
Improving the Scalability of Fault-Tolerant Database Clusters
�

R. Jiménez-Peris
�
, M. Patiño-Mart́ınez

�

Schoolof ComputerScience
TechnicalUniversityof Madrid (UPM), Madrid,Spain�

rjimenez,mpatino� @fi.upm.es

B. Kemme

Schoolof ComputerScience
McGill University, Montreal,Canada

kemme@cs.mcgill.ca

G. Alonso

Departmentof ComputerScience
SwissFederalInstituteof Technology(ETHZ), Zürich,Switzerland

alonso@inf.ethz.ch

1. The Problem

The increasinglypervasive use of clustersas the pre-
ferredplatform for large informationsystemsmakesrepli-
cation a central elementof modernsystemarchitectures.
Clustersoffer the possibility to use off-the-shelf compo-
nentstobuild morepowerful informationsystemsbysimply
addingmoresites. This scale out approach(addingmore
elements)contrastswith the moretraditional scale up ap-
proach(usingmorepowerful elements)in that thereareno
fundamentallimitations to how much a systemcan scale
out. From the hardwarepoint of view, a systemcanonly
scaleupto acertainlimit andthecostis exponentialwith the
scaleup factor. For a clustersystem,in principle thereare
no limits to how many sitescanbe added.Unfortunately,
thingsarenot thatstraightforward. In a scaleup approach,
thesoftwarearchitecturedoesnotplayabig role: thebetter
the hardware,the fasterthe application. In a scaleout ap-
proach,if oneis notcarefulwith thesoftwaredesign,all the
advantagescanbequickly lost. Replication,for instance,is
oneof thesoftwareaspectsthatrequireparticularattention
sinceanimproperdesignwill turnalargeclusterinto avery
reliablebut veryexpensiveversionof asinglemachine.

Thisproblemisparticularlyacutein informationsystems
like thoserunningweb sitesfor electroniccommerce,on-
line auctions,or largedatawarehouses.Most of thesesys-
temsarebasedonclusterswhereanumberof serverssimul-
taneouslysharethe loadandactasa backupto eachother.
Thisdualfunctionalityis increasinglyimportantasthesys-
tem grows: additionalsitescan therebyincreaseboth the
processingcapacityandtheavailability of the system.For
this to work, dataneedsto be efficiently replicatedacross
all servers(for availability) andtheloadpartitionedsothat

�
c

�
2001R. Jiménez,M. Patiño,B. Kemme,andG. Alonso.�

This work hasbeenpartially supportedby the SpanishNationalRe-
searchCouncilCICYT, grant#TIC98-1032

eachserver can take careof part of it (for performance).
Thelatterrequirementholdsin many systems.Thelimiting
factor today is that existing datareplicationprotocolsare
entirelyinadequatefor clusterenvironments.

Conventional, text book data replication protocols[1]
have provento be impracticalfor all intentsandpurposes:
they donotscaleandcreatehugeoverheads[2]. Moremod-
ernapproaches,likethosethatcombinetotalordermulticast
with transactionalproperties,arefor themostpart theoret-
ical constructsnever implementedin a real system. The
onesimplemented,like Postgres-R[3], requireto modify
the underlyingdatabase,somethingthat is not alwaysfea-
sible. Ideally, what is neededis both a protocol that can
providereplicationfor bothperformanceand availability as
well asanimplementationthatis not intrusive.

2. A Solution

In this work we have implementedan eagerscalable
replicationprotocol [4] atop an existing databasesystem.
The applicationswe have in mind are clustersof data
servers where requestscan be divided into disjoint cate-
gories,a typical situationin e-commerceapplications.The
replicationprotocolwe proposeguaranteesconsistency at
all timesso that replicascanbe usedasbackupsfor other
replicas. It is also designedto minimize the processing
overheadof replication,therebyallowing a degreeof scala-
bility thatismuchbetterthanwhatiscurrentlypossiblewith
existingcommercialsystems.Thecontributionof thiswork
is to demonstratethatdatareplicationcanbe implemented
without severely limiting the scalabilityof the clusterand
that this doesnot requireto modify existing tools but can
efficiently bedoneasanadditionalmiddlewarelayer. Per-
formanceandavailability gainsaside,thisis oneof themost
attractive featuresof thesystemwe propose.

The systemwe proposeis a middleware layer situated



betweenclientsanddatabasesasshown in Fig. 1. Thus,

Figure 1. Middleware architecture

it is possibleto obtain a replicateddatabaseout of non-
replicateddatabases.

Two servicesareneededfrom thedatabasein ordertoen-
ableefficient replication:oneto get theupdatesperformed
by a transactionand anotherone to apply the updatesof
a transaction. Theseservicesare usually implementedin
commercialdatabasesalthoughthey arenot usuallypublic.
Wehavejustaddedthesetwo servicesto PostgreSQLto im-
plementour prototype.For a setof homogenousdatabases,
the updatescanbe in binary form (asit hasbeenthe case
in ourexperiments),whilst for heterogeneousdatabasesthe
updatescanberepresentedwith astringcontainingthecor-
respondingupdateSQL statement.The advantageof just
propagatingtheupdatesis that thework of parsingandex-
ecutingtheSQL statementis not repeatedat every replica.
This is especiallyinterestingwhentheSQLstatementscans
a whole table to updatea few tuples, and in generalfor
transactionswith a high-percentageof readoperationswith
respectto write operations. This is why it is possibleto
scaledespiteusinga read-onewrite-all approach.

3. Preliminary Results

3.1. Response Time with a Constant Load

The first questionwe addressedis whetherthe proto-
col weproposereally solvesthelimitationsof conventional
replicationprotocols(e.g., thosedescribedin [1]). Gray
et al. [2] showed that theseconventionalprotocolsdo not
scaleand,in particular, thatundera constantload increas-
ing thenumberof replicaswould increasetheresponsetime
of updatetransactionsandproducehigherabort rates. To
testtheprotocol,we havecomparedthescalabilityin terms
of responsetime of our solutionwith thatof a commercial
productthat implementsreplicationbasedon standarddis-
tributed locking. The behavior of the distributed locking
commercialsolutiondid not scaleat all: for a fixed load,
theresponsetime increasedwith thenumberof sites.This

is dueto the fact that distributedlocking createsa signifi-
cantamountof redundantwork in thesystem,somuchthat
addingextra sitesbecomesa liability more thanan asset.
Oursystemwasquitestable.For anumberof upto 20sites,
theresponsetime did not vary, indicatingthatthesystemis
not addingany extra latency whenmoresitesareadded.

3.2. Scale out

In a secondexperimentwe measuredthe scale-outpro-
vided by the systemfor differentsystemconfigurationsof
up to 15 sites,with differenttransactionprofilesof 100%,
50%, and0% updates.As canbe seenin Fig. 2 the sys-
tem presentedlinear scalability for read-onlytransactions,
andprovidedareasonablescale-outfor a50%updates.The
systemevenscaledin theworstcaseof 100%updates.This
scalability has beenpossibledue to SQL statementsare
parsedandexecutedat a single site as well as readoper-
ations,whilst the rest of the sitesjust apply the resulting
updates.

Figure 2. Scalability of the system for different
transaction loads

References

[1] P. A. Bernstein,V. Hadzilacos,andN. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison
Wesley, Reading,MA, 1987.

[2] J.Gray, P. Helland,P. O’Neil, andD. Shasha.TheDangersof
Replicationanda Solution. In Proc. of the SIGMOD, pages
173–182,Montreal,1996.

[3] B. Kemmeand G. Alonso. Don’t be lazy, be consistent:
Postgres-R,A new way to implementDatabaseReplication.
In Proc. of the Int. Conf. on Very Large Databases (VLDB),
Cairo,Egypt,Sept.2000.

[4] M. Patiño Mart́ınez, R. Jiménez Peris, B. Kemme, and
G. Alonso. ScalableReplicationin DatabaseClusters. In
In Proc. of Int. Conf. on Distributed Computing, DISC’00.
Toledo, Spain, volume LNCS 1914, pages315–329,Oct.
2000.


