely quoted in software testing community.

We make precise a stronger version of this statement, and show that its proof is independent of the

cardinality of the input domain, i.e., the number of test cases one must consider. Moreover, we

use our characterization to rectify the folklore surrounding Dijkstra’s statement, for example, that

testing can never be used to establish that a system satisfies a requirement. As a second example,

we highlight the fundamental role that determinacy assumptions play in making sense of day-to-day

black-box functional tests (§9). In particular, we examine three prominent testing techniques, namely

functional testing, model-based testing, and fuzz testing, in light of our theory, and explicate their

implicit assumptions (§10). We discuss other related work in §11 and conclude by discussing the

limitations of our theory in §12.

Parts of the work described here were published in [47]. The current article extends this previ-

ous work with additional technical details, examples, and explanations, pertaining to the notions of

refutability, verifiability, and black-box testing. Moreover, the notion of refutability under auxiliary

assumptions (§9) as well as the systematic review of testing practice (§10) are entirely new.

2 Systems and Requirements

We give a simple abstract model of systems and requirements, the main ingredients of our theory.

A system is an entity that is capable of exhibiting observable behaviors. Operating systems, digital

circuits and vending machines are all examples of systems. We keep the notion of an observable

behavior unspecified for now and instead work with systems as a set of objects with an associated

partial order. Namely, let D denote the nonempty set of all systems under consideration, which is

our domain of discourse. We assume that (D,�) is a partially-ordered set (poset), where � denotes

a refinement relation: S1 � S2 means that S2 exhibits all the behaviors of S1. In this case, we say

system S1 refines system S2, or system S2 abstracts system S1.

There exists a large body of research on refinement and abstraction; see for instance [1, 34, 51].

Examples of refinement relations include trace containment and various algebraic simulation relations.

In the interest of generality, we do not bind � to any particular relation. We write ⌈S⌉ and ⌊S⌋
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respectively for the set of systems that abstract a system S and those that refine it: ⌈S⌉ = {S′ ∈ D |
S � S′} and ⌊S⌋ = {S′ ∈ D | S′ � S}. We assume that the poset (D,�) is bounded: it has a

greatest element ⊤ and a least element ⊥. The “chaos” system ⊤ (sometimes called the “weakest”

system [27]), abstracts every system, and the “empty” system ⊥ refines every system in D. In short,

our system model is a four-tuple (D,�,⊥,⊤).
We remark that ⊤ and ⊥ are fictitious entities in the sense that there is no need to construct them.

We will use ⊤ to reason about the testers’ epistemic limitations. In contrast, ⊥ is, strictly speaking, not

necessary for our theory’s development. We introduce it for the sake of symmetry and as a shorthand

for “empty” systems.

We extensionally define a requirement to be a set of systems. A system satisfies a requirement R
if it belongs to R. For example, the requirement stipulating that systems are deterministic consists

of all the deterministic systems in D. For now, we need not expound on the satisfaction relation

between systems and requirements; we will give examples later. We write χR for a requirement R’s

characteristic function, which maps D to {0, 1}. A requirement R is trivial if all or none of the

systems in D satisfy it, i.e. χR is a constant function iff R is trivial.

It is immediate that (R,⊆) is a complete lattice, where R is the set of all requirements and ⊆
is the standard set inclusion relation. We define the conjunction of two requirements R1 and R2,

denoted R1∧R2, as their meet, and their disjunction, denoted R1∨R2, as their join. For a nonempty

set R of systems, we write ⌈R⌉ =
⋃

S∈R⌈S⌉ and ⌊R⌋ =
⋃

S∈R⌊S⌋. A set R is abstraction-closed

if R = ⌈R⌉, and refinement-closed if R = ⌊R⌋. Such a set is called an upper set, and respectively, a

lower set in order theory.

3 Requirement Types

We define obligations and prohibitions, and prove a lemma that separates these requirement types

(§3.1). Afterward, we characterize the requirements that can be expressed as the conjunction of an

obligation and a prohibition (§3.2). Finally, we present an intuitive interpretation of obligations and

prohibitions as, respectively, lower-bounds and upper-bounds on system behaviors (§3.3).

3.1 Obligations and Prohibitions

A requirement is an obligation if it obliges the systems to exhibit certain (desired) behaviors, such

as intended functionalities and features. For example, a requirement for a database system obliges it

to provide the user with an option to commit transactions. This requirement cannot be violated by

adding behaviors to the system, for example by providing the user the option to review transactions.

The satisfaction of an obligation R is therefore abstraction-closed: ∀S, S′ ∈ D. S ∈ R ∧ S � S′ →
S′ ∈ R.

A requirement is a prohibition if it prohibits the systems from exhibiting certain (undesired) be-

haviors. For instance, consider the requirement that prohibits a database system from committing

malformed transactions. This requirement cannot be violated by removing behaviors from the sys-

tem, for example removing the option for committing transactions altogether. That is, the satisfaction

of a prohibition R is refinement-closed: ∀S, S′ ∈ D. S ∈ R ∧ S′ � S → S′ ∈ R.

Rewriting the previous two formulas gives us the following definition.

Definition 1. A requirement R is an obligation if R = ⌈R⌉, and R is a prohibition if R = ⌊R⌋.

The following example illustrates the system model of §2, obligations, and prohibitions. The

example also introduces the extensional input-output system model eio, which we use throughout
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the paper. This model highlights two features of interactive systems that (1) distinguish between inputs

and outputs, and (2) react to any input, either by producing an output (including undesired ones, such

as throwing an exception or crashing) or by diverging, i.e. not terminating.

Example 1. Consider the system model (2N×N,⊆, ∅,N×N), where a system is extensionally defined

as a subset of N × N, with N being the set of natural numbers, and the refinement relation is the

standard subset relation. For an input i ∈ N, a system S produces an output o, non-deterministically

chosen from the set {n ∈ N | (i, n) ∈ S}, and it does not produce any outputs when {n ∈ N | (i, n) ∈
S} is empty. We call this system model eio. Note that, due to its extensional definition, this model

makes no distinctions between two systems that define the same subset of N × N but are otherwise

different, e.g., one of them runs faster than the other.

The requirement P stipulating that systems are deterministic is a prohibition: if S is deterministic,

meaning ∀i ∈ N. |{n ∈ N | (i, n) ∈ S}| ≤ 1, then so is any refinement, i.e. subset, of S. In particular,

the empty system satisfies the definition of determinacy.

The requirement O stipulating that systems define total relations is an obligation: if S is total,

meaning ∀i ∈ N. |{n ∈ N | (i, n) ∈ S}| > 0, then so is any abstraction, i.e. superset, of S. In

particular, ⊤ is total.

The requirement R, stating that systems extensionally define total functions, is clearly neither a

prohibition nor an obligation: from ∀i ∈ N. |{n ∈ N | (i, n) ∈ S}| = 1 we cannot conclude that an

arbitrary subset or superset of S defines a total function. Note that R = O ∧ P .

Two remarks are due here. First, Definition 1 qualifies the relationship between a requirement’s

satisfaction and the notion of refinement. Analogous formulations are found, for example, in logic.

A satisfiable sentence remains satisfiable after enlarging the set of models, whereas a valid sentence

remains valid after reducing the set of models. In this sense, obligations resemble satisfiability, and

prohibitions resemble validity.

Second, syntactically reformulating a requirement’s description does not affect its type. For exam-

ple, the prohibition stating that systems may not produce two (or more) different outputs for any input

can be syntactically reformulated as systems may produce at most one output for each input without

affecting its type. The latter formulation permits, and the former forbids, certain behaviors. As a sec-

ond example, the requirement F that forbids “doing nothing” is abstraction-closed, simply because

all systems except ⊥ satisfy F . That is, F is an obligation, in spite of the term “forbid” appearing in

its statement. In short, the syntactic disguise of a requirement plays no role in determining its type.

We now separate obligations and prohibitions by showing that a nontrivial requirement cannot

belong to both these types. A requirement R is an obligation iff χR is monotonically increasing in �,

that is, S � S′ → χR(S) ≤ χR(S
′). Similarly, R is a prohibition iff χR is monotonically decreasing,

that is, S � S′ → χR(S
′) ≤ χR(S). Therefore, any requirement that is both an obligation and a

prohibition must have a constant characteristic function and hence is trivial. The following lemma is

now immediate. (See Appendix A for all proofs.)

Lemma 1. If a requirement R is both an obligation and a prohibition, then R is trivial.

This lemma implies that a prohibition cannot be replaced with an obligation and vice versa. For

example, the prohibition smoking is forbidden has no equivalent obligation, and the obligation sac-

rifice a ram has no equivalent prohibition. The lemma does not however imply that obligations and

prohibitions exhaust the set of requirements. A non-monotone requirement, i.e. one whose char-

acteristic function is neither monotonically increasing nor monotonically decreasing, is neither an

obligation nor a prohibition. For instance, the requirement R = O ∧ P , defined in Example 1, is

neither an obligation nor a prohibition, as it is not monotone.
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Many practically-relevant requirements turn out to be the conjunction of an obligation and a pro-

hibition, similarly to R above. We generalize this to the notion of semi-monotonicity.

3.2 Semi-Monotonicity

A requirement is semi-monotone if it is the conjunction of two (or more) monotone requirements.

In §5 we show that, when it comes to refutability, a semi-monotone requirement behaves like a mono-

tone one, but only for some systems. This motivates studying semi-monotonicity.

Semi-monotonicity is strictly weaker than monotonicity. Consequently, obligations and prohibi-

tions are (trivially) semi-monotone, but a semi-monotone requirement need not belong to either of

these types. The following lemma states that obligations and prohibitions, closed under conjunction,

are necessary and sufficient for expressing all semi-monotone requirements. Note that, due to the

idempotence of ⌈·⌉ and ⌊·⌋, ⌈R⌉ is an obligation and ⌊R⌋ a prohibition for any requirement R.

Lemma 2. A requirement R is semi-monotone iff R = ⌈R⌉ ∧ ⌊R⌋.

Although semi-monotonicity holds for many requirements, not all requirements are semi-monotone,

as the following example illustrates.

Example 2. Consider the eio model and the requirement R that is satisfied by a system S if for each

(i, o) ∈ S there exists some (i′, o) ∈ S, with i 6= i′. This requirement, which can be seen as a

simplified form of a k-anonymity requirement [45], states that by solely inspecting a system’s outputs,

an observer cannot determine whether or not the input is some particular i ∈ N.

Consider the ascending chain of systems S0 � S1 � S2 � · · · , where S0 = {(0, 0)}, and

Sj = Sj−1 ∪ {(j, o)}, where o = j/2 if j is even, and o = (j − 1)/2 otherwise. That is, S1 =
S0 ∪ {(1, 0)}, S2 = S1 ∪ {(2, 1)}, and so forth. Note that Sj satisfies R iff j is odd, with j ∈ N. The

diagram below illustrates χR with respect to the systems’ indices in the chain.

χR

N

1

0 1 2 3 4

It is easy to check that on any chain S0 � S1 � · · · , a monotone requirement’s characteris-

tic function changes its value at most once. A semi-monotone requirement’s characteristic function

changes at most once from 0 to 1, and at most once from 1 to 0. From the zigzagging χR of the above

diagram, it is evident that R is not semi-monotone.

Alternatively, note that ⌈R⌉∧⌊R⌋ = D 6= R, and hence R is not semi-monotone due to Lemma 2.

We conclude this section by remarking that semi-monotonicity is invariant under conjunction:∧
R∈ρ R is semi-monotone for any nonempty set ρ of semi-monotone requirements (see the ap-

pendix for details). This justifies the practice of piece-wise specification of (semi-monotone) re-

quirements, e.g. one for negative integers and one for non-negative ones, and then combining them

with conjunction. Note however that semi-monotonicity is not an invariant under disjunction because

any nonempty requirement R is the disjunction of (infinitely many) semi-monotone requirements:

R =
∨

S∈R⌈S⌉ ∧ ⌊S⌋.
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Obligatory

S

Figure 1: The set of all behaviors is partitioned into the set of prohibited behaviors, represented by

the hatched area, and the set of permissible ones, represented by the white box. The set of obligatory

behaviors, represented by the oval, is included in the set of permissible behaviors. The triangle stands

for a system S’s behaviors. The white circle represents a violation of the obligation denoted by the

oval, and the black circle represents a violation of the prohibition depicted by the hatched area.

3.3 Lower-Bound and Upper-Bound Interpretations

Here we present an intuitive interpretation of obligations and prohibition that we illustrate using the

eio model. In the eio model, an obligation O is a set of systems that can be characterized also by a set

of desired behaviors. Any violation of O is therefore due to the behaviors that S lacks. Consequently,

O can be seen as a lower-bound for the set of S’s behaviors. Similarly, S satisfies a prohibition P
iff the set of behaviors of S is contained in the set of behaviors P permits. Any violation of P is

therefore due to excessive behaviors of S. In this sense, P gives rise to an upper-bound for the set

of S’s behaviors.

Example 3. Consider the eio system model, and the obligation O stating that a (non-deterministic)

system S must produce i + 1 as one of its possible outputs for every even input 2i. Then, S ∈ O ↔
F ⊆ S, where F = {(2i, i + 1) | i ∈ N}. Now, consider the prohibition P stating that a system

may only output i + 1 for an even input 2i, and for odd numbers the system never outputs 0. Then,

S ∈ P ↔ S ⊆ G, where G = F ∪ {(2i + 1, o+ 1) | i, o ∈ N}.

We can now express the satisfaction relation between S and R = O ∧ P as S ∈ R ↔ F ⊆ S ⊆
G. A system violates R iff it lacks a behavior of F , or it exhibits a behavior outside G.

The diagram of Figure 1 illustrates the lower-bound and upper-bound interpretations, where the

oval is the lower-bound and the white box is the upper-bound on system behaviors. A similar figure

is given in [46].

Two remarks are due here. First, interpreting prohibitions as a set of prohibited behaviors leads to

a natural definition of permissible behaviors. Namely, the set of permissible behaviors complements

the set of prohibited ones, cf. deontic logic [52]. To avoid inconsistency, all obligatory behaviors

must be permissible, but not all permissible behaviors need be obligatory. Consequently, the set of

permissible behaviors for a system, delimited by the prohibitions, does not necessarily coincide with

its set of obligatory behaviors, as illustrated in Figure 1.

Second, a requirement R that is not semi-monotone does not admit the lower-bound and upper-

bound interpretations: a system may violate R even when it is bounded from below and from above

by systems that satisfy R. As Example 2 shows, S1 ∈ R, S3 ∈ R, and S1 � S2 � S3 do not entail

S2 ∈ R.

4 Black-Box Tests

Recall that a system is a black-box if we can observe its input and output, but cannot observe how the

latter is produced from the former. In black-box testing, a tester can only interact with the system over
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its interface. We now characterize this in our system model. We start by defining a test setup, which

enables us to distinguish system behaviors from what a tester observes.

Let (D,�,⊥,⊤) be a system model. By sampling the behaviors of a system S ∈ D, a tester

makes an observation. We do not further specify observations. We give examples shortly. A test

setup is a pair (T, α), where T is a domain of observations and α : D → 2T is an order-preserving

function, i.e., S � S′ → α(S) ⊆ α(S′).
Intuitively, the set α(S) consists of all the observations that can be made by testing a system S in

this test setup and a black-box test simply amounts to making an observation from this set. Since α
is order-preserving, if t belongs to α(S) for some system S, then t ∈ α(S′) for any system S′ that

abstracts S. This reflects the nature of black-box testing where analyzing a system S “by sampling”

amounts to inspecting a sample of S’s behaviors [16]. Therefore, if an observation can be made on S
by inspecting the behaviors S exhibits, then the same observation can also be made on any system S′

that abstracts S, simply because S′ exhibits all of S’s behaviors. We illustrate these notions with an

example.

Example 4. Consider the eio system model and the test setup Tr = (D, ⌊·⌋), where a tester may ob-

serve an arbitrary refinement of the system under test. Note that ⌊·⌋ is order-preserving and hence Tr

is a test setup. The subscript r indicates reflexivity: a system S is itself a legitimate observation on S
in the test setup Tr. In Section 5.1, we explain reflexive test setups in detail.

Suppose a tester observes that a system S outputs 0 on input 0, and 1 on input 1. That is, the

tester makes the observation t = {(0, 0), (1, 1)} on S, which is a refinement of S. Clearly ⊤ could

also yield t, simply because t ∈ ⌊⊤⌋.

We define the function α̂ : T → 2D to map an observation to the set of systems that can yield that

observation. Formally, α̂(t) = {S ∈ D | t ∈ α(S)}, for any t ∈ T . In black-box testing, a tester

knows nothing about the behaviors of the system under test beyond what is observed by interacting

with it. Therefore, all the tester can conclude from an observation t is that the system under test can be

any system that could yield t. That is, solely based on an observation t, the tester cannot distinguish

between the system under test and any other system in α̂(t). We call this the indistinguishability

condition.

The indistinguishability condition can be seen as providing an epistemic basis for the standard

structurally-oriented definition of black-box testing given in the introduction. In fact, the key obser-

vation enabling our theorems on refutation and verification, given in the forthcoming sections, is that

test setups for black-box systems satisfy the indistinguishability condition.

The indistinguishability condition delimits the knowledge a tester can obtain through black-box

testing. Suppose Ted (the tester) performs a black-box analysis of a system S. Ted cannot distinguish

S from, say, ⊤, simply because ⊤ abstracts every system. This epistemic limitation is not alleviated by

complete tests: regardless of whether or not Ted samples and analyzes all the behaviors of S during

testing, ⊤ ∈ ⌈S⌉ is still true. Rephrasing this in terms of system behaviors, black-box testing can

neither demonstrate the absence of behaviors nor the completeness of an observation; otherwise, Ted

could tell that the system under test is not ⊤, which exhibits all behaviors, thereby distinguishing S
from ⊤. But, as just discussed, this falls outside the scope of black-box testing.

Example 5. Consider Example 4. After observing t = {(0, 0), (1, 1)}, the tester cannot conclude

that S extensionally defines the identity function. This is not surprising as S cannot be distinguished

from ⊤ by observing t alone, and ⊤ does not define the identity function. The same argument shows

that the tester cannot conclude that S is deterministic.
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Note that the indistinguishability condition holds true regardless of whether or not observations

can be carried out in a finite amount of time; we return to this point in §7. The condition is also

independent from the practical infeasibility of complete tests (that complete tests are infeasible is

demonstrated, e.g., in [31]). Moreover, whether the observations are actively triggered by providing

the system under test with selected inputs, or they are obtained by simply monitoring the system’s

behaviors is immaterial; we examine monitoring in §8.2.

We conclude this section with a remark: not all analysis techniques are constrained by the indistin-

guishability condition and some, therefore, can demonstrate the absence of behaviors. One example

is static analysis, which falls outside the scope of black-box testing as it relies on a programs source

code as opposed to inspecting a sample of the program’s behaviors [38]. Similarly, a Fagan inspec-

tion, based on structured reviews of source code and design documents, is not black-box [18]. Both of

these techniques can indeed demonstrate the absence of system behaviors. We return to the question of

how our theory can be extended with additional information, itself not discernible through black-box

testing, in §9.

5 Refutable Requirements

We formally define the notion of refutability through black-box tests and prove that any refutable

requirement is a prohibition (§5.1). Afterward, we investigate the (ir)refutability of two important

classes of requirements: semi-monotone and non-semi-monotone requirements (§5.2).

5.1 Refutability through Black-Box Tests

The purpose of testing a system with respect to a requirement is to refute the hypothesis that the

system satisfies the requirement [41, 16, 36]. This is in practice realized by finding a test case where

the system does not produce the expected output. But for which class of requirements do such test

cases exist? We characterize below the class of requirements that can be refuted using black-box tests.

We begin with an illustrative special case that relates observations, which are refinements of systems,

with requirements, which are sets of systems.

Any system model M = (D,�,⊥,⊤) induces a reflexive test setup T
M
r = (D, ⌊·⌋), where each

observation on a system S is a system in D that refines S. When M is clear from the context, we simply

write Tr for M’s reflexive test setup, as we did in Example 4. In a reflexive setup, testing a system S
against a requirement R amounts to inspecting a refinement Sw of S to refute the hypothesis S ∈ R.

By merely observing Sw, with Sw ∈ ⌊S⌋, the tester cannot distinguish S from any other system that

abstracts Sw, due to the indistinguishability condition. Therefore, the tester can infer S 6∈ R after

observing Sw iff every system in ⌈Sw⌉ violates R. Hence R is refutable in a reflexive test setup if,

for any S that violates R, there is at least one witness system Sw ∈ ⌊S⌋ such that every system that

abstracts Sw violates R. That is, R is refutable in Tr if ∀S ∈ D. S 6∈ R → ∃Sw ∈ ⌊S⌋. ⌈Sw⌉∩R = ∅.

Example 6. Consider systems whose input and output domains are the set of lists of natural num-

ber. Let R be the requirement that restricts the system’s outputs to ascending lists. Suppose that a

system S violates R. Then there must exist an input i for which S produces an output list o that is

not ascending. Let us refer to the system that exhibits just this forbidden behavior as Sw = {(i, o)}.

Clearly Sw refines S, and any system that abstracts Sw violates R by exhibiting the forbidden behav-

ior. Therefore, R is refutable in the test setup Tr.

We generalize the above and define refutability in an arbitrary test setup.
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Definition 2. Let T = (T, α) be a test setup for a system model (D,�,⊥,⊤). A requirement R is

T-refutable if ∀S ∈ D. S 6∈ R → ∃t ∈ α(S). α̂(t) ∩R = ∅.

Let R be a (T, α)-refutable requirement. Then, for any system S, S 6∈ R → ⌈S⌉ ∩R = ∅, simply

because α is order-preserving. The contrapositive implies that if S1 ∈ R and S2 � S1, then S2 ∈ R.

That is, R is a prohibition. The following theorem is now immediate.

Theorem 1. Any T-refutable requirement is a prohibition.

We illustrate this theorem with a simple example.

Example 7. Consider the model where each system extensionally defines a binary tree where each

node is colored either red or black, and � is the subtree relation. The requirement R stipulates that

the two children of any red node must have the same color. Observing a tree t in which a red node has

a red child and a black child implies that any tree that abstracts t violates R. Therefore, R is refutable

in Tr, and it is a prohibition due to Theorem 1.

The following lemma can be seen as a basic sanity check on our definition: if requirements are

refutable, then so is their conjunction.

Lemma 3. Let ρ be a nonempty set of T-refutable requirements. Then,
∧

R∈ρ R is T-refutable.

Given a system model, we say a test setup Ti is more permissive than a test setup Tj if any

Tj-refutable requirement is Ti-refutable. The following lemma along with Theorem 1 imply that, in

any system model, the reflexive test setup is the most permissive test setup.

Lemma 4. In any system model M, any prohibition is TM
r -refutable.

An intuitive account of this lemma is as follows. Any test setup T = (T, α) induces a set of

obligations: O(T) = {α̂(t) | t ∈ T}. Testing a system S in T amounts to the conclusion that S
satisfies an obligation that includes S, namely the obligation α̂(t), where t ∈ α(S) is the observation

obtained through testing. Therefore, the smaller α̂(t) is, the more we learn about S by observing t;
recall the indistinguishability condition. For any system S, the smallest obligation in R that includes

S is ⌈S⌉, which belongs to O(Tr) = {⌈S⌉ | S ∈ D}.

We illustrate Lemma 4 with an example from temporal requirements.

Example 8. To investigate temporal requirements, we model systems that induce infinitely long se-

quences of events, such as operating systems, and their requirements following [14]. Let Σ be an

alphabet, e.g. of events or states. We write Σω for the set of countably infinite sequences of Σ’s

elements. A behavior is an element of Σω and a system is a set of behaviors. The complete lat-

tice (2Σ
ω

,⊆, ∅,Σω) instantiates our system model, defined in §2.

A temporal property φ is a set of behaviors. By overloading the notion of satisfaction, we say

a system S satisfies φ if S ⊆ φ. That is, φ defines a refinement-closed requirement: Rφ = ⌊φ⌋.

Therefore, any property is a prohibition, hence refutable in Tr due to Lemma 4.

We return to temporal requirements in §7, where we show that Tr can be “too permissive” in some

settings, going beyond what is refutable in finite time.

As Tr is the most permissive test setup, a requirement that is irrefutable in Tr is also irrefutable

for any test setup. Obligations are prominent examples of such irrefutable requirements, as stated in

the following lemma. The proof is immediate by Lemma 1 and Theorem 1.

Lemma 5. Nontrivial obligations are irrefutable in any test setup.
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We illustrate this lemma with an example.

Example 9. In the eio model, the obligation O stipulates that systems must exhibit the behavior (1, 0).
Suppose Ted observes t = {(1, 1)} while testing a system S. Based on t, he cannot refute the hypothe-

sis S ∈ O, simply because ⊤ also yields t, and ⊤ ∈ O. Of course interpreting O as the requirement P
stating that the system may output nothing but 0 for input 1 results in a refutable requirement. But O
and P are not equivalent: O is an obligation and P is a prohibition; recall Lemma 1.

Note that if it were known (through means outside black-box analysis) that S is deterministic, then

observing t would justify the conclusion S 6∈ O. We explicate the role of determinacy assumptions in

testing in §10.

We conclude this section with an intuitive account of (ir)refutability based on Figure 1. Recall

that the figure depicts a system S’s set of behaviors, and its obligation and prohibition, which are

both violated by S. To refute the prohibition’s satisfaction, one must locate the black circle in the

figure. This is achievable through black-box testing, which amounts to inspecting a portion of the

triangle (standing for S’s set of behaviors). To refute the obligation’s satisfaction, one must locate the

white circle, which lies outside the triangle. This is not achievable through black-box tests because

observations come only from the triangle’s interior.

Next, we turn to the irrefutability of semi-monotone requirements.

5.2 The Irrefutability of Semi-Monotone Requirements

Every requirement R is either (1) semi-monotone, or (2) not semi-monotone. In case (1), although R
is irrefutable by Theorem 1, the violation of R can be demonstrated through tests for some systems.

Recall Lemma 2: R = ⌈R⌉∧⌊R⌋ for a semi-monotone R. Any system S that violates ⌊R⌋ violates R
as well, and black-box tests can demonstrate S 6∈ ⌊R⌋.

Example 10. The non-monotone requirement R = O ∧ P , defined in Example 1, is semi-monotone.

It states that systems must extensionally define a total function. The system S = {(0, n) | n ∈ N}
violates P , which states that systems must be deterministic. Any observation that demonstrates S 6∈ P
also demonstrates S 6∈ R. Examples include the observation {(0, 1), (0, 2)} in Tr. That is, the

hypothesis S ∈ R can be refuted using tests that refute S ∈ P .

Note the contrast to system S′ = {(0, 0)}, which violates R but satisfies P . No black-box test

refutes S′ ∈ R, simply because it would have to refute S′ ∈ O, contradicting Lemma 5. Recall that O
states that systems must be total.

In case (2), where R is not semi-monotone, it is possible that testing cannot demonstrate R’s

violation for any system, as the following example illustrates.

Example 11. Consider Example 2, and the requirement R defined there: for each (i, o) ∈ S there

exists some (i′, o) ∈ S, with i 6= i′. Let (T, α) be a test setup. Any observation t ∈ T obtained

by testing any system belongs to α(⊤), and ⊤ ∈ R. That is, through black-box tests, we cannot

distinguish any system from ⊤, which indeed satisfies R. Therefore, R’s violation (for any system)

cannot be demonstrated through tests in any test setup.

To summarize, a requirement is refutable through black-box tests iff it is a prohibition. Nontrivial

obligations are irrefutable, and so are non-monotone requirements. However, the violation of a semi-

monotone requirements that is not monotone can be demonstrated through tests, but only for some

11



of the systems that violate them. It is possible that the violation of the requirements that are not

semi-monotone cannot be demonstrated through black-box tests for any system.1

6 Verifiable Requirements

We define testing with the purpose of verifying the satisfaction of a requirement as dual to testing for

refutation.

Definition 3. Let T = (T, α) be a test setup for a system model (D,�,⊥,⊤). A requirement R is

T-verifiable if ∀S ∈ D. S ∈ R → ∃t ∈ α(S). α̂(t) ⊆ R.

In particular, a requirement R is TM
r -verifiable in the system model M = (D,�,⊥,⊤) if ∀S ∈

D. S ∈ R → ∃Sw ∈ ⌊S⌋. ⌈Sw⌉ ⊆ R. That is, if there exists a witness system Sw that refines S
and any system that abstracts Sw satisfies R, then by observing Sw we have conclusively demon-

strated S ∈ R. The following theorem is dual to Theorem 1.

Theorem 2. Any T-verifiable requirement is an obligation.

An observation t ∈ α(S) proves that the system S satisfies the obligation O = α̂(t). It also proves

that S ∈ R for any requirement R ⊇ O. Therefore, as O becomes smaller, more requirements are

proved by the observation. This explains why Tr is the most permissive test setup for verification:

any T-verifiable requirement is Tr-verifiable. Consequently, a requirement that is not Tr-verifiable is

non-verifiable in any test setup. Prohibitions are prominent examples of such non-verifiable require-

ments, as the following lemma states.

Lemma 6. Nontrivial prohibitions are non-verifiable in any test setup.

It is instructive to compare this lemma and Dijkstra’s often-quoted statement [16] in the context

of black-box testing that “program testing can be used to show the presence of bugs, but never to

show their absence.” Dijkstra argues that programs have large, typically infinite, input domains. It is

intractable to test a program’s behavior for each input. It follows then that testing cannot prove the

absence of bugs, i.e. deviations from expected behavior. Note the contrast to Lemma 6, which holds

even if a tester could run an infinite number of tests. As discussed in §4, non-determinism poses an

epistemic limitation on what testing can achieve, regardless of the cardinality of input domains and

the number of tests we execute.

Contrary to the folklore, Lemma 6, and by extension Dijkstra’s statement, do not imply that no

requirements are verifiable through black-box tests. For instance, the requirement that obliges a magic

8-ball to output ask again later is clearly verifiable through tests: observing this output once demon-

strates the obligation’s satisfaction. We further illustrate this point with an example from temporal

requirements.

Example 12. Consider the system model of Example 8. Let e be an element of Σ. The requirement Re

consists of the systems that exhibit at least one behavior in which e appears. Note that Re is an

obligation since its satisfaction is abstraction-closed. Let S ∈ Re. Observing a refinement Sw of S
where Sw exhibits one behavior π in which e appears demonstrates S ∈ Re: any abstraction of Sw

exhibits π as well, hence satisfying Re. We conclude that the obligation Re is verifiable through tests

in Tr.

1The reason for “it is possible” is that a requirement that is not semi-monotone can have a semi-monotone component.

For instance, let R be a requirement that is not semi-monotone and ⊤ 6∈ R. Define the prohibition P = D \ {⊤}. Note that

R ∧ P = R. Clearly ⊤ 6∈ P can be demonstrated through tests, thereby refuting the hypothesis ⊤ ∈ R.
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We can now sharpen Dijkstra’s dictum to:

(D) Program testing can be used to show the presence of behaviors, but never to show

their absence, even if an infinite number of tests were allowed.

If a software bug is a prohibited behavior, then (D) extends Dijkstra’s statement, simply stipulating that

prohibitions are refutable, but not verifiable. However, if a bug is the absence of an obliged behavior,

then (D) translates to: program testing can be used to show the absence of bugs, but never to show

their presence. This sentence unrolls to: program testing can be used to show the presence of obliged

behaviors, but never to show their absence. In other words, obligations are verifiable, but not refutable.

That tests cannot show the absence of obliged behaviors has tangible implications. For example, fuzz

testing can hardly reveal omission bugs, i.e. bugs due to developers’ failure to implement a desired

feature or functionality [46].

The folklore that testing is capable of refutation, but not proving correctness, is sometimes held

by members of the software testing community and presumably reflects the wide-spread testing of

prohibitions. An example of this is the statement in [2]: “Rather than doing verification by testing,

a doubtful endeavour anyway, here we focus on falsification. It is falsification, because the tester

gains confidence in a system by designing test cases that would uncover an anticipated error. If the

falsification fails, it follows that a certain fault does not exist.” But testing is not only a refutation

technique: it is also a proof technique, as it can prove that the system under test satisfies an obligation,

such as the one given in Example 12.

7 Refutation in Finite Time

A requirement that is deemed refutable in our theory might not be refutable in practice. For exam-

ple, a requirement whose refutation hinges upon measuring the exact momentum and position of a

quantum object is impossible to refute due to the laws of physics. This limitation, not unexpectedly,

does not follow from our theory of black-box tests. Below, we extend our theory to account for a

practically relevant limitation of system testing: we consider refutation through black-box tests that

proceed in a finite amount of time. We define the notion of finite refutability (§7.1), and illustrate it

by characterizing finitely refutable temporal properties and hyper-properties (§7.2).

7.1 Finite Refutability

Intuitively, a test proceeds in a finite amount of time if observations can be carried out in finite time.

This motivates the following definition.

Definition 4. Let T = (T, α) be a test setup for a system model (D,�,⊥,⊤). A requirement R is

finitely refutable in T if

(i) R is T-refutable, and

(ii) every observation in
⋃

S∈D α(S) can be carried out in finite time.

The notion of finite verifiability is defined dually.

Condition (ii) of Definition 4 refers to the world: determining whether an arbitrary observation can

be carried out in finite time falls outside our theory’s scope, and this condition’s satisfaction must be

substantiated by other means. Thus our theory cannot establish a requirement’s finite (ir)refutability

unless assumptions are made about what can be observed in finite time in the world.
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To illustrate Condition (ii), we consider a family of test setups for the eio system model; a similar

notion can be defined for other system models. The family of test setups Tk = ((N × N)k, αk),
with k ≥ 1, and αk maps system S to Sk and is inductively defined by S1 = S and Sk+1 = S × Sk.

Clearly αk is order-preserving for any k ∈ N, and testing a system S in the setup Tk amounts to

observing k input-output pairs belonging to S. We can now illustrate Condition (ii) as follows.

Example 13. Consider the eio system model, and assume that natural numbers are observable in

finite time. Then, observing any element of (N×N)k, where k ≥ 1 belongs to N, takes finite time. The

requirement Rnz stating that systems never output zero is, under this assumption, finitely refutable

in T1. Now consider the requirement Rfz , stating that systems may output zero for at most finitely

many inputs. Note that Rfz is refutable in the reflexive test setup Tr, but not finitely so, and moreover

it is not Tk-refutable for any k ≥ 1.

It now seems reasonable to conclude that Rfz is not finitely refutable: no finite set of behaviors

can refute Rfz . This conclusion does not however follow from our theory. To illustrate, consider

an alternative test setup T = ({∗,×}, α), where α(S) = {∗} if S outputs zero for finitely many

inputs, and α(S) = {∗,×} otherwise. Since α is order-preserving, T is formally a test setup. The

requirement Rfz is finitely refutable in T, under the assumption that α(S) is observable in finite

time. Whether this is a tenable assumption cannot be settled inside our theory. Although T hardly

appears realizable, such observations are possible in certain cases, for example by measuring the

electromagnetic radiation emitted from a black-box system; see, e.g., [44].

Although the satisfaction of Condition (ii) cannot be settled in our theory, this condition has

implications relevant to our theory: any test setup in which observations amount to inspecting infinite

objects cannot be used to show finite refutability. For example, it follows that only finite portions of

finitely many system behaviors can be inspected for each observation, even if those behaviors are not

themselves finite objects. We illustrate this point with an example.

Example 14. Consider the system model (2R×R,⊆, ∅,R × R), where R is the set of real numbers.

This system model is similar to the eio model except its inputs and outputs are real numbers.

Define pre(r) as the set of finite truncations of the decimal expansion of a real number r. For

instance, pre(
√
2) = {1, 1.4, 1.41, 1.414, · · · }. Note that a real number can have more than one

decimal expansions, for example, 1 and 0.999 · · · , but accounting for this point is unnecessary for

our discussion here.

We define the test setup T = (F × F, α), where F is the set of rational numbers that have a finite

decimal expansion and α maps any system S to the set
⋃

(i,o)∈S pre(i)× pre(o). An observation of a

system S in this setup is a pair (f1, f2), where f1 is a truncation of an input i and f2 is a truncation of

an output o, where (i, o) ∈ S. That is, we may observe only finite portions of the decimal expansions of

the inputs and outputs. If F’s elements are observable in finite time, then any T-refutable requirement

is finitely refutable.

Now consider the requirement R<, stating that system outputs are strictly smaller than
√
2.

Clearly R< is a prohibition, hence Tr-refutable. Define the system S = {(1, 1.4142 · · · )}, which

outputs
√
2, decimally expanded, for the input 1. Even though S violates R<, no truncation of S’s

output’s decimal expansion conclusively demonstrates this, because the set of permissible outputs ac-

cording to R<, namely {o ∈ R | o <
√
2}, is not a closed set in R’s standard topology. That is, there

is a number, namely
√
2, that is arbitrarily close to the elements of this set, but is not a member of

the set. No finite truncation of this number’s decimal expansion can therefore conclusively determine

whether it is a member, or not. We conclude that R< is not T-refutable.
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An analogous argument shows that the requirement R≤ stating that system outputs must be less

than or equal to
√
2 is T-refutable, and hence finitely refutable, because the set of permissible outputs

it induces, namely (−∞,
√
2], is topologically closed.

The example hints at a fundamental connection between refutability and topological closure when

system behaviors are infinite sequences. This connection was investigated by Alpern and Schneider

in the context of temporal properties [4], which we turn to next.

7.2 Finitely Refutable Temporal Requirements

In this section, we characterize finitely refutable temporal requirements. We start by extending the

system model (2Σ
ω

,⊆, ∅,Σω), associated with temporal requirements (defined in Example 8), with

some additional temporal notions.

Let Σ∗ be the set of all finite sequences of Σ’s elements. For a behavior π ∈ Σω, we write pre(π)
for the set of all finite prefixes of π, and define the test setup T∗ as (T∗, α∗), where T∗ is the set

of all finite subsets of Σ∗, and α∗(S) is the set of all finite subsets of
⋃

π∈S pre(π) for a system S.

Intuitively, any element of α∗(S) is a possible observation of S, where finite prefixes of finitely many

behaviors of S are inspected. For any T∗-refutable requirement R and any S 6∈ R, there exists a finite

(witness) set tw of finite prefixes of S’s behaviors such that any system S′ that could have yielded

the observation tw, i.e. tw ∈ α∗(S
′), violates R. Clearly, any T∗-refutable requirement is finitely

refutable, if elements of Σ can be observed in finite time. Next, we relate T∗-refutability and T∗-

verifiability to the notions of temporal properties and hyper-properties.

A temporal property is a set of permissible behaviors [40, 4], i.e. a subset of Σω. Any property φ
defines a prohibition, namely the refinement-closed requirement Rφ = ⌊φ⌋ (recall Example 8). We

illustrate this with an example.

Example 15. Recall the requirement Re from Example 12, consisting of the systems that exhibit at

least one behavior where e appears. Since properties are prohibitions, this obligation is not a property

as otherwise Re would have to be trivial by Lemma 1.

As a side note, that Re is not a property shows that Re cannot be expressed as a formula in

the linear-time temporal logic (LTL), whose formulas define properties [40]. Since Re is expressed

as EF e in the computation tree logic CTL, we can conclude the well-known result that LTL is not

more expressive than CTL; for an introduction to CTL and its expressiveness see [17].

We now turn to safety and liveness property types. We denote the concatenation of an element

of Σ∗ with one of Σω by their juxtaposition. A property φ is safety if ∀π 6∈ φ.∃σ ∈ pre(π).∀π′ ∈
Σω. σπ′ 6∈ φ and liveness if ∀σ ∈ Σ∗.∃π ∈ Σω. σπ ∈ φ. That is, safety and liveness properties are

closed and dense sets, respectively [4]. The following lemma, whose proof hinges upon Lemma 1 and

Theorem 1, implies that nontrivial liveness properties, although Tr-refutable, are not T∗-refutable;

cf. [4].

Lemma 7. A temporal property φ is T∗-refutable iff φ is safety. Moreover, all temporal properties

are Tr-refutable and any T∗-verifiable property is trivial.

Any property φ is the conjunction of a safety property φs and a liveness property φl [4]. Therefore,

if a system S violates φs, then the hypothesis S ∈ φ can be refuted through tests aimed at refuting

S ∈ φs. However, if S violates only the liveness conjunct of φ, namely S ∈ φs and S 6∈ φl, then the

hypothesis S ∈ φ cannot be (finitely) refuted in T∗, due to Lemma 7. This is akin to the refutability

of semi-monotone requirements for some systems, discussed in §5. See also [49, 19].
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We now turn to hyper-properties. A hyper-property is a set of properties [14], i.e. a requirement

in our model. A system S satisfies a hyper-property H, if S ∈ H. In our setting, a hyper-property H is

hyper-safety [14] if for any S 6∈ H, there exists an observation t ∈ α(S) such that ∀S′ ∈ α̂(t). S′ 6∈
H; It is easy to check that a temporal requirement R is hyper-safety iff R is T∗-refutable. Now it

is immediate by Theorem 1 that any hyper-safety requirement is a prohibition. Therefore, finitely

verifiable hyper-safety requirements must be trivial. For instance, Example 12’s requirement Re,

which is clearly finitely verifiable in T∗, cannot be hyper-safety and it is therefore not finitely refutable

in T∗. These results show how existing, specialized concepts and their refutability follow as special

cases of the notions we defined. We revisit properties and hyper-properties in §8.2.

In light of this discussion, one can see the test setup Tk, defined in §7.1, as the setup where a

single observation is carried out over k copies of the system under test. As a side remark, we note that

for each k there is a requirement that is Tk+1-refutable but not Tk-refutable. That is, self-composing

a system k times, namely observing k system behaviors, is not sufficient for demonstrating that the

system violates the requirement. For example, sampling a curve three times is not sufficient for

refuting the requirement stating that the curve is a circle: there is a circle that passes any three points

on the plane. Sampling the curve four times could however refute this particular requirement.

8 Refutability through Algorithmic Means

A test oracle for a requirement R is a (partial) decision function that given an observation on a

system decides whether the system violates R. Our definition of finitely refutable requirements poses

no constraints on their test oracles. In particular, whether an observation demonstrates a violation of a

finitely refutable requirement need not be decidable. Such “undecidable” requirements are uncommon

in testing practice. However, we show that explicating the computational constraints of refutation not

only clarifies the limits of algorithmic testing (§8.1), it also sheds light on the relationship between

refutation through testing and enforcement through monitoring (§8.2).

8.1 Algorithmic Refutability

We start with two auxiliary definitions, and assume that the reader is familiar with basic computability

theory. For an introduction to this topic see, e.g., [43].

Given a countable set U , a set E ⊆ U is recursively enumerable if there is a (semi-)algorithm AE

that terminates and outputs true for any input u ∈ U that is a member of E. If u 6∈ E, then AE does

not terminate.

Any requirement R induces a set ΩR of irremediable observations {t ∈ T | α̂(t) ∩ R = ∅}
in a test setup T = (T, α). It follows that a system S violates a T-refutable R iff α(S) ∩ ΩR 6= ∅.

Intuitively, a requirement is algorithmically refutable if it induces a recursively enumerable set of

irremediable observations. This is because if a system S violates such a requirement R in T, then

there is at least one observation t ∈ α(S) that can be made in finite time, where AΩR
terminates on t

and outputs true. Here, true means t ∈ ΩR, demonstrating S 6∈ R. Observing such a t through testing,

therefore, conclusively refutes the hypothesis S ∈ R.

Definition 5. Let T = (T, α) be a test setup for a system model (D,�,⊥,⊤). A requirement R is

algorithmically refutable in T if R is finitely refutable in T, and ΩR is a recursively enumerable

subset of the countable set T .
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Note that, from the standpoint of refutation, nothing is gained by requiring the set ΩR to be recur-

sive since determining that an element is not an irremediable observations does not contribute to the

requirement’s refutation. It is therefore not necessary to determine non-membership.

The following example illustrates Definition 5.

Example 16. In eio, the prohibition P states that a system may never output 0 for an odd input.

Clearly, P is T1-refutable, and its set of irremediable observations ΩP = {{(2i + 1, 0)} ∈ T1 | i ∈
N} is recursive. If natural numbers are observable in finite time, then P is algorithmically refutable

in T1: any S that violates P induces an observation, for example t = {(3, 0)}, where a Turing

machine arrives at the verdict t ∈ ΩP in finite time.

Let R be an algorithmically refutable requirement in T = (T, α), and S be a system where α(S)
is a recursively enumerable subset of T . Note that, as previously discussed, black-box testing cannot

establish the absence of behaviors in the system under test S. Therefore, it is crucial that α(S) is

recursively enumerable, but not, say, co-recursively enumerable or recursive: these would imply that

the tester could “see” absent behaviors. The decision problem that asks whether S violates R is

semi-decidable, as the following test algorithm illustrates.

Algorithm 1 (Test Algorithm). Fix an arbitrary total order on T ’s elements. Dovetail Aα(S)’s com-

putations on the elements of T .2 In parallel, dovetail AΩR
’s computations on those observations for

which Aα(S) terminates. Output true and terminate, when a computation of AΩR
terminates.

The algorithm checks whether the intersection of two recursively enumerable sets, namely α(S)
and ΩR, is empty. If S 6∈ R, then there exists at least one observation tw in the set α(S) ∩ ΩR. The

test algorithm is bound to terminate on tw and output true, thus demonstrating S 6∈ R in finite time.

However, if S ∈ R, then the test (semi-)algorithm does not terminate.

Algorithm 1 achieves the (impractical) ideal of testing: it not only has “a high probability of de-

tecting an as yet undiscovered error” [36], the algorithm is in fact guaranteed to reveal flaws in any

system that violates a requirement, if the preconditions are met. In this sense, Algorithm 1 demon-

strates the limits of algorithmic testing. We remark that although this algorithm is not a recipe for

testing practice, there are similarities. For instance, standard test selection methods place likely wit-

nesses of R’s violation early in the ordering assumed on T [36]. This would speed up Algorithm 1

too.

We illustrate Algorithm 1 with an example.

Example 17. Let M be a Turing machine that is available to us as a black-box: we may provide M
with an input i and observe halt if M halts on i. If M diverges on i, then we observe no outputs.

In the eio model, the requirement R is defined as: S ∈ R if for any (i, 1) ∈ S the machine M
diverges on the input i. It is easy to check that R is T1-refutable, with T1 = (T1, α1), and the set ΩR

is recursively enumerable: given an observation {(i, 1)} in T1, if {(i, 1)} ∈ ΩR, then M is bound to

halt on i.

2Dovetailing, which is a primitive parallelization technique, proceeds in stages. Given an ordered list of inputs

x0, x1, · · · , one step of computation is performed on x0 in stage 1. In stage n + 1, we perform n + 1 steps of the

computations for x0, · · · , xn. In contrast to performing the computations on x0, and then on x1, and so forth, the bene-

fit of dovetailing is the following: suppose the computation for x0 never terminates, whereas it terminates for x1. Then,

dovetailing’s parallelization ensures that in a finite amount of time the result of the computation on x1 becomes available.

As a side note, dovetailing a system S’s executions is not hindered by S being a black-box. To perform dovetailing,

a tester merely needs a mechanism for controlling the progress of S’s computations. For example, when S is given as a

computer program, dovetailing can be achieved by controlling the CPU cycles allocated to S’s computations, which does

not require inspecting the program’s source code.
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Suppose that α1(S) is recursively enumerable for a system S. That is, Aα(S) is guaranteed to

terminate on any (i, o) ∈ S. If S 6∈ R, then there is a witness (w, 1) ∈ S where M terminates on w.

Therefore, dovetailing M ’s computations on i for all (i, 1) on which Aα(S) terminates is bound to

exhibit a terminating computation, thus demonstrating S 6∈ R in finite time.

Now consider the requirement U stating that a system may contain (i, 1) only if M halts on i.
Clearly U is T1-refutable. However, ΩU = {{(i, 1)} | i ∈ N,M diverges on i} is not recursively

enumerable: M produces no outputs for such an input i. This shows that U cannot be algorithmically

refuted in T1.

Next we apply the notion of algorithmic refutability to establish a duality between refutation and

enforcement in the context of temporal requirements.

8.2 Refutation versus Enforcement

It is easy to check that a safety property φ is algorithmically refutable in T∗ iff φ’s set of irreme-

diable sequences ∇φ = {σ ∈ Σ∗ | ∀π ∈ Σω. σπ 6∈ φ} is recursively enumerable. This condition

separates refutability from enforceability, as explained below. To enforce the safety property φ on

a system S, a reference monitor observes some t ∈ α(S). If t demonstrates that S violates φ, then

the monitor stops S. Otherwise, the monitor permits S to continue its execution. For enforcement,

the set ∇φ must therefore be recursive [24]. It then follows that any enforceable temporal property

is algorithmically refutable. In contrast, any property φ, where ∇φ is recursively enumerable but not

recursive, is algorithmically refutable, but not enforceable.

To further illustrate the relationship between refutability and enforceability, we define weak en-

forceability for a hyper-safety requirement R as follows. By monitoring the executions of a system S,

a monitor observes some t ∈ α∗(S). If t does not conclusively demonstrate S 6∈ R, then the monitor

permits S to continue. However, if t does conclusively demonstrate R’s violation, then the monitor

may either stop S, or diverge and thereby stall S. Recall that a system S violates a hyper-safety re-

quirement R iff α∗(S) ∩ ΩR 6= ∅. To weakly enforce R, the set ΩR must therefore be co-recursively

enumerable, i.e. T∗ \ ΩR must be recursively enumerable. This observation, which concurs with [37,

Theorem 4.2], illustrates that weak enforceability and algorithmic refutability are complementary in

the sense that the former requires ΩR to be co-recursively enumerable and the latter requires ΩR to

be recursively enumerable. This duality between refutability and enforceability becomes evident only

after explicating the computational constraints of testing and enforcement.

9 Refutability under Auxiliary Assumptions

Testers might have partial information about a black-box system. For example, they might have

knowledge that an otherwise black-box system is deterministic. In this section we explore how black-

box testing can be augmented with such information. Strictly speaking, this topic falls outside the

black-box setting of §2, where the domain D contains at least one non-determinism system, namely ⊤.

Testing under auxiliary assumptions can in fact be seen as a form of gray-box testing, where testers

know, through means outside of black-box analysis, that a system’s internal operations are in some

way constrained.
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9.1 Generalized Refutability

We start by generalizing the definition of refutability to refutability under auxiliary assumptions since

a tester’s partial information about the system under test can be modeled as assumptions. We define

an assumption as a set of systems. An assumption A is valid for a system S, or S satisfies A, if S is

included in A. Clearly assumptions and requirements have the same type in our model. However, in

contrast to requirements, assumptions are in general not subjected to analysis.

An assumption A about the system under test S can alleviate a tester’s epistemic limitation (rooted

in the indistinguishability condition). Namely, if S is assumed to satisfy A, then from an observation

t the tester can conclude that S belongs to a subset of α̂(t), namely the subset that consists of the

systems that satisfy A. This motivates the following definition.

Definition 6. Let (D,�,⊥,⊤) be a system model, T = (T, α) a test setup, and A an assumption. A

requirement R is T-refutable under A if ∀S ∈ A. S 6∈ R → ∃t ∈ α(S). (α̂(t) ∩A) ∩R = ∅.

Note that letting A = D in Definition 6 results in Definition 2. That is, refutability is a special

case of refutability under assumptions where no assumptions are made about systems. We illustrate

Definition 6 with an example.

Example 18. Consider Example 9, where the obligation O consists of the systems that exhibit the

behavior (1, 0). We define the assumption A as the set of total, deterministic systems, to reflect the

information that the system under test is known to be total and deterministic.

The obligation O is T1-refutable under A, simply because any system that satisfies A and vio-

lates O must exhibit a behavior (1, i + 1), with i ∈ N, due to totality. Observing such a behavior

demonstrates that the system does not exhibit (1, 0), due to determinacy. Therefore the system violates

O.

Clearly the above argument falls apart without the determinacy assumption. To see why A’s

totality conjunct is also necessary for the argument, consider the deterministic system S = {(0, 0)},

which violates O as well as the totality conjunct of A. No observation in α1(S) can demonstrate

S 6∈ O.

Example 18 shows that irrefutable requirements can be refuted if the system under test is known

to satisfy certain assumptions. This is because an assumption A reduces the set of the systems that

could have yielded a given observation. The smaller A is, the weaker the indistinguishability condition

becomes. Note however that the set of test subjects shrinks along with A: refutability under A pertains

only to the systems in A.

The process of adding assumptions to obtain refutability does not undermine Theorem 1’s state-

ment that prohibitions are the only requirements that can be refuted through tests. Theorem 1 is a

special case of the following theorem where A = D: that any refutable requirement is a prohibition

pertains to the special case where no assumptions are made about systems.

Theorem 3. Let T = (T, α) be a test setup, and A an assumption. If a requirement R is T-refutable

under A, then there exists a prohibition PR|A such that ∀S ∈ A. S 6∈ PR|A ↔ S 6∈ R. Namely,

PR|A = ⌊A ∩R⌋.

This theorem implies that the task of refuting an (irrefutable) R under A can be reduced to the task of

refuting the prohibition PR|A.

The following example illustrates Theorem 3.
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Example 19. Consider Example 18. Note that A∩O consists of deterministic total systems that exhibit

the behavior (1, 0). We define P as the requirement that forbids exhibiting any behavior (1, i + 1),
with i ∈ N. Roughly speaking, P is found by adding the closed-world assumption [42] to O: the

outputs not obliged by O are prohibited by P . Below, we show P is equal to PO|A, when confining

our attention to the systems that satisfy A.

If a deterministic total system S belongs to PO|A, then S belongs to O due to Theorem 3. That

is, (1, 0) ∈ S. Then, due to S’s determinacy, no behavior (1, i + 1), with i ∈ N, can belong to S.

Therefore, S ∈ P .

If a deterministic total system S belongs to P , then, due to its totality and determinacy, S must

exhibit (1, 0). Therefore, S ∈ O, and hence S ∈ A∩O. This entails S ∈ ⌊A ∩O⌋. That is, S ∈ PO|A.

That P = PO|A further justifies the definition of PR|A, given in Theorem 3: PO|A is indeed the

prohibition we try to refute when refuting O under A.

9.2 Scope and Applications

We discuss here the scope and possible applications of Theorem 3. First, Theorem 3 implies that as-

sumptions can undermine the separation of obligations and prohibitions that was presented in Lemma 1.

This is because, under assumptions, obligations can be replaced with prohibitions and vice versa. But

this is not surprising when a system’s set of behaviors is known to be limited (assumptions can reflect

such limitations). For example, the obligation to turn right at a crossroad prohibits turning left.

Second, the previous examples show that it is possible to refute non-prohibitions under assump-

tions, such as totality and determinacy. Such assumptions cannot be substantiated by testing, but may

be established using white-box techniques that analyze a system’s internal wiring or its source code.

Third, it is possible to refute some non-prohibitions for some systems using purely black-box

analysis. Namely, we can use Theorem 3 to reduce the testing of an irrefutable requirement R to a

black-box refutation and a black-box verification. For our reduction, Ted (the tester) first formulates

an assumption A based on possibly unreliable information he has about the system under test S.

Afterward, Ted tries to refute the hypothesis S ∈ PR|A. If this succeeds, then he has shown S 6∈ R, if

S ∈ A. In case A is verifiable through tests, Ted tries to verify S ∈ A. If this succeeds as well, then

he has an unconditional proof of S 6∈ R. We illustrate this reduction with an example.

Example 20. In eio, consider the requirement R stating that if a system exhibits the behavior (1, 0)
then it should not output 0 for any other odd input. Otherwise, it must output 0 for infinitely many

inputs.

Clearly R is not a prohibition, hence it is irrefutable. We assume the system under test S outputs

0 for input 1, and formulate the assumption A as the set of systems that exhibit (1, 0). The prohibition

PR|A then consists of the systems that do not exhibit 0 for any odd input larger than 1. We refute

S ∈ PR|A by observing, say, {(3, 0)} in the test setup T1. Again in T1, we verify that S exhibits

(1, 0). If these steps succeed, we obtain S ∈ A and S 6∈ PR|A. These together entail S 6∈ R, due to

Theorem 3.

Note that, in accordance to the results of §5.2, testing can refute R’s satisfaction only for some

systems that violate R.

Investigating practical applications of combining black-box refutation with black-box verification,

following the above reduction, remains as future work. In §10, we present other applications of

refutability under auxiliary assumptions.

Fourth, dual to Theorem 3, assumptions can also facilitate verification through black-box testing.

For instance, regularity and uniformity assumptions enable testers to execute a limited number of tests
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and generalize their findings to a large section of, or even the entire, input domain [20, 26]. These

assumptions enable testers to conclude that a system satisfies a requirement by observing the system’s

behaviors for a limited set of inputs.

We conclude this section with a side remark. We have previously explored the importance of

determinacy assumptions, but obviously determinacy cannot be assumed for systems that are known

to be non-deterministic. Weaker assumptions are needed for such systems. For example, the complete

test assumption states that there exists a number n where if a test is executed n times, then all non-

deterministic system behaviors are observed for that particular test; see, for instance, [13, 25]. This

assumption can be justified if there is a fairness constraint on non-determinism, meaning that the

system exercises all available non-deterministic internal choices in a fair manner, e.g. by tossing a fair

coin. The complete test assumption enables testers to, in effect, treat a non-deterministic system as a

deterministic one by repeated testing.

10 Testing Practice Revisited

Below, we review three prominent testing techniques, namely functional testing, model-based testing,

and white-box fuzz testing, and examine them in light of our theory. This review serves two purposes.

First, it demarcates the scope and reach of our theory. Second, it illustrates the theory’s applications.

For example, we explicate the implicit assumptions upon which functional testing is typically based.

Black-box Functional Testing. Functional testing refers to testing functional requirements. A re-

quirement is deemed functional if it prescribes a system’s desired functionality or features. For exam-

ple, a functional requirement states that systems must have a feature where by entering a client’s iden-

tification number, a system user obtains the client’s phone number. Functional requirements generally

correspond to obligations, which are irrefutable. 3 Yet, functional testing is common practice [39, 36].

This seeming discrepancy can be resolved by noticing that the practice of functional testing is based

upon (implicit) auxiliary assumptions, as the following example illustrates.

Example 21. Consider the eio model. The functional requirements R obliges systems to output pc
for input c, where c is a client identification number, and pc is the client c’s phone number. Testing

R in practice amounts to providing the system under test S with the input c. If S’s output differs

from pc (crash is one such output), then the tester concludes that S violates R. This conclusion is

justified under the assumption that S is deterministic: only then observing any behavior other than

(c, pc) demonstrates S 6∈ R. To make R refutable, the totality assumption is also needed here; recall

Example 18.

As the example suggests, assuming that the system under test is deterministic facilitates refuting

functional requirements. The determinacy assumption is in fact implicit in much of testing practice.

For example, if a program passes the test that checks the output when the input is the empty list, then

most test engineers would take this as a proof that the program behaves correctly on empty lists. This

reasoning hinges upon the assumption that the program is deterministic, which may or may not be

justified in the case at hand.

3Here, we focus our attention on those requirements that oblige a certain system functionality or feature. Functional

requirements that are not obligations, e.g. exception-freeness, are exempt from our discussion. We remark that there is no

canonical definition of functional, as opposed to non-functional, requirements in the literature [21].

21



We can now say that functional requirements are in practice refuted under the implicit assumption

of determinacy. That is, functional requirements are taken to forbid all outputs other than those pre-

scribed for a given input. For instance, in Example 21, for the input c, any output different from pc is

forbidden. However, not all obligations admit this interpretation, as the following example illustrates.

Example 22. Consider a coffee vending machine V , and a slot machine S. Suppose that V is required

to output a cup of coffee and S is required to output a winning combination, after inserting a coin.

Both these requirements are obligations. We expect a coffee machine to be deterministic, and therefore

(implicitly) add to its obligation the following requirement: V may exhibit no behavior other than

outputting coffee. This is a prohibition and can in fact be refuted. A slot machine, in contrast, is

non-deterministic. It would be absurd to forbid S from exhibiting non-winning combinations. Hence,

the hypothesis that S satisfies its requirement remains irrefutable through tests.

The success of day-to-day functional testing indicates that assuming determinacy is by and large

justified in practice. Without explicating such implicit assumptions, however, their existence and

role remain obscure. Moreover, only after explicating the determinacy assumption can we see that

functional tests that rely upon determinacy rely upon an assumption that cannot be discharged through

black-box analysis alone (determinacy, being a prohibition, cannot be verified through black-box

tests). Therefore, either more powerful techniques, such as white-box analysis, should be employed

for justifying determinacy, or test results should be presented along with the untested assumption.

We conclude this discussion by remarking that categorically assuming that testing only applies

to deterministic systems is unjustified: it excludes concurrent systems and those that interact with an

environment containing humans, quantum sensors, and hardware prone to stochastic failures. More-

over, substantiating determinacy assumptions is a formidable challenge in practice. For example,

checking a concurrent system’s determinacy, even when the system’s source code is available, is hard;

see, e.g., [10]. This is because concurrent systems behave differently in the presence of different

schedulers. Even if the system is amenable to white-box analysis, the scheduler is typically either

unavailable to testers or it is a “black-box”. This substantially increases the complexity of finding vio-

lations of requirements such as determinacy, atomicity, and deadlock-freeness in concurrent systems.

Indeed, several existing test methods for concurrent systems rely on instrumenting the system or the

scheduler to tame non-deterministic behaviors [12, 35, 5].

Model-based Testing. In model-based testing, a system’s obligations (and in some cases its prohi-

bitions) are represented as an ideal model, for example by an extended state machine [50]. Refuting

the hypothesis that the system exhibits all the desired behaviors, specified by the model, amounts to

identifying a behavior in the model that is not exhibited by the system. This conforms to the lower-

bound interpretation of obligations: to find the white circle in Figure 1, one can explore the oval,

which represents all the obligatory behaviors, and check if the system lacks any of them. This is the

central idea of model-based tests [48, 50].

The above account of model-based testing runs into a discrepancy similar to the one raised by

black-box functional testing: the tester is provided with an ideal model for the system under test, but

has no reasons to believe that the system does not exhibit more behaviors than those observed during

testing. The resolution again lies in explicating auxiliary assumptions. We illustrate this point with an

example.

Example 23. This example is based on the test method described in [50, Chapter 5]. Suppose the

desired behaviors for a system S are given as a deterministic finite-state Mealy machine. At each

state, the machine specifies the desired system output for any input. It also specifies the system’s next

22



state, but we ignore that part here. Suppose that the system’s input domain is I , and it is required

to output some oi for input i, with i ∈ I , at a certain state. This requirement, which we call R, is

often implicitly interpreted as a semi-monotone requirement O ∧ P , where O obliges S to output oi
for input i, and P prohibits S from outputting any o′ 6= oi for input i at that particular state.

Note that refuting S ∈ R, under the assumption that S is deterministic and total, is logically

equivalent to refuting S ∈ P : if S violates P , then it immediately violates R. Conversely, if S
violates R because S 6∈ O, then S violates P as well due to its determinacy and totality. A tester can

therefore focus on P , which is indeed refutable through tests; recall Theorem 3.

The above reasoning is the basis of the test method prescribed in [50]: choose an execution of the

Mealy machine. If the system produces an input-output sequence different from the one prescribed by

the machine, then it violates its specified requirement. Conversely, if the system violates the require-

ment, then it is bound to deviate from the Mealy machine in at least one execution.

The example explicates the auxiliary assumptions that are necessary for meaningful model-based

testing in practice. Such assumptions are given elsewhere in the literature in different contexts, see

for example [7, 26, 48, 50].

White-box Fuzz Testing. As illustrated in previous sections, black-box tests cannot establish the

absence of behaviors. This limitations applies to white-box fuzz testing if the program source code

is used only for generating test inputs, as opposed to inferring the absence of behaviors. Namely,

after observing a set of behaviors, whose generation has been guided by the source code, the tester

is not justified in concluding that the program exhibits no other behaviors. See, e.g., [11, 22]. An

analogous argument shows that unit testing, as in JUnit [30], cannot establish the absence of behaviors

if the source code, although accessible to testers, is not inspected for demonstrating the absence of

behaviors.

Fuzz testing is typically concerned with refuting generic prohibitions, such as the system does

not access unallocated memory for any input [46]. To refute such requirements, a white-box fuzzing

tool covers as exhaustively as possible the program code of the system under test [11, 22]. This

conforms to the upper-bound interpretation of prohibitions: to refute a prohibition, one looks for a

system behavior that is forbidden by the prohibition. Returning to Figure 1, one explores the triangle

(which represents the set of system behaviors) to find the black circle where the triangle intersects

with the hatched area (forbidden behaviors).

The above line of reasoning also sheds light on the suitability of the approximation techniques that

are common in (white-box) static program analysis. For example, a may summary over-approximates

a program’s set of behaviors [38]. If this does not contain a set of obligatory behaviors, then the

program violates the corresponding obligation. Similarly, a must summary under-approximates a pro-

gram’s set of behaviors [38]. If this intersects a set of prohibited behaviors, then the program violates

the corresponding prohibition. Note that none of these approximations is immediately applicable to

refuting requirements that are not semi-monotone because such requirements do not admit the lower-

bound and upper-bound interpretations, as discussed in §3.

11 Related Work

Testing is a broad domain. We group the most closely related work into three areas, which we present

below. This complements the related work discussed in previous sections.
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Refutability and Verifiability. Our definition of refutability is inspired by Popper’s notion of testable

theories [41]. Theories of black-box testing proposed in the software engineering literature are largely

concerned with the notions of test selection, test adequacy, and exhaustiveness; see, e.g., [23, 53, 20,

48, 3]. Refutable requirements have not been investigated in prior work, except for temporal properties

and hyper-properties, which we discussed in §7.2 and §8.2.

Tests for verifying the correctness of programs have been studied in the literature; see, for exam-

ple, [28, 9, 54]. The correctness guarantees that such tests provide are inherently different from the

verifiability of obligations (§6), as they are reliable guarantees only when programs and their faults

satisfy assumptions that cannot be justified solely through black-box analysis.

Finally, tests for obtaining probabilistic correctness guarantees, investigated for example in [6],

fall outside the scope of this paper.

Obligations and Prohibitions. Obligations and prohibitions, as requirement types, implicitly ap-

pear in various domains of software engineering. For example, Damm and Harel introduce existential

charts for specifying the obligatory behaviors of a system, and universal charts for specifying all the

behaviors the system exhibits [15]. An existential chart intuitively corresponds to an obligation, and

a universal chart corresponds to a semi-monotone requirement in our theory, which is the conjunction

of an obligation and a prohibition. The notions of necessity and possibility also have a central role in

modal logic. For example, Larsen and Thomsen’s modal transition systems specify obligations and

prohibitions through, respectively, must and may transitions [32]. Similarly, Tretmans’ testing the-

ory [48] is based on specifications that define both a lower-bound and an upper-bound on a system’s

behaviors, which roughly speaking correspond to, respectively, obligations and prohibitions. These

works define prohibitions and obligations in concrete modeling formalisms. In contrast, we present

abstract definitions that can be instantiated by the existing ones.

Finally, security requirements are sometimes called negative [33] and universal [8] because they

do not endow a system with features and functions; rather, they define the system’s permitted behav-

iors. They are simply prohibitions.

Testability. The notion of testability is widely used in software engineering. The IEEE glossary

of software engineering terminology [29] defines testability as: “(1) The degree to which a system

or component facilitates the establishment of test criteria and the performance of tests to determine

whether those criteria have been met. (2) The degree to which a requirement is stated in terms that

permit establishment of test criteria and performance of tests to determine whether those criteria

have been met”. Condition (1) qualifies systems, and condition (2) requirements. Our definition of

refutability applies to condition (2). An instance of irrefutability due to failure to meet condition (1)

is a system with unobservable error states. Such considerations fall outside the scope of our theory,

which is built around observations.

12 Concluding Remarks

We have formalized a simple abstract model of systems and requirements, upon which we have built a

theory of testing. Our theory is centered around elementary notions, such as satisfiability, refinement,

and observations, and it allows us to reason precisely about the limits and methods of black-box

testing. We have used it to fully characterize the classes of refutable and verifiable requirements for

black-box tests. We have also clarified testing folklore and practice. For example, we have shown that

non-exhaustive testing can be used to verify obligations. And methodologically it becomes clear that
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functional requirements can be tested only based on assumptions that are not themselves verifiable

through black-box tests.

Our focus has been on black-box testing, defined in a general way that encompasses different

concrete testing techniques, and its extension to certain types of gray-box analysis. Naturally black-

box tests can be combined with other analysis techniques, like static analysis. The indistinguishability

condition of §4, stating that the system under test can be any abstraction of an observation obtained

through tests, would then no longer be applicable. For instance, if the system under test is known to be

deterministic, then clearly more requirements become refutable, as discussed in §9. It is not surprising

that augmenting black-box analysis with knowledge that itself cannot be verified through black-box

tests expands the analysis’s capabilities. This paves the way for more powerful refutation methods

capable of refuting more requirements. Developing such an extension of our theory, and exploring its

applications remain as future work.

We remark that our theory of black-box tests is not readily applicable to probabilistic constraints.

For example, a gambling regulation requiring that slot machines have a 95% payout cannot be refuted

through black-box test. Nevertheless, tests refuting such probabilistic constraints with a controllable

margin of error can be devised. Developing a corresponding theory of tests and refutation also remains

as future work.

References

[1] Martin Abadi and Leslie Lamport. The existence of refinement mappings. In LICS, pages 165–

175. IEEE, 1988.

[2] Bernhard K. Aichernig and Jifeng He. Refinement and test case generation in utp. Electron.

Notes Theor. Comput. Sci., 187:125–143, July 2007.

[3] Marc Aiguier, Agnès Arnould, Pascale Le Gall, and Delphine Longuet. Exhaustive test sets for

algebraic specifications. Softw. Test., Verif. Reliab., 26(4):294–317, 2016.

[4] Bowen Alpern and Fred Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185, 1985.

[5] Thomas Ball, Sebastian Burckhardt, Katherine E. Coons, Madanlal Musuvathi, and Shaz Qadeer.

Preemption sealing for efficient concurrency testing. In Proceedings of the 16th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’10,

pages 420–434, Berlin, Heidelberg, 2010. Springer-Verlag.

[6] Manuel Blum and Hal Wasserman. Program result checking: A theory of testing meets a test of

theory. In Foundations of Computer Science (FOCS ’94), pages 382–292, 1994.

[7] Achim D. Brucker and Burkhart Wolff. On theorem prover-based testing. Formal Asp. Comput.,

25(5):683–721, 2013.
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Anthony J. H. Simons, Sergiy Vilkomir, Martin R. Woodward, and Hussein Zedan. Using formal

specifications to support testing. ACM Comput. Surv., 41(2):9:1–9:76, February 2009.

26



[27] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall, 1998.

[28] William E. Howden. Algebraic program testing. Acta Inf., 10:53–66, 1978.

[29] IEEE standard glossary of software engineering terminology, 1990. IEEE Std 610.12-1990.

[30] Junit. http://junit.org.

[31] Cem Kaner, Jack Falk, and Hung Q. Nguyen. Testing Computer Software. Wiley, 2nd edition,

1999.

[32] Kim Larsen and Bent Thomsen. A modal process logic. In LICS, pages 203–210. IEEE, 1988.

[33] Gary McGraw. Software Security: Building Security In. Addison-Wesley Professional, 2006.

[34] Carroll Morgan. Programming from Specifications. Prentice Hall, 1998.

[35] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Piramanayagam Arumuga

Nainar, and Iulian Neamtiu. Finding and reproducing heisenbugs in concurrent programs. In

Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation,

OSDI’08, pages 267–280, Berkeley, CA, USA, 2008. USENIX Association.

[36] Glenford Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing. Wiley, 2011.

[37] Minh Ngo, Fabio Massacci, Dimiter Milushev, and Frank Piessens. Runtime enforcement of

security policies on black box reactive programs. In POPL ’15, pages 43–54. ACM, 2015.

[38] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.

Springer, 2005.

[39] Mauro Pezze and Michal Young. Software Testing and Analysis: Process, Principles and Tech-

niques. Wiley, 2008.

[40] Amir Pnueli. The temporal logic of programs. In FOCS ’77, pages 46–57. IEEE, 1977.

[41] Karl Popper. Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge,

1963.

[42] Raymond Reiter. On closed world data bases. In Logic and Data Bases, pages 55–76. Plenum

Press, 1978.

[43] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability. MIT Press,

Cambridge, MA, USA, 1987.

[44] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A unified framework for the analysis

of side-channel key recovery attacks. In EUROCRYPT ’09, pages 443–461. Springer-Verlag,

2009.

[45] Latanya Sweeney. K-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness

Knowl.-Based Syst., 10(5):557–570, 2002.

[46] Ari Takanen, Jared DeMott, and Charlie Miller. Fuzzing for Software Security Testing and

Quality Assurance. Artech House, Inc., Norwood, MA, USA, 1 edition, 2008.

27

http://junit.org


[47] Mohammad Torabi Dashti and David A. Basin. Tests and refutation. In ATVA 2017, volume

10482 of LNCS, pages 119–138. Springer, 2017.

[48] Jan Tretmans. Model based testing with labelled transition systems. In Formal Methods and

Testing, volume 4949 of LNCS, pages 1–38. Springer, 2008.

[49] Ulrich Ultes-Nitsche and Simon St. James. Testing liveness properties: Approximating liveness

properties by safety properties. In Formal Techniques for Networked and Distributed Systems,

FORTE, volume 197 of IFIP Conference Proceedings, pages 369–376. Kluwer, 2001.

[50] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Approach. Morgan

Kaufmann Publishers, 2007.

[51] Rob J. van Glabbeek. The linear time-branching time spectrum (extended abstract). In CONCUR

’90, volume 458 of LNCS, pages 278–297. Springer, 1990.

[52] Georg H. von Wright. Deontic logic. Mind, 60(237):1–15, 1951.

[53] Elaine J. Weyuker. Axiomatizing software test data adequacy. IEEE Trans. Softw. Eng.,

12(12):1128–1138, 1986.

[54] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage and adequacy.

ACM Comput. Surv., 29(4):366–427, 1997.

A Proofs

We present the proofs of the lemmas and theorems given in the paper.

Lemma 1. If no system satisfies R, then R is trivial. If some system S satisfies R, then every system

in ⌊⌈S⌉⌋ satisfies R because R is an obligation and a prohibition. As ⌊⌈S⌉⌋ = D, for any S ∈ D, we

conclude that every system satisfies R. That is, R is trivial.

Lemma 2. We split the proof of the “iff” claim into two parts.

(1) Assume R is semi-monotone. We show that R = ⌈R⌉ ∧ ⌊R⌋. Clearly R ⊆ ⌈R⌉ ∧ ⌊R⌋,

for any requirement R. All we need to prove then is that ⌈R⌉ ∧ ⌊R⌋ ⊆ R. If ⌈R⌉ ∧ ⌊R⌋ = ∅,

then the claim trivially holds. Suppose S ∈ ⌈R⌉ ∧ ⌊R⌋ for some system S. From S ∈ ⌈R⌉, we

conclude ∃S− ∈ R. S− � S. Similarly, from S ∈ ⌊R⌋, we conclude ∃S+ ∈ R. S � S+. In short,

we have

S− ∈ R, S+ ∈ R, and S− � S � S+ . (†)

Now, since R is semi-monotone, one of the following three statements holds: (a) R is the con-

junction of two obligations, (b) R is the conjunction of two prohibitions, or (c) R is the conjunction of

an obligation O and a prohibition P . Case (a) along with Statement (†) imply S ∈ R. The same holds

for case (b). We now consider case (c): from S− ∈ R and S− � S of Statement (†), we conclude

S− ∈ O, and hence S ∈ O. Similarly, from S+ ∈ R and S � S+ of Statement (†), we conclude

S+ ∈ P , and hence S ∈ P . Finally, S ∈ O, S ∈ P , and R = O ∧ P imply S ∈ R. Therefore, if R is

semi-monotone, then R = ⌈R⌉ ∧ ⌊R⌋.

(2) Now, assume R = ⌈R⌉ ∧ ⌊R⌋. We show that R is semi-monotone. Note that for any require-

ment R, ⌈R⌉ is an obligation, hence monotone. Moreover, ⌊R⌋ is a prohibition, hence monotone.
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Therefore, ⌈R⌉ ∧ ⌊R⌋ is semi-monotone, that is the intersection of two monotone requirements, for

any requirement R. This completes the proof.

As a side note: an argument similar to (1) above shows that
∧

R∈ρ R is semi-monotone for any

nonempty set ρ of semi-monotone requirements.

Theorem 1. Suppose R is T-refutable, with T = (T, α). We prove that R is a prohibition. If R is

empty, then R is a trivial prohibition. If R is nonempty, then let S ∈ R. Now, suppose S′ � S. All

we need to prove is that S′ ∈ R, which we prove by contradiction.

Assume S′ 6∈ R. Then ∃t ∈ T. α̂(t) ∩ R = ∅ simply because R is T-refutable. Since α is

order-preserving and S′ � S, we have t ∈ α(S). Therefore, S ∈ α̂(t). This entails S 6∈ R, which

contradicts the assumption S ∈ R. We conclude that S′ ∈ R. Therefore, R is a prohibition.

Lemma 3. Let T = (T, α), and write W for
∧

R∈ρ R. Suppose a system S violates W . Then there is

at least one R ∈ ρ such that S 6∈ R. Since R is T-refutable, there is an observation t ∈ α(S) such that

α̂(t) ∩R = ∅. Now, from W ⊆ R we obtain α̂(t) ∩W = ∅. This shows that W is T-refutable.

Lemma 4. Fix a system model M = (D,�,⊥,⊤), and let R be a prohibition. We show that R
is TM

r -refutable, where T
M
r = (D, ⌊·⌋).

Assume that some system S violates R. Since R is a prohibition, any system that abstracts S
violates R. Moreover, S ∈ ⌊S⌋. We conclude that ∃Sw ∈ ⌊S⌋. ⌈Sw⌉ ∩ R = ∅, namely Sw = S.

Hence R is TM
r -refutable.

Lemma 5. Suppose R is a nontrivial obligation. We prove by contradiction that R is not refutable in

any test setup.

Assume that R is T-refutable in some test setup T. By Theorem 1, R is a prohibition. Then, R
must be trivial by Lemma 1, because R is both a prohibition and an obligation. That R is trivial

contradicts the assumption that R is a nontrivial obligation. Hence R is not refutable in any test

setup.

Theorem 2. Suppose R is T-verifiable, with T = (T, α). We prove that R is an obligation. If R is

empty, then R is a trivial obligation. If R is nonempty, then let S ∈ R. Now, suppose S � S′. All we

need to prove is that S′ ∈ R. Since R is T-verifiable, from S ∈ R we conclude ∃t ∈ α(S). α̂(S) ⊆ R.

As α is order-preserving and S � S′, we have t ∈ α(S′). That is, S′ ∈ α̂(S). We conclude

that S′ ∈ R. Therefore, R is an obligation.

Lemma 6. Suppose R is a nontrivial prohibition. We prove by contradiction that R is not verifiable in

any test setup.

Assume that R is T-verifiable in some test setup T. By Theorem 2, R is an obligation. Then, R
must be trivial by Lemma 1, because R is both a prohibition and an obligation. That R is trivial

contradicts the assumption that R is a nontrivial prohibition. Hence R is not verifiable in any test

setup.

Lemma 7. We split the proof into three parts, reflecting the lemma’s claims.

(1) Let φ be a T∗-refutable property. We show that φ is safety.

Assume π 6∈ φ, for some π ∈ Σω. Then, the system Sπ = {π} violates φ. Now, by φ’s T∗-

refutability, there exists a finite set t of φ’s finite prefixes that demonstrates Sπ 6∈ Rφ, where Rφ =
⌊φ⌋. Let σ be the longest element in t; note that since {π} is a singleton, there always exists a single

longest element in t. Then, for any π′ ∈ Σω, the system Sπ′ = {σπ′} violates φ, simply because t
belongs to α(Sπ′). We conclude that σπ′ 6∈ φ, for all π′ ∈ Σω. That is, φ is a safety temporal property.
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(2) Let φ be a safety property. We show that φ is T∗-refutable.

Assume that a system S violates φ. That is, ∃π ∈ S. π 6∈ φ. Since φ is safety, a finite prefix

of π, say σ, satisfies the following condition: ∀π′ ∈ Σω. σπ′ 6∈ φ. Now, define the observation t ∈ T∗

as {σ}. Note that t ∈ α(S), and moreover α̂(t) ∩ Rφ = ∅ due to the above condition. This shows

that φ is T∗-refutable.

(3) Any temporal property φ is Tr-refutable because Rφ’s satisfaction is refinement-closed for

any φ. Then, by Lemmas 1 and 6, any Tr-verifiable or T∗-verifiable property must be trivial. This

completes the proof.

Theorem 3. Let P = ⌊A ∩R⌋. That P is a prohibition is immediate. Below, we prove the contrapos-

itive form of the statement ∀S ∈ A. S 6∈ P ↔ S 6∈ R in two directions.

(1) We show ∀S ∈ A. S ∈ R → S ∈ P . Let S be a system in A that satisfies R. Then, S ∈ A∩R,

and hence S ∈ P .

(2) We show ∀S ∈ A. S ∈ P → S ∈ R. Let S be a system in A that satisfies P . We assume

S 6∈ R, and derive a contradiction as follows. From S ∈ P , we conclude that there is a system S′

such that S � S′ and S′ ∈ A∩R. Since R is T-refutable under A, and S ∈ A, there is an observation

t ∈ α(S) such that α̂(t) ∩A ∩R = ∅. As S � S′, we have S′ ∈ α̂(t).
From the above results we conclude S′ ∈ α̂(t) ∩ A ∩ R, which contradicts α̂(t) ∩ A ∩ R = ∅.

Therefore, S ∈ R, which completes the proof.
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